| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料

火災防護設備のらち消火設備

（8．4．2．3 ケーブルトレイ消火設備）

（添付書類）

2021年7月

女川原子力発電所第 2 号機
工事計画認可申請書本文及び添付書類

目 録

VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－8 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設）
VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（火災防護設備））
VI－1－1－4－8－2－1 消火設備に係る設定根拠に関する説明書
VI－1－1－4－8－2－1－3 ケーブルトレイ消火設備 VI－1－1－4－8－2－1－3－1 ケーブルトレイ消火系 VI－1－1－4－8－2－1－3－1－1 ケーブルトレイ消火系 FK－5－1－12 貯蔵容器 VI－1－1－4－8－2－1－3－1－2 ケーブルトレイ消火系 主配管（常設）

VI－6 図面

9 その他発電用原子炉の附属施設

9.3 火災防護設備

9．3．2 消火設備

9．3．2．3 ケーブルトレイ消火設備

9．3．2．3．1 ケーブルトレイ消火系

第9－3－2－3－1－1 図 ケーブルトレイ消火系 系統図（その1）
第 9－3－2－3－1－2 図 ケーブルトレイ消火系 系統図（その 2 ）
第9－3－2－3－1－3 図 ケーブルトレイ消火系 系統図（その3）
第9－3－2－3－1－4 図 ケーブルトレイ消火系 系統図（その4）
第9－3－2－3－1－5 図 ケーブルトレイ消火系 系統図（その5）
第9－3－2－3－1－6 図 ケーブルトレイ消火系 系統図（その6）
第9－3－2－3－1－7 図 ケーブルトレイ消火系 系統図（その7）
第9－3－2－3－1－8 図 ケーブルトレイ消火系 系統図（その8）
第9－3－2－3－1－9 図 ケーブルトレイ消火系 系統図（その9）
第9－3－2－3－1－10 図 ケーブルトレイ消火系 系統図（その10）
第9－3－2－3－1－11図 ケーブルトレイ消火系 系統図（その11）
第 9－3－2－3－1－12 図
第 9－3－2－3－1－13 図
ケーブルトレイ消火系
第 9－3－2－3－1－14 図
ケーブルトレイ消火系
第 9－3－2－3－1－15 図
第 9－3－2－3－1－16 図第 9－3－2－3－1－17 図第 9－3－2－3－1－18 図第 9－3－2－3－1－19 図第 9－3－2－3－1－20 図第 9－3－2－3－1－21 図第 9－3－2－3－1－22 図第 9－3－2－3－1－23 図

ケーブルトレイ消火系第 9－3－2－3－1－24 図

ケーブルトレイ消火系
ケーブルトレイ消火系
ケーブルトレイ消火系
ケーブルトレイ消火系

系統図（その12）
系統図（その13）
系統図（その14）
系統図（その15）
系統図（その16）
系統図（その17）
系統図（その18）
系統図（その19）
系統図（その 2 0）
系統図（その 21 ）
系統図（その 2 2）
系統図（その 23 ）
系統図（その 24 ）
系統図（その 25 ）
系統図（その 26 ）
系統図（その 27 ）
系統図（その 28 ）

第 9－3－2－3－1－29 図 ケーブルトレイ消火系第 9－3－2－3－1－30 図 ケーブルトレイ消火系第 9－3－2－3－1－31 図 ケーブルトレイ消火系第 9－3－2－3－1－32 図 ケーブルトレイ消火系第 9－3－2－3－1－33 図第 9－3－2－3－1－34 図第 $9-3-2-3-1-35$ 図第 9－3－2－3－1－36 図第 9－3－2－3－1－37 図第 9－3－2－3－1－38 図第 $9-3-2-3-1-39$ 図第 $9-3-2-3-1-40$ 図第 $9-3-2-3-1-41$ 図第 9－3－2－3－1－42 図第 $9-3-2-3-1-43$ 図第 9－3－2－3－1－44 図第 9－3－2－3－1－45 図第 9－3－2－3－1－46 図第 9－3－2－3－1－47 図第 9－3－2－3－1－48 図第 9－3－2－3－1－49 図第 9－3－2－3－1－50 図第 9－3－2－3－1－51 図第 9－3－2－3－1－52 図第 9－3－2－3－1－53 図第 9－3－2－3－1－54 図第 9－3－2－3－1－55 図第 9－3－2－3－1－56 図第 9－3－2－3－1－57 図第 9－3－2－3－1－58 図第 9－3－2－3－1－59 図第 9－3－2－3－1－60 図第 9－3－2－3－1－61 図第 9－3－2－3－1－62 図

ケーブルトレイ消火系

系統図（その 2 9）
系統図（その 30 ）
系統図（その 31 ）
系統図（その 32 ）
系統図（その 33 ）
系統図（その 34 ）
系統図（その 35 ）
系統図（その 36 ）
系統図（その 37 ）
系統図（その 38 ）
系統図（その 39 ）
系統図（その 40 ）
系統図（その 41 ）
系統図（その 42 ）
系統図（その 43 ）
系統図（その 44 ）
系統図（その 45 ）
系統図（その 46 ）
系統図（その 47 ）
系統図（その 48 ）
系統図（その 49 ）
系統図（その 5 0）
系統図（その 51 ）
系統図（その 5 2）
系統図（その 5 3）
系統図（その 5 4）
系統図（その 55 ）
系統図（その 56 ）
系統図（その 5 7）
系統図（その 58 ）
系統図（その 59 ）
系統図（その 60 ）
系統図（その 61 ）
系統図（その 62 ）

第 9－3－2－3－1－63 図 ケーブルトレイ消火系第 9－3－2－3－1－64 図 ケーブルトレイ消火系第 9－3－2－3－1－65 図 ケーブルトレイ消火系第 9－3－2－3－1－66 図 ケーブルトレイ消火系第 9－3－2－3－1－67 図第 9－3－2－3－1－68 図第 9－3－2－3－1－69 図第 9－3－2－3－1－70 図第 $9-3-2-3-1-71$ 図第 $9-3-2-3-1-72$ 図第 $9-3-2-3-1-73$ 図第 $9-3-2-3-1-74$ 図第 $9-3-2-3-1-75$ 図第 $9-3-2-3-1-76$ 図第 $9-3-2-3-1-77$ 図第 9－3－2－3－1－78 図第 9－3－2－3－1－79 図第 9－3－2－3－1－80 図第 9－3－2－3－1－81 図第 9－3－2－3－1－82 図第 9－3－2－3－1－83 図第 9－3－2－3－1－84 図第 9－3－2－3－1－85 図第 9－3－2－3－1－86 図第 9－3－2－3－1－87 図第 9－3－2－3－1－88 図第 9－3－2－3－1－89 図第 9－3－2－3－1－90 図第 9－3－2－3－1－91 図第 9－3－2－3－1－92 図第 9－3－2－3－1－93 図第 9－3－2－3－1－94 図第 9－3－2－3－1－95 図第 9－3－2－3－1－96 図 ケーブルトレイ消火系

系統図（その 63 ）
系統図（その 64 ）
系統図（その 65 ）
系統図（その 66 ）
系統図（その67）
系統図（その 68 ）
系統図（その 69 ）
系統図（その70）
系統図（その71）
系統図（その72）
系統図（その73）
系統図（その74）
系統図（その 75 ）
系統図（その 76 ）
系統図（その 77 ）
系統図（その78）
系統図（その79）
系統図（その 80 ）
系統図（その 81 ）
系統図（その 82 ）
系統図（その 83 ）
系統図（その 84 ）
系統図（その 85 ）
系統図（その 86 ）
系統図（その 87 ）
系統図（その 88 ）
系統図（その 89 ）
系統図（その90）
系統図（その91）
系統図（その 92 ）
系統図（その93）
系統図（その 94 ）
系統図（その 95 ）
系統図（その96）

第 9－3－2－3－1－97 図 ケーブルトレイ消火系 系統図（その97）
第 9－3－2－3－1－98 図 ケーブルトレイ消火系 系統図（その9 8）
第 9－3－2－3－1－99 図 ケーブルトレイ消火系 系統図（その99）
第9－3－2－3－1－100 図 ケーブルトレイ消火系 系統図（その100）
第9－3－2－3－1－101 図 ケーブルトレイ消火系 系統図（その101）
第 9－3－2－3－1－102 図第 9－3－2－3－1－103 図第 9－3－2－3－1－104 図第 9－3－2－3－1－105 図第 9－3－2－3－1－106 図第 9－3－2－3－1－107 図第 9－3－2－3－1－108 図第 9－3－2－3－1－109 図第 9－3－2－3－1－110 図第 9－3－2－3－1－111 図第 9－3－2－3－1－112 図第 9－3－2－3－1－113 図第 9－3－2－3－1－114 図第 9－3－2－3－2－1 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P800 用，P401①，P404，P801，P803 用及び P802 用）

第 9－3－2－3－2－2 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S100（2）用，C400（2）用及び P400①用）

第 9－3－2－3－2－3 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S100①用及び C400①用）

第 9－3－2－3－2－4 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S605 用，C608 用及び P607 用）

第 9－3－2－3－2－5 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C300（2）用，S300（2）用，S300③用及びC300③）用）

第 9－3－2－3－2－6 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P4038），P101⑥用，C403⑧，C100⑧用及びS101④用）

第 9－3－2－3－2－7 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101③用，C403 7 ，C100 7 7 用及び P403（7），P101⑤用）

第 9－3－2－3－2－8 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P101⑦，C403⑨，C100⑨用，P10188，C403（10），C100（10）用

及びS101（5）用）
第 9－3－2－3－2－9 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C403⑥，C100⑥用及び P403⑥，P101④用）

第 9－3－2－3－2－10 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101（2）用及びC100⑤用）

第9－3－2－3－2－11 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C403（5）用，P101③用及び P403⑤用）

第 9－3－2－3－2－12 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101①用，P403（4），C403（4），C1004）用及び P403③），C403③）， C100（3）用）

第9－3－2－3－2－13 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C403（2），C100（2）用及びP403（2），P101②），C749用）

第9－3－2－3－2－14 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P403①）P101（1）用及び C403 1 ，C100（1）用）

第9－3－2－3－2－15 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P503①），C501①用）

第9－3－2－3－2－16 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S202（1）用）

第9－3－2－3－2－17 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502（1），P503（2），C501（2）用）
第9－3－2－3－2－18 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S300（4）用及び C3004）用）
第 9－3－2－3－2－19 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P202①用及び C202①用）

第 9－3－2－3－2－20 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502②用，P503③用及び C501③用）

第9－3－2－3－2－21 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S202（2）用）

第 9－3－2－3－2－22 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502③），P503（5），P202③用及び C501④，C202（2）用）

第9－3－2－3－2－23 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502⑤，P503（7），P202⑤）用）

第 9－3－2－3－2－24 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502④，P503（6），P202（4）用，C501⑥，C20244用及び S2024）用）

第 9－3－2－3－2－25 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S202⑤用，C501⑦，C202⑤用及び P502⑥，P503⑧，P202⑥用）

第9－3－2－3－2－26 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P769 用及び C501－1 用）

第9－3－2－3－2－27 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S703 用，C736 用，C729 用及び S704 用）

第 9－3－2－3－2－28 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S202③用及び C501⑤，C202③用）

第 9－3－2－3－2－29 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P503（4），P202②用）

第9－3－2－3－2－30 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C300①用及びS300①用）

第9－3－2－3－2－31 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101（12）用及びC403（21）用）

第9－3－2－3－2－32 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101（11）用，P101（11），C403（19），C100（19）用及び P101（12），C403（20）， C100（20）用）

第 9－3－2－3－2－33 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101（10）用，C403（18）用及び C100（18）用）

第 9－3－2－3－2－34 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101⑨用，C100⑰用及び C403（17）用）
第9－3－2－3－2－35 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S101（7）用及びS101（8）用）
第9－3－2－3－2－36 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P403（13），C403（15），C100（15）用）

第 9－3－2－3－2－37 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P403（11），C403（13），C100（13）用，P403（12），C403（14），C100114）用及び C403（16），C100（16）用）

第 9－3－2－3－2－38 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P403（9），C403（11），C100（11）用，S101⑥用及びP403（10），C403（12）， C100（12）用）

第 9－3－2－3－2－39 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P503⑨，P202⑦用，C501⑧，C202⑥用及び S202⑥用）

第9－3－2－3－2－40 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器
（P503（11）用，P503（10），P202⑧用，C501⑨，C202 7 7 用及び S202（7）用）
第9－3－2－3－2－41 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C501（11），C202⑨用及び P503（12），P202（10用）

第 9－3－2－3－2－42 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S202⑧用，P202⑨，C501（10），C202（8）用及び P202（11），C501⑫）， C202（10）用）

第 9－3－2－3－2－43 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S709①用）

第 9－3－2－3－2－44 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S708 用及び C403（24），C809 用）

第9－3－2－3－2－45 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P101⑨，C403（23），C100（22）用）

第9－3－2－3－2－46 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P101（10），C403（22），C100①）用及びS101（13），S709（2）用）

第9－3－2－3－2－47 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P201①，C201 用）

第9－3－2－3－2－48 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P701⑨，P700＠9，P610⑥用）

第 9－3－2－3－2－49 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702⑧，K706（8）用，K602（2）用及び P602⑥，C6064），C601（2）用）
第9－3－2－3－2－50 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P701⑧，P700⑧，P610⑤）用）
第9－3－2－3－2－51 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C606③用及び S602③用）

第 9－3－2－3－2－52 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702 7 ），K706（7），P701 7 ）用，P700（7），P6104），P602（4）用及び P602（5）用）

第 9－3－2－3－2－53 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702⑥，K706⑥，P701⑥用及び P700⑥，P610③，P602③用）

第 9－3－2－3－2－54 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C606（2）用及び S602②用）

第 9－3－2－3－2－55 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702⑤，K706⑤，P701⑤用及び P700⑤，P610②，P602（2）用）第 9－3－2－3－2－56 図 ケーブルトレイ消火系 構造図 FK $-5-1-12$ 貯蔵容器
（K601，P600，P601 用及び S601②用）
第 9－3－2－3－2－57 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702④，K706（4），P7014）用及び P700④，P610①，P602①用）

第 9－3－2－3－2－58 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P2016用）

第 9－3－2－3－2－59 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702①，K706①，P701①用及び P700①，P500①，P501①用）

第 9－3－2－3－2－60 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702②），K706（2），P701（2）用及び P700②），P500（2），P501（2）用）

第9－3－2－3－2－61 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C606①用）

第9－3－2－3－2－62 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K702③）K706③，P701③用及びP700③，P500③，P501③用）
第9－3－2－3－2－63 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S602①用）

第9－3－2－3－2－64 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C602①用，C603②用及び S600①用）

第9－3－2－3－2－65 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C601①用，C602②用及びS600④用）

第9－3－2－3－2－66 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S600（3）用）
第9－3－2－3－2－67 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S601③）用及びS600（2）用）
第9－3－2－3－2－68 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P300①，C300⑤用及びS300⑤用）

第 9－3－2－3－2－69 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P300③），C300（7）用，S300⑥用，P300（2），C300⑥用及び P300（4）， C300（8） 用）

第 9－3－2－3－2－70 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K100③），P402③用，P102⑤，C100（27用及び S100③用）

第 9－3－2－3－2－71図ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K100⑥，P402⑥用，P102⑥，C100②8用及び S100④用）

第 9－3－2－3－2－72 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K100（7），P402（7）用及び P102（7），C100（29）用）

第 9－3－2－3－2－73 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K201②，P502⑧用及び P201③，C200②）用）

第 9－3－2－3－2－74 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P201④，C200③）用及び K201③，P502⑨用）

第 9－3－2－3－2－75 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S200（2）用，C200（4）用及び P201⑤用）

第 9－3－2－3－2－76 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S100⑤）用，P102（2），C100②4用及び K100（2），P402（2）用）

第 9－3－2－3－2－77 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P102①）C100②3用及び K100①，P402（1）用）

第9－3－2－3－2－78 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S200①用，S601①用及び K602①，P603①，C603①用）

第9－3－2－3－2－79 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P201②），C200①用及び K201①，P502（7）用）

第9－3－2－3－2－80 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P102④）C100⑥用及びK100⑤，P402（5）用）

第9－3－2－3－2－81 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S100（7）用）

第 9－3－2－3－2－82 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P102③）C100（25）用及び K100（4），P402（4）用）
第 9－3－2－3－2－83 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S100⑥用）
第 9－3－2－3－2－84 図
ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K1008），P402（8）用，P10288，C100（30用及び S100⑨用）

第 9－3－2－3－2－85 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S1008用，P102⑨，C100＠11用及び K100（9），P402（9）用）

第 9－3－2－3－2－86 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P502（10）用及び K201④用）

第 9－3－2－3－2－87 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S3007 用及び C300⑨用）

第 9－3－2－3－2－88 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K610③），K611③），K612③）用，K610②），K611②），K612②用及び K610（1），K611（1），K612①用）

第9－3－2－3－2－89 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器
（K003①用）
第 9－3－2－3－2－90 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K003（2）用）

第9－3－2－3－2－91 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K003③）用）

第 9－3－2－3－2－92 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S003③）用及び C008③用）

第 9－3－2－3－2－93 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S003（2）用及びC008（2）用）

第 9－3－2－3－2－94 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S003①用及び C008①用）

第 9－3－2－3－2－95 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C004 用）

第 9－3－2－3－2－96 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C001（2）用及びS001②用）

第9－3－2－3－2－97 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K002 用）

第9－3－2－3－2－98 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C001①用及びS001①用）
第 9－3－2－3－2－99 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S751（1）用及び S750①用）
第 9－3－2－3－2－100 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S750（2）用）
第 9－3－2－3－2－101 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S751（2）用及びS750（3）用）

第 9－3－2－3－2－102 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S751③）用及びS750④用）

第 9－3－2－3－2－103 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S7514）用及び S750⑤用）

第 9－3－2－3－2－104 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C002（2）用，C003 用及びS002 用）

第 9－3－2－3－2－105 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S750⑥用）

第 9－3－2－3－2－106図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器
（C002（1）用）
第 9－3－2－3－2－107 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S7507）用，S751⑥用及び S751⑤用）

第 9－3－2－3－2－108 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S754 用及び S755 用）

第 9－3－2－3－2－109 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （S752①用，S752②用及び S753 用）

第 9－3－2－3－2－110 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C400③用，C401①用及び S100（11）用）

第 9－3－2－3－2－111 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K400①）用，P400②用及び P402（11）用）

第 9－3－2－3－2－112 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （K400（2）用，P400③用及び P603（2）用）

第 9－3－2－3－2－113 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （C400（4）用，C401（2）用及びS603 用）

第 9－3－2－3－2－114 図 ケーブルトレイ消火系 構造図 FK－5－1－12 貯蔵容器 （P603③）用及びP401②用）
第 9－3－2－3－3－1 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その1）

第 9－3－2－3－3－2 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 2 ）
第 9－3－2－3－3－3 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 3 ）
第 9－3－2－3－3－4 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その4）

第9－3－2－3－3－5 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その5）

第 9－3－2－3－3－6 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 6 ）
第 9－3－2－3－3－7 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その7）

第 9－3－2－3－3－8 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 8 ）

第 9－3－2－3－3－9 図 ケーブルトレイ消火系に係る機器の配置を明示した図面
（その 9 ）
第 9－3－2－3－3－10 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その10）

第9－3－2－3－3－11 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その11）

第 9－3－2－3－3－12 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その12）

第9－3－2－3－3－13 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その13）

第 9－3－2－3－3－14 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その14）

第9－3－2－3－3－15 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その15）

第 9－3－2－3－3－16 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その16）

第 9－3－2－3－3－17 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その17）

第9－3－2－3－3－18 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その18）

第9－3－2－3－3－19 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その19）
第9－3－2－3－3－20 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 20 ）
第9－3－2－3－3－21 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 21 ）

第 9－3－2－3－3－22 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 2 2）

第 9－3－2－3－3－23 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 23 ）

第9－3－2－3－3－24 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その24）

第 9－3－2－3－3－25 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 2 5）

第9－3－2－3－3－26 図 ケーブルトレイ消火系に係る機器の配置を明示した図面
（その 26 ）
第9－3－2－3－3－27 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 27 ）

第9－3－2－3－3－28 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 28 ）

第 9－3－2－3－3－29 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 29 ）

第9－3－2－3－3－30 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 30 ）

第9－3－2－3－3－31 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 31 ）

第 9－3－2－3－3－32 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 32 ）

第 9－3－2－3－3－33 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 33 ）

第9－3－2－3－3－34 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 34 ）

第9－3－2－3－3－35 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 35 ）

第9－3－2－3－3－36 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 36 ）
第9－3－2－3－3－37 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 37 ）
第9－3－2－3－3－38 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 38 ）
第 9－3－2－3－3－39 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 3 9）

第9－3－2－3－3－40 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 4 0）

第9－3－2－3－3－41 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その 4 1）

第 9－3－2－3－3－42 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その42）

第9－3－2－3－3－43 図 ケーブルトレイ消火系に係る機器の配置を明示した図面
（その43）
第 9－3－2－3－3－44 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その44）

第9－3－2－3－3－45 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その45）

第 9－3－2－3－3－46 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その46）

第 9－3－2－3－3－47 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その47）

第 9－3－2－3－3－48 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その48）

第 9－3－2－3－3－49 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その49）

第 9－3－2－3－3－50 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その50）

第9－3－2－3－3－51 図 ケーブルトレイ消火系に係る機器の配置を明示した図面 （その51）

第 9－3－2－3－4－1 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P800 用）

第 9－3－2－3－4－2 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P401①，P404，P801，P803 用）
第 9－3－2－3－4－3 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P802 用）
第 9－3－2－3－4－4 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（2）用）

第 9－3－2－3－4－5 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400（2）用）

第 9－3－2－3－4－6 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400①用）

第 9－3－2－3－4－7 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100①用）

第 9－3－2－3－4－8 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400①用）

第 9－3－2－3－4－9 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（S605用）
第 9－3－2－3－4－10 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C608 用）

第9－3－2－3－4－11 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P607 用）

第 9－3－2－3－4－12 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300②）用）

第 9－3－2－3－4－13 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300②）用）

第9－3－2－3－4－14 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（3）用）

第9－3－2－3－4－15 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300③用）

第9－3－2－3－4－16 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P4038），P101⑥用）

第9－3－2－3－4－17 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C4038），C1008用）

第9－3－2－3－4－18 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（4）用）

第9－3－2－3－4－19 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（3）用）

第9－3－2－3－4－20 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C40377，C10077用）

第9－3－2－3－4－21 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403⒎，P101⑤用）

第9－3－2－3－4－22 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101⑦，C403（9，C100＠9）用）

第 9－3－2－3－4－23 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1018），C403（10），C100（10）用）

第9－3－2－3－4－24 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（5）用）

第9－3－2－3－4－25 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403⑥，C100⑥用）

第9－3－2－3－4－26 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（P403（6），P101④）用）
第9－3－2－3－4－27 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（2）用）

第 9－3－2－3－4－28 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C100⑤）用）

第 9－3－2－3－4－29 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403⑤用）

第9－3－2－3－4－30 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101③用）

第9－3－2－3－4－31 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（5）用）

第 9－3－2－3－4－32 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101①用）

第9－3－2－3－4－33 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（4），C403（4），C100（4）用）

第9－3－2－3－4－34 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（3），C403（3），C100③）用）

第9－3－2－3－4－35 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（2），C100（2）用）
第9－3－2－3－4－36 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（2），P101②），C749 用）
第9－3－2－3－4－37図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403①，P101①用）
第9－3－2－3－4－38 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403①，C100①用）

第 9－3－2－3－4－39 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503①），C501①用）

第 9－3－2－3－4－40 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202①用）

第 9－3－2－3－4－41 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502①，P503（2），C501（2）用）

第 9－3－2－3－4－42 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（4）用）

第9－3－2－3－4－43 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（C300④）用）
第9－3－2－3－4－44 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P202①用）

第9－3－2－3－4－45 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C202①用）

第 9－3－2－3－4－46 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502②用）

第 9－3－2－3－4－47 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503③用）

第9－3－2－3－4－48図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501③用）

第 9－3－2－3－4－49 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（2）用）

第9－3－2－3－4－50 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502③，P503（5），P202③）用）

第9－3－2－3－4－51 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C5014），C202（2）用）

第9－3－2－3－4－52 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（5），P503（7），P202（5）用）
第9－3－2－3－4－53 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（4），P503（6），P202（4）用）
第9－3－2－3－4－54 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑥，C202（4）用）
第9－3－2－3－4－55 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（4）用）

第9－3－2－3－4－56 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（5）用）

第 9－3－2－3－4－57 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⒎，C202（5）用）

第9－3－2－3－4－58 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502⑥，P503（8），P202⑥用）

第 9－3－2－3－4－59 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P769 用）

第9－3－2－3－4－60 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（C501－1 用）
第9－3－2－3－4－61 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S703 用）

第9－3－2－3－4－62 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C736 用）

第 9－3－2－3－4－63 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C729 用）

第 9－3－2－3－4－64 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S704 用）

第9－3－2－3－4－65 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（3）用）

第9－3－2－3－4－66 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑤），C202③用）

第9－3－2－3－4－67 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（4），P202（2）用）

第9－3－2－3－4－68 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300（1）用）

第9－3－2－3－4－69 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（1）用）

第9－3－2－3－4－70 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（12）用）

第9－3－2－3－4－71 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C40321）用）

第 9－3－2－3－4－72 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（11）用）

第9－3－2－3－4－73 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（11），C403（19），C100（19）用）

第 9－3－2－3－4－74 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（12），C403（20），C100（20）用）

第 9－3－2－3－4－75 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（10）用）

第 9－3－2－3－4－76 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C40318）用）

第9－3－2－3－4－77 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（C100（18）用）
第 9－3－2－3－4－78 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1019）用）

第 9－3－2－3－4－79 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C100（17）用）

第 9－3－2－3－4－80 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（17）用）

第 9－3－2－3－4－81 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（7）用）

第 9－3－2－3－4－82 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1018）用）

第 9－3－2－3－4－83 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（13），C403（15），C100（15）用）

第 9－3－2－3－4－84 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（11），C403（13），C100（13）用）

第 9－3－2－3－4－85 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（12），C403（14），C100（14）用）

第 9－3－2－3－4－86 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（16），C100（16） 用）
第 9－3－2－3－4－87 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（9），C403（11），C100（11）用）
第 9－3－2－3－4－88 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101⑥用）

第 9－3－2－3－4－89 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（10），C403（12），C100（12）用）
第 9－3－2－3－4－90 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503⑨，P202（7）用）

第 9－3－2－3－4－91 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C5018，C202⑥用）

第 9－3－2－3－4－92 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202⑥用）

第 9－3－2－3－4－93 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（11）用）

第 9－3－2－3－4－94 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（P503（10），P202 8 用）
第 9－3－2－3－4－95 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C50199，C202 7 7 用）

第 9－3－2－3－4－96 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202 7 7 用）

第 9－3－2－3－4－97 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑪，C202⑨用）

第 9－3－2－3－4－98 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（12），P202（10）用）

第9－3－2－3－4－99 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S2028用）

第 9－3－2－3－4－100 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P202⑨，C501（10，C202（8）用）

第 9－3－2－3－4－101 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P202（11），C501 12），C202（10）用）

第 9－3－2－3－4－102 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S709（1）用）

第9－3－2－3－4－103 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S708 用）

第 9－3－2－3－4－104 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C40324），C809 用）
第 9－3－2－3－4－105 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（9），C403（23），C100（22）用）

第 9－3－2－3－4－106 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（10），C403（22），C100（21）用）

第 9－3－2－3－4－107 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101113，S709（2）用）

第 9－3－2－3－4－108 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201①，C201 用）

第 9－3－2－3－4－109 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P701⑨，P700＠9，P610⑥用）

第 9－3－2－3－4－110 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K7028），K70688用）

第 9－3－2－3－4－111 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（K602（2）用）
第 9－3－2－3－4－112 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P602⑥，C606（4），C601（2）用）

第 9－3－2－3－4－113 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P701®8，P7008，P610⑤）用）

第9－3－2－3－4－114 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606③用）

第 9－3－2－3－4－115 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602③用）

第9－3－2－3－4－116 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（7）K706（7），P701（7）用）

第 9－3－2－3－4－117 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700 7 ，P610④，P602（4）用）
第 9－3－2－3－4－118 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P602⑤）用）
第 9－3－2－3－4－119 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702⑥，K706⑥，P701（6）用）
第 9－3－2－3－4－120 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700⑥，P610③，P602③用）
第 9－3－2－3－4－121 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606（2）用）
第 9－3－2－3－4－122 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602（2）用）
第 9－3－2－3－4－123 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702⑤），K706⑤，P701⑤）用）

第 9－3－2－3－4－124 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700⑤），P610（2），P602（2）用）
第 9－3－2－3－4－125 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K601，P600，P601 用）
第 9－3－2－3－4－126 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S601（2）用）

第 9－3－2－3－4－127 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（4），K7064），P701（4）用）

第 9－3－2－3－4－128 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（P700④，P610①，P602①用）
第 9－3－2－3－4－129 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201⑥用）

第 9－3－2－3－4－130 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702①，K706①，P701①用）

第 9－3－2－3－4－131 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700①，P500①，P501①用）

第 9－3－2－3－4－132 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（2），K706（2），P701（2）用）

第9－3－2－3－4－133 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700（2），P500（2），P501（2）用）

第 9－3－2－3－4－134 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606①用）
第 9－3－2－3－4－135 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（3），K706（3），P701（3）用）

第9－3－2－3－4－136 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700（3），P500（3），P501（3）用）
第 9－3－2－3－4－137 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602①用）
第 9－3－2－3－4－138 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C602①用）
第 9－3－2－3－4－139 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C603（2）用）

第 9－3－2－3－4－140 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600①用）

第9－3－2－3－4－141 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C601①用）

第 9－3－2－3－4－142 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C602（2）用）

第 9－3－2－3－4－143 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S6004）用）

第 9－3－2－3－4－144 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600③用）

第 9－3－2－3－4－145 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（S601③）用）
第 9－3－2－3－4－146 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600（2）用）

第 9－3－2－3－4－147 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300①，C300⑤用）

第 9－3－2－3－4－148 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300⑤）用）

第 9－3－2－3－4－149 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300③）C300 7 7 用）

第9－3－2－3－4－150 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300⑥用）

第 9－3－2－3－4－151 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300②），C300⑥用）
第9－3－2－3－4－152 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300④），C300⑧用）
第9－3－2－3－4－153 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100③）P402③用）
第 9－3－2－3－4－154 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（5），C100（27）用）
第 9－3－2－3－4－155 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100③）用）
第 9－3－2－3－4－156 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100⑥，P402⑥用）

第 9－3－2－3－4－157 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（6），C100②8用）
第 9－3－2－3－4－158 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（4）用）

第 9－3－2－3－4－159 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100⒎，P402（7）用）
第9－3－2－3－4－160 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P10277，C100（29）用）

第9－3－2－3－4－161 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201②），P502（8）用）
第 9－3－2－3－4－162 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（P201③，C200（2）用）
第 9－3－2－3－4－163 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P2014），C200③用）

第 9－3－2－3－4－164 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201③，P502⑨用）

第 9－3－2－3－4－165 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S200（2）用）

第 9－3－2－3－4－166 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C200（4）用）

第9－3－2－3－4－167 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201（5）用）

第 9－3－2－3－4－168 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（5）用）

第 9－3－2－3－4－169 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（2），C100（24）用）

第9－3－2－3－4－170 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100（2），P402（2）用）
第9－3－2－3－4－171 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（1），C100②3）用）
第 9－3－2－3－4－172 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100①，P402①用）
第 9－3－2－3－4－173 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S200①用）

第 9－3－2－3－4－174 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S601（1）用）

第 9－3－2－3－4－175 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K602①，P603①，C603①用）

第9－3－2－3－4－176 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201②，C200①用）

第 9－3－2－3－4－177 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201①，P502（7）用）

第 9－3－2－3－4－178 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1024），C100（26）用）

第 9－3－2－3－4－179 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（K100⑤，P402（5）用）
第9－3－2－3－4－180 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S10077用）

第 9－3－2－3－4－181 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102③）C100（25）用）

第 9－3－2－3－4－182 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K1004），P402（4）用）

第 9－3－2－3－4－183 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100⑥用）

第9－3－2－3－4－184 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K1008），P4028用）

第 9－3－2－3－4－185 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1028），C10030用）

第9－3－2－3－4－186 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100＠9用）
第 9－3－2－3－4－187 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1008用）
第 9－3－2－3－4－188 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1029），C100（31）用）

第 9－3－2－3－4－189 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K10099，P402⑨用）
第 9－3－2－3－4－190 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（10）用）
第 9－3－2－3－4－191 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K2014）用）
第9－3－2－3－4－192 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S30077用）

第 9－3－2－3－4－193 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300⑨）用）

第 9－3－2－3－4－194 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K610③），K611③，K612③）用）

第 9－3－2－3－4－195 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K610②），K611（2），K612（2）用）

第 9－3－2－3－4－196 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（K610①，K611①，K612①用）
第 9－3－2－3－4－197 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003（1）用）

第 9－3－2－3－4－198 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003（2）用）

第 9－3－2－3－4－199 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003③用）

第 9－3－2－3－4－200 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（3）用）

第9－3－2－3－4－201 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008③）用）

第 9－3－2－3－4－202 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（2）用）

第9－3－2－3－4－203 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008（2）用）
第 9－3－2－3－4－204 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（1）用）
第 9－3－2－3－4－205 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008（1）用）
第9－3－2－3－4－206 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C004 用）
第 9－3－2－3－4－207 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C001（2）用）
第 9－3－2－3－4－208 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S001（2）用）

第 9－3－2－3－4－209 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K002 用）

第 9－3－2－3－4－210 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C001（1）用）
第9－3－2－3－4－211 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S001（1）用）

第 9－3－2－3－4－212 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751①用）

第 9－3－2－3－4－213 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面

第9－3－2－3－4－214 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750（2）用）

第 9－3－2－3－4－215 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（2）用）

第 9－3－2－3－4－216 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750③）用）

第 9－3－2－3－4－217 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（3）用）

第9－3－2－3－4－218 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750（4）用）

第 9－3－2－3－4－219 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S7514）用）

第9－3－2－3－4－220 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750（5）用）
第 9－3－2－3－4－221 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C002（2）用）

第9－3－2－3－4－222 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C003 用）
第9－3－2－3－4－223 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S002 用）
第 9－3－2－3－4－224 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750⑥用）
第 9－3－2－3－4－225 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C002①用）

第 9－3－2－3－4－226 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S75077用）

第 9－3－2－3－4－227 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751⑥用）

第 9－3－2－3－4－228 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（5）用）

第 9－3－2－3－4－229 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S754 用）

第 9－3－2－3－4－230 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（S755 用）
第 9－3－2－3－4－231 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S752①用）

第 9－3－2－3－4－232 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S752（2）用）

第 9－3－2－3－4－233 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S753 用）

第 9－3－2－3－4－234 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400③）用）

第 9－3－2－3－4－235 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C401①用）

第 9－3－2－3－4－236 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（10）用）
第 9－3－2－3－4－237 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K400①用）
第 9－3－2－3－4－238 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400（2）用）
第 9－3－2－3－4－239 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P402（10）用）
第 9－3－2－3－4－240 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K400（2）用）
第 9－3－2－3－4－241 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400③）用）
第 9－3－2－3－4－242 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P603②用）

第 9－3－2－3－4－243 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400（4）用）

第 9－3－2－3－4－244 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C401（2）用）

第 9－3－2－3－4－245 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S603 用）

第 9－3－2－3－4－246 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P603③用）

第 9－3－2－3－4－247 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面
（P401（2）用）

VI－1－1－4－8－2－1－3－1－1 設定根拠に関する説明書 （ケーブルトレイ消火系 FK－5－1－12 貯蔵容器）

名		称		
容	量	$\mathrm{L} /$ 個		
最高使用圧力	MPa			
最高使用温度	${ }^{\circ} \mathrm{C}$		貯蔵容器（P800用）	
個	数	-	4.6	

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P800 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（ P 800 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P401（1），P404，P801，P803 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P401（1），P404，P801，P803）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P802 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P802）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100②用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C400（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C400（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P400（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P400①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100（1））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C400（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C400①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S605 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S605）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名		称		FK－5－1－12貯蔵容器（C608用）	
容	量	$\mathrm{L} /$ 個			
最高使用圧力	MPa				
最高使用温度	${ }^{\circ} \mathrm{C}$		4.6		
個	数	-		40	

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C608用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ
 とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C608）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（P607用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P607 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P607）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C300（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C300（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S300 3 用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300 3 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C300 3 ）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C300 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C300③）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P4038），P101⑥用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403⑧，P1016）の消火に必要な貯蔵容器個数であ \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C4038（ C1008）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C4038），C1008）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1014）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101 4 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1013）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101 3 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403 7 ，C100 7 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同 \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403 7 7 ，C100 7 ）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403 7 ，P101 5 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403 ⑦，P1015 ）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12貯蔵容器（P101 7 ，C403⑨，C100＠${ }^{\text {（ }}$ 用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	6
最高使用温度	${ }^{\circ} \mathrm{C}$	40	0
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101 7 ，C403（9，C100＠9用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ
 とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101（7）C403（9），C100 9 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P1018）C403（10），C100（10）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P1018）C403（10），C100（10）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名		称		FK－5－1－12貯蔵容器（S101（5）用）	
容	量	$\mathrm{L} /$ 個			
最高使用圧力	MPa				
最高使用温度	${ }^{\circ} \mathrm{C}$		4.6		
個	数	-	40		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1015）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（5）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C403⑥，C100⑥用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403 6 ，C100 6 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403⑥）C100⑥）の消火に必要な貯蔵容器個数であ
 つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403 6 ，P101（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403⑥）P1014）の消火に必要な貯蔵容器個数であ \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101②用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C100 5 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C100⑤）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（5））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101 3 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（5）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（1）の の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（4），C40344，C100（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（4），C403 4 ），C100（4））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（3），C403（3）C100（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（3），C403（3），C100（3））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（2），C100（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403②），C100②）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（P403（2），P101（2），C749用）	
容 量	L／個		
最高使用圧力	MPa		． 6
最高使用温度	${ }^{\circ} \mathrm{C}$		40
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（2），P101（2）C749 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（2），P101②，C749）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（1），P101（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（1），P101①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（1），C100（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（1），C100①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（1），C501（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503 1 1 ，C501 1 ）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名		称	
容	量	$\mathrm{L} /$ 個	
最高使用圧力	MPa		
最高使用温度	${ }^{\circ} \mathrm{C}$		
個	䊉蔵容器（S202（1）用）		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（1），P503（2），C501（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502 1 1 ，P503（2），C501（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S3004）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300 4 4）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C300（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C3004）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P202（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P202①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C202（1）用）	
容 量	L／個		
最高使用圧力	MPa		． 6
最高使用温度	${ }^{\circ} \mathrm{C}$		40
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C202（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C202①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名		称	
容	量	$\mathrm{L} /$ 個	
最高使用圧力	MPa		
最高使用温度	${ }^{\circ} \mathrm{C}$		
個	䊉蔵容器（P502（2）用）		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名		称		FK－5－1－12貯蔵容器（C501③用）	
容	量	$\mathrm{L} /$ 個			
最高使用圧力	MPa				
最高使用温度	${ }^{\circ} \mathrm{C}$		4.6		
個	数	-	40		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501 3 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S202（2）用）	
容 量	L／個		
最高使用圧力	MPa		． 6
最高使用温度	${ }^{\circ} \mathrm{C}$		40
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（3），P503（5），P202（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502 3 ，P503（5），P202（3）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C5014），C202（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501（4），C202②）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（5），P503（7，P202（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502（5），P503（7）P202（5）の の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（4），P503⑥，P202（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502④，P503⑥，P202④）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501 6 ，C202 4 4 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501⑥）C202 4 ）の消火に必要な貯蔵容器個数であ \square つ貯蔵容器を配置する設計とす。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき 40 とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202 4 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202⑤）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501 7 ，C202（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square 以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501（7）C202（5）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502⑥，P503 8 8，P202 ⑥用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502 ⑥，P503（8），P202 ⑥）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名		称		
容	量	$\mathrm{L} /$ 個		
最高使用圧力	MPa			
最高使用温度	${ }^{\circ} \mathrm{C}$		貯蔵容器（P769用）	
個	数	-	4.6	

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P769 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P769）の消火に必要な貯蔵容器個数である
 つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501－1 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501－1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S703 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同 \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S703）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C736 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C736）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C729 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C729）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名		称	
容	FK－5－1－12貯蔵容器（S704用）	$\mathrm{L} /$ 個	
最高使用圧力	MPa		
最高使用温度	${ }^{\circ} \mathrm{C}$		
個	数	-	4.6

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S704 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S704）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S202 3 用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	6
最高使用温度	${ }^{\circ} \mathrm{C}$	40	0
個 数	－		］

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square 以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202 3 3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501（5），C202（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501（5），C202（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（4），P202（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（4），P202（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C300 1 1 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C300①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101 12）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（12）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（21）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（21））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S101（11）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じとする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（11）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101（11），C403（19），C100（19）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101⑪）C403（19），C100（19）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101 12），C403（20），C100（20）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101（12），C403（21），C100（20）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101（10）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（10）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C403（18）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（18）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C40318）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（C100 18）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C100（18）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C100（18）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1019）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S1019）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C100（17）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C10017）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（17）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（17））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S10177用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101 7 7）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1018）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S1018）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（13）C403（15），C100（15）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \qquad

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（13），C403（5），C100（55））の消火に必要な貯蔵容器個数である
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（11），C403（13），C100（13）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（11），C403（13），C100（33）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P403（12），C40314），C100（14）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（12），C403（14），C100（14）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（12），C403（14），C100（44）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（16），C100（16）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（16），C100（16））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（9），C403（11），C100（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（9）C403（11），C100（11））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1016 6用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P403（10），C403（12），C100（12）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P403（11），C403（12），C100（12））の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（9），P202（7）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（9），P202（7））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C5018），C202 ⑥用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C5018），C202 6 ）の消火に必要な貯蔵容器個数である貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202 6 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S2026）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（11））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（10），P20288用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（11），P202 8 ）の消火に必要な貯蔵容器個数である
貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501 9 ），C202（7）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C5019）C202 7 7）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S202 7 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S202 7 7）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C501（11），C202（9）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C501（11），C202 9 ）の消火に必要な貯蔵容器個数であ \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P503（12），P202（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P503（12），P202（11））の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S20288用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S2028）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S2028）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P202⑨，C501110，C20288用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P202（9），C501（10），C202 8 8 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P202（9）C501（10，C202 8 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P202（11），C501（12），C202（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P202（11），C501（12），C202（11））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S709（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S709 1 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S708用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S708）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C403（24），C809 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C403（24），C809）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置 する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101⑨，C403（23），C100（22）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101（9），C403（23）C100（22）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P101（10），C403（22），C100（21）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P101（10）C403（22），C100（21）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P101（11），C403（22），C100（21））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S101（13），S709（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S101（13），S709（2）の消火に必要な貯蔵容器個数である貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P201①，C201用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201（1），C201）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置 する設計とする。

名	称	FK－5－1－12貯蔵容器（P701⑨，P700＠9，P610⑥用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P701⑨，P700＠9，P610＠6用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P7019，P700＠9，P610⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K7028），K70688用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702 8 ，K7068）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（K602（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K602（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K602（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P602 6 ，C60644，C601②用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P602 6 ，C606（4），C601（2））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P7018）P7008 8，P610（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P7018），P700 8 ，P610（5）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C606③用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C606（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C606③）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S602（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S602（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702 7 ，K706（7），P701（7）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（7），K706（7），P701（7））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P700 7 ，P61044，P602（4）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700 7 ，P610 4 ，P602（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700 7 ，P610④，P602（4）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P602（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P602⑤）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702 ⑥，K706⑥，P701⑥用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702⑥，K706⑥，P701⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700 6 ，P610 3 ，P602（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700⑥，P610③，P602（3））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C606（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C606（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C606（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S602②用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S602②）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702（5），K706（5），P701（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（5），K706（5），P701（5））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700（5），P610②，P602（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700⑤，P610②，P602②）の消火に必要な貯蔵容器個数である
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K601，P600，P601用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K601，P600，P601）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S601（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S601（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S601②）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702（4），K706（4），P701（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（4），K706（4），P701（4）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P7004），P610①，P602①用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P70044，P610①，P602（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700 4 ），P610 1 1 ，P602 ①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（P201⑥用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P201 6 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702（1），K706①，P701（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（1），K706①）P701（1））の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700 ①，P500 ①，P501（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700（1），P500 ① ，P501 1 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702（2），K706（2），P701（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（2），K706（2），P701（2）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700②，P500（2），P501②用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700（2），P500（2），P501（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C606（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C606（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K702（3），K706（3），P701（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K702（3），K706 3 3 ，P701（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12貯蔵容器（P700③，P500③，P5013用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P700 3 3 ，P500 3 3，P501（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P700（3），P500（3），P501（3）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S602（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S602 1 ）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C602（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C602①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C603（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C603（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S600（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S600①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C601 1 1 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C601①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C602（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C602（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C602（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S600（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S600④）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S600 3 用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S600 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S600 3 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S601 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S601③）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S600（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S600（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S600（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（P300①，C300 5 用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P300（1），C300（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P300① ，C300 5 ）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S300 5 ）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300（5））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P300 3 3 ，C300（7）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P300③，C300 7 ）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300（6）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P300②）C300（6）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P300②，C300⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P3004），C3008用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P300④，C3008）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100 3 ）P402（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100③，P402③）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102（5），C100（27）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102（5），C100（27））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100 6 ，P402（6）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100⑥，P402⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102 6 ，C100（28）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102⑥，C100（8））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1004）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S1004）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K10077，P402 7 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100 7 7 ，P402 7 7）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P10277，C100（29）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102（7），C100（99）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K201②，P5028用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K201（2），P502 8 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（P201③），C200②用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P201③）C200（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201③）C200②）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P2014），C200 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201（4），C200③）の消火に必要な貯蔵容器個数である \square つ貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K201③）P502（9）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K201（3），P502（9）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S200（2）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S200（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S200（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C200（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C200（4）の の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P201（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201 5 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100⑤）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102（2），C100（24）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102（2），C100（24））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100（2），P402（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100② ，P402（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102（1），C100（23）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102①，C100 23）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100 1 ）P402（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100①）P402①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S200（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S200（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S601（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S601（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K602（1）P603（1），C603（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K602 1 1 ，P603（1），C603（1））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P201②，C200（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P201（2），C200（1））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K201 1 ，P502（7）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K201（1），P502 7 7）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P1024），C100（26）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P10244，C100 26）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100（5），P402（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100（5），P402 5 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100 7 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100（7）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102（3），C100（25）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P102（3），C100（25）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K1004），P402 4 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K100 4 ），P402 4 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S100 6 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K1008）P4028用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K1008），P4028）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P1028 8，C10030用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P10288，C10030）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1009）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100＠）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S1008）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S1008）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S1008）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P102（9），C100＠13）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P1029，C100＠1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K100（9），P402（9）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K1009 9，P4029）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P502（11）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P502（11）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K201（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K2014）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S300 7 7 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S300（7）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（C300 9 用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C3009）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C300⑨）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K610 3 ）K611（3），K612（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K610 3 ）K611（3），K612 3 ）の消火に必要な貯蔵容器個数であ
 の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K610（2），K611（2），K612（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケーブ ルトレイ（K610 2 ，K611（2），K612（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器 を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K610 1 ）K611（1），K612（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケーブ ルトレイ（K610 1 ），K611 1 1 ，K612 1 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器 を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K003（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K003（1））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（K003（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K003（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K003（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K003（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K003（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S003（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S003（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C008（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C008③）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S003（2）用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S003（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S003（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C008（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C008（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S003（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S003（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C008（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C008①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（C004用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C004 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C004）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C001（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C001②）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S001（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S001（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S001（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（K002用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K002 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K002）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C001 1 1 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C001①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S001（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S001（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S751①用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S751（1）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S750（2）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750 2 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名		称	
FK－5－1－12貯蔵容器（S751（2）用）			
容	量	$\mathrm{L} /$ 個	
最高使用圧力	MPa		
最高使用温度	${ }^{\circ} \mathrm{C}$		
個	数	-	4.6

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751 2 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S751（2）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750 3 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750（3）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S751③用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751（3）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S751③）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S75044用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S7504）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S7514 ${ }^{\text {（ }}$ 用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751（4）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S7514）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S750 5 ）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750⑤）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C002（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C002②）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名		称	
容	FK－5－1－12貯蔵容器（C003用）	$\mathrm{L} /$ 個	
最高使用圧力	MPa		
最高使用温度	${ }^{\circ} \mathrm{C}$		
個	数	-	4.6

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C003 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C003）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S002用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S002 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S002）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S750 6 用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S750 6 ）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（C002（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C002①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S75077用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S750 7 ）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S751⑥用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751（6）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S751⑥）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S751 5 ）用）	
容 量	L／個		
最高使用圧力	MPa	4.6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S751（5）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S751（5））の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S754 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S754）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名	称	FK－5－1－12 貯蔵容器（S755用）	
容 量	L／個		
最高使用圧力	MPa	4． 6	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個 数	－		

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S755 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用するFK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用するFK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S755）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S752（1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S752①）の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

【設 定 根 拠】
（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S752（2）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S752（2））の消火に必要な貯蔵容器個数であ \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12 貯蔵容器（S753用）
容 量	L／個	
最高使用圧力	MPa	4． 6
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	
【設 定 根 （概要）		

火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（S753 用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S753）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C400③）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

名 称		FK－5－1－12貯蔵容器（C401（1）用）	
容 量	L／個		
最高使用圧力	MPa		． 6
最高使用温度	${ }^{\circ} \mathrm{C}$		40
個 数	－		
【設 定 根 拠】			
（概要）			
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す			
る，FK－5－1－12 貯蔵容器（C401①用）は，以下の機能を有する。			

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C401①）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

名 称		FK－5－1－12貯蔵容器（S100＠10用）	
容 量	L／個		
最高使用圧力	MPa		4． 6
最高使用温度	${ }^{\circ} \mathrm{C}$		40
個 数	－		
【設 定 根 拠】			
（概要）			
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す			
る，FK－5－1－12 貯蔵容器（S100（1）用）は，以下の機能を有する。			

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S100 10）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（K400 1 1）用）は，以下の機能を有する。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K400①）の消火に必要な貯蔵容器個数である貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P400（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P402（10）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（K400②）の消火に必要な貯蔵容器個数である \longrightarrow の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P400③）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P603（2））の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C4004）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（C401（2））の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である
以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（S603）の消火に必要な貯蔵容器個数であ の貯蔵容器を配置する設計とする。

設計基準対象施設として使用する FK $-5-1-12$ 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P603③）の消火に必要な貯蔵容器個数である \square貯蔵容器を配置する設計とする。

（概要）
火災時に煙の充満，放射線の影響により消火活動が困難なところに設置す る，FK－5－1－12 貯蔵容器（P401②）用）は，以下の機能を有する。

設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，高圧ガス保安法の適合品 である一般汎用型の貯蔵容器を使用することから，当該貯蔵容器の容量はメーカに て定めた容量である \square以上とする。

公称値については，要求される容量と同じ \square とする。

2．最高使用圧力
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内圧と同じ 4.6 MPa とする。

3．最高使用温度
設計基準対象施設として使用する FK－5－1－12 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数
設計基準対象施設として使用する FK－5－1－12 貯蔵容器は，試験結果に基づき，ケー ブルトレイ（P401②）の消火に必要な貯蔵容器個数である \square の貯蔵容器を配置する設計とする。

VI－1－1－4－8－2－1－3－1－2 設定根拠に関する説明書 （ケーブルトレイ消火系 主配管（常設））

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P800用）とケーブルトレイ（P800）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P401（1），P404，P801，P803用）とケーブルトレイ（P401 （1）P404，P801，P803）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12 貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P802用）とケーブルトレイ（P802）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12 貯蔵容器（S100（2）用）とケーブルトレイ（S100（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12 貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる $冖 又$ とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12 貯蔵容器（C400（2）用）とケーブルトレイ（C400（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12 貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P400 1 用）とケーブルトレイ（P400 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12 貯蔵容器（S100 1 ）用）とケーブルトレイ（S100①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12 貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12 貯蔵容器（C400 1 ）用）とケーブルトレイ（C400①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12 貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S605用）とケーブルトレイ（S605）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C608用）とケーブルトレイ（C608）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P607用）とケーブルトレイ（P607）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C300（2）用）とケーブルトレイ（C300（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300（2）用）とケーブルトレイ（S300（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 3 用）とケーブルトレイ（S300 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C300 3 用）とケーブルトレイ（C300 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403 8 ，P101⑥用）とケーブルトレイ（P403 8 ，P101 ⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403 8 ，C100 8 用）とケーブルトレイ（C403 8 ，C100 ⑧）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101 4（ 用）とケーブルトレイ（S101 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101 3 用）とケーブルトレイ（S101 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403（7），C100 7 7 用）とケーブルトレイ（C403（7），C100 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（7），P101 5 ）用）とケーブルトレイ（P403（7），P101 ⑤）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101 7 7 ，C403（9），C100 99用）とケーブルトレイ（P101 （7），C403（9），C100（9）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101 8），C403（10），C100（10）用）とケーブルトレイ（P101 （8），C403（10），C100（10）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101 5 5 用）とケーブルトレイ（S101 5 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403⑥）C100⑥用）とケーブルトレイ（C403 6 ，C100 ⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403⑥，P101（4）用）とケーブルトレイ（P403⑥，P101 （4）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101（2）用）とケーブルトレイ（S101（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C100 5 5 用）とケーブルトレイ（C100 5 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403 5 5 用）とケーブルトレイ（C403（5））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101③用）とケーブルトレイ（P101③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（5）用）とケーブルトレイ（P403（5））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101①用）とケーブルトレイ（S101①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（4），C403（4），C100（4）用）とケーブルトレイ（P403 （4），C403（4），C1004）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（3），C403（3），C100 3 3 用）とケーブルトレイ（P403 ③，C403（3），C100（3））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403（2），C100（2）用）とケーブルトレイ（C403（2），C100 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（2），P101（2），C749用）とケーブルトレイ（P403 （2），P101（2），C749）を接続する配管であり，発電所内で発生した火災を早期に消火する ために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403 ①），P101（1）用）とケーブルトレイ（P403 ①），P101 （1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4． 6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403 ①），C100 ①用）とケーブルトレイ（C403 ①，C100 （1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503 ①），C501（1）用）とケーブルトレイ（P503 ①），C501 （1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4． 6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202①用）とケーブルトレイ（S202①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる $冖 又$ とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502（1），P503（2），C501（2）用）とケーブルトレイ（P502 （1），P503（2），C501（2））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4． 6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 4（ 用）とケーブルトレイ（S300 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C300 4（ 用）とケーブルトレイ（C300 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P202①用）とケーブルトレイ（P202①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C202①用）とケーブルトレイ（C202①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502②用）とケーブルトレイ（P502（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503 3（用）とケーブルトレイ（P503 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501 3（用）とケーブルトレイ（C501 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202（2）用）とケーブルトレイ（S202（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502③）P503 ⑤，P202（3）用）とケーブルトレイ（P502 ③，P503（5），P202（3））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501（4），C202（2）用）とケーブルトレイ（C501（4），C202 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502 ⑤ ，P503 7 7 ，P202（5）用）とケーブルトレイ（P502 ⑤，P503（7），P202（5）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502（4），P503（6），P202（4）用）とケーブルトレイ（P502 （4），P503（6），P202（4））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501⑥）C202④用）とケーブルトレイ（C501⑥，C202 （4）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる $冖 又$ とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202（4）用）とケーブルトレイ（S202 4 4）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202（5）用）とケーブルトレイ（S202（5））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501（7），C202 ⑤ 用）とケーブルトレイ（C501（7），C202 （5）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ る \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502⑥，P503（8），P202⑥用）とケーブルトレイ（P502 （6），P503（8），P202（6）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P769用）とケーブルトレイ（P769）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501－1用）とケーブルトレイ（C501－1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S703用）とケーブルトレイ（S703）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C736用）とケーブルトレイ（C736）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C729用）とケーブルトレイ（C729）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S704用）とケーブルトレイ（S704）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202③用）とケーブルトレイ（S202 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501（5），C202 ③）用）とケーブルトレイ（C501（5），C202 ③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503（4），P202（2）用）とケーブルトレイ（P503（4），P202 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C300 1 1 用）とケーブルトレイ（C300 1 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 1 1 用）とケーブルトレイ（S300 1 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S10112用）とケーブルトレイ（S10112））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403（21）用）とケーブルトレイ（C403（21））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101 111用）とケーブルトレイ（S101（11））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101（11），C403（19），C100 19）用）とケーブルトレイ（P101 （11），C403（19），C100（19）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101（12），C403（20），C100（20）用）とケーブルトレイ（P101 （12），C403（20），C100（20）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101（10）用）とケーブルトレイ（S10110）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403 18）用）とケーブルトレイ（C40318））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C100 18用）とケーブルトレイ（C100 18））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S10199用）とケーブルトレイ（S1019）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C100 177用）とケーブルトレイ（C100 177）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403 177用）とケーブルトレイ（C40317））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101 7 7 用）とケーブルトレイ（S101 7 7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S1018用）とケーブルトレイ（S1018）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK $-5-1-12$ 貯蔵容器（P403（13），C403（15），C100（15）用）とケーブルトレイ（P403 （13），C403（15），C100（15））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4． 6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（11），C403（13），C100（13）用）とケーブルトレイ（P403 （11），C403（13），C100（13）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（12），C403（14），C100（14）用）とケーブルトレイ（P403 （12），C403（14），C100（14））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403（16），C100 16）用）とケーブルトレイ（C403 16），C100 （16）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403⑨）C403（11），C100（11）用）とケーブルトレイ（P403 ⑨，C403（11），C100（11）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101⑥用）とケーブルトレイ（S101⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P403（10），C403（12），C100 12）用）とケーブルトレイ（P403 （10）C403（12），C100（12）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503⑨），P202 7 7 用）とケーブルトレイ（P503（9），P202 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501 8 ，C202⑥用）とケーブルトレイ（C501 8 ），C202 （6）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202⑥用）とケーブルトレイ（S202⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503（11）用）とケーブルトレイ（P503（11））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503（10），P202 8 用）とケーブルトレイ（P503 10），P202 （8）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501（9），C202（7）用）とケーブルトレイ（C501 9 ），C202 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202 7 7 用）とケーブルトレイ（S202 7 7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C501（11），C202（9）用）とケーブルトレイ（C501（11），C202 （9）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる $冖 又$ とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P503（12），P202（10）用）とケーブルトレイ（P503 12），P202 （10）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S202 8 用）とケーブルトレイ（S202 8 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P202⑨，C501（10）C202 8 用）とケーブルトレイ（P202 ⑨，C501（10），C202（8））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P202（11），C501 12 ，C202（10）用）とケーブルトレイ（P202 （11），C501（12），C202（10）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S709 1 1 用）とケーブルトレイ（S709 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S708用）とケーブルトレイ（S708）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C403（24），C809用）とケーブルトレイ（C403 24），C809）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101（9），C403（23），C100 22）用）とケーブルトレイ（P101 （9）C403（23），C100（22）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P101（10），C403（22），C100（21）用）とケーブルトレイ（P101 （10）C403（22），C100（21）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S101（13），S709（2）用）とケーブルトレイ（S101（13），S709 （2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201（1），C201用）とケーブルトレイ（P201 1 ，C201）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P7019），P700＠9，P610 6 用）とケーブルトレイ（P701 ⑨，P700（9），P610（6）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702 8 ，K706 8 用）とケーブルトレイ（K702 8 ，K706 （8）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K602②用）とケーブルトレイ（K602（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P602⑥，C606④，C601②用）とケーブルトレイ（P602 （6），C606（4），C601（2））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P7018），P700 8 ，P610 5 用）とケーブルトレイ（P701 （8），P700（8），P610（5）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C606③用）とケーブルトレイ（C606③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S602③用）とケーブルトレイ（S602③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

名	称	FK－5－1－12貯蔵容器（K702（7）K706（7）P701（7）用） ケーブルトレイ（K702（7），K706（7），P701（7）
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702（7），K706（7），P701 7 7 用）とケーブルトレイ（K702 ⑦，K706（7），P701（7））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700（7），P610（4），P602（4）用）とケーブルトレイ（P700 （7），P610（4），P6024）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P602（5）用）とケーブルトレイ（P602（5））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702⑥，K706⑥，P701⑥用）とケーブルトレイ（K702 ⑥，K706⑥，P701⑥）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700⑥，P610③），P602③用）とケーブルトレイ（P700 ⑥，P610（3），P602（3）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C606②用）とケーブルトレイ（C606②）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S602②用）とケーブルトレイ（S602（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702（5），K706（5），P701（5）用）とケーブルトレイ（K702 （5），K706（5），P701（5）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700（5），P610（2），P602（2）用）とケーブルトレイ（P700 （5），P610（2），P602（2）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本 配 管は，FK－5－1－12 貯 蔵 容 器（K601，P600，P601 用）とケーブルトレイ （K601，P600，P601）を接続する配管であり，発電所内で発生した火災を早期に消火する ために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S601（2）用）とケーブルトレイ（S601（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702（4），K706（4），P701（4）用）とケーブルトレイ（K702 （4），K706（4），P701（4））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700（4），P610（1），P602（1）用）とケーブルトレイ（P700 （4），P610（1），P602（1）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201⑥用）とケーブルトレイ（P201⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702（1），K706（1），P701 ①用）とケーブルトレイ（K702 ①，K706（1），P701（1）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700 1 ，P500 ①，P501 1 1 用）とケーブルトレイ（P700 （1），P500（1）P501（1）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702（2），K706（2），P701（2）用）とケーブルトレイ（K702 （2），K706（2），P701（2））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700（2），P500（2），P501（2）用）とケーブルトレイ（P700 （2），P500（2），P501（2）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C606①用）とケーブルトレイ（C606①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K702 ③）K706③，P701 3 用）とケーブルトレイ（K702 ③，K706（3），P701（3））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P700（3），P500（3），P501（3）用）とケーブルトレイ（P700 ③，P500（3），P501（3））を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4． 6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S602①用）とケーブルトレイ（S602①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C602①用）とケーブルトレイ（C602①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C603（2）用）とケーブルトレイ（C603（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S600 1 1 用）とケーブルトレイ（S600 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C601①用）とケーブルトレイ（C601①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C602②用）とケーブルトレイ（C602（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S600 4（用）とケーブルトレイ（S600 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S600 3 用）とケーブルトレイ（S600 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S601 3 用）とケーブルトレイ（S601 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S600（2）用）とケーブルトレイ（S600（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P300 ①，C300 ⑤）用）とケーブルトレイ（P300 ①），C300 ⑤）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 5 5 用）とケーブルトレイ（S300 5 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P300 ③）C300 7 7 用）とケーブルトレイ（P300 ③），C300 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 6 用）とケーブルトレイ（S300⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P300（2），C300⑥用）とケーブルトレイ（P300（2），C300 ⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P300 4 ，C300 8 用）とケーブルトレイ（P300 4 ），C300 （8）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100 ③）P402（3）用）とケーブルトレイ（K100 3 ，P402 ③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102⑤），C100（27）用）とケーブルトレイ（P102⑤，C100 （27）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 3 用）とケーブルトレイ（S100 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100⑥，P402⑥用）とケーブルトレイ（K100 6 ，P402 ⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102⑥，C100（28）用）とケーブルトレイ（P102⑥，C100 （28）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 4（ 用）とケーブルトレイ（S100 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100（7），P402（7）用）とケーブルトレイ（K100（7），P402 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102（7），C100（29）用）とケーブルトレイ（P102 7 7 ，C100 （29）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K201（2），P502 8 用）とケーブルトレイ（K201（2），P502 （8）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201（3），C200 ②用）とケーブルトレイ（P201 3 ，C200 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201（4），C200 ③）用）とケーブルトレイ（P201（4），C200 ③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K201（3），P502 ⑨用）とケーブルトレイ（K201 3 ，P502 （9）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S200（2）用）とケーブルトレイ（S200（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C200 4（ 用）とケーブルトレイ（C200 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201 5 5 用）とケーブルトレイ（P201 5 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 5 5 用）とケーブルトレイ（S100 5 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102（2），C100（24）用）とケーブルトレイ（P102（2），C100 （24）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100（2），P402（2）用）とケーブルトレイ（K100（2），P402 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102①），C100 23）用）とケーブルトレイ（P102（1），C100 （23）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100 ①），P402（1）用）とケーブルトレイ（K100 ①，P402 （1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S200 1 1 用）とケーブルトレイ（S200 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S601 1 1 用）とケーブルトレイ（S601 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K602 1 ）P603（1），C603 1 1 用）とケーブルトレイ（K602 ①，P603（1），C603（1）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P201（2），C200 ①用）とケーブルトレイ（P201（2），C200 （1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K201 ①），P502（7）用）とケーブルトレイ（K201 ①，P502 （7）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102（4），C100（26）用）とケーブルトレイ（P102（4），C100 （26）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100（5），P402（5）用）とケーブルトレイ（K100（5），P402 （5）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 7 用）とケーブルトレイ（S100 7 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102（3），C100（25）用）とケーブルトレイ（P102（3），C100 （25）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100（4），P402（4）用）とケーブルトレイ（K100（4），P402 （4）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 6 用）とケーブルトレイ（S100⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100 8 ，P402 8 用）とケーブルトレイ（K100 8 ，P402 （8）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102 8 ，C100（30）用）とケーブルトレイ（P102 8 ，C100 （30）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S100 9 9 用）とケーブルトレイ（S100 9 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S1008用）とケーブルトレイ（S1008）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P102（9），C100（31）用）とケーブルトレイ（P102⑨，C100 （31）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K100 ⑨），P402⑨用）とケーブルトレイ（K100 9 ，P402 （9）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（P502（10）用）とケーブルトレイ（P502（10））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K201（4）用）とケーブルトレイ（K201 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S300 7 用）とケーブルトレイ（S300 7 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C300 9 9 用）とケーブルトレイ（C300 9 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K610 ③）K611（3），K612 ③用）とケーブルトレイ（K610 ③，K611（3），K612（3）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K610（2），K611（2），K612（2）用）とケーブルトレイ（K610 （2），K611（2），K612（2）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K610（1），K611（1），K612 ①）用）とケーブルトレイ（K610 ①，K611（1），K612（1）を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K003 ①用）とケーブルトレイ（K003 ①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K003（2）用）とケーブルトレイ（K003（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K003（3）用）とケーブルトレイ（K003 3 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S003（3）用）とケーブルトレイ（S003 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C008③用）とケーブルトレイ（C008③）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S003（2）用）とケーブルトレイ（S003（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C008②用）とケーブルトレイ（C008②）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S003 ①用）とケーブルトレイ（S003 ①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C008①用）とケーブルトレイ（C008①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C004用）とケーブルトレイ（C004）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C001（2）用）とケーブルトレイ（C001（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S001（2）用）とケーブルトレイ（S001（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（K002用）とケーブルトレイ（K002）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C001 1 1 用）とケーブルトレイ（C001 1 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S001 1 1 用）とケーブルトレイ（S001 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751 1 1 用）とケーブルトレイ（S751 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 1 1 用）とケーブルトレイ（S750 1 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750（2）用）とケーブルトレイ（S750（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \downarrow とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751（2）用）とケーブルトレイ（S751（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 3 用）とケーブルトレイ（S750 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751 3 用）とケーブルトレイ（S751 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 4（ 用）とケーブルトレイ（S750 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751 4（ 用）とケーブルトレイ（S751 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 5 5 用）とケーブルトレイ（S750 5 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad する。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C002（2）用）とケーブルトレイ（C002（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \qquad とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C003用）とケーブルトレイ（C003）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S002用）とケーブルトレイ（S002）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 6 用）とケーブルトレイ（S750⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（C002①用）とケーブルトレイ（C002①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S750 7 7 用）とケーブルトレイ（S750 7 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751⑥用）とケーブルトレイ（S751⑥）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S751 5 5 用）とケーブルトレイ（S751 5 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S754用）とケーブルトレイ（S754）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S755用）とケーブルトレイ（S755）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S752①用）とケーブルトレイ（S752①）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ 4.6 MPa とする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S752②用）とケーブルトレイ（S752（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

【設 定 根 拠】
（概要）
本配管は，FK－5－1－12貯蔵容器（S753用）とケーブルトレイ（S753）を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

名		FK－5－1－12貯蔵容器（C400（3）用） ケーブルトレイ (C400③)
最 高 使 用 圧 力	MPa	4． 6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		
（概要）		

本配管は，FK－5－1－12貯蔵容器（C400 3 用）とケーブルトレイ（C400 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \quad する。

名		FK－5－1－12貯蔵容器（C401（1）用） ケーブルトレイ (C401①)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		
（概要）		

本配管は，FK－5－1－12貯蔵容器（C401 1 ）用）とケーブルトレイ（C401（1））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

名		FK－5－1－12貯蔵容器（S100（11）用） ケーブルトレイ (S100⑩)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		
（概要）		

本配管は，FK $-5-1-12$ 貯蔵容器（S100（10）用）とケーブルトレイ（S100 10）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

名		FK－5－1－12貯蔵容器（K400（1）用） ケーブルトレイ (K400①)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		
（概要）		

本配管は，FK－5－1－12貯蔵容器（K400 1 1 用）とケーブルトレイ（K400 1 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square する。

名		FK－5－1－12貯蔵容器（P400（2）用） ケーブルトレイ (P400②)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		

本配管は，FK－5－1－12貯蔵容器（P400（2）用）とケーブルトレイ（P400（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる

本配管は，FK－5－1－12貯蔵容器（P402（10）用）とケーブルトレイ（P40210）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる とする。

本配管は，FK－5－1－12貯蔵容器（K400（2）用）とケーブルトレイ（K400（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができ \square する。

名		FK－5－1－12貯蔵容器（P400（3）用） ケーブルトレイ (P400③)
最 高 使 用 圧力	MPa	4． 6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】		
（概要）		

本配管は，FK－5－1－12貯蔵容器（P400 3 用）とケーブルトレイ（P400 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができるとする。

名		FK－5－1－12貯蔵容器（P603（2）用） ケーブルトレイ (P603②)
最 高 使 用 圧 力	MPa	4． 6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】 （概要）		

本配管は，FK－5－1－12貯蔵容器（P603（2）用）とケーブルトレイ（P603（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

本配管は，FK－5－1－12貯蔵容器（C400 4 ）用）とケーブルトレイ（C400 4 ））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \quad とする。

名		FK－5－1－12貯蔵容器（C401（2）用） ケーブルトレイ (C401②)
最 高 使 用 圧 力	MPa	4． 6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】 （概要）		

本配管は，FK－5－1－12貯蔵容器（C401（2）用）とケーブルトレイ（C401（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができなとする。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

名		FK－5－1－12貯蔵容器（P603（3）用） ケーブルトレイ(P603③)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】 （概要）		

本配管は，FK－5－1－12貯蔵容器（P603（3）用）とケーブルトレイ（P603 3 ）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

名		FK－5－1－12貯蔵容器（P401（2）用） ケーブルトレイ(P401②)
最 高 使 用 圧 力	MPa	4.6
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	
【設 定 根 拠】 （概要）		

本配管は，FK－5－1－12貯蔵容器（P401（2）用）とケーブルトレイ（P401（2））を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力
本配管の最高使用圧力は，FK－5－1－12貯蔵容器の最高使用圧力と同じ4．6MPaとする。

2．最高使用温度
本配管の最高使用温度は，FK－5－1－12貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径
本配管の外径は，メーカの試験結果に基づき十分なFK－5－1－12ガス量を供給すること ができる \square とする。

FK－5－1－12貯蔵容器（P401 ©，P404，P801，P803用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P400（1）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（S100（1）用）

FK－5－1－12貯蔵容器（P607用）

名	ケーブルトレイ消火系
称	系統図（その4）

FK－5－1－12貯蔵容器（C300（2）用）

FK－5－1－12貯蔵容器（C3003）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請		第9－3－2－3－1－5図
女川原子力発電所 第2号機		
$\begin{aligned} & \text { 名 } \\ & \text { 称 } \end{aligned}$	ヶーブルトレイ消火系 系統図（その5）	
	東 北 電 力	株 式 会 社 0420

[^0]

FK－5－1－12貯蔵容器（P4038，P101（6）用）

FK－5－1－12貯歳容器（C4038，C1008）用）

FK－5－1－12貯蔵容器（S1014）用）

FK－5－1－12貯蔵容器（C403（7，C100（7）用）

FK－5－1－12貯蔵容器（P40377，P1015）用）

FK－5－1－12貯蔵容器（P101（7，C4039），C1009）用）

FK－5－1－12貯蔵容器（P1018），C403（10，C100（1）用）

FK－5－1－12貯蔵容器（S101（5）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P4036，P1014）用）

火災防護設備のうち消火設備
（ヶーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 ${ }^{\text {第9－3－2－3－1－9図 }}$

FK－5－1－12貯蔵容器（S101（2）用）

火災防護設備のうち消火設備
（ヶーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 第9－3－2－3－1－10図女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（P403（5）用）

FK－5－1－12貯蔵容器（P403（4），C403（4），C100（4）用）

FK－5－1－12貯蔵容器（P40311，P101（1）用）

FK－5－1－12貯蔵容器（C40311，C1001） 1 ）

FK－5－1－12貯蔵容器（P503（1），C501（1）用）

FK－5－1－12貯蔵容器（P502（1），P503（2），C501（2）用）

FK－5－1－12貯蔵容器（S300（4）用）

FK－5－1－12貯蔵容器（C3004）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請 第9－3－2－3－1－18図

FK－5－1－12貯蔵容器（P202（1）用）

FK－5－1－12貯蔵容器（C501（3）用）

	女川原子力発電所	第2号機
名 称	ケーブルトレイ消火系系統図（その20）	
東 北 電 力 株 式 会 社		

FK－5－1－12貯蔵容器（P50233，P503（5），P2023）用）

FK－5－1－12貯蔵容器（C5014），C202（2）用）

FK－5－1－12貯蔵容器（P502（5），P503（7，P202（5）用）

FK－5－1－12貯蔵容器（P502（4），P503（6），P2024）用）

FK－5－1－12貯蔵容器（C501（6），C2024）用）

FK－5－1－12貯蔵容器（S2024）用）

FK－5－1－12貯蔵容器（P5026，P5038，P2026）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 \quad 第9－3－2－3－1－26図女川原子力発電所 第2号機
名
ケーブルトレイ消火系系統図（その 26 ）
東 北 電 力 株 式 会 社

FK－5－1－12貯蔵容器（S703用）

FK－5－1－12貯蔵容器（S704用）

火災防護設備のうち消火設備
（ヶーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（S2023）用）

FK－5－1－12貯蔵容器（C501（5），C2023）${ }^{\text {（ }}$ ）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請	第9－3－2－3－1－28図

FK－5－1－12貯蔵容器（C300（1）用）

FK－5－1－12貯蔵容器（S300（1）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請 第9－3－2－3－1－30図

FK－5－1－12貯蔵容器（S101（12）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P101（11），C403（19），C100（19）用）

FK－5－1－12貯蔵容器（C100（8）用）

FK－5－1－12貯蔵容器（C403（17）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（S101（7）用）

FK－5－1－12貯蔵容器（S1018）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P403（13），C403（55），C100（15）用）

FK－5－1－12貯蔵容器（P403（11），C403（3），C100（3）用）

FK－5－1－12貯蔵容器（P403（12），C403（4），C100（44）用）

FK－5－1－12貯蔵容器（C403（16，C100（6） 1 ）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P4039），C403（11），C100（1）用）

FK－5－1－12貯蔵容器（P403（1），C403（12），C100（12）用）

FK－5－1－12貯蔵容器（P5039，P2027）用）

FK－5－1－12貯蔵容器（C5018，C2026）用）

FK－5－1－12貯蔵容器（S2026）用）

火災防護設備のうち消火設備
（ヶーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P503（11）用）

FK－5－1－12貯蔵容器（S202（7）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P503（12，P202（1）用）

FK－5－1－12貯蔵容器（P2029，C501（10，C2028）用）

FK－5－1－12貯蔵容器（C403（24），C809用）

工事計画認可申請 第9－3－2－3－1－44図

FK－5－1－12貯蔵容器（P1019），C40323，C10022）用）

FK－5－1－12貯蔵容器（P101（10，C403（22），C10021）用）

FK－5－1－12貯蔵容器（S101（3），S709（2）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請	第9－3－2－3－1－46図

FK－5－1－12貯蔵容器（P201（1），C201用）

FK－5－1－12貯蔵容器（P7019，P7009，P6106）用）

FK－5－1－12貯蔵容器（K7028，K7068）用）

FK－5－1－12貯蔵容器（P6026，C606（4），C601（2）用）

FK－5－1－12貯蔵容器（P7018，P7008，P610（5）用）

FK－5－1－12貯蔵容器（C606（3）用）

FK－5－1－12貯蔵容器（S6023）用）

FK－5－1－12貯蔵容器（K702（7，K706（7），P701（7）用）

FK－5－1－12貯蔵容器（P700（7），P610（4），P6024）用）

FK－5－1－12貯蔵容器（P6025）用）

FK－5－1－12貯蔵容器（C606（2）用）

FK－5－1－12貯蔵容器（K601，P600，P601用）

FK－5－1－12貯蔵容器（S601（2）用）

FK－5－1－12貯蔵容器（K7023，K706（3），P701（3）用）

FK－5－1－12貯蔵容器（P7003，P5003，P501（3）用）

FK－5－1－12貯蔵容器（C60211用）

FK－5－1－12貯蔵容器（C603（2）用）

FK－5－1－12貯蔵容器（S600（1）用）

FK－5－1－12貯蔵容器（C601（1）用）

FK－5－1－12貯蔵容器（C6022）用）

ケーブルトレイ （S6004）

FK－5－1－12貯蔵容器（S601（3）用）

FK－5－1－12貯蔵容器（S600（2）用）

FK－5－1－12貯蔵容器（P300（3），C300（7）用）

FK－5－1－12貯蔵容器（P300（2），C300（6）用）

FK－5－1－12貯蔵容器（P3004），C3008）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（K1003），P4023）用）

FK－5－1－12貯蔵容器（P102（5），C100（27）用）

FK－5－1－12貯蔵容器（S100（3）用）

FK－5－1－12貯蔵容器（K1006），P402（6）用）

FK－5－1－12貯蔵容器（S1004）用）

工事計画認可申請 第9－3－2－3－1－71図

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（P201（5）用）

FK－5－1－12貯蔵容器（P102（2），C10024）用）

FK－5－1－12貯蔵容器（K100（2），P4022）（用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 第9－3－2－3－1－76図女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（K10011，P402（1）用）

FK－5－1－12貯蔵容器（K602（1），P603（1），C603（1）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（K201（1），P502（7）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

| 工事計画認可申請 | 第9－3－2－3－1－79図 |
| :---: | :---: |女川原子力発電所 第2号機

| 名 |
| :---: | :---: |
| 称 |

ケーブルトレイ消火系系統図（その79）
東 北 電 力 株 式 会 社

FK－5－1－12貯蔵容器（P1023），C10026）用）

FK－5－1－12貯蔵容器（K1004），P4024）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請 第9－3－2－3－1－82図

FK－5－1－12貯蔵容器（K1008），P4028）${ }^{\text {用）}}$

FK－5－1－12貯蔵容器（S1009）用）

FK－5－1－12貯蔵容器（K1009，P4029）用）

FK－5－1－12貯蔵容器（P502（10用）

FK－5－1－12貯蔵容器（S300（7）用）

FK－5－1－12貯蔵容器（K610（3），K6113，K6123）用）

FK－5－1－12貯蔵容器（K610（2），K611（2），K612（2）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請 第9－3－2－3－1－89図 2

FK－5－1－12貯蔵容器（S003（3）用）

FK－5－1－12貯蔵容器（C008（3）用）

FK－5－1－12貯蔵容器（S003（2）用）

FK－5－1－12貯蔵容器（S003（1）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 第9－3－2－3－1－94図

FK－5－1－12貯蔵容器（C001（2）用）

FK－5－1－12貯蔵容器（S001（2）用）| 名 | ケーブルトレイ消火系 |
| :---: | :---: |
| 称 | 系統図（その96） |

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）
工事計画認可申請 第9－3－2－3－1－97図 2

FK－5－1－12貯蔵容器（C001（1）用）

FK－5－1－12貯蔵容器（S751（1）用）

FK－5－1－12貯蔵容器（S751（2）用）

FK－5－1－12貯蔵容器（S751（3）用）

FK－5－1－12貯蔵容器（S750（4）用）

FK－5－1－12貯蔵容器（S751（4）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

| 工事計画認可申請 | 第9－3－2－3－1－103図 |
| :---: | :---: |女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（C002（2）用）

FK－5－1－12貯蔵容器（S002用）

FK－5－1－12貯蔵容器（S7515）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 第9－3－2－3－1－107図 2女川原子力発電所 第2号機

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 | 第9－3－2－3－1－108図 |
| :--- |女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（S753用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

工事計画認可申請 第9－3－2－3－1－109図女川原子力発電所 第2号機

FK－5－1－12貯蔵容器（C4003）用）

FK－5－1－12貯蔵容器（S100（1）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（K400（1）用）

FK－5－1－12貯蔵容器（P402（10） 7 ）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

FK－5－1－12貯蔵容器（K400（2）用）

FK－5－1－12貯蔵容器（P603（2）用）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

火災防護設備のうち消火設備
（ケーブルトレイ消火系）（当該設備の申請範囲）

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

工事計画認可申請	第9－3－2－3－2－3図
女川原子力発電所 第2号機	
ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器 （S100（1）用及びC400（1）用）	
東 北 電 力	株 式 会 社
	0420

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	4	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	4	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	4	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square
注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。女誢原子発雨所 第2号幾

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部品表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	4	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

1本ユニット設置

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK $-5-1-12$ 貯蔵容器 \square

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	1	STH12
番号	品名	個数	材料
部 品 表			

FK $-5-1-12$ 貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	2	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12	
番号	品名	個数	材料	
部品表				

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK $-5-1-12$ 貯蔵容器	3	STH12
番号	品名	個数	村料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	3	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	3	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	3	STH12
番号	品名	個数	材料
部 品 表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

1	FK－5－1－12貯蔵容器	2	STH12
番号	品名	個数	材料
部品表			

FK－5－1－12貯蔵容器 \square

注1：寸法はmmを示す。
注2：特記なき寸法は公称値を示す。

第 9－3－2－3－2－1 図～第 9－3－2－3－2－114 図 ケーブルトレイ消火系 FK－5－1－12 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
FK $-5-1-12$ 貯蔵容器

主要寸法 （mm）		許容範囲	根拠
外径		$\pm 1.0 \%$	製造能力，製造実績を考慮したメーカ基準
高さ		$\pm 7.0 \mathrm{~mm}$	製造能力，製造実績を考慮したメーカ基準
胴部厚さ		$\begin{aligned} & +30.0 \% \\ & -0 \mathrm{~mm} \end{aligned}$	製造能力，製造実績を考慮したメーカ基準
底部厚さ		$\begin{aligned} & + \text { 規定しない } \\ & -0 \mathrm{~mm} \end{aligned}$	製造能力，製造実績を考慮したメーカ基準

注：主要寸法は，工事計画記載の公称値を示す。

注：寸法はmを示す。

原子炉建屋 O．P． 15.00 （m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－4図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る機器の配置を明示した図面（その4）

東 北 電 力 株 式 会 社
注•寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－5図

原子炉建屋 O．P． 15.00 （m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－6図

女川原子力発電所	第2号機

東 北 電 力株 式 会 社

原子炉建屋 $0 . P .15 .00(\mathrm{~m})$

注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－7図
女川原子力発電所 第2号機		
名	ケーブルトレイ消火系に係る機器の配置を明示した図面（その7）	
東 北 電 力 株 式 会 社		

原子炉建屋 $0 . P .15 .00(\mathrm{~m})$

注：寸法はmを示す。

	工事計画認可申請	第9－3－2－3－3－8図
女川原子力発電所 第2号機		
名	ケーブルトレイ消火系に係る機器の配置を明示した図面（その8）	
東 北 電 力 株 式 会 社		

原子炉建屋 0．P． 15.00 （m）
注：寸法はmを示す。

原子炉建屋 0．P． 15.00 （m）

原子炉建屋 $0 . P .15 .00(\mathrm{~m})$

注：寸法はmを示す。

| 工事計画認可申請 | 第9－3－2－3－3－11図 |
| :---: | :---: |女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その11）
東 北 電 力 株 式 会 社

原子炉建屋 O．P．15．00（m）

注：寸法はmを示す。
工事計画認可申請女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その12）
東 北 電 力 株 式 会 社

注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－13図
女川原子力発電所		

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－14図
女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その14）
東 北 電 力 株 式 会 社

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－15図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その15）
東 北 電 力 株 式 会 社

注：寸法はmを示す。
工事計画認可申請 \quad 第9－3－2－3－3－16図女川原子力発電所 第2号機

原子炉建屋 O．P． 18.80 （m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－17図
女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その17）
東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .24 .80(\mathrm{~m})$
注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－18図

原子炉建屋 O．P．22．50（m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－19図女川原子力発電所 第2号機

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－20図

女川原子カ発電所 第2号機	
名	ケーブルトレイ消火系に係る

称 機器の配置を明示した図面（その20）
東 北 電 力 株 式 会 社
注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－21図
女川原子力発電所		

注：寸法はmを示す。

	工事計画認可申請		第9－3－2－3－3－22図
女川原子力発電所			第2号機
	ケーブルトレイ消火系に係る機器の配置を明示した図面（その22）		
	東 北 電	力 株	株 式 会 社

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－23図
女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その23）
東 北 電 力 株 式 会 社

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－24図名 女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その24）
東 北 電 力株式会社

注：寸法はmを示す。

原子炉建屋 O．P．22．50（m）

工事計画認可申請 第9－3－2－3－3－25図女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その25）
東 北 電 力株 式 会 社

注：寸法はmを示す。
工事計画認可申請 \quad 第9－3－2－3－3－27図
女川原子力発電所 第2号機

原子炉建屋 0．P．－8．10（m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－28図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その28）
東 北 電 力 株 式 会 社

原子炉建屋 0．P．－8．10（m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－29図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その29）
東 北 電 力 株 式 会 社

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－30図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その30）
東 北 電 力 株 式 会 社
0420

原子炉建屋 $0 . P$ ．$-0.80(\mathrm{~m})$

注：寸法はmを示す。

	事計画認可申請	第9－3－2－3－3－32図
女川原子力発電所 第2号機		
	ヶーブルトレイ消火系に係る機器の配置を明示した図面（その32）	
東北 電 力 株 式会社		

注：寸法はmを示す。

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－34図

| 女川原子力発電所 第2号機 | |
| :--- | ---: | :--- |
| 名 | ケーブルトレイ消火系に係る |

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その34）

注：寸法はmを示す。

制御建屋 O．P．15．00（m）

東 北 電 力 株 式 会 社

制御建屋 $0 . P .15 .00$（m）

	計画認可申請	第9－3－2－3－3－36図
女川原子力発電所 第2号機		
名 称	ケーブルトレイ消火系に係る機器の配置を明示した図面（その36）	
東 北 電 力 株 式 会 社		

注：寸法はmを示す。

注：寸法はmを示す。
工事計画認可申請 \quad 第9－3－2－3－3－41図
名 女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その41）
東 北 電 力 株 式 会 社

原子炉建屋 0．P．－8．10（m）

注：寸法はmを示す。

注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－44図
女川原子カ発電所 第2号機		
名 称	ケーブルトレイ消火系に係る 機器の配置を明示した図面（その44）	
東 北 電 力 株 式 会 社		

東 北 電 力 株 式 会 社

原子炉建屋 $0 . P .28 .50(\mathrm{~m})$
注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－45図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その45）

原子炉建屋 O．P． 28.50 （m）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－46図 2女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
機器の配置を明示した図面（その46）

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－47図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る
称 機器の配置を明示した図面（その47）

原子炉建屋 O．P． 15.00 （m）

注：寸法はmを示す。

工事計画認可申請	第9－3－2－3－3－48図

女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る
機器の配置を明示した図面（その48）
東 北 電 力 株 式 会 社

注：寸法はmを示す。
工事計画認可申請 第9－3－2－3－3－49図
女川原子力発電所 第2号機

東 北 電 力 株 式 会 社

原子炉建屋 $0 . P .2 .00(\mathrm{~m})$

注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－50図
女川原子カ発電所 第2号機		
名 称	ケーブルトレイ消火系に係る	
機器の配置を明示した図面（その50）		

東 北 電 力株 式 会 社

注：寸法はmを示す。

工事計画認可申請		第9－3－2－3－3－51図
女川原子力発電所 第2号機		
名 称	ケーブルトレイ消火系に係る 機器の配置を明示した図面（その51）	
東 北 電 力 株 式 会 社		

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .5 .00(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋

原子炉建屋 O．P．5．50（m）

工事計画認可申請	第9－3－2－3－4－8図
女川原子力発電所 第2号機	

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋

原子炉建屋 0．P．5．50（m）
A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

工事計画認可申請 \quad 第9－3－2－3－4－10図 | 女川原子力発電所 第2号機 | |
| :--- | :---: |
| 名 | ケーブルトレイ消火系に係る主配管の配 |称 置を明示した図面（C608用）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 O．P． $15.00(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋

工事計画認可申請 \quad 第9－3－2－3－4－12図 | 女川原子力発電所 第2号機 | |
| :--- | :---: |
| 名 | ケーブルトレイ消火系に係る主配管の配 |称 置を明示した図面（C300（2）用）

東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－13図

| | 女川原子力発電所 第2号機 |
| :---: | :---: | :---: |
| 名 | ケーブルトレイ消火系に係る主配管の配 |

称 置を明示した図面（S300（2）用）
東 北 電 力 株 式 会 社

原子炉建屋 0．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋

工事計画認可申請 \quad 第9－3－2－3－4－14図 | 女川原子力発電所 第2号機 | |
| :---: | :---: |
| 名 | ケーブルトレイ消火系に係る主配管の配 |称 置を明示した図面（S3003）用）

東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

PN

原子炬建屋 0．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00$（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P． 15.00 （m）

A－A矢視図
注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

PN

原子炬建屋 0．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋工事計画認可申請 \quad 第9－3－2－3－4－31図
称 置を明示した図面（P4035）用）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P． $15.00(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00$（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 O．P． $18.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－39図

名 \quad ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P503（1），C501（1）用）

原子炉建屋 $0 . P .18 .80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

工事計画認可申請		第9－3－2－3－4－41図		
女川原子力発電所			第	2号機
$\begin{aligned} & \text { 名 } \\ & \text { 称 } \end{aligned}$	ケーブルトレイ消火系に係る主配管の配置を明示した図面（P502（1），P503②），C501 （2） 用）			
東 北 電 力 株			式	会 社
				0420

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
原子炉建屋 O．P．18．80（m）
注2：寸法はmを示す。

原子炬建屋 0．P． $18.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P． $18.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P503 3 ）用）

原子炬建屋 0．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

FK－5－1－12貯蔵容器（C50144，C202（2）用）
0．P． 15.00 m

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

A－A矢視図

PN

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。
女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S2024） 4 用）

東 北 電 力株 式 会 社

A－A矢視図

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炉建屋 0．P． $15.00(\mathrm{~m})$

$A-A$ 矢視図

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炉建屋 0．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0. P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

A－A矢視図

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋工事計画認可申請 \quad 第9－3－2－3－4－65図名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S2023）用）

原子炉建屋 O．P． 22.50 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 O．P． 22.50 （m）

$\mathrm{A}-\mathrm{A}$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－69図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S300（1）用）

原子炬建屋 O．P．22．50（m）

A－A矢視図

原子炉建屋 0．P．22．50（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

A－A矢視図

原子炬建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

> A-A矢視図

原子炬建屋 0．P．22．50（m）

原子炉建屋 0．P．22．50（m）

$A-A$ 矢視図

原子炉建屋 0．P． 22.50 （m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－76図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C403（18） ）

原子炬建屋 0．P．22．50（m）

A－A矢視図

原子炬建屋 O．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P． $22.50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建㡽 $0 . P .22 .50(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C403（17） 用）

原子炬建屋 O．P． $22.50(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－81図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S101（7）用）
\qquad

原子炬建屋 0．P． $22.50(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P．22．50（m）

原子炉建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

A－A矢視図

原子炉建屋 0．P．22．50（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

PN

原子炬建屋 0．P．22．50（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－88図

原子炬建屋 $0 . P .22 .50$（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .22 .50(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋工事計画認可申請 \quad 第9－3－2－3－4－92図名称 置を明示した図面（S202（6）用）
\qquad東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .22 .50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 $0 . P .22 .50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P． $22.50(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .22 .50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P503（12），P202（10）用）

原子炬建屋 0．P．22．50（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S2028）用）

原子炬建屋 0．P． $22.50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .22 .50(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－101風

女川原子カ発電所 第2号機	
名	ケーブルトレイ消火系に係る主配管の配

原子炬建屋 $0 . P .22 .50(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C40324），C809用）

原子炬建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．22．50（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P．22．50（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P． 15.00 （m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P． $15.00(\mathrm{~m})$

0．P． 15.00 m
$\frac{177}{}=\frac{177}{17}$
A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 \quad 第9－3－2－3－4－111図女川原子力発電所 第2号機名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K602（2）用）

原子炉建屋 0．P． 15.00 （m）
注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炉建屋 $0 . P .15 .00(\mathrm{~m})$

0．P． 15.00 m
777^{-777}
A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

工事計画認可申請	第 $9-3-2-3-4-116$ 図
女川原子力発電所 第2号機	
年	

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－117図

	女川原子力発電所	第2号機
名	－ブルトレイ消火系	系る主配管の

称 置を明示した図面（P700（7），P610（4），P602東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－118図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P6025）用）

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－122図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S602（2）用）

原子炉建屋 0．P． 15.00 （ m ）

原子炉建屋 O．P．15．00（m）

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。
原子炉建屋

工事計画認可申請 第9－3－2－3－4－124図女川原子力発電所 第2号機名 $\begin{aligned} & \text { ケーブルトレイ消火系に係る主配管の配 }\end{aligned}$置を明示した図面
称（P700（5），P610（2），P602（2）用）
東 北 電 力 株 式 会 社

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－125図名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K601，P600，P601用）

原子炬建屋 0．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－126図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S601②）用）

制御建屋 O．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P．15．00（m）

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P$ ． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P． $15.00(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

制御建屋 0. P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C602（2）用）

東 北 電 力株 式 会 社

制御建屋 $0 . P .15 .00$（m）

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

制御建屋 0. P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－147図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P300①，C300（5）用）

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－148図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S300（5）用）

東 北 電 力 株 式 会 社

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－149図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P3003），C300（7）用）

東 北 電 力株 式 会 社枠囲みの内容は商業機密の観点から公開できません。 0420

補機冷却系トレンチ O．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－150図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S300⑥用）

東 北 電 力 株 式 会 社

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－151図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P300（2），C3006）用）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ
工事計画認可申請 第9－3－2－3－4－152図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P30044，C3008）用）

原子炉建屋 0．P．－8． $10(\mathrm{~m})$

A－A矢視図

原子炬建屋 0．P．－ 8.10 （m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．－8． $10(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S1003）用）

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－156図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K100⑥，P402⑥用）

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－157図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P102⑥，C10028）用）

補機冷却系トレンチ 0．P．－8．10（m）

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－158図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S100（4）用）

東 北 電 力 株 式 会 社

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－159図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K100（7），P402（7）用）

東 北 電 力株 式 会 社

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。注2：寸法はmを示す。

補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－160冎

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P102（7），C100（29）用）

原子炬建屋 0．P．－8． $10(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－161図 2女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K201（2），P5028）${ }^{(1)}$ ）

東 北 電 力 株 式 会 社 0420 0420

原子炉建屋 0．P．－ $8.10(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－163図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P20144，C203（3）用）

東 北 電 力株 式 会 社枠囲みの内容は商業機密の観点から公開できません。 $\quad 0420$

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－164図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K2013），P502（9）用）

東 北 電 力 株 式 会 社

補機冷却系トレンチ O．P．－8．10（m）
注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－165図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S200（2）用）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ

補機冷却系トレンチ O．P．－8．10（m）

補機冷却系トレンチ工事計画認可申請 \mid 第9－3－2－3－4－166図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C2004） 1 ）

補機冷却系トレンチ 0．P．－8．10（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－167図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P201 5 ）用）

原子炬建屋 0．P．$-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－168図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S100 5 ）用）

原子炬建屋 0．P．－ $0.80(\mathrm{~m})$

A－A矢視図

原子炉建屋 0．P．$-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．－ $4.70(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－171図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（P102①，C100（23）用）

原子炬建屋 $0 . P .-4.70(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－172図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（K100①，P402（1）用）

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P．$-0.80(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P．－ 0.80 （m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．－ $0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炬建屋 $0 . P .-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P．－0．80（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 0．P．$-0.80(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

補機冷却系トレンチ O．P．8．85（m）

補機冷却系トレンチ

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－185図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P1028），C10030用）

補機泠却系トレンチ 0．P．8．85（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ
工事計画認可申請 第9－3－2－3－4－186図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（S10099用）
東 北 電 力 株 式 会 社

補機泠却系トレンチ $0 . P .8 .85(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－187図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S1008）用）

PN

A－A矢視図

補機冷却系トレンチ 0．P．8．85（m）
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－188図

補機冷却系トレンチ $0 . P .8 .85(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－189図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K1009），P4029）用）

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。
補機冷却系トレンチ
工事計画認可申請 第9－3－2－3－4－190図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（P502（10） ）
東 北 電 力 株 式 会 社

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
補機冷却系トレンチ工事計画認可申請 第9－3－2－3－4－191図

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

$A-A$ 矢視図

原子炬建屋 0．P． $6.90(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 $0 . P .6 .90(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P．6．90（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .6 .90(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

$A-A$ 矢視図

注 2 ：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .6 .90(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－210図女川原子力発電所 第2号機
名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C001（1）用）

原子炬建屋 O．P． $88.50(\mathrm{~m})$
注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
工事計画認可申請 第9－3－2－3－4－212図

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（S751（1）用）

東 北 電 力株 式 会 社

原子炬建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 O．P． $15.00(\mathrm{~m})$

原子炉建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P$ ． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－219図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（S75144）

制御建屋 $0 . P .15 .00(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－220図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（S750 5 ）用）

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－221図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（COO2（2）用）

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－223図

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（S002用）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。

制御建屋 O．P． $15.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .15 .00(\mathrm{~m})$

0．P． 15.00 m
17 A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配
称 置を明示した図面（S752（1）用）
東 北 電 力 株 式 会 社

制御建屋 $0 . P .15 .00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
原子炉建屋
原子炉建屋 O．P．2．00（m）

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

原子炬建屋 O．P．2．00（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

原子炉建屋 0．P． $2.00(\mathrm{~m})$

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 O．P．2．00（m）

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（K400（2）用）

制御建屋 $0 . P .2 .00(\mathrm{~m})$

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。

制御建屋 $0 . P .2 .00(\mathrm{~m})$

制御建屋 0. P． $2.00(\mathrm{~m})$

$A-A$ 矢視図

注1：太線は今回の申請範囲を示す。
注 2 ：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－243図女川原子力発電所 第2号機

名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（C4004）用）

制御建屋 O．P．2．00（m）

A－A矢視図

注1：太線は今回の申請範囲を示す
注2：寸法はmを示す。

制御建屋 O．P．2．00（m）

A－A矢視図

制御建屋 O．P．2．00（m）

A－A矢視図

注1：太線は今回の申請範囲を示す。
注2：寸法はmを示す。
制御建屋
工事計画認可申請 第9－3－2－3－4－246図名 ケーブルトレイ消火系に係る主配管の配称 置を明示した図面（P6033）用）

制御建屋 $0 . P .2 .00(\mathrm{~m})$

第 9－3－2－3－4－1 図～第 9－3－2－3－4－247 図 ケーブルトレイ消火系主配管の配置を明示した図面 別紙

工事計画記載の公称値の許容範囲
［主配管］
FK－5－1－12 貯蔵容器～ケーブルトレイ

| 主要寸法
 (mm) | | 許容範囲 | 根 |
| :--- | :--- | :--- | :--- | 拠

注：主要寸法は，工事計画記載の公称値を示す。

[^0]: 枓囲みの内容は啇業機室の镍点から公開できません。

