| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－5－6－1－3 管の耐震性についての計算書
（原子炬隔離時冷却系）

2021年8月
東北電力株式会社

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 13
3.1 計算方法 13
3.2 荷重の組合せ及び許容応力状態 14
3.3 設計条件 15
3．4 材料及び許容応力評価条件 24
3.5 設計用地震力 25
4．解析結果及び評価 28
4.1 固有周期及び設計震度 28
4． 2 評価結果 46
4．2．1 管の応力評価結果 46
4．2．2 支持構造物評価結果 49
4．2．3 弁の動的機能維持評価結果 50
4．2．4 代表モデルの選定結果及び全モデルの評価結果 51

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，原子炉隔離時冷却系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

注記＊1：高圧炉心スプレイ系

鳥瞰図記号凡例

記 号

O 2 (5) VI-2-5-6-1-3 (設) R 0
○ (5) VI-2-5-6-1-3 (設) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」及び「S A P－V」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊1	設備分類	機器等 の区分	耐震重要度分類	荷重の組合せ＊2，＊3	許容応力状態
原子沪冷却系統施設	原子炉冷却材補給設備	原子炉隔離時冷却系	DB	－	クラス 2 管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	$\mathrm{III}_{\text {A }} \mathrm{S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{1} \mathrm{~S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$	
原子穴冷却系統施設	非常用炉心冷却設備その他原子炉注水設備	高圧炉ふスプレ イ系	DB	－	クラス 2 管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	$\mathrm{III}_{\text {A }} \mathrm{S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	
							$\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$	

注記 $* 1: ~ D B$ は設計基準対象施設，SA は重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
RCIC－O 02

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	11.77	66	114.3	13.5	STS410	S	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 02

管名称				対		応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	66	68	69
	70	71	72	73	74	101	102	103	105	106	851	852	911		

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		10		19		66		102	
2		11		20		68		103	
3		12		21		69		105	
4		13		22		70		106	
5		14		23		71		851	
6		15		24		72		852	
7		16		25		73		911	
8		17		26		74			
9		18		27		101			

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO2
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
10						
18						
23						
27						
66						
70						
74						
911						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	8.62	302	114.3	11.1	STS 410	S	184760
2	8.62	302	114.3	11.1	STS 410	S	184760

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RCIC－003

管名称					対	応	す	る	評	価	点					
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	32	103	106	900	901											
2	101	106	107	108	903											

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		9		17		25		107	
2		10		18		26		108	
3		11		19		27		900	
4		12		20		28		901	
5		13		21		29		903	
6		14		22		30			
7		15		23		32			
8		16		24		106			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
101	
102	
103	
104	
105	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1		139.8	10.8	457

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
8						
＊＊ $8 * *$						
12						
＊＊ 12 ＊＊						
15						
20						
24						
27						
32						
105						
＊＊ 105 ＊＊						
900						
903						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 004

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	8.62	302	114.3	11.1	STS410	S	184760

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 04

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	31
	32	33	34	35	36	37	38	39	40	41	46	50	801	803	804
	805	807	808	809	900	901	906	907	908						

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		12		23		37		807	
2		13		24		38		808	
3		14		25		39		809	
4		15		26		40		900	
5		16		27		41		901	
6		17		28		46		906	
7		18		32		50		907	
8		19		33		801		908	
9		20		34		803			
10		21		35		804			
11		22		36		805			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
29	
30	
31	
44	
45	

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1				

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO4
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね又定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
8						
13						
18						
22						
26						
28						
33						
41						
45						
＊＊ 45 ＊＊						
46						
＊＊ 50 ＊＊						
900						
＊＊901＊＊						
906						
＊＊ 907 ＊＊						
908						

3.4 材料及び許容応力評価条件

使用する材料の最高使用温度での許容応力評価条件を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	S m (MPa)	$\mathrm{S} y$ (MPa)	S u (MPa)	S h (MPa)
STS410	66	-	231	407	-
	302	-	182	404	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R C I C－0 0 2	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R C I C -0 O 3	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

O 2 （5）VI－2－5－6－1－3（設）R 0
4．解析結果及び評価
4.1 固有周期及び設計震度

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊1		応答鉛直震度＊1
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
19 次							
20 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊3：S d 又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2 C_{V} より定めた震度を示す。
各モードに対応する刺激係数

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－6－1－3（設）R 0
固有周期及び設計震度
鳥 瞰 図 R C I C－0 0 3

[^0]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ | | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
| | | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 | | | | |
| 2 次 | | | | |
| 3 次 | | | | |
| 4 次 | | | | |
| 5 次 | | | | |
| 6 次 | | | | |
| 7 次 | | | | |
| 8 次 | | | | |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

[^1]朹囲みの内容は商業機密の観点から公開できません。

モード	固 有 周 期		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
9 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）				疲労評価
				計算応力 $\begin{aligned} & \text { Sprm(Sd) } \\ & \text { Sprm(S s }) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 \cdot \\ & 9 \cdot \mathrm{Su} \end{aligned}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
R C I C－0 02	$\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{array}{r} 89 \\ 164 \\ - \end{array}$	$\begin{aligned} & \hline 231 \\ & 366 \\ & - \end{aligned}$			－

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価(MPa)		疲労評価
				計算応力 $\begin{aligned} & S \mathrm{prm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S} \text {) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$	計算応力 $S n(S s)$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
R C I C－0 03	$\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$	$\begin{aligned} & 105 \\ & 150 \\ & - \end{aligned}$	$\begin{aligned} & 182 \\ & 363 \\ & - \end{aligned}$			－

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1．2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価(MPa)		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprrm(Sd)} \\ \text { Sprm (S s }) \end{gathered}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$	計算応力 $\operatorname{Sn}(S s)$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
R C I C－O 04	$\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S s) \end{gathered}$	$\begin{array}{r} 85 \\ 127 \\ - \end{array}$	$\begin{aligned} & 182 \\ & 363 \\ & - \end{aligned}$			－

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1．2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

	種類	型式	材質	温度$\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
支持構造物番号					$\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & (\mathrm{kN}) \\ & \hline \end{aligned}$	許容荷重 （kN）
RCIC－005－916S	メカニカルスナッバ	SMS－3－100	添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」参照		13	75
RCIC－004－045B	ロッドレストレイント	RST－1			18	24
RCIC－005－070H	スプリングハンガ	VS30T－12			7	8

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\mathrm{C}}\right) \end{aligned}$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力分類	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$
					F_{x}	F_{Y}	F_{z}	M_{x}	M_{Y}	M_{Z}			
RCIC－003－001A	アンカ	ラグ	SGV410	302	75	44	49	11	3	13	せん断	51	96
RCIC－002－911R	レストレイント	Uプレート	SS400	40	0	5	65	－	－	－	せん断	114	141

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－6－1－3（設）R 0

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	代 表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労累積係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	RCIC－001	57	56	231	4． 12	－	57	89	366	4． 11	－	65	152	462	3． 03	－	－	－	－
2	RCIC－002	12	89	231	2． 59	－	12	164	366	2． 23	\bigcirc	12	279	462	1． 65	－	－	－	－
3	RCIC－003	24	105	182	1． 73	\bigcirc	24	150	363	2． 42	－	24	218	364	1． 66	－	－	－	－
4	RCIC－004	1	85	182	2.14	－	1	127	363	2． 85	－	1	270	364	1． 34	\bigcirc	－	－	－
5	RCIC－005	29	44	209	4． 75	－	29	65	363	5.58	－	103	157	418	2． 66	－	－	－	－

注記 $*: ~ I I I ~ A S の 一$ 次 + 二次応力の許容値は $V_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 11
3.1 計算方法 11
3.2 荷重の組合せ及び許容応力状態 12
3.3 設計条件 13
3．4 材料及び許容応力評価条件 19
3.5 設計用地震力 20
4．解析結果及び評価 22
4.1 固有周期及び設計震度 22
4． 2 評価結果 34
4．2．1 管の応力評価結果 34
4．2．2 支持構造物評価結果 36
4．2．3 弁の動的機能維持評価結果 37
4．2．4 代表モデルの選定結果及び全モデルの評価結果 38

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，原子炉隔離時冷却系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

注記＊ 1 ：高圧炉心スプレイ系
解析モデル上本系統に含める。
＊2：解析モデル上

鳥瞰図記号凡例

記 号
O 2 (5) $\mathrm{VI}-2-5-6-1-3$ (重) R 0
O 2 (5) $\mathrm{VI}-2-5-6-1-3$ (重) R 0
O 2 (5) $\mathrm{VI}-2-5-6-1-3$ (重) R 0
O2 (5) VI-2-5-6-1-3(重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」及び「S A P－V」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力 状態＊5
原子纱冷却系統施設	非常用炬心冷却設備 その他原子炬注水設備	原子炉隔離時冷却系	SA	常設／防止 （DB 拡張）	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} s$	$\mathrm{V}_{4} \mathrm{~S}$
原子知冷却系統施設	非常用炬心泠却設備 その他原子炉注水設備	高圧代替注水系	SA	常設耐震／防止常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子祅格納施設	圧力低減設備その他の安全設備	高圧代替注水系	SA	常設／緩和	重大事故等 $\text { クラス } 2 \text { 管 }$	－	$V_{L}+\mathrm{S} s$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記 $* 1: \mathrm{DB}$ は設計基準対象施設，SA は重大事故等対処設備を示す。

[^2]3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
RCIC－O 02

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	11.77	66	114.3	13.5	STS410	-	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 02

管名称				対		応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	66	68	69
	70	71	72	73	74	101	102	103	105	106	851	852	911		

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		10		19		66		102	
2		11		20		68		103	
3		12		21		69		105	
4		13		22		70		106	
5		14		23		71		851	
6		15		24		72		852	
7		16		25		73		911	
8		17		26		74			
9		18		27		101			

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO2
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
10						
18						
23						
27						
66						
70						
74						
911						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 004

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	10.34	315	114.3	11.1	STS 410	-	183200
2	8.62	302	114.3	11.1	STS410	-	184760

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 04

管名称					対	応				評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	801
	803	807	808	809	900	901	906								
2	31	32	33	34	35	36	37	38	39	40	41	46	50	804	805
	907	908													

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		12		23		37		807	
2		13		24		38		808	
3		14		25		39		809	
4		15		26		40		900	
5		16		27		41		901	
6		17		28		46		906	
7		18		32		50		907	
8		19		33		801		908	
9		20		34		803			
10		21		35		804			
11		22		36		805			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
29	
30	
31	
44	
45	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1				

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO4
支持点部のばね定数を下表に示す。

3.4 材料及び許容応力評価条件

使用する材料の最高使用温度での許容応力評価条件を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	S m (MPa)	S y (MPa)	S u (MPa)	S h (MPa)
STS410	66	-	231	407	-
	302	-	182	404	-
	315	-	180	404	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R C I C－ 0 0 2	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R C I C－O O 4			

O 2 （5）VI－2－5－6－1－3（重）R 0

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

モード	$\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次	0.113	0． 008	0． 001	0.356
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
19 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

[^3]

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4．2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm}(\mathrm{~S} \text { s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	計算応力 $\operatorname{Sn}(S \mathrm{~s})$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
R C I C－0 02	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 161 \\ & \hline \end{aligned}$	366	279	462	—

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm}(\mathrm{~S} \text { s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	計算応力 $\operatorname{Sn}(S \mathrm{~s})$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
R C I C－0 04	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	1	$\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 129 \\ & - \end{aligned}$	$\begin{gathered} 363 \\ - \end{gathered}$	$\overline{270}$	$\overline{360}$	—

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

O 2 （5）VI－2－5－6－1－3（重）R 0

支持構造物評価結果（荷重評価）					
支持構造物番号	種類	型式		評価結果	
				計算 荷重 （kN）	許容 荷重 （kN）
RCIC－005－107S	メカニカルスナッバ	SMS－3－100	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照	20	75
RCIC－005－916S	メカニカルスナッバ	SMS－3－100		17	75
RCIC－005－033B	ロッドレストレイント	RTS－6		21	90
RCIC－005－070H	スプリングハンガ	VS30T－12		7	8

支持構造物評価結果（応力評価）
4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－6－1－3（重）R 0

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）														
No．	配管モデル	許容応力状態 Vas												
		一次応力					一次＋二次応力					疲労評価		
		評 偠 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 偠 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代	評 偠 点	疲労 累積 係数	代 表
1	RCIC－001	1	139	431	3.10	－	1	238	376	1.57	－	－	－	－
2	RCIC－002	12	161	366	2.27	\bigcirc	12	279	462	1.65	－	－	－	－
3	RCIC－003	24	152	363	2.38	－	24	218	360	1.65	－	－	－	－
4	RCIC－004	1	129	363	2.81	－	1	270	360	1.33	\bigcirc	－	－	－
5	RCIC－005	29	64	363	5.67	－	35	227	414	1.82	－	－	－	－

[^0]: 注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^1]: 注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^2]: ＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基潐拡張），「常設／緩和」は常設重大事故緩和設備を示す。
 ＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
 ＊5 ：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

[^3]: 注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
 $* 3: ~ \mathrm{~S} \mathrm{~d}$ 又 ${ }^{2} \mathrm{~S}$ s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
 $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び $1.2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。

