女川原子力発電所第 2 号機	
工事計画審查資料	
資料番号	02 －工－B－19－0399＿改 0
提出年月日	2021 年 8 月 3 日

VI－2－7－3－1－1 管の耐震性についての計算書

（放射性ドレン移送系）

2021年8月
東北電力株式会社

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 6
3.1 計算方法 6
3.2 荷重の組合せ及び許容応力状態 7
3.3 設計条件 8
3．4 材料及び許容応力評価条件 11
3.5 設計用地震力 12
4．解析結果及び評価 13
4.1 固有周期及び設計震度 13
4． 2 評価結果 19
4．2．1 管の応力評価結果 19
4．2．2 支持構造物評価結果 20
4．2．3 弁の動的機能維持評価結果 21
4．2．4 代表モデルの選定結果及び全モデルの評価結果 22

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，放射性ドレン移送系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」及び「S A P－V」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態
注記＊1：DB は設計基準対象施設，SA は重大事故等対処設備を示す。
＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RD－0 01

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	0.98	95	76.3	5.2	STPT370	S	198400
2	0.98	95	89.1	5.5	STPT370	S	198400
3	0.98	171	89.1	5.5	STS410	S	193320
4	0.98	66	89.1	5.5	STPT370	S	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R D－ 001

管名称				対	応	す	る	評	価	点
1	10	101	902							
2	10	11								
3	13	14	15	16						
4	2	22	801							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)						
10		15		22		801	
			16		101		902

弁部の質量を下表に示す。
弁1 弁2

評価点	質量（kg）	評価点	質量（kg）
11		19	
12		20	
13		21	
35		37	
900		38	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	12			
弁2	20			

支持点及び貫通部ばね定数
鳥 瞰 図
RD－001

支持点部のばね定数を下表に示す。

3.4 材料及び許容応力評価条件

使用する材料の最高使用温度での許容応力評価条件を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	S m (MPa)	S y (MPa)	$\mathrm{S} u$ (MPa)	S h (MPa)
STPT370	66	-	199	360	-
	95	-	188	351	-
STS410	171	-	211	404	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R D－ 0001	原子炉本体基礎		
	原子炉格納容器		
	原子炉建屋		

O 2 （4）VI－2－7－3－1－1（設）R 0
4．解析結果及び評価
4．1 固有周期及び設計震度
鳥 瞰 図 RD－001

[^0]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ | | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
| | | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 | | | | |
| 2 次 | | | | |
| 3 次 | | | | |
| 4 次 | | | | |
| 5 次 | | | | |

[^1]
代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\underset{(\mathrm{MPa})}{\text { 一次 }+ \text { 二次応力評価 }}$		疲労評価
				計算応力 $\begin{aligned} & S \mathrm{prm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S} s) \end{aligned}$	許容応力 $\begin{aligned} & S y^{* 1} \\ & 0 . \quad 9 \cdot S u \end{aligned}$	計算応力 $\operatorname{Sn}(S s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
R D－0 0 1	$\begin{aligned} & \text { III } \mathrm{S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }\left(S s^{\prime}\right) \end{gathered}$	$\begin{aligned} & \hline 121 \\ & 186 \\ & - \end{aligned}$	$\begin{aligned} & \hline 199 \\ & 324 \\ & - \end{aligned}$			—

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と1．2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
O 2 （4）VI－2－7－3－1－1（設）R 0

支持構造物評価結果（荷重評価）					
				評価結果	
支持構造物番号	種類	型式	材質 $\begin{array}{c}\text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$	$\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & \text { (kN) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 荷重 } \\ & \text { (kN) } \end{aligned}$
RD－001－900S	メカニカルスナッバ	SMS－03－100	添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」参照	3	16
RD－002－039BB	ロッドレストレイント	RSA－06		8	9

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			$\begin{aligned} & \text { 応力 } \\ & \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$
					F_{x}	F_{Y}	F_{z}	M_{x}	M_{Y}	M_{z}			
RD－001－022R	レストレイント	Uプレート	SS400	40	7	14	6	－	－	－	せん断	98	141

4．2．3 弁の動的機能維持評価結果

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
K11－F103	ゲート弁	β（ S d）	7.1	3.6	20.0	20.0	187	234

4．2．4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	RD－001	21	121	199	1． 64	\bigcirc	21	186	324	1． 74	\bigcirc	21	331	398	1． 20	\bigcirc	－	－	－
2	RD－002	24	35	188	5． 37	－	24	52	431	8． 28	－	24	117	376	3.21	－	－	－	－

注記 $*: ~ I I I_{A} \mathrm{~S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

[^0]: 注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^1]: 注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

