女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－38＿改5
提出年月日	2021 年 7 月 30 日

補足－600－38 東北地方太平洋沖地震等による影響を踏まえた機器•配管系の耐震設計への反映事項について

目 次

1．はじめに 1
2．機器•配管系の耐震設計に反映すべき事項の検討方針 1
3．機器•配管系の地震後の設備点検 4
4．機器•配管系の東北地方太平洋沖地震等（3．11／4．7地震）による地震応答解析評価 4
5．機器•配管系の耐震設計への反映事項の検討 71
6．機器•配管系の耐震設計に反映すべき事項の検討結果 74
7．今回工認における耐震評価結果を踏まえた検討 75
8．まとめ 90
添付 1 地震後の設備健全性確認（特別な保全計画）の概要及び設備点検結果の概要添付 2 地震後の設備健全性確認における疲労評価の方法
添付 3 3．11／4．7地震に対する疲労累積係数が今回工認耐震評価結果に比べ小さい要因
添付 4 新たに基準地震動 S s による評価が必要となる既設設備に対する 3．11／4．7地震 による地震応答解析評価
添付5 基準地震動S s と 3．11／4．7地震との関係

1．はじめに
本資料では，2011年3月11日の東北地方太平洋沖地震及びその余震である2011年4月 7 日の宮城県沖の地震（以下「東北地方太平洋沖地震等」又は「3．11／4．7地震」という。） の影響を踏まえた女川 2 号機の機器•配管系の耐震設計に反映すべき事項について，検討 を実施した。

2．機器•配管系の耐震設計に反映すべき事項の検討方針
3．11／4．7地震の影響を踏まえた女川 2 号機の機器•配管系の耐震設計に反映すべき事項は，「実用発電用原子炉の設置，運転等に関する規則」（以下「実用炉規則」という。）に基づき実施した地震後の設備健全性確認＊（特別な保全計画）における設備点検結果及び地震応答解析結果（地震観測記録に基づく建屋シミュレーションモデルを反映）を考慮す るとともに，機器•配管系が設置される建物•構築物の地震影響を踏まえ，検討する。

機器•配管系の耐震設計へ反映が必要となるのは，施設が地震影響によって損傷（変形，割れなど）し，補修，取替等が困難で，その状態のまま再使用する場合であって，その損傷が地震応答解析及び構造強度評価に影響を与える場合である。

機器•配管系の耐震設計への反映事項の検討概要を図 2－1 に，建物•構築物及び土木構造物を含む耐震設計への反映事項の判断フローを図2－2に示す。

耐震設計への反映事項の判断に当たっては，まず，全ての保全施設を対象とし，施設分類ごとの損傷形態に応じた点検方法を選定し，施設点検（一部施設の地震応答解析を含む） を実施する。次に，施設点検結果において耐震 S クラス施設（耐震 S クラス設備の間接支持機能を有する施設等を含む）に地震による異常がある場合は，耐震設計への影響を検討 するとともに，他施設の耐震設計への反映の要否を検討する。施設点検結果に異常がない場合や，異常があった施設が耐震 S クラス施設（耐震 S クラス設備の間接支持機能を有す る施設等を含む）に該当せず取替•補修等による原形復旧を行う場合は，耐震設計への反映事項はないものと判断する。なお，地震による異常がない場合でも，建屋の地震観測記録がある場合は，耐震設計への影響の有無を検討する。

次項以降に設備点検及び地震応答解析に係る検討詳細を示す。

注記＊：実用炉規則に基づき実施した地震後の設備健全性確認の結果は，発電所における保安検查等にて確認するとの見解が示されている（第 68 回原子力発電所の新規制基準適合性に係る審査会合，平成26年1月16日）

機器－配管系

	建屋シミュレーションモデル（初期
地震応答解析	剛性低下考慮，壁補强なし）を反映

図 2－1 機器•配管系の耐震設計への反映事項の検討概要図

該当

全ての保全施設を対象 （建物 －構築物，土木構造物含む）	
	\downarrow
施設分類ごとの地震損傷要因分析 による各部位の損傷形態を整理	
	\downarrow
損傷形態に応じた点検方法を選定	
\downarrow	

（施設点検結果に
なし

（建屋の地震観測記録
がある場
合は「さ」へ）
取替•補修等による原形復旧

> 耐震設計への反映事項なし

図 2－2 東北地方太平洋沖地震等による影響を踏まえた耐震設計への反映事項の判断フロー（建物•構築物，土木構造物含む学）

3．機器•配管系の地震後の設備点検
地震後の設備健全性確認（特別な保全計画）の概要及び設備点検結果の概要を添付 1 に示す。

これまで実施した機器•配管系の地震後の設備健全性確認において，耐震 S クラス設備 に損傷はなく，プラントの安全性に影響を与える所見はないことを確認した。

設備点検において異常を確認した耐震 B，C クラス設備については，いずれも原子炉安全を阻害する可能性はなく，取替，補修，手入れにより原形に復旧している。

また，耐震 B，Cクラスの異常により，耐震 S クラス設備への波及的影響がないことを確認した。

4．機器•配管系の東北地方太平洋沖地震等（3．11／4．7地震）による地震応答解析評価地震応答解析による評価を実施する機器•配管系の評価対象設備の考え方及び評価方法を以下に示す。
（1）評価対象選定の考え方
評価対象設備は，既工認記載の耐震 S クラス設備，耐震 B，C クラス設備のうち波及的影響設備（燃料交換機，原子炉建屋クレーン，原子炉しやへい壁）とする。評価対象設備のらち，同一の設備が複数存在するポンプ等は，据付床の床応答を考慮して，厳しい条件の設備を選定する。また，配管等は，系統ごとに設計時又は「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う耐震安全性評価（以下「既往の評価」 という。）における余裕度の小さい設備を選定する。

評価部位は，設計時又は既往の評価における余裕度（＝許容応力／発生応力）の最 も小さい部位を代表部位とする（代表部位以外についても評価する場合もある。）。

地震の継続時間が比較的長かったことを考慮して，3．11／4．7地震に対する配管及 び機器の疲労評価（疲労累積係数）を実施する。疲労評価の対象配管は，既往の評価 において運転状態による疲労累積係数が最大の配管（復水給水系配管），地震による疲労累積係数が最大の配管（残留熱除去系配管），疲労影響が想定される建屋間渡り配管（原子炬補機冷却海水系配管）を代表として評価する。また，疲労評価の対象機器は，疲労評価が要求されるクラス 1 機器の原子炉圧力容器として既工認で疲労累積係数が最大の給水ノズルを代表として評価する。

地震時に動的機能が要求される動的機器（ポンプ，弁等）を選定し，動的機能維持評価を実施する。

図 4－1 評価対象選定の考え方の概要図
（2）評価方法
a．地震応答解析に用いる建屋応答
地震応答解析は，地震観測記録との整合性を確認した建屋シミュレーション解析 モデル（初期剛性低下等を反映）を用いることを基本とし，建屋内に設置された地震計による観測記録も考慮する。

なお，床応答スペクトルは，シミュレーション解析による建屋応答及び地震観測記録を反映しているため，拡幅は行わない。

図 4－2 地震応答解析に用いる建屋応答の例

b．建屋－大型機器連成解析のモデル設定

建屋－大型機器連成解析においては，原子炉建屋，原子炉圧力容器，原子炉格納容器，原子炉しゃへい壁，原子炉本体の基礎等を連成させた大型機器系モデル及び原子炉建屋，炉心，原子炉圧力容器，原子炉内部構造物等を連成させた炉内構造物系モデルによる地震応答を用いる。なお，シミュレーション解析に用いる建屋－大型機器連成解析モデルは，建屋シミュレーション解析結果及び 3．11／4．7地震時の プラント状況（温度）を踏まえた設定としており，今回工認の地震応答解析モデル

とは設定が異なる部分がある。
今回工認及びシミュレーション解析に用いた大型機器系の地震応答解析モデル を図 4－3，図 4－4に，炉内構造物系の地震応答解析モデルを図 4－5，図 4－6に示す。 また，今回工認とシミュレーション解析における建屋－大型機器連成解析モデルの相違点を表 4－1 及び表 4－2 に示す。

K_{θ}	トラス端部回転拘束ばね
記号	内容
\bullet	質点
I	軸ば水（構造物）
－	はり（屋根トラス部）
σ	回転ばね
ξ	鉿直ばね（地盤）

0．P． 48.725
0．P． 41.200
0．P． 33.200
0．P． 33.200
0．P． 22.50
0．P． 22.500
0．P． 15.000
0．P． 15.000
．P．
0．P．$\quad 6.000$
0．P．-0.800
0．P．-8.100
0．P．-14.100
図 4－3 今回工認における大型機器系地震応答解析モデル $(3 / 3)$（鉛直方向：今回工認）

記号	内容
\bullet	質点
1	はり
- －	水平ばね
©	回転ばね

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

$$
\begin{aligned}
& \text { 要子炉圧力容器及び } \\
& \text { 貝子炉本体の基礎 }
\end{aligned}
$$

皂子炉圧力容器及び

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

記号	内容
\bullet	質点
1	はり
－wn－	水平ばね
¢－ 0	回転ばね

図 4－4 シミュレーション解析における大型機器系地震応答解析モデル（2／3）（EW 方向）

$$
\begin{aligned}
& \text { 皂子炉圧力容器及び } \\
& \text { 皂子炉本体の基礎 }
\end{aligned}
$$

[^0]
0．P．48． 725 （ 41.200 原子炉建屋
0．P． 22.500
0．P． 15.000
0．P． 6.000
0．P．-0.800
0．P．-8.100
0．P．$\quad 6.000$
0．P．-0.800
0．P．-8.100
0．P．$\quad 6.000$
0．P．-0.800
0．P．-8.100
0．P．－14．100

${ }_{9}^{9}{ }_{3}^{9}$

[^1]

，

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング レストレントビーム
K_{4}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

図 4－5 今回工認における炉内構造物系地震応答解析モデル $(2 / 3) ~(E W$ 方向）

K_{θ}	トラス端部回転拘束ばね

記号	内容
\bullet	質点
1	軸ば权（構造物）
－	はり（屋根トラス部）
\varnothing	回転ばね
ξ	鉛直ばね（地盤）

図 4－5 今回工認における炉内構造物系地震応答解析モデル（3／3）（鉛直方向）

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御楱駆動機構ハウジング レストレトビーム
K_{4}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	灲心シュラウド支持ロッド

（単位：m）

\approx 多
 2
0
i
i $\begin{array}{cc}\vdots & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$ n
1
1
\vdots
\vdots
\vdots
\vdots
\vdots $\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}$ 1
\vdots
\vdots
\vdots
\vdots

 L

原子炉本体の基礎

図 4－6 シミュレーション解析における炉内構造物系地震応答解析モデル（1／3）（NS 方向）

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング Vストドーム
K_{4}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	灲心シュラウド支持ロッド

記号	内容		
\bigcirc	質点（ピン結合以外）		
\bigcirc	質点（ピン結合）		
1	はり		
－4W－	水平ばね		
ϕ a ©	回転ばね		0
:---:			
0			
0			
1			
1			
1			
1			
1			
1			
1			
1			
1	0		

0
1
1
1
1
1
1
1
1

 $\frac{4}{41}$

K_{θ}	トラス端部回転拘束ばね

	ξ	
とれさ1唓回	\varnothing	
	－	
	$\\|$	
常臭	－	
影的	늠릋	

（単位：m）

表 4－1 今回工認及びシミュレーション解析における建屋－大型機器連成解析モデルの比較（大型機器系モデル）

No．	項目	今回工認	シミュレーション解析
1	RPV ペデスタルの 復元力特性 ${ }^{* 1}$	非線形	線形
2	RPV ペデスタルの 質点位置＊1	実機の構造特徴を考慮して設定 （NS 方向：3，4，5，6，7） （EW 方向：3，4，5，6，7）	均等に分割 （NS 方向：62，4，5，6，7） （EW 方向：64，4，5，6，7）
3	RPV ペデスタル下 端の原子炉建屋側 との接続位置＊2	原子炉建屋（1次しゃへい壁） に接続 （NS 方向：3） （EW 方向：3）	原子炉建屋基礎版に接続 （NS 方向：62，2） （EW方向：64，2）
4	原子炉格納容器の原子炉建屋側との接続位置＊2	原子炉格納容器（シャラグ）の高さ近傍に位置する原子炉建屋側の視点に接続 （NS 方向：26，48） （EW 方向：26，59）	原子炉格納容器（シヤラグ） の高さに相当する位置に接点（質量なし）を設けて接続 （NS 方向：26，47） （NS 方向：26，49）
5	建屋初期剛性低下	考慮	考慮
6	建屋補強	考慮	未実施（地震時の状態）
7	建屋コンクリート の減衰定数	5\％	$7 \% * 3$
8	プラント状態	通常運転状態	地震時の状態

注記 $* 1$ ：補足説明資料「補足 $-600-8-3$ 建屋一機器連成解析モデルにおける原子炉本体の
基礎の非線形復元力特性等の設定に関する補足説明資料」参照。
＊ 2 ：補足説明資料「補足－600－8－2 建屋一機器連成解析における解析モデルの設定に係る補足説明資料」参照。
＊ 3 ：補足説明資料「補足－620－1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」参照。

表 4－2 今回工認及びシミュレーション解析における建屋－大型機器連成解析モデルの
比較（炉内構造物系モデル）

No．	項目	今回工認	シミュレーション解析
1	RPV ペデスタルの 復元力特性 ${ }^{* 1}$	非線形	線形
2	RPV ペデスタルの 質点位置＊1	実機の構造特徴を考慮して設定 （NS 方向：3，4，5，6，7） （EW 方向：3，4，5，6，7）	均等に分割 （NS 方向：90，4，5，6，7） （EW 方向：92，4，5，6，7）
3	RPV ペデスタル下 端の原子炉建屋側 との接続位置＊2	原子炉建屋（ 1 次しやへい壁） に接続 （NS 方向：3） （EW 方向：3）	原子炉建屋基礎版に接続 （NS 方向：90，2） （EW 方向：92，2）
4	原子炉しやへい壁 の原子炉建屋側と の接続位置＊2	原子炉しやへい壁（原子炉格納容器スタビライザ）の高さ近傍 に位置する原子炉建屋側の視点に接続 （NS 方向：60，76） （EW 方向：60，78）	原子炉しやへい壁（原子炉格納容器スタビライザ）の高さ に相当する位置に接点（質量 なし）を設けて接続 （NS 方向：60，75） （NS 方向：60，77）
5	建屋初期剛性低下	考慮	考慮
6	建屋補強	考慮	未実施（地震時の状態）
7	建屋コンクリート の減衰定数	5\％	7\％＊3
8	プラント状態	通常運転状態	地震時の状態

注記 $* 1$ ：補足説明資料「補足 $-600-8-3$ 建屋一機器連成解析モデルにおける原子炉本体の基礎の非線形復元力特性等の設定に関する補足説明資料」参照。
＊2：補足説明資料「補足－600－8－2 建屋一機器連成解析における解析モデルの設定に係る補足説明資料」参照。
＊ 3 ：補足説明資料「補足－620－1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」参照。

表 4－1 及び表 4－2 に示す相違点のうち，プラント状態の違いについては，3． 11 地震発生当時，女川原子力発電所第 2 号機は定期検査中（原子炉起動直後）であった。 また，4．7地震時も原子炉は停止中であり，通常運転時の温度条件と異なるため，物性値及び炉水質量が今回工認モデルと異なる。ここで，大型機器系及び炉内構造物系解析モデルで用いる材料物性値及び炉水質量を表4－3～表4－7に示す。

表 4－3 解析に用いる各構造物の物性値

名称	今回工認		シミュレーション解析	
	縦弾性係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	温度 $\left({ }^{\circ} \mathrm{C}\right)$
原子炉圧力容器	1.91×10^{5}	286	2.05×10^{5}	38
原子炉圧力容器 支持スカート	1.99×10^{5}	162	2.05×10^{5}	38
原子炉しやへい 壁	1.91×10^{5}	57	1.91×10^{5}	38
原子炉本体の基 礎	1.91×10^{5}	57	1.91×10^{5}	38
原子炉格納容器	1.91×10^{5}	57	1.91×10^{5}	38
炉心シュラウド	1.78×10^{5}	286	1.94×10^{5}	38
原子炉圧力容器 下部鏡板	1.91×10^{5}	286	2.05×10^{5}	38
制御棒案内管	1.78×10^{5}	286	1.94×10^{5}	38
制御棒駆動機構 ハウジング	1.78×10^{5}	286	1.94×10^{5}	38
燃料集合体	7.62×10^{4}	286	9.26×10^{4}	38

表 4－4 今回工認及びシミュレーション解析において考慮する炉水質量 （大型機器系，水平方向）

名称	質点番号	炉水質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	
		今回工認	シミュレーション解析
原子炉圧力容器	8		
	9		
	10		
	11		
	12		

表 4－5 今回工認及びシミュレーション解析において考慮する炉水質量 （大型機器系，鉛直方向）

名称	質点番	炉水質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	
	号	今回工認	シミュレーション解析
原子炉圧力容器	24		

表 4－6 今回工認及びシミュレーション解析において考慮する炉水質量 （炉内構造物系，水平方向）（ $1 / 2$ ）

名称	質点番号	炉水質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	
		今回工認	シミュレーション解析
原子炉圧力容器	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
炉心シュラウド	25		
	26		
	27		
	28		
	29		
	30		
	31		
	32		
	33		
	34		
	35		

表 4－6 今回工認及びシミュレーション解析において考慮する炉水質量 （炉内構造物系，水平方向）（2／2）

名称	質点番号	炉水質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	
		今回工認	シミュレーション解析
原子炉圧力容器下部鏡板	38		
制御棒駆動機構 ハウジング	43		
制御棒案内管	44		
	45		
燃料集合体	46		
	47		
	48		
	49		
	50		

表 4－7 今回工認及びシミュレーション解析において考慮する炉水質量 （炉内構造物系，鉛直方向）

名称	質点番号	炉水重量 $\left(\times 10^{3} \mathrm{~kg}\right)$	
		今回工認	シミュレーション解析
原子炉圧力容器	25		
炉心シュラウド	44		
	51		
	52		
制御棒駆動機構 ハウジング	60		
制御棒案内管	64		

シミュレーション解析においては温度の変更により部材の縦弾性係数が変化す るため，表 4－8に示すとおりばね定数を変更する。

表 4－8 今回工認及びシミュレーション解析における建屋－大型機器連成解析モデルのばね定数

名称	ばね定数	
	今回工認	シミュレーション解析
原子圧力容器 スタビライザ	$7.30 \times 10^{6}(\mathrm{~N} / \mathrm{mm})$	$7.88 \times 10^{6}(\mathrm{~N} / \mathrm{mm})$
燃料交換ベローズ	$3.73 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$	$4.08 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$
原子圧カ容器 スタビライザ	$7.30 \times 10^{6}(\mathrm{~N} / \mathrm{mm})$	$7.88 \times 10^{6}(\mathrm{~N} / \mathrm{mm})$
シュラウド サポート	$1.14 \times 10^{14}(\mathrm{~N} / \mathrm{mm} / \mathrm{rad})$	$1.22 \times 10^{14}(\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{rad})$
上部サポート	$3.87 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$	$4.22 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$
下部スタビライザ	$3.26 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$	$3.56 \times 10^{5}(\mathrm{~N} / \mathrm{mm})$
炬心シュラウド 支持ロッド	$1.37 \times 10^{12}(\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{rad})$	$1.47 \times 10^{12}(\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{rad})$

建屋単独のシミュレーション解析及び建屋－大型機器連成解析における固有値解析結果を表 4－9～表 4－14に示す。また，建屋－大型機器連成解析における振動モー ド図を図4－7～図4－10に示す。

表 4－9 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果
（大型機器系：NS 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固有周期	
1	0． 240	1	0． 235	原子炉建屋
2	0． 150	2	0． 150	原子炉建屋
3	0． 120	3	0． 120	原子炉建屋
4	0． 101	4	0． 101	原子炉建屋
5	0． 100	5	0． 100	原子炉建屋
6	0.091	6	0.091	原子炉建屋
－	－	7	0.090	原子炉圧力容器
7	0.086	8	0.086	原子炉建屋
8	0.075	9	0.074	原子炉建屋
9	0.072	10	0.071	原子炉建屋
10	0.070	11	0.070	原子炉建屋
11	0.067	12	0.067	原子炉建屋
12	0． 065	13	0.065	原子炉建屋
13	0.063	14	0． 062	原子炉建屋
14	0． 060	15	0． 060	原子炉建屋
15	0.059	16	0.059	原子炉建屋
16	0.058	17	0.057	原子炉建屋
17	0.055	18	0.055	原子炉建屋
18	0． 054	19	0． 054	原子炉建屋
19＊	0． 053	20＊	0． 052	原子炉建屋
－	－	20＊	0.052	原子炉圧力容器
20	0.051	21	0.051	原子炉建屋
21	0.049	22	0.050	原子炉建屋

注記＊：建屋シミュレーション解析では地上3階（0．P．33．200）より上部の応答が卓越し，建屋－大型機器連成解析では地上 3 階（0．P．33．200）より上部及び原子炉圧力容器の応答が卓越

図 4－7 大型機器系振動モード図（1／2）（NS 方向 7 次）

図 4－7 大型機器系振動モード図（2／2）（NS 方向 20 次）

表 4－10 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果 （大型機器系：EW 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固有周期	
1	0． 230	1	0． 225	原子炉建屋
2	0． 127	2	0． 127	原子炉建屋
3	0.115	3	0.115	原子炉建屋
4	0.099	4	0.099	原子炉建屋
5	0.096	5	0.096	原子炉建屋
－	－	6	0.091	原子炉圧力容器
6	0.088	7	0.087	原子炉建屋
7	0.079	8	0.079	原子炉建屋
8	0.076	9	0.075	原子炉建屋
9	0.070	10	0.070	原子炉建屋
10	0.069	11	0.068	原子炉建屋
11	0． 065	12	0． 064	原子炉建屋
12	0． 062	13	0． 062	原子炉建屋
13	0． 060	14	0． 059	原子炉建屋
14	0． 059	15	0． 059	原子炉建屋
15	0． 055	16	0.055	原子炉建屋
16	0． 054	17	0． 053	原子炉建屋
－	－	18	0.052	原子炉圧力容器
17	0.050	19	0.050	原子炉建屋

図 4－8 大型機器系振動モード図（1／2）（EW 方向 6 次）

固有周期 0.052 秒
刺激係数 -0.292

図 4－8 大型機器系振動モード図（2／2）（EW 方向 18 次）

表 4－11 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果 （大型機器系：UD 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固有周期	
1	0.365	1	0.366	（屋根トラス）
2	0.100	2	0.100	原子炉建屋
3	0.085	3	0.085	原子炉建屋 （屋根トラス）
4	0.055	4	0.055	原子炉建屋

表 4－12 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果 （炉内構造物系：NS 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固有周期	
1	0． 240	1	0． 238	原子炉建屋
－	－	2	0． 223	燃料集合体
2	0． 150	3	0． 150	原子炉建屋
－	－	4	0． 129	炉心シュラウド
3	0． 120	5	0． 120	原子炉建屋
4	0.101	6	0.101	原子炉建屋
5	0． 100	7	0． 100	原子炉建屋
6	0.091	8	0.091	原子炉建屋
－	－	9	0.090	原子炉圧力容器
7	0.086	10	0.086	原子炉建屋
8	0.075	11	0.074	原子炉建屋
9	0． 072	12	0.072	原子炉建屋
－	－	13	0.070	制御棒案内管
10	0.070	14	0.070	原子炉建屋
11	0.067	15	0.067	原子炉建屋
12	0.065	16	0.065	原子炉建屋
13	0.063	17	0． 062	原子炉建屋
14	0.060	18	0.060	原子炉建屋
15	0.059	19	0.059	原子炉建屋
16	0.058	20	0.057	原子炉建屋
－	－	21	0.055	燃料集合体
17	0.055	22	0.055	原子炉建屋
－	－	23	0.055	炉心シュラウド
18	0.054	24	0． 054	原子炉建屋
19	0.053	25	0． 052	原子炉建屋
20^{*}	0.051	26＊	0.051	原子炉建屋
－	－	26＊	0.051	原子炉圧力容器
21	0.049	27	0． 050	原子炉建屋

注記＊：建屋シミュレーション解析では地上3階（0．P．33．200）より上部の応答が卓越し，建屋－大型機器連成解析では地上3階（0．P．33．200）より上部及び原子炉圧力容器の応答が卓越

図 4－9 炉内構造物系振動モード図（ $1 / 7$ ）（NS 方向 2 次）
固有周期 0.129 秒刺激係数 -0.219

図 4－9 炉内構造物系振動モード図（2／7）（NS 方向 4 次）

図 4－9 炉内構造物系振動モード図（3／7）（NS 方向9次）
固有周期 0.070 秒刺激係数 -0.218

図 4－9 炉内構造物系振動モード図（4／7）（NS 方向 13 次）

図 4－9 炉内構造物系振動モード図（5／7）（NS 方向 21 次）
固有周期 0.055 秒刺激係数 1.209

図 4－9 炉内構造物系振動モード図（6／7）（NS 方向 23 次）

図 4－9 炉内構造物系振動モード図（7／7）（NS 方向 26 次）

表 4－13 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果
（炉内構造物系：EW 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固有周期	
1	0． 230	1	0.228	原子炉建屋
－	－	2	0.223	燃料集合体
－	－	3	0． 130	炉心シュラウド
2	0.127	4	0.127	原子炉建屋
3	0.115	5	0.115	原子炉建屋
4	0.099	6	0.099	原子炉建屋
5	0.096	7	0.096	原子炉建屋
－	－	8	0.091	原子炉圧力容器
6	0.088	9	0.087	原子炉建屋
7	0.079	10	0.079	原子炉建屋
8	0.076	11	0.076	原子炉建屋
－	－	12	0.070	制御棒案内管
9	0.070	13	0． 070	原子炉建屋
10	0． 069	14	0． 069	原子炉建屋
11	0． 065	15	0． 064	原子炉建屋
12	0． 062	16	0． 062	原子炉建屋
13	0． 060	17	0． 059	原子炉建屋
14	0． 059	18	0． 059	原子炉建屋
15	0． 055	19	0． 055	原子炉建屋
－	－	20	0． 055	燃料集合体
－	－	21	0． 055	炉心シュラウド
16	0． 054	22	0． 053	原子炉建屋
－	－	23	0． 051	原子炉圧力容器
17	0.050	24	0． 050	原子炉建屋

図 4－10 炉内構造物系振動モード図（ $1 / 7$ ）（EW 方向 2 次）
固有周期 0.130 秒刺激係数 -4.278

図 4－10 炉内構造物系振動モード図（2／7）（EW 方向 3 次）

図 4－10 炉内構造物系振動モード図（3／7）（EW 方向 8 次）
固有周期 0.070 秒刺激係数 -1.696

図 4－10 炉内構造物系振動モード図（4／7）（EW 方向12次）

図 4－10 炉内構造物系振動モード図（5／7）（EW 方向20次）
固有周期 0.055 秒刺激係数 0.152

図 4－10 炉内構造物系振動モード図（6／7）（EW 方向 21 次）

図 4－10 炉内構造物系振動モード図（7／7）（EW 方向 23 次）

表 4－14 建屋シミュレーション解析と建屋大型機器連成解析の固有値解析結果
（炉内構造物系：UD 方向）

建屋シミュレーション解析		建屋－大型機器連成解析		卓越部位
次数	固有周期	次数	固周期	
1	0.365	1	0.366	原子炉建屋 （屋根トラス）
2	0.100	2	0.100	原子炉建屋
3	0.085	3	0.085	原子炉建屋 （屋根トラス）
4	0.055	4	0.055	原子炉建屋

c．構造強度評価

構造強度評価は，段階的な評価手順とする。
①設計時及び既往の評価結果において比較的余裕度の大きな設備については，簡易評価（応答倍率法による評価）を行う。
（2）簡易評価において発生応力等が評価基準値を満足しない場合には，設計時と同等の評価を行う。
（3）設計時と同等の評価において発生応力等が評価基準値を満足しない場合には，詳細評価（時刻歴応答解析等）を行う。

構造強度評価の評価基準値は，地震による影響の有無を確認する観点から「原子力発電所耐震設計技術指針 J E A G 4 6 O 1 •補－1984」に規定される許容応力状態 III ${ }_{A} \mathrm{~S}$（弾性応答範囲内）における許容応力を基本とする。

地震応答解析及び耐震評価は，設計時の評価条件と同条件にて評価することを基本とするが，3．11／4．7地震に対する地震影響を詳しく確認するため，より実態にあ った評価条件として，地震時におけるプラント状態（女川 2 号機は，3．11地震時は原子炉起動中，4．7地震時は冷温停止中）等を考慮した評価を実施する場合がある。

また，地震の継続時間が比較的長かったことを考慮して，疲労の影響が大きいと考えられる配管等については，時刻歴応答解析で求めたピーク応力強さの時刻歴と設計疲労線図を基に，図4－11に示すフローのとおり疲労評価を実施する。また，疲労評価方法の詳細を添付 2 に示す。

図 4－11 3．11／4．7地震に対する疲労評価のフロー
d．動的機能維持評価
弁，ポンプ等の動的機能維持の評価は，地震応答解析に基づき評価対象設備の応答加速度を求め，評価基準値である機能確認済加速度以下であることを確認する。 また，応答加速度が機能確認済加速度を上回る設備については，詳細評価を実施す る。
制御棒の挿入性は，地震応答解析により燃料集合体の相対変位を求め，試験によ り制御棒の挿入性が確認された相対変位以下であることを確認する。
評価基準値の機能確認済加速度は，「原子力発電所耐震設計技術指針J E A G 4 601－1991追補版」に準拠するとともに，試験等で妥当性が確認された値も用い る。
（3）段階的な構造強度評価の概要
a．評価フロー
地震応答解析の評価フローを図 4－12に示す。

図 4－12 地震応答解析の評価フロー
b．応答倍率法の概要
応答倍率法による発生応力等の求め方を以下に示す。
応答倍率法による発生応力等の求め方の例
ケース 1 発生応力等＝設計時又は既往評価での全体応力 \times 応答比 （地震及び地震以外による応力）

ケース 2 発生応力等＝設計時又は既往評価での地震以外による応力 + 設計時又は既往評価での地震による応力 \times 応答比

上記における 応答比の求め方の例
－ポンプの基礎ボルト等の発生応力等を求めるにあたり，水平加速度，鉛直加速度を用 いる機器

$$
\text { 応答比 }=\frac{3.11 / 4.7 \text { 地震時の加速度 }}{\text { 設計時又は既往評価での加速度 }}
$$

（水平加速度，鉛直加速度ごとに応答比を算出）
－原子炉圧力容器や炉内構造物等の発生応力等を求めるにあたり，加速度，せん断力， モーメント，軸力を用いる機器

応答比 $=\frac{3.11 / 4.7 \text { 地震時の地震力 }}{\text { 設計時又は既往評価での地震力 }}$
（加速度，せん断力，モーメント，軸力ごとに応答比を算出）」
複数の応答比が算出される場合は，算出した応答比のうち，最大となるものを用いる ことを基本とする。ただし，地震による応力を地震力の種類ごとに分離することが容易 な場合は，地震力の種類ごとの応答比を用いる。以下に具体的な算出式を示す。
－応答比の最大値を用いる場合

$$
\begin{aligned}
& \sigma=\alpha \times \sigma \\
& \alpha=\operatorname{MAX}\left(\frac{\mathrm{CH}_{1}}{\mathrm{CH}_{0}}, \frac{\mathrm{CV}_{1}}{\mathrm{CV}_{0}}\right)
\end{aligned}
$$

σ ：発生応力

α ：応答比
$\sigma \mathrm{T}$ ：設計時又は既往評価の全体応力
CH_{0} ：設計時又は既往評価の水平加速度
$\mathrm{CH}_{1}: 3.11 / 4.7$ 地震の水平加速度
CV_{0} ：設計時又は既往評価の鉛直加速度
$\mathrm{CV}_{1}: 3.11 / 4.7$ 地震の鉛直加速度
－地震力の種類ごとの応答比を用いる場合

$$
\begin{gathered}
\sigma=\alpha \times \sigma_{\mathrm{v}}+\beta \times \sigma_{\mathrm{Q}}+\gamma \times \sigma_{\mathrm{M}}+\sigma_{0} \\
\alpha=\frac{\mathrm{CV}_{1}}{\mathrm{CV}_{0}}, \quad \beta=\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{0}}, \quad \gamma=\frac{\mathrm{M}_{1}}{\mathrm{M}_{0}}
\end{gathered}
$$

σ ：発生応力

α ：鉛直加速度に対する応答比
β ：せん断力に対する応答比
γ ：モーメントに対する応答比
σ_{v} ：設計時又は既往評価の鉛直加速度による応力
σ Q ：設計時又は既往評価のせん断力による応力
σ_{m} ：設計時又は既往評価のモーメントによる応力
$\sigma 0$ ：設計時又は既往評価の地震以外の応力
CV_{0} ：設計時又は既往評価の鉛直加速度
CV_{1} ：3．11／4．7地震の鉛直加速度
Q_{0} ：設計時又は既往評価のせん断力
$\mathrm{Q}_{1}: 3.11 / 4.7$ 地震のせん断力
M_{0} ：設計時又は既往評価のモーメント
$\mathrm{M}_{1}: 3.11 / 4.7$ 地震のモーメント
c．構造強度評価の各段階における実際の応答に対する保守性（イメージ）
構造強度評価の各段階における保守性の概念を図4－13に示す。

図 4－13 構造強度評価の各段階における保守性の概念
（4）地震応答解析による評価結果
構造強度評価の結果を表4－15に，疲労評価の結果を表4－17に，動的機能維持評価 の結果を表 4－18に示す。「（1）評価対象選定の考え方」に記載のとおり，評価部位 は，設計時又は既往の評価における裕度の最も小さい部位を代表部位とすることを基本としているが，代表部位以外についても評価する場合もある。これは（2）設計時と同等の評価又は（3）詳細評価を実施する場合に地震動の特性（水平及び鉛直方向の大きさ，床応答スペクトルにおける周期特性など）によって裕度最小部位が変わることがある

ためである。代表部位以外についても評価し，3．11／4．7地震で裕度最小部位が異なる場合は代表部位ではなく，それぞれの裕度最小部位を表4－15に記載する。

なお，構造強度評価（11簡易評価，（2）設計時と同等の評価，（3）詳細評価）のうち， ③詳細評価を適用した設備及びその評価の概要を表4－16に示す。3．11／4．7地震の建屋シミュレーション解析を踏まえ，耐震 S クラス等の設備に対する構造強度評価の結果，弾性応答範囲内であることを確認した。また，配管及び機器に対して疲労影響が大きい設備を代表とした疲労評価の結果，3．11／4．7地震影響による疲労累積係数は 0.01 より十分に小さいことを確認した。なお，今回工認の耐震評価における疲労疲労累積係数に比べて，3．11／4．7 地震影響による疲労累積係数が非常に小さな結果とな っている要因は疲労評価に用いるピーク応力強さや評価に用いる地震動の違いによ るものである（添付 3 参照）。

また，動的機能維持評価の結果，動的機能が要求される設備の機能が維持されるこ とを確認した。

表 4－15 構造強度評価結果（ $1 / 16$ ）

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $2 / 16$ ）

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
＊2：他のプラントで適用され，工認実績のある公式による評価

表 4－15 構造強度評価結果（3／16）

注記 $~$ 1 ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（4／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {[\mathrm{MPa}]} \end{aligned}$	評価基準値 ［MPa］	評価結果	評価方法＊${ }^{1}$	既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \end{gathered}$ 地震荷重又は地震加速度	b／a応答比
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 炉 } \\ & \text { 心 } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \\ & \text { 物 } \end{aligned}$	炉心シュラウド 支持ロッド	3．11地震	上部タイロッド	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	366	455	\bigcirc	（2）	－	－	－
			4．7地震	上部タイロッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	366	455	\bigcirc	（2）	－	－	－
		上部格子板	3．11地震	グリッドプレート	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	65	214	\bigcirc	（2）	－	－	－
			4．7地震	グリッドプレート	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	45	214	\bigcirc	（2）	－	－	－
		炬心支持板	3．11地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	130	268	\bigcirc	（2）	－	－	－
			4．7地震	支持板	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	87	268	\bigcirc	（2）	－	－	－
			3．11地震	長手中央部	一次一般膜応力	39	143	\bigcirc	（2）	－	－	－
			4．7地震	長手中央部	一次一般膜応力	35	143	\bigcirc	（2）	－	－	－
	原子炉本体の基礎	外筒，内筒，縦リブ	3．11地震	外筒	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	262	427	\bigcirc	（2）	－	－	－
			4．7地震	外筒	一次応力 （組合せ）	206	427	\bigcirc	（2）	－	－	－
		CRD開口部	3．11地震	CRD開口部	一次応力 （せん断）	127	246	\bigcirc	（2）	－	－	－
			4．7地震	CRD開口部	一次応力 （せん断）	99	246	\bigcirc	（2）	－	－	－
		アンカボルト	3．11地震	アンカボルト	定着力	$\begin{array}{r} 874 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）	－	－	－
			4．7地震	アンカボルト	定着力	$\begin{array}{r} 654 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）	－	－	－
		スカートフランジ	3．11地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	$\begin{gathered} \text { 一次応力 } \\ \text { (曲げ) } \end{gathered}$	247	492	\bigcirc	（2）	－	－	－
			4．7地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	$\begin{gathered} \text { 一次応力 } \\ \text { (曲げ) } \end{gathered}$	187	492	\bigcirc	（2）	－	－	－

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $5 / 16$ ）

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（6／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {\left[\begin{array}{c} \text { MPa } \end{array}\right.} \end{aligned}$	評価基準値 ［MPa］	評価結果	$\left\|\begin{array}{c} \text { 評価 } \\ \text { 方法* }^{1} \end{array}\right\|$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \end{gathered}$ 地震荷重又は地震加速度	b／a応答比
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 熱 } \\ & \text { 去 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	残留熱除去系熱交換器	3．11地震	基礎ボルト	一次応力 （引張）	82	147	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	56	169	\bigcirc	（2）	－	－	－
		残留熱除去系ポンプ	3.11 地震	原動機台取付ボルト	一次応力 （引張）	26	444	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.73}$	$\underset{(\mathrm{G})}{0.75}$	1.03
			4．7地震	原動機台取付ボルト	一次応力 （引張）	25	444	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.60}$	$\underset{(\mathrm{G})}{0.46}$	1.00
	原 子 炉 泠 却 材 補 給 設 備	原子炉隔離時冷却系 ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	20	169	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.47}$	1.96
			4．7地震	基礎ボルト	一次応力 （引張）	19	169	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.46}$	1.92
		原子炉隔離時冷却系 ポンプ駆動用タービン	3.11 地震	基礎ボルト	一次応力 （引張）	45	169	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.47}$	1.96
			4．7地震	基礎ボルト	一次応力 （引張）	44	169	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.46}$	1.92
	そ 非 他常 他用 子炉 炉 心 注却 水設 備備	高圧炉心スプレイ系 ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	27	455	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.73}$	$\underset{(\mathrm{G})}{0.75}$	1.03
			4．7地震	原動機取付ボルト	一次応力 （引張）	26	455	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.60}$	$\underset{(\mathrm{G})}{0.46}$	1.00
		低圧炬ふスプレイ系 ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	29	491	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.73}$	$\underset{(\mathrm{G})}{0.75}$	1.03
			4．7地震	原動機取付ボルト	一次応力 （引張）	28	491	\bigcirc	（1）	$\underset{\text { (G) }}{0.60}$	$\underset{\text { (G) }}{0.46}$	1.00
	$\begin{aligned} & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { の } \\ & \text { 循 } \\ & \text { 環 } \\ & \text { 備 } \end{aligned}$	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	3．11地震	ラグ	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	45	203	\bigcirc	（2）	－	－	－
			4．7地震	ラグ	$\begin{aligned} & \text { 一次応力 } \\ & (\text { 組合せ) } \end{aligned}$	61	203	\bigcirc	（2）	－	－	－
		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	3．11地震	ラグ	$\begin{aligned} & \text { 一次応力 } \\ & (\text { 組合せ) } \end{aligned}$	74	203	\bigcirc	（2）	－	－	－
			4．7地震	ラグ	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	100	203	\bigcirc	（2）	－	－	－

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（7／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & \text { [MPa] } \end{aligned}$	評価基準値 ［MPa］	評価結果	$\begin{array}{\|l\|l\|} \text { 評価 } \\ \text { 方法 }^{1} \end{array}$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \text { b } \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	b／a応答比
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	原 子 炉 補 機 冷 却 設 備	原子炉補機冷却水系熱交換器	3．11地震	胴板	一次応力	176	415	\bigcirc	（2）	－	－	－
			4．7地震	胴板	一次応力	157	415	\bigcirc	（2）	－	－	－
		原子炬補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	16	122	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.48}$	2.00
			4．7地震	原動機取付ボルト	一次応力 （せん断）	15	122	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{\text { (G) }}{0.46}$	1.92
		原子炬補機冷却海水ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	95	475	\bigcirc	（1）	$\underset{\text { (G) }}{2.45}$	$\underset{(\mathrm{G})}{2.92}$	1.20
			4．7地震	原動機取付ボルト	一次応力 （引張）	126	475	\bigcirc	（1）	$\underset{\text { (G) }}{2.45}$	$\begin{gathered} 3.89 \\ (\mathrm{G}) \end{gathered}$	1.59
		原子炬補機冷却水サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	40	169	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	42	169	\bigcirc	（2）	－	－	－
		原子炬補機浍却海水采ストレーナ	3．11地震	胴板	一次応力	38	346	\bigcirc	（2）	－	－	－
			4．7地震	胴板	一次応力	33	346	\bigcirc	（2）	－	－	－
		高圧灲心スプレイ補機冷却水系熱交換器	3．11地震	基礎ボルト	一次応力 （せん断）	29	133	\bigcirc	（2）	－	－	－
			4．7地震	胴板	一次応力	82	415	\bigcirc	（2）	－	－	－
		高圧炬心スプレイ補機椧却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.48}$	2.00
			4．7地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.46}$	1.92
		高圧灲心スプレイ補機冷却海水ポンプ	3．11地震	基䫝ボルト	一次応力 （引張）	12	153	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.97}$	$\underset{(\mathrm{G})}{0.99}$	1.02
			4．7地震	基礎ボルト	一次応力 （引張）	14	153	\bigcirc	（1）	$\underset{\text { (G) }}{2.31}$	$\underset{(\mathrm{G})}{2.88}$	1.25
		高圧灯心スプレイ補機冷却水サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）	－	－	－

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（8／16）

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
＊2：他のプラントで適用され，工認実績のある限界荷重領域評価

表 4－15 構造強度評価結果（9／16）

注記 $~$ 1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $10 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	評価方法＊	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	b／a応答比
放射線管理施設	$\begin{aligned} & \text { 換 } \\ & \text { 気 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	中央制御室送風機	3．11地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）	－	－	－
		中央制御室	3．11地震	原動機取付ボルト	一次応力 （引張）	16	180	\bigcirc	（2）	－	－	－
		排風機	4．7地震	原動機取付ボルト	一次応力 （引張）	17	180	\bigcirc	（2）	－	－	－
		中央制御室	3．11地震	基磽ボルト	一次応力 （引張）	7	173	\bigcirc	（2）	－	－	－
		再循環送風機	4．7地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）	－	－	－
			3．11地震	基硞ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）	－	－	－
		フィル	4．7地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）	－	－	－
	$\begin{aligned} & \text { 計管放 } \\ & \text { 測官而地 } \end{aligned}$	燃料取替エリア	3．11地震	取付ボルト	一次応力 （引張）	9	180	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.29}$	${ }_{(\mathrm{G})}^{1.26}$	4.35
	畒用線		4．7地震	取付ボルト	一次応力 （引張）	11	180	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.29}$	$\underset{(\mathrm{G})}{1.58}$	5.45
	$\begin{aligned} & \text { 生 } \\ & \text { 装体 } \end{aligned}$	炬しゃへい辟	3．11地震	開口集中部	一次応力 （組合せ）	120	235	\bigcirc	（2）	－	－	－
	荁蔽		4．7地震	開口集中部	$\begin{aligned} & \text { 一次応力 } \\ & (\text { 組合せ) } \end{aligned}$	115	235	\bigcirc	（2）	－	－	－

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $11 / 16$ ）

	平価文	備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {\left[\begin{array}{c} \mathrm{MPa}] \end{array}\right.} \end{aligned}$	評価基準値 ［MPa］	評価結果	評価方法＊	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	b／a応答比
核燃料物質 の取扱施設及 び貯蔵施設	使 用 済 燃 料 貯 蔵 設 備	使用済燃料貯蔵ラック （110体ラック）	3．11地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	59	205	\bigcirc	（1）	${ }_{(\mathrm{G})}^{1.66}$	$\underset{(\mathrm{G})}{1.87}$	1.13
			4．7地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	61	205	\bigcirc	（1）	${ }_{(\mathrm{G})}^{1.45}$	$\underset{\text { (G) }}{1.84}$	1.27
		使用済燃料貯蔵ラック(170体ラック)	3．11地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	79	205	\bigcirc	（1）	$\underset{(\mathrm{G})}{1.82}$	$\begin{gathered} 1.88 \\ (\mathrm{G}) \end{gathered}$	1.04
			4．7地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	99	205	\bigcirc	（1）	1.82	$\underset{(\mathrm{G})}{2.36}$	1.30
		制御棒•破損燃料貯蔵ラック	3．11地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	39	108	\bigcirc	（1）	1.50	${ }_{(\mathrm{G})}^{1.35}$	1.00
			4．7地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	47	108	\bigcirc	（1）	$\underset{(\mathrm{G})}{2.93}$	$\begin{gathered} 3.50 \\ (\mathrm{G}) \end{gathered}$	1.20
	燃 料 取 扱 設 備	燃料交換機 （波及的影響設備）	3．11地震	構造物フレーム	一次応力 （組合せ）	212	231	\bigcirc	（3）	－	－	－
			4．7地震	構造物フレーム	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	206	231	\bigcirc	（3）	－	－	－
		原子炉建屋クレーン （波及的影響設備）	3．11地震	脱線防止ラグ	圧縮応力	117	309	\bigcirc	（3）	－	－	－
			4．7地震	脱線防止ラグ	圧縮応力	129	309	\bigcirc	（3）	－	－	－
そ の 他 発 電 用 原 子 炉 の 附 属 施 設	非常 用電源設備	非常用ディーゼル 発電設備 ディーゼル機関	3．11地震	基礎ボルト	一次応力 （引張）	79	254	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	50	254	\bigcirc	（2）	－	－	－
		$\begin{aligned} & \text { 非常用ディーゼル } \\ & \text { 発電設備 } \\ & \text { ディーゼル発電機 } \end{aligned}$	3．11地震	軸受台取付ボルト	一次応力 （引張）	65	180	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	0.69	2.88
			4．7地震	軸受台取付ボルト	一次応力 （引張）	67	180	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.71}$	2.96
		非常用ディーゼル 発電設備燃料デイタンク	3．11地震	基硞ボルト	一次応力 （引張）	33	158	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	34	158	\bigcirc	（2）	－	－	－
		非常用ディーゼル発電設備空気だめ	3．11地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.69}$	2.88
			4．7地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.71}$	2.96

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $12 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {\left[\begin{array}{c} \text { [MPa] } \end{array}\right.} \end{aligned}$	$\begin{gathered} \text { 評価 } \\ \text { 基漼 } \\ \lceil\mathrm{MPa} 7 \end{gathered}$	評価結果	$\left\lvert\, \begin{gathered} \text { 評価 } \\ \text { 方法 }^{1} *^{1} \end{gathered}\right.$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \text { b } \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	b／a応答比
そ の 他 発 電 用 原 子 炉 の 附 属 施 設		高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル機関	3．11地震	基礎ボルト	一次応力 （引張）	123	254	\bigcirc	（2）	－	－	－
			4．7地震	基礎ボルト	一次応力 （引張）	89	254	\bigcirc	（2）	－	－	－
		高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル発電機	3．11地震	基礎ボルト	一次応力 （せん断）	58	195	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.71}$	2.96
			4．7地震	基礎ボルト	一次応力 （せん断）	63	195	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.77}$	3.21
		高圧炉心スプレイ系 ディーゼル発電設備燃料デイタンク	3．11地震	スカート	座屈	$\begin{array}{r} 0.31 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.93}$	3.88
			4．7地震	スカート	座屈	$\begin{array}{r} 0.42 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{1.24}$	5.17
		高圧炬心スプレイ系 ディーゼル発電設備空気だめ	3．11地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{\text { (G) }}{0.69}$	2.88
	非常用電源設備		4．7地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.71}$	2.96
		125 V 蓄電池2A （2個並び1段2列）	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{\text { (G) }}{0.51}$	2.13
			4．7地震	取付ボルト	一次応力 （せん断）	25	133	\bigcirc	（1）	$\begin{gathered} 0.24 \\ (\mathrm{G}) \end{gathered}$	$\underset{\text { (G) }}{0.68}$	2.84
		$\begin{gathered} 125 \mathrm{~V} \text { 蓄電池2H } \\ \text { (15個並び1段1列) } \end{gathered}$	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{\text { (G) }}{0.77}$	3.21
			4．7地震	取付ボルト	一次応力 （せん断）	24	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	0.98	4.09
		125 V 充電器2A	3．11地震	取付ボルト	一次応力 （せん断）	14	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{\text { (G) }}{0.46}$	1.92
			4．7地震	取付ボルト	一次応力 （せん断）	15	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.52}$	2.17
		125 V 充電器2H	3．11地震	取付ボルト	一次応力 （引張）	22	173	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.48}$	2.00
			4．7地震	取付ボルト	一次応力 （引張）	25	173	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	0.54	2.25
		静止形無停電電源装置	3．11地震	取付ボルト	一次応力 （せん断）	12	133	\bigcirc	（1）	$\underset{(\mathrm{G})}{0.24}$	$\underset{(\mathrm{G})}{0.46}$	1.92
			4．7地震	取付ボルト	一次応力 （せん断）	13	133	\bigcirc	（1）	$\underset{\text { (G) }}{0.24}$	$\underset{(\mathrm{G})}{0.52}$	2.17

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（13／16）

	評価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {[\mathrm{MPa}]} \end{aligned}$	評価基準値 ［MPa］	評価結果	評価方法＊${ }^{1}$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \text { b } \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	$\begin{gathered} \mathrm{b} / \mathrm{a} \\ \text { 応答比 } \end{gathered}$
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	主蒸気系配管	3．11地震	配管本体	一次応力	141	198	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	183	198	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	$\begin{array}{r} 36 \\ (\mathrm{kN}) \end{array}$	$\begin{array}{r} 90 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	$\begin{array}{r} 49 \\ (\mathrm{kv}) \end{array}$	$\begin{array}{r} 90 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）	－	－	－
	原子炉再循環系配管	3．11地震	配管本体	一次応力	156	265	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	198	265	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	$\begin{gathered} 184 \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} 375 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	$\begin{gathered} 241 \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & 375 \\ & (\mathrm{kN}) \end{aligned}$	\bigcirc	（2）	－	－	－
	復水給水系配管	3．11地震	配管本体	一次応力	116	182	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	174	182	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	$\begin{array}{r} 58 \\ (\mathrm{kN}) \end{array}$	$\begin{gathered} 112 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	$\begin{array}{r} 95 \\ (\mathrm{kN}) \end{array}$	$\begin{gathered} 112 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
	原子炉冷却材浄化系配管	3．11地震	配管本体	一次応力	56	274	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	59	274	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	42	234	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	49	234	\bigcirc	（2）	－	－	－
	残留熱除去系配管	3．11地震	配管本体	一次応力	117	274	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	144	274	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	（kN）${ }_{8}$	$\begin{gathered} 45 \\ (\mathrm{k} N) \end{gathered}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	10 (kN)	45 (kN)	\bigcirc	（2）	－	－	－

注記 $*$ 1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $14 / 16$ ）

	評価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	$\begin{gathered} \text { 算出値 } \\ {\left[\begin{array}{c} \text { MPa } \end{array}\right.} \end{gathered}$	$\begin{aligned} & \text { 評価 } \\ & \text { 基準値 } \\ & \text { [MPa] } \end{aligned}$	評価結果	$\left\|\begin{array}{c} \text { 評価 } \\ \text { 方法 }^{1} \end{array}\right\|$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \text { b } \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	$\begin{gathered} \text { b/a } \\ \text { 応答比 } \end{gathered}$
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	原子炬隔離時冷却系配管	3．11地震	配管本体	一次応力	92	188	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	118	188	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	111	245	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	144	245	\bigcirc	（2）	－	－	－
	高圧炬心スプレイ系配管	3.11 地震	配管本体	一次応力	147	199	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	160	199	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	$\begin{gathered} 44 \\ (\mathrm{kV}) \end{gathered}$	$\begin{gathered} 87 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	$\begin{array}{r} 59 \\ (\mathrm{kN}) \end{array}$	$\begin{gathered} 87 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
	低圧炬心スプレイ系配管	3．11地震	配管本体	一次応力	104	220	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	137	220	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	$\begin{array}{r} 22.7 \\ (\mathrm{kN}) \end{array}$	$\begin{gathered} 24 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	$\begin{aligned} & 23.6 \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} 24 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（2）	－	－	－
	原子炉補機冷却水系配管	3．11地震	配管本体	一次応力	181	229	\bigcirc	（3）	－	－	－
		4．7地震	配管本体	一次応力	201	229	\bigcirc	（3）	－	－	－
		3．11地震	配管サポート	一次応力	165	245	\bigcirc	（3）	－	－	－
		4．7地震	配管サポート	一次応力	235	245	\bigcirc	（3）	－	－	－
	原子炉補機冷却海水系配管	3．11地震	配管本体	一次応力	200	241	\bigcirc	（3）	－	－	－
		4．7地震	配管本体	一次応力	196	241	\bigcirc	（3）	－	－	－
		3．11地震	配管サポート	一次応力	159	245	\bigcirc	（3）	－	－	－
		4．7地震	配管サポート	一次応力	145	245	\bigcirc	（3）	－	－	－

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $15 / 16$ ）

	評価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	$\begin{gathered} \text { 算出値 } \\ {\left[\begin{array}{c} \text { MPa } \end{array}\right.} \end{gathered}$	評価基準値 ［MPa］	評価結果	$\left\|\begin{array}{c} \text { 評価 } \\ \text { 方法 }^{1} \end{array}\right\|$	a 既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \end{gathered}$ 地震荷重又は地震加速度	b／a応答比
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	制御棒駆動水圧系配管	3．11地震	配管本体	一次応力	74	159	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	92	159	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	75	118	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	102	118	\bigcirc	（2）	－	－	－
	ほう酸水注入系配管	3.11 地震	配管本体	一次応力	103	175	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	140	175	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	39	234	\bigcirc	（2）	－	－	－
		4.7 地震	配管サポート	一次応力	51	234	\bigcirc	（2）	－	－	－
	燃料プール冷却浄化系配管	3．11地震	配管本体	一次応力	48	188	\bigcirc	（3）	－	－	－
		4．7地震	配管本体	一次応力	67	188	\bigcirc	（3）	－	－	－
		3.11 地震	配管サポート	一次応力	110	205	\bigcirc	（3）	－	－	－
		4.7 地震	配管サポート	一次応力	129	205	\bigcirc	（3）	－	－	－
	非常用ガス処理系配管	3．11地震	配管本体	一次応力	73	220	\bigcirc	（3）	－	－	－
		4.7 地震	配管本体	一次応力	94	220	\bigcirc	（3）	－	－	－
		3．11地震	配管サポート	一次応力	204	245	\bigcirc	（3）	－	－	－
		4．7地震	配管サポート	一次応力	225	245	\bigcirc	（3）	－	－	－
	原子炉格納容器調気系配管	3．11地震	配管本体	一次応力	141	245	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	220	245	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	$\begin{array}{r} 67 \\ (\mathrm{kN}) \end{array}$	$\begin{aligned} & 112 \\ & (\mathrm{kN}) \end{aligned}$	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	74 (kN)	$\begin{aligned} & 112 \\ & (\mathrm{kN}) \end{aligned}$	\bigcirc	（2）	－	－	－

注記＊1：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－15 構造強度評価結果（ $16 / 16$ ）

	評価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\left\|\begin{array}{c} \text { 評価 } \\ \text { 方法 }^{1} *^{1} \end{array}\right\|$	既工認又は既往の評価 における地震荷重又は地震加速度	$\begin{gathered} \mathrm{b} \\ 3.11,4.7 \\ \text { 地震荷重又は } \\ \text { 地震加速度 } \end{gathered}$	b／a応答比
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	放射性ドレン移送系配管	3．11地震	配管本体	一次応力	128	199	\bigcirc	（2）	－	－	－
		4.7 地震	配管本体	一次応力	151	199	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	反力	$\stackrel{2}{(k N)}$	（kN）	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	反力	$\underset{(\mathrm{kN})}{2}$	$\begin{array}{r} 4 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）	－	－	－
	サプレッションプール水貯蔵系配管	3．11地震	配管本体	一次応力	66	219	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	92	219	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	23	245	\bigcirc	（2）	－	－	－
		4．7地震	配管サポート	一次応力	29	245	\bigcirc	（2）	－	－	－
	可燃性がス濃度制御系配管	3．11地震	配管本体	一次応力	154	211	\bigcirc	（2）	－	－	－
		4．7地震	配管本体	一次応力	128	150	\bigcirc	（2）	－	－	－
		3．11地震	配管サポート	一次応力	183	245	\bigcirc	（2）	－	－	－
		4.7 地震	配管サポート	一次応力	212	245	\bigcirc	（2）	－	－	－
	高圧炉心スブレイ補機冷却水系配管	3．11地震	配管本体	一次応力	147	229	\bigcirc	（3）	－	－	－
		4.7 地震	配管本体	一次応力	178	229	\bigcirc	（3）	－	－	－
		3．11地震	配管サポート	一次応力	172	245	\bigcirc	（3）	－	－	－
		4．7地震	配管サポート	一次応力	178	245	\bigcirc	（3）	－	－	－
	高圧炉心スプレイ補機冷却海水系配管	3．11地震	配管本体	一次応力	101	239	\bigcirc	（3）	－	－	－
		4．7地震	配管本体	一次応力	146	239	\bigcirc	（3）	－	－	－
		3．11地震	配管サポート	反力	（kN）${ }^{7}$	16 (kN)	\bigcirc	（3）	－	－	－
		4．7地震	配管サポート	反力	10 (kN)	16 (kN)	\bigcirc	（3）	－	－	－

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－16 詳細評価を適用した設備及び評価の概要

詳細評価を適用した設備	評価の概要
燃料交換機 配管系 - 原子炉補機椧却水系 - 燃料プール泠却浄化系 - 非常用ガス処理系 - 高圧炉心スプレイ補機冷却水系	設計時の評価（スペクトルモーダル解析） から，時刻歴応答解析法による評価に変更
原子炬建屋クレーン	設計時の評価（公式による算出）から，時刻歴応答解析法による評価に変更
蒸気乾燥器	設計時の保守的な継手効率（0．4）から，実態の検査に応じた継手効率（0．55）に変更
配管系 $\left(\begin{array}{l}\text { •原子炉補機冷却水系 } \\ \text {－原子炉補機冷却海水系 } \\ \text {－燃料プール泠却浄化系 } \\ \text {－非常用ガス処理系 } \\ \text {－高圧炉心スプレイ補機冷却水系 } \\ \text {－高圧炉心スプレイ補機泠却海水系 }\end{array}\right)$	実機を踏まえたばね定数に変更（配管系の設計段階ではサポートのばね定数を汎用性 のある保守的な設定としている場合がある ため，実際のサポートの敷設状態を踏まえ た精緻なばね定数に変更）

表 4－17 疲労評価結果

対象設備		評価用地震動	地震による疲労累積係数 ［－］	合計［－］	評価 結果
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	給水系配管	3.11 地震	0.0001	0.0002	\bigcirc
		4.7 地震	0.0001		
	残留熱除去系配管	3.11 地震	0.0027	0.0036	\bigcirc
		4.7 地震	0． 0009		
	原子炉補機冷却海水系配管	3.11 地震	0． 0008	0.0014	\bigcirc
		4.7 地震	0． 0006		
$\begin{aligned} & \text { 機 } \\ & \text { 器 } \end{aligned}$	給水ノズル	3.11 地震	0.0002	0.0019	\bigcirc
		4.7 地震	0． 0017		

表 4－18 動的機能維持評価結果（ $1 / 7$ ）

評価対象設備及び評価箇所			評価用地震動	評価項目	$\frac{\text { 算出値 }}{(\mathrm{mm})}$	評価基準値 （mm）	評価結果
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	燃料集合体	制御棒挿入性	3．11地震	燃料集合体相対変位	18.2	40.0	\bigcirc
			4．7地震	燃料集合体相対変位	8.5	40.0	\bigcirc

表 4－18 動的機能維持評価結果（2／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度（G）		鉛直加速度（G）		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 誨 } \end{aligned}$	残留熱除去設備	残留熱除去系ポンプ		3．11地震	コラム先端部	0.62	10.0	0.40	1.0	\bigcirc
			4．7地震	コラム先端部	0.40	10.0	0.39	1.0	\bigcirc	
			3.11 地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
	非常用炬心椧却設備 その他原子炬注水設備	高圧炉心スプレイ系ポンプ	3．11地震	コラム先端部	0.62	10.0	0.40	1.0	\bigcirc	
			4．7地震	コラム先端部	0.40	10.0	0.39	1.0	\bigcirc	
		高圧炬心スプレイ系ポンプ原動機	3．11地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
		低圧炉心スプレイ系ポンプ	3．11地震	コラム先端	0.62	10.0	0.40	1.0	\bigcirc	
			4．7地震	コラム先端	0.40	10.0	0.39	1.0	\bigcirc	
		低圧炉心スプレイ系ポンプ原動機	3．11地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
	原子炉椧却材補給設備	原子炉隔離時冷却系ポンプ	3．11地震	軸位置 （軸方向）	0.61	1.4	0.39	1.0	\bigcirc	
			4．7地震	軸位置 （軸方向）	0.41	1.4	0.39	1.0	\bigcirc	
		原子炬隔離時冷却系ポンプ駆動用タービン	3．11地震	重心位置	0.62	2.4	0.39	1.0	\bigcirc	
			4．7地震	重心位置	0.41	2.4	0.39	1.0	\bigcirc	

表 4－18 動的機能維持評価結果（3／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度（G）		鉛直加速度（G）		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 䛌 } \end{aligned}$	原子炉補機泠却設備	原子炬補機冷却水ポンプ		3．11地震	軸位置 （軸方向）	0.62	1.4	0.40	1.0	\bigcirc
			4．7地震	軸位置 （軸方向）	0.40	1.4	0.39	1.0	\bigcirc	
		原子炉補機冷却水ポンプ原動機	3．11地震	軸受部	0.62	4.7	0.40	1.0	\bigcirc	
			4.7 地震	軸受部	0.40	4.7	0.39	1.0	\bigcirc	
		原子炬補機冷却海水ポンプ	3．11地震	コラム先端部	5.07	10.0	0.67	1.0	\bigcirc	
			4.7 地震	コラム先端部	6.71	10.0	0.73	1.0	\bigcirc	
		原子炉補機冷却海水 ポンプ原動機	3．11地震	軸受部	4.23	14.0	0.67	1.0	\bigcirc	
			4．7地震	軸受部	5.60	14.0	0.73	1.0	\bigcirc	
		高圧炉心スプレイ補機泠却水ポンプ	3．11地震	軸位置 （軸方向）	0.62	1.4	0.40	1.0	\bigcirc	
			4．7地震	軸位置 （軸方向）	0.40	1.4	0.39	1.0	\bigcirc	
		高圧炬ふスプレイ補機冷却水ポンプ原動機	3．11地震	軸受部	0.62	4.7	0.40	1.0	\bigcirc	
			4.7 地震	軸受部	0.40	4.7	0.39	1.0	\bigcirc	
		高圧炉心スプレイ補機冷却海水ポンプ	3．11地震	コラム先端部	2.33	10.0	0.67	1.0	\bigcirc	
			4.7 地震	コラム先端部	2.85	10.0	0.73	1.0	\bigcirc	
		高圧炬心スプレイ袖機泠却海水ポンプ原動機	3．11地震	軸受部	0.83	2.5	0.67	1.0	\bigcirc	
			4．7地震	軸受部	0.68	2.5	0.73	1.0	\bigcirc	

表 4－18 動的機能維持評価結果（4／7）

評価対象設備及び評価箇所			評価用 地震動	評価位置	水平加速度（G）		鉛直加速度（G）		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
放 射 線 管 理 施 設	換気設備	中央制御室送風機		3．11地震	軸受部及び 奴ニカルシールケーシング	0.64	2.3	0.34	1.0	\bigcirc
			4．7地震	軸受部及び メカニカルシールケーシング	0.64	2.3	0.39	1.0	\bigcirc	
		中央制御室送風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
		中央制御室排風機	3．11地震	軸受部	0.64	2.6	0.34	1.0	\bigcirc	
			4.7 地震	軸受部	0.64	2.6	0.39	1.0	\bigcirc	
		中央制御室排風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
		中央制御室再循環送風機	3．11地震	軸受部及び メカニカルシールケーシング	0.64	2.3	0.34	1.0	\bigcirc	
			4．7地震	軸受部及び メカニカルシールケーシング	0.64	2.3	0.39	1.0	\bigcirc	
		中央制御室再循環送風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	圧力低減設備 その他の安全設備	非常用ガス処理系排風機	3．11地震	軸受部及び メカニカルシールケーシング	0.94	2.3	0.67	1.0	\bigcirc	
			4．7地震	軸受部及び メカニカルシールケーシング	0.78	2.3	0.89	1.0	\bigcirc	
		非常用ガス処理系排風機原動機	3．11地震	軸受部	0.94	4.7	0.67	1.0	\bigcirc	
			4．7地震	軸受部	0.78	4.7	0.89	1.0	\bigcirc	
		可燃性ガス濃度制御系再結合装置ブロワ	3．11地震	軸受部	0.92	2.6	0.66	1.0	\bigcirc	
			4．7地震	軸受部	0.76	2.6	0.87	1.0	\bigcirc	
		可燃性ガス濃度制御系再結合装置ブロワ原動機	3．11地震	軸受部	0.92	4.7	0.66	1.0	\bigcirc	
			4．7地震	軸受部	0.76	4.7	0.87	1.0	\bigcirc	

表 4－18 動的機能維持評価結果（5／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度（G）		鉛直加速度（G）		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
$\begin{aligned} & \text { そ } \\ & \text { の } \\ & \text { 他 } \\ & \text { 発 } \\ & \text { 電 } \\ & \text { 用 } \\ & \text { 原 } \end{aligned}$子炉炉$\begin{aligned} & \text { の } \\ & 1 \end{aligned}$附$\begin{aligned} & \text { 属 } \\ & \text { 施 } \end{aligned}$$\begin{aligned} & \text { 施 } \\ & \text { 設 } \end{aligned}$	非常用電源設備	非常用ディーゼル発電設備 ディーゼル機関		3．11地震	機関重心位置	0.84	1.1	0.59	1.0	\bigcirc
			4．7地震	機関重心位置	0.58	1.1	0.63	1.0	\bigcirc	
		非常用ディーゼル発電設備 ディーゼル発電機	3．11地震	軸受部	0.83	1.1	0.58	1.0	\bigcirc	
			4．7地震	軸受部	0.55	1.1	0.59	1.0	\bigcirc	
		高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル機関	3．11地震	機関重心位置	0.85	1.1	0.59	1.0	\bigcirc	
			4．7地震	機関重心位置	0.58	1.1	0.63	1.0	\bigcirc	
		高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル発電機	3．11地震	軸受部	0.85	1.1	0.60	1.0	\bigcirc	
			4．7地震	軸受部	0.59	1.1	0.64	1.0	\bigcirc	

表 4－18 動的機能維持評価結果（6／7）

注記＊：詳細評価

表 4－18 動的機能維持評価結果（ $7 / 7$ ）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度（G）		鉛直加速度（G）		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
弁	制御棒駆動水圧系	制御棒駆動水圧系 スクラム弁		3．11地震	駆動部	0.83	6.0	0.58	6.0	\bigcirc
			4．7地震	駆動部	0.57	6.0	0.59	6.0	\bigcirc	
	ほう酸水注入系	ほう酸水注入系弁	3．11地震	駆動部	2.62	6.0	2.34	6.0	\bigcirc	
			4．7地震	駆動部	4.47	6.0	5.48	6.0	\bigcirc	
	放射性ドレン移送系	放射性ドレン移送系弁	3．11地震	駆動部	3.50	6.0	2.73	6.0	\bigcirc	
			4．7地震	駆動部	5.63	6.0	5.20	6.0	\bigcirc	
	非常用 ガス処理系	非常用ガス処理系弁	3．11地震	駆動部	3.76	6.0	2.04	6.0	\bigcirc	
			4．7地震	駆動部	5.67	6.0	3.54	6.0	\bigcirc	
	原子炬格納容器調気系	原子炉格納容器調気系弁	3．11地震	駆動部	3.78	6.0	2.41	6.0	\bigcirc	
			4．7地震	駆動部＂	3.00	9.5	6.43	6.8	\bigcirc	
	可燃性ガス 濃度制御系	可燃性がス濃度制御系弁	3．11地震	駆動部	3.31	6.0	5.99	6.0	\bigcirc	
			4．7地震	弁本体＊	$\begin{gathered} \text { 発生値 (G) } \\ 8.62 \end{gathered}$		評価基準値（G） 9.50		\bigcirc	
	高圧炉心 スプレイ補機冷却海水系	高圧炉心スプレイ補機椧却海水系弁	3．11地震	駆動部	2.88	6.0	3.47	6.0	\bigcirc	
			4．7地震	駆動部	3.49	6.0	4.16	6.0	\bigcirc	

注記＊：詳細評価

5．機器•配管系の耐震設計への反映事項の検討
地震後の設備点検結果及び地震応答解析結果を踏まえ，東北地方太平洋沖地震等によ る機器•配管系の耐震設計への反映事項を検討するとともに，その後の新規制基準施行 に伴い新たに基準地震動S sでの評価が必要となった既設耐震 B，C クラス施設に対す る設計反映事項について整理する。
（1）地震後の設備点検結果及び地震応答解析を踏まえた機器•配管系の耐震設計への反映事項（既工認記載の耐震 S クラス施設及び耐震 B，C クラス施設）
機器•配管系の耐震設計への反映事項の検討結果等を図 2－1 及び図 5－1 に示す。図 5－1 は，図 2－2 に記載の耐震設計への反映事項の判断フローに基づき，3．11／4．7地震 を踏まえて，機器•配管系，建物•構築物及び土木構造物それぞれに対する耐震設計 への反映事項の検討結果を示したものである。

a．機器•配管系

機器•配管系は，既工認記載の耐震 S クラス設備及び耐震B，Cクラスのらち波及的影響設備の地震応答は弾性応答範囲内であること，また，既工認記載の耐震Sク ラス設備に地震による損傷はなく，耐震 B，Cクラス設備のらち異常を確認した設備 については，原形復旧し，地震による損傷は残らないため，設備健全性確認の観点 からは設計反映事項はない。

なお，疲労評価については，3．11／4．7地震を受けたことを踏まえ，疲労累積係数 による疲労評価を実施する場合は，許容限界に対して余裕があることに留意する。
b．建物•構築物
建物•構築物については，地震による異常はなかったものの，建屋の地震観測記録及び建屋シミュレーションから設計反映事項として，補足説明資料「補足－620－1東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」 に示す建屋の初期剛性低下を建物•構築物の耐震設計に反映するとともに，他施設 の耐震設計への反映の要否を検討した結果として，機器•配管系の耐震設計におい て建屋初期剛性低下を考慮した地震応答解析モデルを用いることとする。
c．土木構造物
土木構造物については，耐震 S クラス設備の間接支持機能を有する施設に地震に よる異常はなく，耐震B，Cクラス施設のらち異常を確認した施設については，補修 により機能回復しているため，設備健全性確認の観点からは土木構造物の耐震設計 への反映事項はなく，機器•配管系への耐震設計への反映事項もない。
（2）既設耐震 B，Cクラス施設のうち，新規制基準に伴い基準地震動 S s での耐震評価が必要な施設への設計反映事項
既設耐震 B，C クラス施設のうち，新規制基準において耐震 S クラスへ格上げする施設，重大事故等対処施設及び波及的影響施設の機能要求により基準地震動S s によ る耐震評価が必要となる施設の耐震設計への反映事項の有無については，施設点検結果等から以下のとおり整理した。

a．機器－配管系

既設耐震 B，Cクラス設備のうち，新規制基準において耐震 S クラスへ格上げする設備，重大事故等対処設備及び波及的影響を及ぼすおそれがある設備に該当し，基準地震動 S s による耐震評価が必要となる設備（3．11／4．7地震後に取替を実施した設備を除く）については，3．11／4．7 地震に対する地震応答が弾性応答範囲内（添付 4 参照）であることを確認する（一部の評価結果については追而）。

また，既設耐震 B，Cクラス設備のうち，新規制基準に伴い基準地震動 S s での耐震評価が必要な設備は点検の結果，耐震性に影響を与えるような損傷はない。なお，耐震性に影響しない部位について損傷が確認された場合は，原形復旧し，地震によ る損傷は残らない。
b．建物•構築物
新規制基準に伴い基準地震動 S s での耐震評価が必要となったタービン建屋は，地震による異常がなかったものの，初期剛性低下の影響を確認し，その影響を設計反映する。

なお，新規制基準に基づく基準地震動 S s に対して耐震性向上の観点から，耐震補強工事を実施する施設については，その工事内容を耐震設計に反映する。
c．土木構造物
新規制基準に伴い基準地震動 S s での耐震評価が必要となつた軽油タンク室（軽油タンク室は地下化したが，基礎については継続使用するため評価），軽油タンク連絡ダクト，復水貯蔵タンク基礎は，地震による異常がなかったため耐震設計への反映事項はない。

図 5－1 耐震設計への反映事項の検討結果

6．機器•配管系の耐震設計に反映すべき事項の検討結果
地震後の設備点検結果より，耐震 S クラス設備に地震による損傷はなく，耐震 B，C ク ラス設備のらち異常を確認した設備については，原形に復旧するため，地震による損傷 が残らない。地震応答解析結果より，既工認記載の耐震 S クラス設備，耐震 B，Cクラス設備のうち波及的影響設備については，地震応答は弾性応答範囲内であり，地震後に地震力が除荷されると変形状態が元に戻る（変形が残らない）ことから耐震設計へ反映す べき事項はない。

また，新たに基準地震動 S s による評価が必要となる既設設備（3．11／4．7地震後に取
替を実施した設備を除く）については，地震応答は弾性応答範囲内であることを確認 する（一部の評価結果については追而）。

なお，3．11／4．7地震による設備に対する疲労影響は十分に小さく，設計事項への反映 は必要ないと考えられるが，機器•配管系の疲労評価では，3．11／4．7地震の影響を考慮 して疲労累積係数に0．01を見込んだ評価を実施する。

一方で，建屋のコンクリートの乾燥収縮及び地震による影響の観点からは，機器•配管系の耐震設計について，3．11地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下を反映した解析モデルによる地震応答を用いた評価を実施する。地震応答解析モデルへの反映に当たつては，地震計が設置されている既設建屋（原子炉建屋，制御建屋，タービン建屋，第 3 号機海水熱交換器建屋及び第 1 号機制御建屋）に ついて，シミュレーション解析に基づいて建屋初期剛性を評価し，過去の地震観測記録 の傾向分析等を踏まえて設計値に対する補正係数を設定した。 さらに，過去の観測より も大きな加速度となる更新地震によっても剛性が低下する傾向が認められていることか ら，初期剛性低下の影響を保守的に反映するモデル（基準地震動 S s による剛性低下を反映するモデル）を不確かさケースとして採用する。また，原子炉建屋，タービン建屋及び第 3 号機海水熱交換器建屋においては，地震観測記録とシミュレーション解析結果 の整合性を踏まえ，表層地盤の影響を考慮して入力地震動を算定する。

なお，設置許可段階での検討において，機器•配管系のうち，コンクリートに関連す る箇所を構造的な分類によって抽出し，評価に及ぼす影響の有無を確認している。機器 の基礎台，機器アンカー部等は，十分な剛性を有しており，建屋と一体となって挙動す ることから，乾燥収縮及び地震影響によるコンクリートのひび割れが設備の地震応答解析モデル及び設備の許容限界に及ぼす影響がないと考えられる。原子炉本体の基礎につ いては，コンクリートのひび割れの影響はないと考えられるが，念のため原子炉建屋と同様に初期剛性低下を考慮した地震応答解析モデルによる評価を実施する。（補足説明資料「補足－620－1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法へ の反映について」のうち，「5．5 設備評価への反映方針」参照）。

7．今回工認における耐震評価結果を踏まえた検討

3．11／4．7地震に対する構造強度評価は設計時又は既往の評価における裕度の最も小 さい部位を代表部位とすることを基本としており，評価用地震動が変わると裕度最小部位が変わる可能性がある。そのため，今回工認の耐震評価に用いる基準地震動に対する裕度最小部位と $3.11 / 4.7$ 地震に対する構造強度評価対象部位を比較するとともに，今回工認における裕度最小部位が 3．11／4．7地震に対して弾性応答範囲内であって，地震 による損傷等がなかったことを確認する。

なお，本検討によって設計時又は既往の評価結果を踏まえて選定した 3．11／4．7地震 に対する構造強度評価部位による 6 項「機器•配管系の耐震設計に反映すべき事項の検討結果」が妥当であったことを補強するものである。

3．11／4．7地震以降，耐震性向上を含む安全対策工事を実施（各系統の配管系等）して いるため，本検討における比較対象設備は，耐震Sクラスの未改造設備である 3．11／4．7地震の構造強度評価対象設備とする。耐震裕度向上を目的とした改造を実施する配管系 などの設備は，3．11／4．7地震における設備状態から変化し，比較対象とならないため，検討対象としない。また，動的機能維持評価対象設備については，構造強度評価にて弾性応答範囲内であること及び「原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版」にて機器型式ごとに評価部位が特定されていることから検討対象としない。
（1）検討対象設備の抽出
3．11／4．7地震の構造強度評価対象設備（表 4－1）について，図 7－1 の検討対象設備抽出フローに基づき，3．11／4．7地震後における改造の有無，3．11／4．7地震の評価部位 と今回工認における裕度最小部位との相違に着目し，以下の区分で分類した結果を表 7－1に示す。

青朹：3．11／4．7地震後に改造を実施した設備（改造の影響を受ける設備を含む）
緑枠：未改造設備であり，裕度最小部位に相違がない設備
赤枠：未改造設備であり，裕度最小部位に相違がある設備
上記のらち赤枠に分類された設備を検討対象として，今回工認の耐震評価における裕度最小部位が $3.11 / 4.7$ 地震に対して弾性応答範囲内であつたことを確認する。

図 7－1 検討対象設備の抽出フロー

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（1／12）

評価対象設備及び評価箇所			評価用 地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{aligned} & \text { 評価 } \\ & \text { 方法※1 } \end{aligned}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	胴板		3．11地震	胴板	一次一般膜応力	176	303	\bigcirc	（1）
			4．7地震	胴板	一次一般膜応力	191	303	\bigcirc	（1）
		下部鏡板	3．11地震	下部鏡板	一次一般膜応力	115	303	\bigcirc	（1）
			4．7地震	下部鏡板	一次一般膜応力	125	303	\bigcirc	（1）
		制御棒駆動機構 ハウジング貫通孔	3．11地震	スタブチューブ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	193	271	\bigcirc	（1）
			4．7地震	スタブチューブ	- 次膜＋ - 次曲げ応力	199	271	\bigcirc	（1）
	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 圧 } \\ & \text { 力 } \\ & \text { 容 } \\ & \text { 器 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	再循環水入口ノズル （N2）	3．11地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	- 次膜 + - 次曲げ応力	153	193	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	189	193	\bigcirc	（1）
		給水ノズル （N4）	3．11地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	135	253	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	- 次膜 + - 次曲げ応力	179	253	\bigcirc	（1）
		低圧注水ノズル （N6）	3．11地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	- 次膜＋ - 次曲げ応力	140	253	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \end{gathered}$	一次膜＋一次曲げ応力	147	253	\bigcirc	（1）
		$\begin{gathered} \text { ベントノズル } \\ \text { (N8) } \end{gathered}$	3．11地震	ノズルエンド	一次膜 +一次曲げ応力	141	418	\bigcirc	（1）
			4．7地震	ノズルエンド	- 次膜 + - 次曲げ応力	169	418	\bigcirc	（1）
		ブラケット類	3．11地震	蒸気乾燥器支持ブラケット	一次膜＋一次曲げ応力	147	213	\bigcirc	（2）
			4．7地震	蒸気乾燥器支持ブラケット	- 次膜＋ - 次曲げ応力	169	213	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（2／12）

評価対象設備及び評価箇所			評価用 地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } \% 1 \end{gathered}$
	$\begin{gathered} \text { 原 } \\ \text { 支子 } \\ \text { 持炉 } \\ \text { 構圧 } \\ \text { 造力 } \\ \text { 物容 } \\ \text { 器 } \end{gathered}$	原子炉圧力容器基礎ボルト	3．11地震	基礎ボルト	一次応力 （引張）	105	499	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	91	499	\bigcirc	（2）
		原子炉圧力容器支持スカート	3．11地震	スカート	軸圧縮応力	$\begin{array}{r} 0.35 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（2）
			4．7地震	スカート	軸圧縮応力	$\begin{array}{r} 0.32 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（2）
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 付子 } \\ & \text { 属炉 } \\ & \text { 構圧 } \\ & \text { 造力 } \\ & \text { 物容 } \end{aligned}$	原子炉圧力容器 スタビライザ	3．11地震	ブラケット	一次応力 （組合せ）	110	198	\bigcirc	（2）
			4．7地震	ブラケット	一次応力 （組合せ）	118	198	\bigcirc	（2）
		原子炉格納容器 スタビライザ	3．11地震	外側フィメイル シヤラグ本体	一次応力 （組合せ）	143	176	\bigcirc	（2）
			4．7地震	ガセットプレート	一次応力 （組合せ）	116	176	\bigcirc	（2）
		制御棒駆動機構 ハウジング支持金具	3．11地震	レストレントビーム	強軸曲げ応力	81	201	\bigcirc	（1）
			4．7地震	レストレントビーム	強軸曲げ応力	103	201	\bigcirc	（1）
		$\begin{gathered} \text { 差圧検出・ほう酸水注入系 } \\ \text { 配管 } \\ \text { (ティーよりN11ノズルまで } \\ \text { の外管) } \end{gathered}$	3．11地震	パイプ	一次一般膜応力	42	114	\bigcirc	（1）
			4．7地震	パイプ	一次一般膜応力	43	114	\bigcirc	（1）
	原子炉圧力容器内部構造物	蒸気乾燥器	3．11地震	耐震用ブロック溶接部	純せん断応力	24	47	\bigcirc	（3）
			4．7地震	耐震用ブロック溶接部	純せん断応力	27	47	\bigcirc	（3）
		シュラウドヘッド	3．11地震	シュラウドヘッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	232	265	\bigcirc	（2）${ }^{* 2}$
			4．7地震	シュラウドヘッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	248	265	\bigcirc	（2）${ }^{* 2}$
		気水分離器及び スタンドパイプ	3．11地震	スタンドパイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	93	106	\bigcirc	（2）
			4．7地震	スタンドパイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	100	106	\bigcirc	（2）

表 7－1 $3.11 / 4.7$ 地震の構造強度評価対象設備に対する分類結果（3／12）

評価対象設備及び評価箇所			評価用 地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	評価方法 ${ }^{* 1}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	原 子 炉 圧 力 容 器 内 部 構 造 物	給水スパージャ	3．11地震	ヘッダ	- 次膜＋ - 次曲げ応力	25	139	\bigcirc	（1）
			4．7地震	ヘッダ	一次膜＋一次曲げ応力	28	139	\bigcirc	（1）
		高圧及び低圧炉心 スプレイスパージャ	3．11地震	ティー	一次一般膜応力	10	92	\bigcirc	（1）
			4．7地震	ティー	一次一般膜応力	15	92	\bigcirc	（1）
			3．11地震	ライザ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	69	174	\bigcirc	（1）
			4．7地震	ライザ	- 次膜 + - 次曲げ応力	82	174	\bigcirc	（1）
			3．11地震	リング	一次一般膜応力	15	57	\bigcirc	（1）
			4．7地震	リング	一次一般膜応力	17	57	\bigcirc	（1）
		高圧及び低圧炉心	3．11地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	36	214	\bigcirc	（1）
		（原子炉圧力容器内部）	4．7地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	54	214	\bigcirc	（1）
		差圧検出・ほう酸水	3．11地震	パイプ	一次膜＋一次曲げ応力	30	139	\bigcirc	（1）
		（原子炉圧力容器内部）	4．7地震	パイプ	一次膜＋一次曲げ応力	49	139	\bigcirc	（1）
			3．11地震	中性子束計測案内管下部	- 次膜 + - 次曲げ応力	34	172	\bigcirc	（2）
			4．7地震	中性子束計測案内管下部	- 次膜 + - 次曲げ応力	25	172	\bigcirc	（2）
	$\begin{aligned} & \text { 炉 } \\ & \text { 心 } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 逿 } \\ & \text { } \end{aligned}$	炉心シュラウド	3．11地震	下部胴	一次一般膜応力	69	92	\bigcirc	（2）
			4．7地震	下部胴	一次一般膜応力	71	92	\bigcirc	（2）
		シュラウドサポート	3．11地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	175	198	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	177	198	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（4／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & {[\mathrm{MPa}]} \end{aligned}$	$\begin{gathered} \text { 評価 } \\ \text { 基漼値 } \\ \text { [MPa] } \end{gathered}$	評価結果	評価 方法 ${ }^{* 1}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	炉心支持構造物	炉心シュラウド 支持ロッド	3．11地震	上部タイロッド	- 次膜＋ - 次曲げ応力	366	455	\bigcirc	（2）
			4．7地震	上部タイロッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	366	455	\bigcirc	（2）
			3．11地震	グリッドプレート	- 次膜＋ - 次曲げ応力	65	214	\bigcirc	（2）
			4．7地震	グリッドプレート	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	45	214	\bigcirc	（2）
			3．11地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	130	268	\bigcirc	（2）
			4．7地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	87	268	\bigcirc	（2）
			3．11地震	長手中央部	一次一般膜応力	39	143	\bigcirc	（2）
			4．7地震	長手中央部	一次一般膜応力	35	143	\bigcirc	（2）
	原子炉本体の基礎	外筒，内筒，縦リブ	3．11地震	外筒	一次応力 （組合せ）	262	427	\bigcirc	（2）
			4．7地震	外筒	一次応力 （組合せ）	206	427	\bigcirc	（2）
		CRD開口部	3．11地震	CRD開口部	一次応力 （せん断）	127	246	\bigcirc	（2）
			4．7地震	CRD開口部	一次応力 （せん断）	99	246	\bigcirc	（2）
		アンカボルト	3．11地震	アンカボルト	定着力	$\begin{array}{r} 874 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
			4．7地震	アンカボルト	定着力	$\begin{array}{r} 654 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
		スカートフランジ	3．11地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	一次応力 （曲げ）	247	492	\bigcirc	（2）
			4．7地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	$\begin{gathered} \text { 一次応力 } \\ \text { (曲げ) } \end{gathered}$	187	492	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（5／12）

評価対象設備及び評価箇所			評価用 地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	評価方法 ${ }^{* 1}$
	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 材 } \end{aligned}$	制御棒中性子吸収棒	3．11地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
			4．7地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
	$\begin{aligned} & \text { 駆 } \\ & \text { 制 } \\ & \text { 装御 } \\ & \text { 置 } \end{aligned}$	水圧制御ユニット	3．11地震	取付ボルト	一次応力 （引張）	169	475	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	149	475	\bigcirc	（1）
	$\begin{aligned} & \text { ほ } \\ & \text { う } \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 注 } \\ & \text { 入 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	ほう酸水注入系 ポンプ	3.11 地震	ポンプ取付ボルト	一次応力 （せん断）	33	118	\bigcirc	（1）
			4．7地震	ポンプ取付ボルト	一次応力 （せん断）	43	118	\bigcirc	（1）
		ほう酸水注入系貯蔵タンク	3．11地震	基礎ボルト	一次応力 （引張）	47	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	47	173	\bigcirc	（2）
計 測 制 御 系 統 施 設	計 測 装 置	起動領域モニタドライチューブ	3.11 地震	パイプ	一次膜＋一次曲げ応力	120	308	\bigcirc	（2）
			4．7地震	パイプ	一次膜＋一次曲げ応力	91	308	\bigcirc	（2）
		局部出力領域モニタ 検出器集合体	3．11地震	カバーチューブ	- 次膜＋ - 次曲げ応力	109	200	\bigcirc	（2）
			4．7地震	カバーチューブ	一次膜＋一次曲げ応力	88	200	\bigcirc	（2）
		直立型制御盤	3．11地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	21	173	\bigcirc	（2）
			4．7地震	取付ボルト	一次応力 （引張）	24	173	\bigcirc	（2）
		ベンチ型制御盤	3．11地震	取付ボルト	一次応力 （引張）	16	173	\bigcirc	（2）
			4．7地震	取付ボルト	一次応力 （引張）	18	173	\bigcirc	（2）
		現場盤	3.11 地震	取付ボルト	一次応力 （引張）	23	173	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	30	173	\bigcirc	（1）
		格納容器内雰囲気モニタ	3.11 地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	10	180	\bigcirc	（1）
			4．7地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	13	180	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（6／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } \% 1 \end{gathered}$
原子炉冷却系統施設	残留熱除去設備	残留熱除去系熱交換器	3．11地震	基礎ボルト	一次応力 （引張）	82	147	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	56	169	\bigcirc	（2）
		残留熱除去系 ポンプ	3．11地震	原動機台取付ボルト	一次応力 （引張）	26	444	\bigcirc	（1）
			4．7地震	原動機台取付ボルト	一次応力 （引張）	25	444	\bigcirc	（1）
	原 子 炉 冷 却 材 補 給 設 備	原子炉隔離時冷却系 ポンプ	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	20	169	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	19	169	\bigcirc	（1）
		原子炉隔離時冷却系 ポンプ駆動用タービン	3．11地震	基礎ボルト	一次応力 （引張）	45	169	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	44	169	\bigcirc	（1）
		高圧炉心スプレイ系ポンプ	3．11地震	原動機取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	27	455	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	26	455	\bigcirc	（1）
		低圧炉心スプレイ系ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	29	491	\bigcirc	（1）
			4．7地震	原動機取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	28	491	\bigcirc	（1）
	原子炉泠却材の循環設備	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	3．11地震	ラグ	一次応力 （組合せ）	45	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	61	203	\bigcirc	（2）
		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	3．11地震	ラグ	一次応力 （組合せ）	74	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	100	203	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（7／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	$\begin{gathered} \text { 評価 } \\ \text { 基漼値 } \\ \text { [MPa] } \end{gathered}$	評価結果	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 方法※1 } \end{array}$
原子炉冷却系統施設	原子炉補機泠却設備	原子炉補機冷却水系熱交換器	3．11地震	胴板	一次応力	176	415	\bigcirc	（2）
			4．7地震	胴板	一次応力	157	415	\bigcirc	（2）
		原子炉補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	16	122	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	15	122	\bigcirc	（1）
		原子炉補機冷却海水 ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	95	475	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	126	475	\bigcirc	（1）
		原子炉補機冷却水 サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	40	169	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	42	169	\bigcirc	（2）
		原子炉補機冷却海水系 ストレーナ	3．11地震	胴板	一次応力	38	346	\bigcirc	（2）
			4．7地震	胴板	一次応力	33	346	\bigcirc	（2）
		高圧炉心スプレイ補機冷却水系熱交換器	3．11地震	基礎ボルト	一次応力 （せん断）	29	133	\bigcirc	（2）
			4．7地震	胴板	一次応力	82	415	\bigcirc	（2）
		高圧炉心スプレイ補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
		高圧炉心スプレイ補機冷却海水ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	12	153	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	14	153	\bigcirc	（1）
		高圧炉心スプレイ 補機冷却水サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（8／12）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（9／12）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（10／12）

評価対象設備及び評価箇所			評価用 地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{aligned} & \text { 評価 } \\ & \text { 方法※1 } \end{aligned}$
放 射 線 管 理 施 設	$\begin{aligned} & \text { 換 } \\ & \text { 気 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	中央制御室送風機	3．11地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
		中央制御室排風機	3．11地震	原動機取付ボルト	一次応力 （引張）	16	180	\bigcirc	（2）
			4．7地震	原動機取付ボルト	一次応力 （引張）	17	180	\bigcirc	（2）
		中央制御室再循環送風機	3．11地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
		中央制御室再循環フィルタ装置	3．11地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
	$\begin{aligned} & \text { 計管放 } \\ & \text { 測 } \\ & \text { 装理射 } \\ & \text { 置用線 } \end{aligned}$	燃料取替エリア放射線モニタ	3．11地震	取付ボルト	一次応力 （引張）	9	180	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	11	180	\bigcirc	（1）
	$\begin{aligned} & \text { 生 } \\ & \text { 装体 } \\ & \text { 置遮 } \\ & \text { 蔽 } \end{aligned}$	原子炉しやへい壁 （波及的影響設備）	3．11地震	開口集中部	一次応力 （組合せ）	120	235	\bigcirc	（2）
			4．7地震	開口集中部	一次応力 （組合せ）	115	235	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（11／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 方法※1 } \end{array}$
核 燃 料 物 質 の 取 扱 施 設 及 び 貯 蔵 施 設	使 用 済 燃 料 貯 蔵 設 備	使用済燃料貯蔵ラック(110体ラック)	3．11地震	ラック本体	一次応力 （組合せ）	59	205	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	61	205	\bigcirc	（1）
		使用済燃料貯蔵ラック （170体ラック）	3．11地震	ラック本体	一次応力 （組合せ）	79	205	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	99	205	\bigcirc	（1）
		制御棒•破損燃料貯蔵ラック	3．11地震	ラック本体	一次応力 （組合せ）	39	108	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	47	108	\bigcirc	（1）
	燃 料 取 扱 設 備	燃料交換機 （波及的影響設備）	3．11地震	構造物フレーム	一次応力 （組合せ）	212	231	\bigcirc	（3）
			4．7地震	構造物フレーム	一次応力 （組合せ）	206	231	\bigcirc	（3）
		原子炉建屋クレーン （波及的影響設備）	3．11地震	脱線防止ラグ	圧縮応力	117	309	\bigcirc	（3）
			4．7地震	脱線防止ラグ	圧縮応力	129	309	\bigcirc	（3）
そ の 他 発 電 用 原 子 炉 の 附 属 施 設 信	非 常 用 電 源 設 備	非常用ディーゼル発電設備 ディーゼル機関	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	79	254	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	50	254	\bigcirc	（2）
		非常用ディーゼル 発電設備 ディーゼル発電機	3．11地震	軸受台取付ボルト	一次応力 （引張）	65	180	\bigcirc	（1）
			4．7地震	軸受台取付ボルト	一次応力 （引張）	67	180	\bigcirc	（1）
		非常用ディーゼル 発電設備燃料デイタンク	3．11地震	基礎ボルト	一次応力 （引張）	33	158	\bigcirc	（2）
			4．7地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	34	158	\bigcirc	（2）
		非常用ディーゼル発電設備空気だめ	3．11地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）
			4．7地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（12／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	$\begin{gathered} \text { 評価 } \\ \text { 基漼値 } \\ {[\mathrm{MPa}]} \end{gathered}$	評価結果	$\begin{array}{\|c\|} \hline \text { 評価 } \\ \text { 方法 } \end{array}$
そ の 他 発 電 用 原 子 炉 の 附 属 施 設	非 常 用 電 源 設 備	高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル機関	3．11地震	基礎ボルト	一次応力 （引張）	123	254	\bigcirc	（2）
			4．7地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	89	254	\bigcirc	（2）
		高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル発電機	3．11地震	基礎ボルト	一次応力 （せん断）	58	195	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （せん断）	63	195	\bigcirc	（1）
		高圧炉心スプレイ系 ディーゼル発電設備燃料デイタンク	3．11地震	スカート	座屈	$\begin{array}{r} 0.31 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）
			4．7地震	スカート	座屈	$\begin{array}{r} 0.42 \\ \text { (単位なし) } \end{array}$	$\begin{array}{r} 1 \\ \text { (単位なし) } \end{array}$	\bigcirc	（1）
		高圧炉心スプレイ系 ディーゼル発電設備空気だめ空気だめ	3．11地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
			4．7地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
		125 V 蓄電池2A（2個並び1段2列）	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	25	133	\bigcirc	（1）
		125 V 蓄電池 2 H （15個並び1段1列）	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	24	133	\bigcirc	（1）
		125 V 充電器2A	3．11地震	取付ボルト	一次応力 （せん断）	14	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	15	133	\bigcirc	（1）
		125 V 充電器2H	3．11地震	取付ボルト	一次応力 （引張）	22	173	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	25	173	\bigcirc	（1）
		静止形無停電電源装置	3．11地震	取付ボルト	一次応力 （せん断）	12	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	13	133	\bigcirc	（1）

（2）検討対象設備に対する確認結果
上記で赤枠に分類された設備（19設備）について，3．11／4．7地震の構造強度評価結果及び今回工認における耐震評価結果（弾性設計用地震動 S d／基準地震動 S s ）との比較を表7－2に示す。

3．11／4．7地震の評価部位と今回工認における裕度最小部位に相違がある要因とし ては，3．11／4．7地震の評価部位は，設計時及び既往の評価に基づき選定しているため， それらの評価地震動と今回工認における基準地震動との特性（水平及び鉛直方向の大 きさ，床応答スペクトルにおける周期特性など）の違いが考えられる。

今回工認における弾性設計用地震動 $\mathrm{S} d$ 及び基準地震動 S s それぞれの耐震評価結果の裕度最小部位について，3．11／4．7地震に対して弾性応答範囲内であったことの確認は，3．11／4．7地震の構造強度評価における評価方法の違いに応じて，以下のとおり実施した。
（1）簡易評価（応答倍率法による評価）を実施していた設備（13 設備）
3．11／4．7地震の構造強度評価において簡易評価を実施している設備については，設計時又は既往の評価において比較的裕度の大きな設備となっている。

これらの設備については，表 $7-2$ に示すとおり，今回工認における基準地震動 S s による発生応力等（裕度最小部位）が許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ に対する評価基準値以下であることから，基準地震動 S s に包絡される 3．11／4．7地震に対して，今回工認 における弾性設計用地震動 S d 及 び基準地震動 S s それぞれの耐震評価結果の裕度最小部位が弾性応答範囲内になることは明らかである（基準地震動 S s と 3．11／4．7地震との関係を添付5に示す）。
（2）設計時と同等の評価を実施していた設備（6 設備）
3．11／4．7地震の構造強度評価において設計と同等の評価を実施していた設備に ついては，評価部位（代表部位）以外についても詳細評価を実施している。

これらの設備については，表 7－2に示すとおり，今回工認における弾性設計用地震動 S d 及び基準地震動 S s それぞれの耐震評価結果の裕度最小部位についても 3．11／4．7地震の発生応力等が弾性応答範囲内であることを確認している。

> 8. まとめ

機器•配管系の設備健全性確認の観点からは，既工認記載の耐震 S クラス及び耐震 B，C クラスの機器•配管系の耐震設計へ反映すべき事項はないと判断した。なお， 6 項「機器•配管系の耐震設計に反映すべき事項の検討結果」に係る妥当性確認の観点から， $3.11 / 4.7$ 地震の構造強度評価部位と今回工認における耐震評価結果（弾性設計用地震動 S d／基準地震動 S s）の裕度最小部位と比較し，今回工認における裕度最小部位が 3．11／4．7地震に対しても弾性応答範囲であったことを確認した。

3．11／4．7地震による設備に対する疲労累積係数は 0.01 未満であり十分に小さく，設計事項への反映は必要ないと考えられるが，機器•配管系の疲労評価では，3．11／4．7地震の影響を考慮して疲労累積係数に 0.01 を見込んだ評価を実施する。

建屋のコンクリートの乾燥収縮及び地震による影響の観点からは，各建屋内に設置さ れる機器•配管系の耐震設計について，3．11地震等の影響検討結果を踏まえて建屋の初期剛性低下を考慮した地震応答解析モデル（建屋地震応答解析モデル，建屋一大型機器連成解析モデル）を用いた建屋応答を適用する。

C．B．の評価部位，評価項目での $3.11 / 4.7$ 地震による耐震評価結果					
評価用地震動	評価部位	$\begin{aligned} & \text { 評価項目 } \\ & \text { (応力分類) } \end{aligned}$	$\begin{aligned} & \text { 算出値 } \\ & \text { [MPa] } \end{aligned}$		評価
3． 11 地震	3．11による地震応答解析結果から IIIAS以下であることを確認済み				\bigcirc
4．7地震	外側フィメイル シャラグ本体（溶接部）	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	104	176	\bigcirc
3．11地震	S s による算出値が $\Pi_{A} S$ 以下であり， 3．11／4．7地震に対しても IIIAS以下となる				\bigcirc
4．7地震					\bigcirc
3． 11 地震	上部サポート支持面	支圧応力	34	158	\bigcirc
4．7地震	上部サポート支持面	支圧応力	35	158	\bigcirc
3． 11 地震	$\begin{gathered} \hline \text { トグルピン } \\ \text { ノトグルクレビス } \\ \hline \end{gathered}$	$\begin{gathered} \text { 一次応力 (せん断) } \\ \text { /一次一般膜応力 } \\ \hline \end{gathered}$	$\begin{array}{r} 68 \\ \quad 109 \\ \hline \end{array}$	$\begin{array}{r} \hline 289 \\ \quad 483 \\ \hline \end{array}$	\bigcirc
4．7地震	$\begin{gathered} \text { トグルピン } \\ \text { /トグルクレビス } \\ \hline \end{gathered}$	一次応力（せん断） 1一次一般膜応力	$\begin{array}{r} 70 \\ \quad 112 \\ \hline \end{array}$	$\begin{array}{r} 289 \\ 1483 \\ \hline \end{array}$	\bigcirc
3．11地震	緱リブ	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	193	427	\bigcirc
4．7地震	縦リブ	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	168	427	\bigcirc
3． 11 地震	S s による算出値がIII S 以下であり， 3．11／4．7地震に対しても IIIAS以下となる				\bigcirc
4．7地震					\bigcirc
3． 11 地震	Ssによる算出値が $\mathrm{III}_{A} S$ 以下であり， 3．11／4．7地震に対しても $\mathrm{III}_{\text {A }} \mathrm{S}$ 以下となる				\bigcirc
4．7地震					\bigcirc
3．11地震	S s による算出値がIIIAS以下であり， 3．11／4．7地震に対しても $\mathrm{III}_{\text {A }} \mathrm{S}$ 以下となる				\bigcirc
4．7地震					\bigcirc
3． 11 地震	S s による算出値が $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ 以下であり， 3．11／4．7地震に対しても IIIAS以下となる				\bigcirc
4．7地震					\bigcirc
3． 11 地震	3．11による地震応答解析結果から IINA_{4} S以下であることを確認済み				\bigcirc
4．7地震	基磫ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \\ & \hline \end{aligned}$	19	133	\bigcirc
3．11地震	S s による算出値がIII S 以下であり， 3．11／4．7地震に対しても IIINS以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	S s による算出値が $\Pi_{A} S$ 以下であり， 3．11／4．7地震に対しても III_{A} S以下となる				\bigcirc
4．7地震					\bigcirc

	の評侕部位，哑隹	の3．11／4．7地	よる耐筧	侜価結果	
評価用地震動	評侕部位	$\begin{aligned} & \text { 評価項目 } \\ & \text { (応力分類) } \end{aligned}$	$\begin{aligned} & \text { 算出值 } \\ & \text { [MPa } \end{aligned}$		評侕
$\frac{3.11 \text { 地震 }}{4.7 \text { 地震 }}$	S s による算出値が IIIAS以下であり， 3．11／4．7地震に対しても IIIAS以下となる				\bigcirc
					\bigcirc
3．11地震	機関取付ボルト	$\begin{aligned} & \text { 一次応力力張 } \\ & \text { (引張 } \end{aligned}$	13	254	\bigcirc
4.7 地震	機関取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	17	254	\bigcirc
3．11地震		直が II_{4} S			\bigcirc
4．7地震	3． $11 / 4$.	してもIIN			\bigcirc
3．11地震		U值が断，S以下			\bigcirc
4．7地震	3．11／4．	してもIIIA	なる		\bigcirc
3.11 地震	S sk	值かか $\mathrm{II}_{\text {I }} \mathrm{S}$ 以			\bigcirc
4．7地震	3．11／4．	対してもI．1 ${ }_{\text {S }}$ S	となる		\bigcirc
3.11 地震	s	值がIIIS以			\bigcirc
4.7 地震	3．11／4．	対してもII．${ }_{\text {S }}$ S	なる		\bigcirc
3．11地震		值が断，S以下			\bigcirc
4.7 地震	3．11／4．	対してもIINS	なる		\bigcirc

表 7－2 3．11／4．7地震の構造強度評価結果と今回工認における耐震評価結果の比較（2／2）

評侕対象設備及び評侕䈏所			$\begin{gathered} \text { A. }{ }_{\substack{\text { 评値用 } \\ \text { 地震 }}} \end{gathered}$	7地震による	$\begin{aligned} & \text { 評価項目 } \\ & \text { (応力分類) } \end{aligned}$	算出値		評侕	$\begin{aligned} & \text { 評価 } \\ & \text { 方法* } \end{aligned}$	$\begin{aligned} & \text { 評価用 } \\ & \text { 地震動 } \end{aligned}$		$\begin{aligned} & \text { 詊顓見 } \\ & \text { (分 } \end{aligned}$	算出値		評価
	$\begin{array}{\|c} \text { 非常用電源 } \\ \text { 設備 } \end{array}$		3．11地震	明板	$\begin{aligned} & \text { 一次一般膜 } \\ & \text { 応力 } \end{aligned}$	91	241	\bigcirc	（1）	S d	基硂术ルト	$\begin{aligned} & \text {-次店力 } \\ & \text { (弓厶口⿱⿻⿱一一⿰丨丨一𧘇1) } \end{aligned}$	74	173	\bigcirc
			4．7地震	朋板	$\begin{aligned} & \text { ——次一般䙲 } \\ & \hline \end{aligned}$	91	241	\bigcirc	（1）	S s	基碪术ルト	$\begin{aligned} & \text { 一次底力力 } \\ & \text { (引張) } \end{aligned}$	74	207	\bigcirc
			3．11地震	基䃀术ルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (弓張) } \end{aligned}$	123	254	\bigcirc	（2）	S d	機関取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (弓張) } \end{aligned}$	213	254	\bigcirc
			4．7地震	基䃝ボルト	$\begin{aligned} & \text { (次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	89	254	\bigcirc	（2）	S s	機閔取付ボルト	$\begin{aligned} & \text {-次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	213	292	\bigcirc
		高圧邞ふスプレイ系 デイーゼル発電設備 \qquad	3．11地震	基䃓ホホルト		58	195	\bigcirc	（1）	S d	$\begin{aligned} & \text { 反盒結偷䑤受台 } \end{aligned}$	$\begin{aligned} & \text {-次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	${ }^{37}$	180	\bigcirc
			4．7地震	基䃌术ルト		63	195	\bigcirc	（1）	S s	$\begin{gathered} \text { 反直結側軵受台 } \\ \text { 付付相ルト } \end{gathered}$	$\begin{gathered} \text { (次庶力 } \\ \text { (引張) } \\ \hline \end{gathered}$	79	204	\bigcirc
			3．11地震	スカート	座屈	$\begin{array}{r} 0.31 \\ \hline \text { (単位なし) } \\ \hline \end{array}$	（単位なし）	\bigcirc	（1）	S d	基碍术ルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	46	158	\bigcirc
			4.7 地震	スカート	座屈	$\begin{array}{r} 0.42 \\ (\text { 単位なし) } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { 単位なし) } \\ \hline \end{array}$	\bigcirc	（1）	S s	基䃀ボルト	$\begin{aligned} & \text {-次応力力渡 } \\ & \text { (引張) } \end{aligned}$	${ }^{46}$	190	\bigcirc
			3.11 地震	明板	一次一般漠応力	91	241	\bigcirc	（1）	S d	基榳术ルト	$\begin{gathered} \text { 一次応力力度 } \\ \text { (引張) } \end{gathered}$	74	173	\bigcirc
			4．7地震	胴板	一次一般漠応力	91	241	\bigcirc	（1）	S s	基硔术ルト	$\begin{aligned} & \text {-次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	74	207	\bigcirc
		125 V 充電器2 2 A	3．11地震	取付ボルト	$\begin{aligned} & \text {-次応力 } \\ & (世 ん 4) \end{aligned}$	14	133	\bigcirc	（1）	S d	取付ボルト	$\begin{aligned} & \text { 次応力 } \\ & \text { (引張) } \end{aligned}$	50	176	\bigcirc
			4．7地震	取付ボルト	$\begin{aligned} & \text { (次応力 } \\ & \text { (せん断) } \\ & \hline \end{aligned}$	15	133	\bigcirc	（1）	S s	取付ボルト	$\begin{aligned} & \text { 次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	108	210	\bigcirc
		静止形無停電電源装置	3.11 地震	取付ボルト		12	133	\bigcirc	（1）	S d	取付ボルト	$\begin{gathered} \text { (次応力 } \\ \text { (弓張) } \\ \hline \end{gathered}$	40	176	\bigcirc
			4.7 地震	取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	${ }^{13}$	133	\bigcirc	（1）	S s	取付ボルト	$\begin{aligned} & \text {-次応力 } \\ & \text { (引張) } \\ & \hline \end{aligned}$	${ }^{86}$	210	\bigcirc

＊2：評価用地震動が S d の場合は許容応力状態 $\mathrm{III}_{A} \mathrm{~S}, \mathrm{~S} \mathrm{~s}$ の場合は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S} \quad 3.11 / 4.7$ 地震の構造強度評価対象と異なる

【機器•配管系の地震後の設備健全性確認（フェーズ1）の概要】
個々の機器に対する「機器上ベルの点検•評価」，機器の組合せによる「系統しベルの点検•評価」により健全性を確認

- 耐震安全上重要な機器について，設備点検と地震応答解析を実施し，両者の結果を照合し健全性を評価
- 基本点検で異常が確認された場合，あるいは地震応答解析で評価基準値を満足しない場合は，追加点検を実施 －設備の健全性評価後，系統単位による機能試験を実施し，系統の健全性を評価
（機器しベルの点検•評価）
【地震応答解析】

及ぶ可能性のある部位に着目した基本点検を実施
－点検の結果，異常を碓認した場合，分解点検，非破壊験などの追加点検を実施

損傷はなく，プラントの安全性に影響を与える所見はない
【機器しベルの点検結果】
・これまで実施した機器•配管系の地震後の設備健全性確認において，耐震Sクラス設備に
化傷はなく，プラントの安全性に影響を与える所見はない はなく，取替，補修，手入れにより原形に復旧
－下位クラスの異常により，耐震Sクラス設備への波及的影響がないことを確認

※1 今後のプラント復旧と同時に実施する点検（例 ：復水給水系の漏えい試験）を除く

地震後の設備健全性確認における疲労評価の方法

本添付では，本文 4 項中の図 4－3に示す $3.11 / 4.7$ 地震に対する疲労評価のフローに対 し，各ステップの疲労評価手順を示す（図 1）。

図1 3．11／4．7地震に対する疲労評価のフロー
$<$ ステップ1：繰返しピーク応力強さの時刻歴の算出＞
手順（1） $3.11 / 4.7$ 地震に対する建屋一機器連成解析を実施する。
手順（2）手順（1）の地震応答解析より得られた加速度時刻歴（配管重心位置の建屋一機器連成解析の質点）を入力に，配管モデルの 3 方向同時の時刻歴応答解析を実施する。
手順（3）手順（2）の時刻歴応答解析より得られた評価点（疲労評価がもつとも厳し い評価点）の時刻歴応答モーメントを用いて，応力強さの算出式より繰返しピーク応力強さの時刻歴を算出する。算出した繰返しピーク応力強 さの時刻歴波形の例を図2に示す。

図2 繰返しピーク応力強さの時刻歴の例 （残留熱除去系配管，3．11地震）
＜ステップ 2 ：レンジペア法による疲労累積係数UF の算出＞
手順（1）図2に示す繰返しピーク応力強さの時刻歴に対し，レンジペア法を用いて サイクルカウントを実施する。
サイクルカウントのイメージを図 3，手順を以下に示す。
a）繰返しピーク応力強さの時刻歴から極値を抽出する。
b）a）の極値から最大となる繰返しピーク応力強さ σ_{a} を抽出し， 1 回とし てカウントする。
c）残 る極値に対し，隣接する＂山＂，＂谷＂のピーク応力強さの差 （ $\sigma_{b i}(\mathrm{i}=1,2, \cdots, n)$ ）を計算し， 1 回としてカウントする。
手順（2）手順（1）で計算された σ_{a} 及び $\sigma_{b i}(i=1,2, \cdots, n)$ のピーク応力強さを用いて，図4に示す設計疲労線図より許容繰返し回数 N_{a} 及び $\mathrm{N}_{\mathrm{bi}}(\mathrm{i}=1,2, \cdots, \mathrm{n})$ を求め る。
手順（3）手順（2）で求めた各ピーク応力強さの許容繰返し回数から，疲労累積係数 UFを求める。

図 3 サイクルカウントのイメージ図

図4 設計疲労線図（炭素鋼，低合金鋼及び高張力鋼）
枠囲みの内容は商業機密の観点から公開できません
＜ステップ 3：疲労評価＞
ステップ 2 で求めた 3.11 地震と 4.7 地震のUF の合算値が 1 以下であることを確認す る。

3．11／4．7地震に対する疲労累積係数が今回工認耐震評価結果に比べ小さい要因

3．11／4．7地震に対する設備健全性評価における精緻な疲労評価は，3．11／4．7地震を用 いた設備のピーク応力強さの時刻歴波形から直接的に疲労累積係数UFを算出している。

一方，今回工認における疲労評価は，設計に用いる基準地震動S s の 7 波及び建屋等の不確かさを考慮した応答（応答の包絡，スペクトルの 10% 拡幅等）を用いて算出した設備 のピーク応力強さと女川 2 号機の多様な設備（ピーク応力の包絡性（1471MPa）や固有周期網羅性）及び地震動に対する疲労評価を保守的に評価するために設定した等価繰返回数＊ を用いて疲労累積係数UFを算出している。

このような算定方法の違いに起因するピーク応力強さの違い（応答の保守性）及び疲労評価手法（直接的に算出），（保守的な等価繰返し回数＊の適用）の違いにより，設備健全性評価における疲労累積積係数は今回工認に比べ小さくなる。
（注記＊：保守性の詳細は，補足－600－9 「耐震評価における等価繰返し回数の妥当性確認について」参照）。

実地震に対して基準地震動の主要動の継続時間が長い \rightarrow 疲労累積係数が大きい

図 1 3．11地震と基準地震動（S s－D 1）の比較

新たに基準地震動 S s による評価が必要となる既設設備に対する

3．11／4．7地震による地震応答解析評価

新たに基準地震動 S s による評価が必要となる既設設備について，地震応答解析に よる評価を実施する機器•配管系の評価対象設備の考え方及び評価方法を以下に示す。

1．評価対象選定の考え方

既設耐震 B，Cクラス設備のらち，新規制基準において耐震 S クラスへ格上げする設備，重大事故等対処設備となった設備及び波及的影響を及ぼすおそれがある設備に該当し，基準地震動 S s による耐震評価が必要となる設備（3．11／4．7地震後に取替を実施した設備を除く）を対象に選定する。耐震評価対象設備を表1に示す。

2．評価方法
a．地震応答解析に用いる建屋応答
地震応答解析に用いる建屋応答は，本文 4 項に示す応答を適用する。
b．建屋－大型機器連成解析のモデル設定
建屋－大型機器連成解析に用いるモデルは，本文 4 項に示すモデルを適用する。
c．構造強度評価
構造強度評価は，本文 4 項の（2）（設計時と同等の評価）又は（3）（詳細評価）の方法を適用する。

評価基準値は，本文 4 項に示す許容応力状態 $I I I A_{A} S$ における許容応力を基本とす るが，より実態に合った評価条件を適用する場合がある（材料証明書に基づく材料強度等）。

なお，（2）の評価において，適用する地震応答は3．11／4．7地震時の地震応答又は基準地震動 S s による地震応答とする。基準地震動 S s は 3．11／4．7地震を包絡 しているため（添付 5 参照），基準地震動 S s による発生応力が許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ の評価基準値以下である場合，3．11／4．7地震に対しても発生応力が許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価基準値以下となる。
d．動的機能維持評価
動的機能維持評価は，本文 4 項に示す方法で評価を行う。

表1 新たに基準地震動 S s による評価が必要となる既設設備一覧

分類	設備名称
耐震 S クラスへ格上げする設備	燃料移送ポンプ
	非常用ディーゼル発電設備軽油タンク＊
	非常用ディーゼル発電設備配管
重大事故等対処設備	燃料プール冷却浄化系熱交換器
	燃料プール冷却浄化系ポンプ
	復水移送ポンプ
	復水貯蔵タンク
	燃料プール冷却浄化系配管
	主蒸気系配管
	復水給水系配管
	高圧炉心スプレイ系配管
	復水補給水系配管
波及的影響設備	海水ポンプ室門型クレーン
	ほう酸水注入系テストタンク
	中央制御室天井照明＊
	制御棒貯蔵ラック＊
	制御棒貯蔵ハンガ
	CRD 自動交換機
	燃料チャンネル着脱機

注記＊：3．11／4．7地震後に取替を実施した設備であり，地震影響が残らないことから，本評価対象外

3．地震応答解析による評価結果

構造強度評価の結果を表 2 に，動的機能維持評価の結果を表 3 に示す。既設耐震 B，Cクラス設備のうち，新規制基準において耐震 S クラスへ格上げする設備，重大事故等対処設備となった設備及び波及的影響を及ぼすおそれがある設備に該当し，基準地震動 S S による耐震評価が必要となる設備（3．11／4．7地震後に取替を実施し た設備を除く）については，3．11／4．7 地震に対する地震応答を確認した。地震応答解析の結果，制御棒貯蔵ハンガを除き，地震応答は弾性応答範囲内であることを確認 した（一部の評価結果及び制御棒貯蔵ハンガの扱いについては追而）。

表2 構造強度評価結果（ $1 / 3$ ）

評価対象設備及び評価箇所		評価用地震動	評価部位	評価項目 （応力分類）	$\begin{gathered} \text { 算出値 } \\ {\left[\begin{array}{c} \text { MPa } \end{array}\right.} \end{gathered}$	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法*1 } \end{gathered}$				
耐震Sクラス施設へ格上げする設備	燃料移送ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	$6^{* 2}$	173	\bigcirc	（2）				
		4．7地震										
	非常用ディーゼル発電設備配管	3．11地震	配管本体	追而								
		4．7地震	配管本体									
		3．11地震	配管サポート	追而								
		4．7地震	配管サポート									

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
＊2：基準地震動 S s による算出値

表2 構造強度評価結果（2／3）

評価対象設備及び評価箇所		評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\left\lvert\, \begin{gathered} \text { 評価 } \\ \text { 方法*1 } \end{gathered}\right.$				
	燃料プール泠却浄化系熱交換器	3．11地震	胴板	一次応力	$171 * 2$	315	\bigcirc	（2）				
		4．7地震										
	燃料プール泠却浄化系 ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	$48^{* 2}$	168	\bigcirc	（2）				
		4．7地震										
	復水移送ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	$13^{* 2}$	154	\bigcirc	（2）				
		4．7地震										
重大事故等対処設備	復水貯蔵タンク	3．11地震	胴板	一次一般膜	$135 * 2$	188	\bigcirc	（2）				
		4．7地震										
	燃料プール泠却浄化系配管	3．11地震	配管本体	追而								
		4．7地震	配管本体									
		3．11地震	配管サポート	追而								
		4．7地震	配管サポート									
	主蒸気系配管	3．11地震	配管本体	追而								
		4．7地震	配管本体									
		3．11地震	配管サポート	追而								
		4．7地震	配管サポート									
	復水給水系配管	3．11地震	配管本体	追而								
		4．7地震	配管本体									
		3．11地震	配管サポート	追而								
		4．7地震	配管サポート									

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
＊2：基準地震動 S s による算出値

表2 構造強度評価結果 $(3 / 3)$

評価対象設備及び評価綯所		評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	$\begin{aligned} & \text { 評価 } \\ & \text { 雤 } \\ & \text { [MPa] } \end{aligned}$	評価 結果	$\begin{array}{\|l\|l\|} \hline \text { 評価 } \\ \text { 方法*1 } \end{array}$					
重大事故等対処設備	高圧灲心スプレイ系配管	3.11 地震	配管本体	追而									
		4．7地震	配管本体										
		3.11 地震	配管サポート	追而									
		4.7 地震	配管サポート										
	復水補給水系配管	3.11 地震	配管本体	追而									
		4.7 地震	配管本体										
		3.11 地震	配管サポート	追而									
		4．7地震	配管サポート										
波及的影響設備	海水ポンプ室門型クレーン	3.11 地震	剛脚	一次応力 （組合せ）	$\begin{gathered} 0.55^{* 2} \\ (\text { 单位なL) } \end{gathered}$	$\left(\begin{array}{ll} 1 \\ (\text { 単位なして } \end{array}\right.$	\bigcirc	（2）					
		4.7 地震											
	ほう酸水注入系テストタンク	3.11 地震	追而										
		4．7地震											
	制御棒貯蔵ハンガ	3.11 地震	追而										
		4.7 地震											
	CRD自動交換機	3.11 地震	フレーム	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	171	218	\bigcirc	（2）					
		4.7 地震	フレーム	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	202	218	\bigcirc	（2）					
	燃料チャンネル着脱機	3.11 地震		追而									
		4.7 地震											

注記 $* 1$ ：評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
＊2：海水ポンプ室門型クレーンに対する応答が大きい 3.11 地震による算出値

表 4－3 動的機能維持評価結果

注記＊：補足説明資料「補足－600－14－1 動的機能維持の詳細評価について（新たな検討又は詳細検討が必要な設備の機能維持評価について）」に基づき，基準地震動 Ss における裕度最小部位を評価

基準地震動 S s と 3.11 地震との関係＊

プレート間地震の応答スペクトル手法による基準地震動［基準地震動Ss－D1］

注記＊：女川原子力発電所 2 号炬の新規制基準適合性審査に関する面談（資料提供・まとめ資料再修正版提出）について（令和元年 11月19日）資料 8 より抜粋
基準地震動 S s と $3.11 / 4.7$ 地震との関係
基準地震動 S s と 4.7 地震との関係＊

注記＊：女川原子力発電所 2 号炉の新規制基準適合性審査に関する面談（資料提供・まとめ資料再修正版提出）について（令和元年 11月19日）資料 8 より抜粑

[^0]: し原子炬

[^1]: （鉛直方向）
 図 4－4 シミュレーション解析における大型機器系地震応答解析モデル $(3 / 3) ~($ 鉛直方向）

