本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

| 女川原子力発電所第2号 | 号機 工事計画審査資料        |
|-------------|--------------------|
| 資料番号        | 02-工-B-19-0325_改 0 |
| 提出年月日       | 2021年8月3日          |

# VI-2-5-6-1-3 管の耐震性についての計算書 (原子炉隔離時冷却系)

2021年8月

東北電力株式会社

# 設計基準対象施設

# 目次

| 1. | 概           | 要                                                   | 1  |
|----|-------------|-----------------------------------------------------|----|
| 2. | 概           | 略系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 2  |
| 2  | 2. 1        | 概略系統図                                               | 2  |
| 2  | 2. 2        | 鳥瞰図                                                 | 5  |
| 3. | 計           | 算条件                                                 | 13 |
| 3  | 8. 1        | 計算方法 ·····                                          | 13 |
| 3  | 3. 2        | 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 14 |
| 3  | 3. 3        | 設計条件                                                | 15 |
| 3  | 3. 4        | 材料及び許容応力 <mark>評価条件</mark>                          | 24 |
| 3  | 8. 5        | 設計用地震力 · · · · · · · · · · · · · · · · · · ·        | 25 |
| 4. | 解           | 析結果及び評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 28 |
| 4  | 1. 1        | 固有周期及び設計震度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 28 |
| 4  | <b>l.</b> 2 | 評価結果 ·····                                          | 46 |
|    | 4.          | 2.1 管の応力評価結果                                        | 46 |
|    | 4.          | 2.2 支持構造物評価結果                                       | 49 |
|    | 4.          | 2.3 弁の動的機能維持評価結果                                    | 50 |
|    | 4.          | <ul><li>2.4 代表モデルの選定結果及び全モデルの評価結果</li></ul>         | 51 |

#### 1. 概要

本計算書は、添付書類「VI-2-1-13-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、原子炉隔離時冷却系の管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は、以下に示すとおりである。

#### (1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また、全5モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

#### (2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

#### (3) 弁

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として、評価結果を記載する。

# 2. 概略系統図及び鳥瞰図

# 2.1 概略系統図

概略系統図記号凡例

| 記号        | 内 容                                                          |
|-----------|--------------------------------------------------------------|
| (太線)      | 工事計画記載範囲の管のうち、本計算書記載範囲の管                                     |
| ———— (細線) | 工事計画記載範囲の管のうち,本系統の管であって他<br>計算書記載範囲の管                        |
| (破線)      | 工事計画記載範囲外の管又は工事計画記載範囲の管の<br>うち,他系統の管であって系統の概略を示すために表<br>記する管 |
| 000-000   | 鳥瞰図番号                                                        |
| •         | アンカ                                                          |

原子炉隔離時冷却条概略条統図(その1) 原子炉隔離時冷却系 ポンプ駆動用タービン (RCIC-004) 9x (203) V (ZO≯) RCIC-001 原子炉陽離時冷却条ポンプ RCIC-001 (RCIC-002) 4 0 高圧炉心スプレイ系 RCIC-002 ¥ RCIC-001) RCIC-002) RCIC-002 復水貯蔵タンクより RCIC-001) 解析モデル上本系統に含める。 サプレッションチェンバ \*2 \*2:解析モデル上 復水給水系に含める。 \*1: 高圧炉心スプレイ糸 補給水系より -----\*2 洪 原子炉冷却材净化系 ~器容代五吋千魚



4

# 2.2 鳥瞰図

# 鳥瞰図記号凡例

| 記号                                      | 内 容                                                            |
|-----------------------------------------|----------------------------------------------------------------|
|                                         | 工事計画記載範囲の管のうち、本計算書記載範囲の管                                       |
| 申請範囲外                                   | 工事計画記載範囲外の管                                                    |
| <u> </u>                                | 工事計画記載範囲の管のうち,他系統の管であって解析モデル<br>として本系統に記載する管                   |
| •                                       | 質点                                                             |
| lacktriangle                            | アンカ                                                            |
|                                         | レストレイント<br>(矢印は斜め拘束の場合の全体座標系における拘束方向成分を<br>示す。スナッバについても同様とする。) |
| H.                                      | スナッバ                                                           |
|                                         | ハンガ                                                            |
| 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ガイド                                                            |
|                                         | 拘束点の地震による相対変位量(mm)<br>(*は評価点番号,矢印は拘束方向を示す。また, 内<br>に変位量を記載する。) |

#### 3. 計算条件

# 3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「ISAP」及び「SAP-V」を使用し、解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

| 15                     | 万 给 夕 华   | 施設   | 珠ノノ 型/ 心管 | 機器等   | 耐震重要度 | 护师 6名 今 4 * 2. * 3                                    | 許容応力                |
|------------------------|-----------|------|-----------|-------|-------|-------------------------------------------------------|---------------------|
| 光                      | Ź<br>Ł    | 分類*1 | 政備刀殺      | の医分   | 分類    | 10 里の部ロで                                              |                     |
|                        |           |      |           |       |       | $I_L + S d$                                           | υШ                  |
| 原子炉                    | 原子炉隔離時冷   | 9    |           | カコンの経 | ٥     | $\mathbb{I}_{L} + S d$                                | C <sub>A</sub> IIII |
| 平                      | 却系        | du   |           | 三フマン  | 2     | $I_L + S s$                                           | N 7H                |
|                        |           |      |           |       |       | ${ m I\hspace{1em}I}_{ m L} + { m S\hspace{0.1em} s}$ | C <sub>A</sub> VI   |
|                        |           |      |           |       |       | $I_L + S d$                                           | υШ                  |
| 1 <u>.</u><br>1-<br>11 | 9         |      |           |       |       | $\mathbf{I}_{\mathrm{L}} + \mathbf{S} d$              | C <sub>A</sub> III  |
| 尚仁尔                    | 同圧がにヘノアンを | DB   |           | クラス2管 | S     | $IV_L(L) + S d$                                       |                     |
| ~                      | K         |      |           |       | •     | $I_L + S$ s                                           | $IV_AS$             |
|                        |           |      |           |       |       | ${\rm 1\hspace{-0.90ex}I}_{\rm L} + {\rm S}_{\rm -S}$ |                     |

注記\*1:DB は設計基準対象施設,SA は重大事故等対処設備を示す。

\*2:運転状態の添字Lは荷重,(1)は荷重が長期間作用している状態を示す。

\*3:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

### 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

### 鳥 瞰 図 RCIC-002

| 管名称 | 最高使用圧力<br>(MPa) | 最高使用温度<br>(℃) | 外径<br>(mm) | 厚さ<br>(mm) | 材料     | 耐震<br>重要度分類 | 縦弾性係数<br>(MPa) |
|-----|-----------------|---------------|------------|------------|--------|-------------|----------------|
| 1   | 11. 77          | 66            | 114. 3     | 13. 5      | STS410 | S           | 200360         |

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

#### 鳥 瞰 図 RCIC-002

| 管名称 |    |    |    |    | 対  | 応   | す   | -   | る   | 評   | 価   | 点   |     |    |    |  |
|-----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|--|
| 1   | 1  | 2  | 3  | 4  | 5  | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14 | 15 |  |
|     | 16 | 17 | 18 | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 66  | 68 | 69 |  |
|     | 70 | 71 | 72 | 73 | 74 | 101 | 102 | 103 | 105 | 106 | 851 | 852 | 911 |    |    |  |

#### 配管の質量(付加質量含む)

評価点の質量を下表に示す。

| 評価点 | 質量(kg) |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1   |        | 10  |        | 19  |        | 66  |        | 102 |        |
| 2   |        | 11  |        | 20  |        | 68  |        | 103 |        |
| 3   |        | 12  |        | 21  |        | 69  |        | 105 |        |
| 4   |        | 13  |        | 22  |        | 70  |        | 106 |        |
| 5   |        | 14  |        | 23  |        | 71  |        | 851 |        |
| 6   |        | 15  |        | 24  |        | 72  |        | 852 |        |
| 7   |        | 16  |        | 25  |        | 73  |        | 911 |        |
| 8   |        | 17  |        | 26  |        | 74  |        |     |        |
| 9   |        | 18  |        | 27  |        | 101 |        |     |        |

#### 支持点及び貫通部ばね定数

# 鳥 瞰 図 RCIC-002

支持点部のばね定数を下表に示す。

| 支持点番号 | 各車 | 曲方向ばね定数(N/i | mm) | 各軸回り | 回転ばね定数(N・ | mm/rad) |
|-------|----|-------------|-----|------|-----------|---------|
|       | X  | Y           | Z   | X    | Y         | Z       |
| 1     |    |             |     |      |           |         |
| 5     |    |             |     |      |           |         |
| 10    |    |             |     |      |           |         |
| 18    |    |             |     |      |           |         |
| 23    |    |             |     |      |           |         |
| 27    |    |             |     |      |           |         |
| 66    |    |             |     |      |           |         |
| 70    |    |             |     |      |           |         |
| 74    |    |             |     |      |           |         |
| 911   |    |             |     |      |           |         |

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

#### 鳥 瞰 図 RCIC-003

| 管名称 | 最高使用圧力<br>(MPa) | 最高使用温度<br>(℃) | 外径<br>(mm) | 厚さ<br>(mm) | 材料     | 耐震<br>重要度分類 | 縦弾性係数<br>(MPa) |
|-----|-----------------|---------------|------------|------------|--------|-------------|----------------|
| 1   | 8. 62           | 302           | 114. 3     | 11. 1      | STS410 | S           | 184760         |
| 2   | 8. 62           | 302           | 114. 3     | 11.1       | STS410 | S           | 184760         |

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

### 鳥 瞰 図 RCIC-003

| 管名称 |     |     |     |     | 対   | 応  | す  |    | る  | 評  | 価  | 点  |    |    |    |  |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|--|
| 1   | 1   | 2   | 3   | 4   | 5   | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |  |
|     | 16  | 17  | 18  | 19  | 20  | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |  |
|     | 32  | 103 | 106 | 900 | 901 |    |    |    |    |    |    |    |    |    |    |  |
| 2   | 101 | 106 | 107 | 108 | 903 |    |    |    |    |    |    |    |    |    |    |  |

#### 配管の質量 (付加質量含む)

評価点の質量を下表に示す。

| 評価点 | 質量(kg) |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1   |        | 9   |        | 17  |        | 25  |        | 107 |        |
| 2   | 1      | 10  |        | 18  | 1      | 26  | [      | 108 | 1      |
| 3   | 1      | 11  |        | 19  | 1      | 27  | [      | 900 |        |
| 4   |        | 12  |        | 20  |        | 28  | [      | 901 |        |
| 5   |        | 13  |        | 21  |        | 29  | [      | 903 |        |
| 6   |        | 14  |        | 22  |        | 30  | [      |     |        |
| 7   |        | 15  |        | 23  |        | 32  |        |     |        |
| 8   |        | 16  |        | 24  |        | 106 |        |     |        |

弁部の質量を下表に示す。

#### 弁1

| Л I |        |
|-----|--------|
| 評価点 | 質量(kg) |
| 101 |        |
| 102 |        |
| 103 |        |
| 104 |        |
| 105 |        |

弁部の寸法を下表に示す。

| 弁NO. | 評価点 | 外径(mm) | 厚さ(mm) | 長さ(mm) |
|------|-----|--------|--------|--------|
| 弁1   |     | 139.8  | 10.8   | 457    |

#### 支持点及び貫通部ばね定数

# 鳥 瞰 図 RCIC-003

支持点部のばね定数を下表に示す。

| X | Y | Z | X | Y | Z |
|---|---|---|---|---|---|
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

### 鳥 瞰 図 RCIC-004

| 管名称 | 最高使用圧力<br>(MPa) | 最高使用温度<br>(℃) | 外径<br>(mm) | 厚さ<br>(mm) | 材料     | 耐震<br>重要度分類 | 縦弾性係数<br>(MPa) |
|-----|-----------------|---------------|------------|------------|--------|-------------|----------------|
| 1   | 8. 62           | 302           | 114. 3     | 11.1       | STS410 | S           | 184760         |

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

#### 鳥 瞰 図 RCIC-004

| 管名称 |     |     |     |     | 対   | 応   | す   | -   | る   | 評  | 価  | 点  |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|-----|-----|-----|--|
| 1   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10 | 11 | 12 | 13  | 14  | 15  |  |
|     | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25 | 26 | 27 | 28  | 29  | 31  |  |
|     | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41 | 46 | 50 | 801 | 803 | 804 |  |
|     | 805 | 807 | 808 | 809 | 900 | 901 | 906 | 907 | 908 |    |    |    |     |     |     |  |

#### 配管の質量 (付加質量含む)

評価点の質量を下表に示す。

| 評価点 | 質量(kg) |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1   |        | 12  |        | 23  |        | 37  |        | 807 |        |
| 2   | 1      | 13  |        | 24  | 1      | 38  |        | 808 |        |
| 3   |        | 14  |        | 25  | 1      | 39  |        | 809 |        |
| 4   | 1      | 15  |        | 26  | 1      | 40  |        | 900 |        |
| 5   |        | 16  |        | 27  | 1      | 41  |        | 901 |        |
| 6   |        | 17  |        | 28  | 1      | 46  |        | 906 |        |
| 7   |        | 18  |        | 32  | 1      | 50  |        | 907 |        |
| 8   |        | 19  |        | 33  | 1      | 801 |        | 908 |        |
| 9   |        | 20  |        | 34  | 1      | 803 |        |     |        |
| 10  |        | 21  |        | 35  |        | 804 |        |     |        |
| 11  |        | 22  |        | 36  |        | 805 |        |     |        |

弁部の質量を下表に示す。

#### 弁1

| / - |        |
|-----|--------|
| 評価点 | 質量(kg) |
| 29  |        |
| 30  |        |
| 31  |        |
| 44  |        |
| 45  |        |

弁部の寸法を下表に示す。

| 弁NO. | 評価点 | 外径(mm) | 厚さ(mm) | 長さ(mm) |
|------|-----|--------|--------|--------|
| 弁1   |     |        |        |        |

#### 支持点及び貫通部ばね定数

# 鳥 瞰 図 RCIC-004

支持点部のばね定数を下表に示す。

| 支持点番号     | 各 | 軸方向ばね定数(N/1 | mm) | 各軸回り回転ばね定数(N・mm/rad) |   |   |  |
|-----------|---|-------------|-----|----------------------|---|---|--|
|           | X | Y           | Z   | X                    | Y | Z |  |
| 1         |   |             |     |                      |   |   |  |
| 8         |   |             |     |                      |   |   |  |
| 13        |   |             |     |                      |   |   |  |
| 18        |   |             |     |                      |   |   |  |
| 22        |   |             |     |                      |   |   |  |
| 26        |   |             |     |                      |   |   |  |
| 28        |   |             |     |                      |   |   |  |
| 33        |   |             |     |                      |   |   |  |
| 41        |   |             |     |                      |   |   |  |
| 45        |   |             |     |                      |   |   |  |
| ** 45 **  |   |             |     |                      |   |   |  |
| 46        |   |             |     |                      |   |   |  |
| ** 50 **  |   |             |     |                      |   |   |  |
| 900       |   |             |     |                      |   |   |  |
| ** 901 ** |   |             |     |                      |   |   |  |
| 906       |   |             |     |                      |   |   |  |
| ** 907 ** |   |             |     |                      |   |   |  |
| 908       |   |             |     |                      |   |   |  |

# 3.4 材料及び許容応力<mark>評価条件</mark>

使用する材料の最高使用温度での許容応力<mark>評価条件</mark>を下表に示す。

| 材料      | 最高使用温度<br>(℃) | S m | S y | S u | S h |
|---------|---------------|-----|-----|-----|-----|
| CTC 410 | 66            | _   | 231 | 407 | _   |
| STS410  | 302           | _   | 182 | 404 | _   |

#### 3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお,設計用床応答曲線は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき 策定したものを用いる。また,減衰定数は,添付書類「VI-2-1-6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図           | 建物・構築物 | 標高(O.P. (m)) | 減衰定数(%) |
|-----------------|--------|--------------|---------|
| R C I C - 0 0 2 | 原子炉建屋  |              |         |

#### 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお,設計用床応答曲線は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき 策定したものを用いる。また,減衰定数は,添付書類「VI-2-1-6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図           | 建物・構築物 | 標高(0.P. (m)) | 減衰定数(%) |
|-----------------|--------|--------------|---------|
| R C I C - 0 0 3 | 原子炉建屋  |              |         |

#### 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお,設計用床応答曲線は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき 策定したものを用いる。また,減衰定数は,添付書類「VI-2-1-6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図           | 建物・構築物 | 標高(0.P. (m)) | 減衰定数(%) |
|-----------------|--------|--------------|---------|
|                 |        |              |         |
| R C I C - 0 0 4 | 原子炉建屋  |              |         |
|                 |        |              |         |

R 0

4. 解析結果及び評価

4.1 固有周期及び設計震度

|         | S S        | 度*1 応答鉛直震度*1                            | 方 向 A Y 方 向 |     |     |     |            |     |            |     |               |      |                                          |       |       |
|---------|------------|-----------------------------------------|-------------|-----|-----|-----|------------|-----|------------|-----|---------------|------|------------------------------------------|-------|-------|
|         | 37         | 水平震                                     | Z           |     |     |     |            |     |            |     |               |      |                                          |       |       |
|         |            | 京 答 九                                   | X 方 向       |     |     |     |            |     |            |     |               |      |                                          |       |       |
|         |            | 応答鉛直震度*1                                | Y方向         |     |     |     |            |     |            |     |               |      |                                          |       |       |
|         | S d 及び静的震度 | 平 震 度*1                                 | Z 方向        |     |     |     |            |     |            |     |               |      |                                          |       |       |
| ) 2     |            | 5                                       | X 方向        |     |     |     |            |     |            |     |               |      |                                          |       |       |
| RCIC-00 | 適用する地震動等   | 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田 |             |     |     |     |            |     |            |     |               |      |                                          | 震 度*3 | 震 度*4 |
| 鳥瞰図     | 適用す、       | 22<br>]<br>H                            | <u>-</u>    | 1 次 | 2 次 | 3 次 | <b>4</b> % | 5 次 | <b>6</b> 次 | 7 次 | <b>8</b><br>炎 | 19 次 | 20 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 動動的   | 静的    |

注記\*1: 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。 \*2: 固有周期が0.050 s 以下であることを示す。 \*3: S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 \*4: 3.6C,及び1.2C,より定めた震度を示す。

各モードに対応する刺激係数

鳥 瞰 図 RCIC-002

| <u>2</u>   | ± | TEX   | 刺激  | 磔 | <b>※</b> |   |    |   |
|------------|---|-------|-----|---|----------|---|----|---|
| Ψ<br> <br> |   | X 方 向 | Y ħ | 臣 |          | Z | Z为 | 叵 |
| 1 次        |   |       |     |   |          |   |    |   |
| 2 次        |   |       |     |   |          |   |    |   |
| 3 次        |   |       |     |   |          |   |    |   |
| 4 次        |   |       |     |   |          |   |    |   |
| 5 次        |   |       |     |   |          |   |    |   |
| 6 次        |   |       |     |   |          |   |    |   |
| 7 次        |   |       |     |   |          |   |    |   |
| 8 次        |   |       |     |   |          |   |    |   |
| 19 次       |   |       |     |   |          |   |    |   |

注記\*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

#### 代表的振動モード図

振動モード図は、3 次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

32

固有周期及び設計震度

RCIC-003

X 顄 1

| 十<br>  日<br>  寸 | 7 12 带乳灰     |       | 日 出 子 子 祥 《 Y L L C |          |       |         |          |
|-----------------|--------------|-------|---------------------|----------|-------|---------|----------|
| 適用する            | 適用する地震動等     |       | S d 及び静的震度          |          |       | Ss      |          |
| 2<br>}<br>}     | 田<br>日<br>日  | 好 答 不 | 平 震 度*1             | 応答鉛直震度*1 | 2 参 经 | 平 震 度*1 | 応答鉛直震度*1 |
| ή<br> <br>-     | 回有 周朔<br>(s) | X 方 向 | Z 方向                | Y 方 向    | X 方 向 | Z 方向    | Y 方 向    |
| 1 次             |              |       |                     |          |       |         |          |
| 2 次             |              |       |                     |          |       |         |          |
| 3 次             |              |       |                     |          |       |         |          |
| <b>4</b> %      |              |       |                     |          |       |         |          |
| 5 X             |              |       |                     |          |       |         |          |
| 6 X             |              |       |                     |          |       |         |          |
| 7 次             |              |       |                     |          |       |         |          |
| <b>8</b> 次      |              |       |                     |          |       |         |          |
| 9 1 1 1 1       |              |       |                     |          |       |         |          |
| 動的              | 震 度*3        |       |                     |          |       |         |          |
| 静的              | 震 庚*4        |       |                     |          |       |         |          |

注記\*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。 \*2:固有周期が0.050s以下であることを示す。 \*3:Sd又はSs地震動に基づく設計用最大床応答加速度より定めた震度を示す。 \*4:3.6C<sub>1</sub>及び1.2C<sub>v</sub>より定めた震度を示す。

各モードに対応する刺激係数

鳥 瞰 図 RCIC-003

|               | 垣        |     |     |     |     |     |     |     |     |
|---------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|
|               | Z 方向     |     |     |     |     |     |     |     |     |
|               | Z        |     |     |     |     |     |     |     |     |
| 条 教           | Y方向      |     |     |     |     |     |     |     |     |
| 凝             | Y        |     |     |     |     |     |     |     |     |
| 壓             | X 方 向    |     |     |     |     |     |     |     |     |
| H<br>H<br>H   |          |     |     |     |     |     |     |     |     |
| 2:/<br>]<br>H | <u>-</u> | 1 次 | 2 次 | 3 次 | 4 次 | 5 茨 | 6 次 | 7 次 | 8 ※ |

注記\*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

### 代表的振動モード図

振動モード図は、3 次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

R 0 ⑤ VI-2-5-6-1-3 (記) 0 2

固有周期及び設計震度

RCIC-004

X 顄 1

| 適用する地震動等   | 動等                                      | Sd及び静的震度    | 11.0     | S           | S   |          |
|------------|-----------------------------------------|-------------|----------|-------------|-----|----------|
|            | 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田 | 応答水平震度*1    | 応答鉛直震度*1 | 际 答 水 平 震 度 | 度*1 | 応答鉛直震度*1 |
| <u>교</u>   | 回(s)<br>(s)                             | X 方 向 Z 方 向 | Y 方 向    | X 方 向 Z 力   | 方 向 | Y 方 向    |
| 7 人        |                                         |             |          |             |     |          |
| 2 次        |                                         |             |          |             |     |          |
| <b>3</b>   |                                         |             |          |             |     |          |
| <b>4</b> 次 |                                         |             |          |             |     |          |
| <b>5</b> 次 |                                         |             |          |             |     |          |
| <b>6</b>   |                                         |             |          |             |     |          |
| 7 次        |                                         |             |          |             |     |          |
| <b>8</b>   |                                         |             |          |             |     |          |
| <b>9</b> 次 |                                         |             |          |             |     |          |
| 10 K*2     |                                         |             |          |             |     |          |
| 動的震        | 承33                                     |             |          |             |     |          |
| 静的震        | 庚*4                                     |             |          |             |     |          |

注記\*1: 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。 \*2: 固有周期が0.050 s 以下であることを示す。 \*3: S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 \*4: 3.6C,及び1.2C,より定めた震度を示す。

各モードに対応する刺激係数

| 0                |
|------------------|
| 0                |
|                  |
| $\circ$          |
| $\boldsymbol{H}$ |
| $\mathcal{O}$    |
| $\simeq$         |
|                  |
| X                |
| 顧                |
| 重                |

4

| ž.  | # | 庫     | 激     | 数*    |
|-----|---|-------|-------|-------|
|     |   | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |   |       |       |       |
| 2 次 |   |       |       |       |
| 3 次 |   |       |       |       |
| 4 K |   |       |       |       |
| 5 次 |   |       |       |       |
| 6 次 |   |       |       |       |
| 7 次 |   |       |       |       |
| 8 次 |   |       |       |       |
| 9 次 |   |       |       |       |

注記\*:刺激係数は,モード質量を正規化し,固有ベクトルと質量マトリックスの積から算出した値を示す。

### 代表的振動モード図

振動モード図は、3 次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

### 4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

| 疲労評価               | 疲労累積係数               | s s n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                  |                    |
|--------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|--------------------|
| 二次応力評価<br>(MPa)    | 許容応力                 | 2 · S y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                  | 462                |
| 一次+二次応力評価<br>(MPa) | 計算応力                 | S n (S s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                  | 279                |
| 力評価<br>a)          | 許容応力                 | $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ | 231                | 366                              |                    |
| 一次応力評価<br>(MPa)    | Sprm(Sd)<br>Sprm(Ss) | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 164                |                                  |                    |
|                    | 最大応力<br>区分           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sprm(Sd)           | Sprm(Ss)                         | S n (S s)          |
|                    | 最大応力評価点              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                 | 12                               | 12                 |
|                    | 許容応力<br>状態           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III <sub>A</sub> S | $ m IV_{\scriptscriptstyle A}$ S | ${ m IV}_{ m A}$ S |
|                    | 鳥瞰図                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | RCIC-002                         |                    |

\*1:オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2・Shのうち大きい方とする。 注記

## 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

|          |                    |             |            | 一次応力評価<br>(MPa)      | 力評価<br>a)           | 一次+二次応力評価<br>(MPa) | 二次応力評価<br>(MPa) | 疲労評価   |
|----------|--------------------|-------------|------------|----------------------|---------------------|--------------------|-----------------|--------|
| 鳥瞰図      | 許容応力<br>沃態         | 最大応力<br>評価点 | 最大応力<br>区分 | 計算応力                 | 許容応力                | 計算応力               | 許容応力            | 疲労累積係数 |
|          |                    |             |            | Sprm(Sd)<br>Sprm(Ss) | S y*1<br>0. 9 • S u | Sn(Ss)             | 2 · S y         | s s D  |
|          | III <sub>A</sub> S | 24          | Sprm(Sd)   | 105                  | 182                 |                    |                 |        |
| RCIC-003 | $IV_A$ S           | 24          | Sprm(Ss)   | 150                  | 363                 |                    |                 |        |
|          | $IV_A$ S           | 24          | S n (S s)  |                      |                     | 218                | 364             |        |

\*1:オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2・Shのうち大きい方とする。 注記

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

|          |             |         |          | 一次応力評価<br>(MPa)                                                                                                                 | 力評価<br>'a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 一次+二次応力評価<br>(MPa) | たカ評価<br>a) | 疲労評価   |
|----------|-------------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|--------|
| 鳥瞰図      | 許容応力<br>沃態  | 最大応力評価点 | 最大応力区分   | 計算応力                                                                                                                            | 許容応力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 計算応力               | 許容応力       | 疲労累積係数 |
|          |             |         |          | $\begin{array}{ccc} \text{Sprm}(\text{Sd}) & \text{Sy}^{*1} \\ \text{Sprm}(\text{Ss}) & \text{0.9} \cdot \text{Su} \end{array}$ | $\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | Sn(Ss)             | 2 · S y    | s S D  |
|          | III S       | 1       | Sprm(Sd) | 85                                                                                                                              | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |            |        |
| RCIC-004 | $IV_A$ S    |         | Sprm(Ss) | 127                                                                                                                             | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |            |        |
|          | $ m IV_A~S$ | П       | Sn(Ss)   |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270                | 364        |        |

\*1:オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2・Shのうち大きい方とする。 注記

0 2

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果 (荷重評価)

|               |            |           |                  |            | 評作               | 評価結果           |
|---------------|------------|-----------|------------------|------------|------------------|----------------|
| 支持構造物 番号      | 種類         | 型         | 林                | 温(C)       | 計算<br>荷重<br>(kN) | 群<br>格<br>(kN) |
| RCIC-005-916S | メカニカルスナッバ  | SMS-3-100 | 旅付書類 「Ⅵ-2-1-12-1 | [-2-1-12-1 | 13               | 22             |
| RCIC-004-045B | ロッドレストレイント | RST-1     | 配管及び支持構造物の耐      | 構造物の耐      | 18               | 24             |
| RCIC-005-070H | スプリンゲハンガ   | VS30T-12  | 震計算について」参照       | いて」参照      | 2                | 8              |

# 支持構造物評価結果 (応力評価)

|       | 참 点          | (MPa)                     | 96            | 141           |
|-------|--------------|---------------------------|---------------|---------------|
| 評価結果  | 計<br>算<br>七  | (MPa)                     | 51            | 114           |
| 11112 | 下方           | 分類                        | せん断           | せん断           |
|       | N·m)         | ${ m M}_{ m Z}$           | 13            | -             |
|       | モーメント (kN·m) | $ m M_{Y}$                | 3             | _             |
| 寺点荷重  | H<br>1       | $ m M_{X}$                | 11            | -             |
| 支持    |              | $\mathbf{F}_{\mathrm{Z}}$ | 49            | 99            |
|       | 反力 (kN)      | ${ m F}_{ m Y}$           | 44            | 9             |
|       | 9            | $\mathbf{F}_{\mathrm{X}}$ | 92            | 0             |
|       | 道<br>(S)     | 302                       | 40            |               |
|       | 材質           | SGV410                    | SS400         |               |
|       | H<br>翻       | ラゲ                        | イーイルロ         |               |
|       | 種類           |                           | アンカ           | レストレイント リプレート |
|       | 支持構造物 番号     |                           | RCIC-003-001A | RCIC-002-911R |

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

| 構造強度評価結果<br>(MPa)       | 許容応力 | I |
|-------------------------|------|---|
| 構造強度<br>(M              | 計算応力 | Ι |
| 3確認済加速度<br>(×9.8m/s²)   | 納直   | _ |
| 機能確認済.<br>(×9.8m/       | 水平   | 1 |
| 能維特評価用加速度<br>(×9.8m/s²) | 鉛直   | Ι |
| 機能維持評 (×9.              | I    |   |
| 要求機能                    | I    |   |
| 米                       |      | I |
| 弁番号                     |      | Ι |

# 4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類ごとに裕度が最小のモデルを選定して鳥瞰図、計算条件及び評価結果を 記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(クラス2管)

|                                |          | 代表                    |                   |          |          |          |          |      |
|--------------------------------|----------|-----------------------|-------------------|----------|----------|----------|----------|------|
|                                | 疲労評価     | 海<br>網<br>線<br>養<br>数 | _                 | _        |          |          |          |      |
|                                | <b>兆</b> | 評領点                   |                   |          |          |          |          |      |
|                                |          | 代表                    |                   |          |          | 0        |          |      |
|                                | *43      | 裕度                    | 3, 03             | 1.65     | 1.66     | 1.34     | 2.66     |      |
| $ m IV_A S$                    | 一次十二次応力  | 許容<br>応力<br>(MPa)     | 462               | 462      | 364      | 364      | 418      |      |
|                                | 一次-      | 計算<br>応力<br>(MPa)     | 152               | 279      | 218      | 270      | 157      |      |
| 許容応力状態                         |          | 評価点                   | 9                 | 12       | 24       | 1        | 103      |      |
| 1]11=                          |          | 代表                    |                   | 0        |          |          |          |      |
|                                |          | 裕度                    | 4.11              | 2.23     | 2.42     | 2.85     | 5.58     |      |
|                                | 一次応力     | 許容<br>応力<br>(MPa)     | 366               | 366      | 363      | 363      | 363      |      |
|                                | I        | 計算<br>応力<br>(MPa)     | 68                | 164      | 150      | 127      | 9        |      |
|                                |          | 計 単 点                 | 29                | 12       | 24       | 1        | 29       |      |
|                                |          | 代表                    |                   |          | 0        |          | _        |      |
| ${ m I\hspace{1em}I}_{ m A}$ S | 一次応力     | - 狹応力                 | 裕度                | 4.12     | 2.59     | 1.73     | 2.14     | 4.75 |
| 許容応力状態 III S                   |          |                       | 許容<br>応力<br>(MPa) | 231      | 231      | 182      | 182      | 209  |
| 許容応.                           |          | 計算<br>応力<br>(MPa)     | 99                | 89       | 105      | 85       | 44       |      |
|                                |          | 計 田 単                 | 22                | 12       | 24       | 1        | 29       |      |
|                                | 1        | 配管モデル                 | RCIC-001          | RCIC-002 | RCIC-003 | RCIC-004 | RCIC-005 |      |
|                                |          | No.                   | 1                 | 2        | 3        | 4        | 2        |      |

注記 $*: \Pi_A S の一次+二次応力の許容値は<math>W_A S と$ 同様であることから,地震荷重が大きい $W_A S の一次+二次応力裕度最小を代表とする。$ 

### 重大事故等対処設備

### 目次

| 1. | 概要                                              | <br>1  |
|----|-------------------------------------------------|--------|
| 2. | 概略系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | <br>2  |
| 2  | 2.1 概略系統図                                       | <br>2  |
| 2  | 2.2 鳥瞰図                                         | <br>5  |
| 3. | 計算条件 ·····                                      | <br>11 |
| 3  | 3.1 計算方法 ·····                                  | <br>11 |
| 3  | 3.2 荷重の組合せ及び許容応力状態                              | <br>12 |
| 3  | 3.3 設計条件                                        | <br>13 |
| 3  | 3.4 材料及び許容応力 <mark>評価条件</mark> ······           | <br>19 |
| 3  | 3.5 設計用地震力                                      | <br>20 |
| 4. | 解析結果及び評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | <br>22 |
| 4  | 4.1 固有周期及び設計震度                                  | <br>22 |
| 4  | 4.2 評価結果                                        | <br>34 |
|    | 4.2.1 管の応力評価結果                                  | <br>34 |
|    | 4.2.2 支持構造物評価結果                                 | <br>36 |
|    | 4.2.3 弁の動的機能維持評価結果                              | <br>37 |
|    | 4.2.4 代表モデルの選定結果及び全モデルの評価結果                     | <br>38 |

### 1. 概要

本計算書は、添付書類「VI-2-1-13-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、原子炉隔離時冷却系の管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は、以下に示すとおりである。

### (1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また、全5モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

### (2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

### (3) 弁

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として、評価結果を記載する。

### 2. 概略系統図及び鳥瞰図

### 2.1 概略系統図

### 概略系統図記号凡例

| 記号           | 内 容                                                          |
|--------------|--------------------------------------------------------------|
| (太線)         | 工事計画記載範囲の管のうち、本計算書記載範囲の管                                     |
| ———— (細線)    | 工事計画記載範囲の管のうち,本系統の管であって他<br>計算書記載範囲の管                        |
| (破線)         | 工事計画記載範囲外の管又は工事計画記載範囲の管の<br>うち,他系統の管であって系統の概略を示すために表<br>記する管 |
| (000-000)    | 鳥瞰図番号                                                        |
| lacktriangle | アンカ                                                          |



原子炉隔離時冷却条概略条統図(その2)

4

### 2.2 鳥瞰図

### 鳥瞰図記号凡例

| 記 号      | 内 容                                                            |
|----------|----------------------------------------------------------------|
|          | 工事計画記載範囲の管のうち,本計算書記載範囲の管                                       |
| 申請範囲外    | 工事計画記載範囲外の管                                                    |
| <u> </u> | 工事計画記載範囲の管のうち,他系統の管であって解析モデル<br>として本系統に記載する管                   |
| •        | 質点                                                             |
| •        | アンカ                                                            |
|          | レストレイント<br>(矢印は斜め拘束の場合の全体座標系における拘束方向成分を<br>示す。スナッバについても同様とする。) |
| H. H.    | スナッバ                                                           |
|          | ハンガ                                                            |
| 330      | ガイド                                                            |
| *        | 拘束点の地震による相対変位量(mm)<br>(*は評価点番号,矢印は拘束方向を示す。また, 内<br>に変位量を記載する。) |

|   | 鳥瞰図 RCIC-002-1/3 |  |
|---|------------------|--|
|   |                  |  |
| ) |                  |  |
|   |                  |  |

|  | 鳥瞰図 RCIC-002-2/3 |  |
|--|------------------|--|
|  |                  |  |
|  |                  |  |
|  |                  |  |

### 3. 計算条件

### 3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「ISAP」及び「SAP-V」を使用し、解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

| 許容応力<br>狀態*5 | $V_AS$                 | $ m V_AS$              | $V_{_{ m A}}$ S        |
|--------------|------------------------|------------------------|------------------------|
| 荷重の組合せ*3, *4 | $V_L + S s$            | $V_L + S s$            | $V_L + S s$            |
| 耐震重要度<br>分類  | [                      |                        |                        |
| 機器等<br>の区分   | <b>重大</b> 事故等<br>クラス2管 | <b>重大</b> 事故等<br>クラス2管 | <b>重大</b> 事故等<br>クラス2管 |
| 設備分類*2       | 常設/防止<br>(DB 拡張)       | 常設耐震/防止常設/緩和           | 常設/緩和                  |
| 施設<br>分類*1   | SA                     | SA                     | SA                     |
| 系統名称         | 原子炉隔離時冷却系              | 高圧代替注水系                | 高圧代替注水系                |
| 設備名称         | 非常用炉心冷却設備その他原子炉注水設備    | 非常用炉心冷却設備その他原子炉注水設備    | 圧力低減設備その他の安全設備         |
| 施設名称         | 原子炉冷却系統施設              | 原子炉冷却系統施設              | 原子炉格納施設                |

注記\*1:DB は設計基準対象施設,SA は重大事故等対処設備を示す。

\*2:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和」は 常設重大事故緩和設備を示す。

\*3:運転状態の添字Lは荷重を示す。

\*4:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

\*5: 許容応力状態 $V_AS$  は許容応力状態 $IV_AS$  の許容限界を使用し,許容応力状態 $IV_AS$  として評価を実施する。

### 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

### 鳥 瞰 図 RCIC-002

| 管名称 | 最高使用圧力<br>(MPa) | 最高使用温度<br>(℃) | 外径<br>(mm) | 厚さ<br>(mm) | 材料     | 耐震重要度分類 | 縦弾性係数<br>(MPa) |
|-----|-----------------|---------------|------------|------------|--------|---------|----------------|
| 1   | 11.77           | 66            | 114. 3     | 13.5       | STS410 | _       | 200360         |

### 設計条件

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

### 鳥 瞰 図 RCIC-002

| 管名称 |    |    |    |    | 対  | 応   | す   | -   | る   | 評   | 価   | 点   |     |    |    |  |
|-----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|--|
| 1   | 1  | 2  | 3  | 4  | 5  | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14 | 15 |  |
|     | 16 | 17 | 18 | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 66  | 68 | 69 |  |
|     | 70 | 71 | 72 | 73 | 74 | 101 | 102 | 103 | 105 | 106 | 851 | 852 | 911 |    |    |  |

### 配管の質量(付加質量含む)

評価点の質量を下表に示す。

| 評価点 | 質量(kg) |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1   |        | 10  |        | 19  |        | 66  |        | 102 |        |
| 2   |        | 11  | [      | 20  | l I    | 68  | [      | 103 |        |
| 3   | 1      | 12  | [      | 21  | 1 I    | 69  |        | 105 |        |
| 4   |        | 13  | [      | 22  | l I    | 70  | [      | 106 |        |
| 5   | 1      | 14  | [      | 23  | l I    | 71  | [      | 851 |        |
| 6   | 1      | 15  | [      | 24  | l I    | 72  | [      | 852 |        |
| 7   | ]      | 16  | [      | 25  |        | 73  | [      | 911 |        |
| 8   |        | 17  | [      | 26  | l I    | 74  | [      |     | -      |
| 9   |        | 18  |        | 27  | oxdot  | 101 |        |     |        |

### 支持点及び貫通部ばね定数

### 鳥 瞰 図 RCIC-002

支持点部のばね定数を下表に示す。

| 支持点番号 | 各車 | 曲方向ばね定数(N/r | nm) | 各軸回り回転ばね定数(N・mm/rad) |   |   |  |  |
|-------|----|-------------|-----|----------------------|---|---|--|--|
|       | X  | Y           | Z   | X                    | Y | Z |  |  |
| 1     |    |             |     |                      |   |   |  |  |
| 5     |    |             |     |                      |   |   |  |  |
| 10    |    |             |     |                      |   |   |  |  |
| 18    |    |             |     |                      |   |   |  |  |
| 23    |    |             |     |                      |   |   |  |  |
| 27    |    |             |     |                      |   |   |  |  |
| 66    |    |             |     |                      |   |   |  |  |
| 70    |    |             |     |                      |   |   |  |  |
| 74    |    |             |     |                      |   |   |  |  |
| 911   |    |             |     |                      |   |   |  |  |

### 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

### 鳥 瞰 図 RCIC-004

| 管名称 | 最高使用圧力<br>(MPa) | 最高使用温度<br>(℃) | 外径<br>(mm) | 厚さ<br>(mm) | 材料     | 耐震<br>重要度分類 | 縦弾性係数<br>(MPa) |
|-----|-----------------|---------------|------------|------------|--------|-------------|----------------|
| 1   | 10. 34          | 315           | 114. 3     | 11. 1      | STS410 | _           | 183200         |
| 2   | 8. 62           | 302           | 114. 3     | 11. 1      | STS410 | _           | 184760         |

### 設計条件

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

# 鳥 瞰 図 RCIC-004

| 管名称 |     |     |     |     | 対   | 応   | す   | j  | 3  | 評  | 価  | 点  |    |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|-----|-----|--|
| 1   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15  |  |
|     | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23 | 24 | 25 | 26 | 27 | 28 | 29  | 801 |  |
|     | 803 | 807 | 808 | 809 | 900 | 901 | 906 |    |    |    |    |    |    |     |     |  |
| 2   | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38 | 39 | 40 | 41 | 46 | 50 | 804 | 805 |  |
|     | 907 | 908 |     |     |     |     |     |    |    |    |    |    |    |     |     |  |

### 配管の質量(付加質量含む)

評価点の質量を下表に示す。

| 評価点 | 質量(kg) |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1   |        | 12  |        | 23  |        | 37  |        | 807 |        |
| 2   |        | 13  |        | 24  |        | 38  |        | 808 | l I    |
| 3   |        | 14  |        | 25  |        | 39  |        | 809 |        |
| 4   |        | 15  |        | 26  |        | 40  |        | 900 | l I    |
| 5   |        | 16  |        | 27  |        | 41  |        | 901 | l I    |
| 6   |        | 17  |        | 28  |        | 46  |        | 906 |        |
| 7   |        | 18  |        | 32  |        | 50  |        | 907 | l I    |
| 8   |        | 19  |        | 33  |        | 801 |        | 908 |        |
| 9   |        | 20  |        | 34  |        | 803 |        |     |        |
| 10  |        | 21  |        | 35  |        | 804 |        |     |        |
| 11  |        | 22  |        | 36  |        | 805 |        |     |        |

弁部の質量を下表に示す。

### 弁1

| 評価点 | 質量(kg) |
|-----|--------|
| 29  |        |
| 30  | l 1    |
| 31  |        |
| 44  | 1 1    |
| 45  |        |

弁部の寸法を下表に示す。

| 弁NO. | 評価点 | 外径(mm) | 厚さ(mm) | 長さ(mm) |
|------|-----|--------|--------|--------|
| 弁1   |     |        |        |        |

### 支持点及び貫通部ばね定数

# 鳥 瞰 図 RCIC-004

支持点部のばね定数を下表に示す。

| 支持点番号     | 各車 | 軸方向ばね定数(N/ | mm) | 各軸回り | 回転ばね定数(N・ | mm/rad) |
|-----------|----|------------|-----|------|-----------|---------|
|           | X  | Y          | Z   | X    | Y         | Z       |
| 1         |    |            |     |      |           |         |
| 8         |    |            |     |      |           |         |
| 13        |    |            |     |      |           |         |
| 18        |    |            |     |      |           |         |
| 22        |    |            |     |      |           |         |
| 26        |    |            |     |      |           |         |
| 28        |    |            |     |      |           |         |
| 33        |    |            |     |      |           |         |
| 41        |    |            |     |      |           |         |
| 45        |    |            |     |      |           |         |
| ** 45 **  |    |            |     |      |           |         |
| 46        |    |            |     |      |           |         |
| ** 50 **  |    |            |     |      |           |         |
| 900       |    |            |     |      |           |         |
| ** 901 ** |    |            |     |      |           |         |
| 906       |    |            |     |      |           |         |
| ** 907 ** |    |            |     |      |           |         |
| 908       |    |            |     |      |           |         |

# 3.4 材料及び許容応力<mark>評価条件</mark>

使用する材料の最高使用温度での許容応力<mark>評価条件</mark>を下表に示す。

| 材料     | 最高使用温度<br>(℃) | S m | S y | S u | S h |
|--------|---------------|-----|-----|-----|-----|
|        | 66            | _   | 231 | 407 | _   |
| STS410 | 302           | _   | 182 | 404 | _   |
|        | 315           | _   | 180 | 404 | _   |

### 3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。なお、設計用床応答曲線は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また、減衰定数は、添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の減衰定数を用いる。

| 鳥 瞰 図           | 建物・構築物 | 標高(O.P. (m)) | 減衰定数(%) |
|-----------------|--------|--------------|---------|
| R C I C - 0 0 2 | 原子炉建屋  |              |         |

### 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお,設計用床応答曲線は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき 策定したものを用いる。また,減衰定数は,添付書類「VI-2-1-6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図           | 建物・構築物 | 標高(0.P. (m)) | 減衰定数(%) |
|-----------------|--------|--------------|---------|
| R C I C - 0 0 4 | 原子炉建屋  |              |         |

4. 解析結果及び評価

4.1 固有周期及び設計震度

| 鳥瞰図               | RCIC-00  | 2     |            | ,        |       |         |          |
|-------------------|----------|-------|------------|----------|-------|---------|----------|
| 適用する              | 適用する地震動等 |       | S d 及び静的震度 |          |       | S s     |          |
| 22<br>1<br>H      | 田夕田田     | 5 多 不 | 平 震 度*!    | 応答鉛直震度*1 | 5     | 平 震 度*1 | 応答鉛直震度*1 |
| <u>-</u>          |          | X 方 向 | Z 方 向      | Y方向      | X 方 向 | Z 方 向   | Y 方 向    |
| -<br>次            |          |       |            |          |       |         |          |
| 2 次               |          |       |            |          |       |         |          |
| 3 K               |          |       |            |          |       |         |          |
| 4 次               |          |       |            |          |       |         |          |
| 5 K               |          |       |            |          |       |         |          |
| 6 K               |          |       |            |          |       |         |          |
| 7 次               |          |       |            |          |       |         |          |
| <b>8</b><br>☆     |          |       |            |          |       |         |          |
| 19 次              |          |       |            |          |       |         |          |
| 20 $ m \chi^{*2}$ |          |       |            |          |       |         |          |
| 動的                | 震 度*3    |       |            |          |       |         |          |
| 静的                | 震 度*4    |       |            |          |       |         |          |

注記\*1: 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。 \*2: 固有周期が0.050 s 以下であることを示す。 \*3: S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 \*4: 3.6C,及び1.2C,より定めた震度を示す。

各モードに対応する刺激係数

鳥 瞰 図 RCIC-002

|          | 2 方向           | 0.356 |     |     |     |     |     |     |     |      |
|----------|----------------|-------|-----|-----|-----|-----|-----|-----|-----|------|
| <b>*</b> |                |       |     |     |     |     |     |     |     |      |
| 磔        | Y 方 向          | 0.001 |     |     |     |     |     |     |     |      |
| 刺    激   | \\ \frac{1}{2} |       |     |     |     |     |     |     |     |      |
| Z        | X 方 向          | 0.008 |     |     |     |     |     |     |     |      |
| 1        |                | 0.113 |     |     |     |     |     |     |     |      |
| ž.       | <u>,</u>       | 1 次   | 2 次 | 3 次 | 4 次 | 5 次 | 6 次 | 7 次 | 8 次 | 19 次 |

注記\*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

### 代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

枠囲みの内容は商業機密の観点から公開できません。

固有周期及び設計震度

RCIC-004

X

翢 1

| 適用する地震動等 |          |       | ~ ~ | 2 次 | 3 K | 交 4 | ₹ <b>3</b> | <b>6</b> % | 7 次 | <b>8</b> | 9 % | 10 Xx*2 |   |
|----------|----------|-------|-----|-----|-----|-----|------------|------------|-----|----------|-----|---------|---|
|          | 好 经      | X 方 向 |     |     |     |     |            |            |     |          |     |         | Γ |
| Sd及び静的震度 | 平 震 度和   | Z 方向  |     |     |     |     |            |            |     |          |     |         |   |
|          | 応答鉛直震度*1 | Y 方 向 |     |     |     |     |            |            |     |          |     |         |   |
|          | 位        | X 方 向 |     |     |     |     |            |            |     |          |     |         |   |
| S        | 平 震 度*!  | 2 方向  |     |     |     |     |            |            |     |          |     |         |   |
|          | 応答鉛直震度*1 | Y 方 向 |     |     |     |     |            |            |     |          |     |         |   |

注記\*1:各モードの固有周期に対し,設計用床応答曲線より得られる震度を示す。 \*2:固有周期が0.050 s以下であることを示す。 \*3:S d 又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 \*4:3.6C,及び1.2C,より定めた震度を示す。

**承** 

寰

纪

韓

各モードに対応する刺激係数

鳥 瞰 図 RCIC-004

| 2.7<br>]<br>H | ή<br><u>Π</u> |       | 刺    激 | 磔   | ***   |
|---------------|---------------|-------|--------|-----|-------|
| <u>-</u>      |               | X 方 向 | Y      | 方 向 | Z 方 向 |
| 1 次           |               |       |        |     |       |
| 2 K           |               |       |        |     |       |
| 3 K           |               |       |        |     |       |
| 4 K           |               |       |        |     |       |
| 5 K           |               |       |        |     |       |
| 6 %           |               |       |        |     |       |
| 7 K           |               |       |        |     |       |
| 8 次           |               |       |        |     |       |
| 9 K           |               |       |        |     |       |

注記\*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

### 代表的振動モード図

振動モード図は、3 次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

33

枠囲みの内容は商業機密の観点から公開できません。

鳥瞰図 RCIC-004

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

| 疲労評価               | 疲労累積係数   | n S s           |     |     |
|--------------------|----------|-----------------|-----|-----|
| 一次+二次応力評価<br>(MPa) | 許容応力     | 2 · S y         |     | 462 |
|                    | 計算応力     | Sn(Ss)          |     | 279 |
| 一次応力評価<br>(MPa)    | 許容応力     | Sprm(Ss) 0.9·Su | 366 |     |
| 一次応力<br>(MPa)      | 161      |                 |     |     |
| 下<br>七<br>中<br>叫   | Sprm(Ss) | Sn(Ss)          |     |     |
| 千<br>七<br>十<br>叫   | 12       | 12              |     |     |
| 长                  | $V_A$ S  | $V_A$ S         |     |     |
|                    | 600-0100 | N 1 0 0 0 4     |     |     |

⑤ VI-2-5-6-1-3(重) R 0 0 2

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

| -<br>-<br>-<br>-<br>-                   | ·       | -<br>-<br>-<br>0 | -<br>-<br>-<br>- | 一次応力評価<br>(MPa) | 力評価<br>'a) | 一次+二次応<br>(MPa) | 一次+二次応力評価<br>(MPa) | 疲労評価   |
|-----------------------------------------|---------|------------------|------------------|-----------------|------------|-----------------|--------------------|--------|
| 計谷心力     最大心力       状態     評価点       区分 |         | 東大心<br>区分        | R                | 計算応力            | 許容応力       | 計算応力            | 許容応力               | 疲労累積係数 |
|                                         |         |                  |                  | Sprm(Ss) 0.9·Su | 0.9 · S u  | S n (S s)       | 2 · S y            | u S s  |
| $V_A S$ 1 Sprm(Ss)                      | 1 Sprm( | Sprm(            | (S s)            | 129             | 363        |                 |                    |        |
| $V_A S$ 1 $S n (S s)$                   | 1 Sn(S  | Sn(S             | ( s              |                 |            | 270             | 360                |        |

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

# 支持構造物評価結果 (荷重評価)

| 種類         |
|------------|
|            |
| メカニカルスナッバ  |
| メカニカルスナッバ  |
| ロッドレストレイント |
| スプリンゲハンガ   |

# 支持構造物評価結果(応力評価)

|         |              | 94                        | 135           |               |
|---------|--------------|---------------------------|---------------|---------------|
| 評価結果    | 計<br>章<br>七  | (MPa)                     | 51            | 114           |
| ifii¤   | 京力           | 分類                        | せん断           | せん断           |
|         | cN·m)        | ${ m M}_{ m Z}$           | 13            | _             |
|         | モーメント (kN·m) | $ m M_{ m Y}$             | 3             | -             |
| 荷重      | チーメ          | ${ m M}_{ m X}$           | 11            | I             |
| 支持点     |              | $\mathbf{F}_{\mathrm{Z}}$ | 49            | 9             |
|         | 反力 (kN)      | ${\sf F}_{ m Y}$          | 44            | 2             |
|         | Ĭ            | $\mathbf{F}_{\mathrm{X}}$ | 75            | 0             |
| -       | 韻展<br>(℃)    |                           | 315           | 99            |
|         | 材質           |                           | SGV410        | SS400         |
| 型<br>式  |              |                           | ラゲ            | イーイルロ         |
| 種類      |              |                           | アンカ           | レストレイント リプレート |
| 支持構造物番号 |              |                           | RCIC-003-001A | RCIC-002-911R |

0 2

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

| <b>弁番</b> 号 | 光 | 要求機能 | 機能維持評価用加<br>(×9.8m/s²) | 機能維持評価用加速度<br>(×9.8m/s²) | 機能確認済加速<br>(×9.8m/s²) | 済加速度<br>3m/s²) | 構造強度<br>(M | 構造強度評価結果<br>(MPa) |
|-------------|---|------|------------------------|--------------------------|-----------------------|----------------|------------|-------------------|
|             |   |      | 水平                     | 鉛直                       | 水平                    | 鉛直             | 計算応力       | 許容応力              |
|             | _ | _    | _                      | I                        | _                     | _              | -          | _                 |

# 4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類ごとに裕度が最小のモデルを選定して鳥瞰図,計算条件及び評価結果を 記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

|        |         | 代表                |          |          |          |          |      |
|--------|---------|-------------------|----------|----------|----------|----------|------|
|        | 疲労評価    | 嵌 緊 係 策 糠 糠 藜     |          |          |          |          |      |
|        |         |                   |          |          |          |          |      |
|        |         | 代表                |          |          |          | 0        |      |
|        | 力       | 裕度                | 1.57     | 1.65     | 1.65     | 1.33     | 1.82 |
| V A S  | 一次十二次応力 | 許容<br>応力<br>(MPa) | 376      | 462      | 360      | 360      | 414  |
| 許容応力狀態 | 一次      | 計算<br>応力<br>(MPa) | 238      | 279      | 218      | 270      | 227  |
| 許容応    |         | 評価点               | 1        | 12       | 24       | 1        | 35   |
|        |         | 代表                |          | 0        |          |          |      |
|        |         | 裕度                | 3.10     | 2.27     | 2.38     | 2.81     | 5.67 |
|        | 一次応力    | 許容<br>応力<br>(MPa) | 431      | 366      | 363      | 363      | 363  |
|        | -       | 計算<br>応力<br>(MPa) | 139      | 161      | 152      | 129      | 64   |
|        |         | 評価点               | 1        | 12       | 24       | 1        | 29   |
| 配管モデル  |         | RCIC-001          | RCIC-002 | RCIC-003 | RCIC-004 | RCIC-005 |      |
| No.    |         | 1                 | 2        | 3        | 4        | 5        |      |