| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料

火災防護設備のらち消火設備

（8．4．2．2 ハロンガス消火設備）

（添付書類）

2021年7月

女川原子力発電所第 2 号機
工事計画認可申請書本文及び添付書類

目 録

VI－1－1－4 設備別記載事項の設定根拠に関する説明書

VI－1－1－4－8 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設）
VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（火災防護設備））

VI－1－1－4－8－2－1 消火設備に係る設定根拠に関する説明書 8. その他発電用原子炉の附属施設

VI－1－1－4－8－2－1－2 ハロンガス消火設備
VI－1－1－4－8－2－1－2－1 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系
VI－1－1－4－8－2－1－2－1－1 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－1－2 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－2 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系
VI－1－1－4－8－2－1－2－2－1 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 ハロ ン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－2－2 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－3 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系
VI－1－1－4－8－2－1－2－3－1 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－3－2 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管（常設）
$\mathrm{VI}-1-1-4-8-2-1-2-4 \quad$ RHR（C）室／RCIC タービンポンプ室消火系
VI－1－1－4－8－2－1－2－4－1 RHR（C）室／RCIC タービンポンプ室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－4－2 RHR（C）室／RCIC タービンポンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－5 RCW 熱交換器・ポンプ（A）（C）室消火系
VI－1－1－4－8－2－1－2－5－1 RCW 熱交換器・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－5－2 RCW 熱交換器・ポンプ（A）（C）室消火系 主配管（常設）
$\mathrm{VI}-1-1-4-8-2-1-2-6 \quad \mathrm{~B} 2 \mathrm{~F}$ 南側通路／バルブラッピング室消火系

VI－1－1－4－8－2－1－2－6－1 B2F 南側通路／バルブラッピング室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－6－2 B2F 南側通路／バルブラッピング室消火系 主配管（常設） VI－1－1－4－8－2－1－2－7 IA•SA 空気圧縮機室／B2F 東側通路消火系

VI－1－1－4－8－2－1－2－7－1 IA•SA 空気圧縮機室／B2F 東側通路消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－7－2 IA•SA 空気圧縮機室／B2F 東側通路消火系 主配管（常設） VI－1－1－4－8－2－1－2－8 CRD ポンプ室消火系

VI－1－1－4－8－2－1－2－8－1 CRD ポンプ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－8－2 CRD ポンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－9 MUWC ポンプ室消火系
VI－1－1－4－8－2－1－2－9－1 MUWC ポンプ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－9－2 MUWC ポンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－10 B2F／B1F／1F 西側通路／排風機室消火系
VI－1－1－4－8－2－1－2－10－1 B2F／B1F／1F 西側通路／排風機室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－10－2 B2F／B1F／1F 西側通路／排風機室消火系 主配管（常設） VI－1－1－4－8－2－1－2－11 PLR－VVVF 室／区分II非常用電気品室消火系

VI－1－1－4－8－2－1－2－11－1 PLR－VVVF 室／区分II非常用電気品室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－11－2 PLR－VVVF 室／区分II非常用電気品室消火系 主配管（常設） VI－1－1－4－8－2－1－2－12 B1F インナー通路消火系

VI－1－1－4－8－2－1－2－12－1 B1F インナー通路消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－12－2 B1F インナー通路消火系 主配管（常設）
VI－1－1－4－8－2－1－2－13 DC RCIC MCC 室消火系
VI－1－1－4－8－2－1－2－13－1 DC RCIC MCC 室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－13－2 DC RCIC MCC 室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－14 区分 I 非常用電気品室消火系
VI－1－1－4－8－2－1－2－14－1 区分 I 非常用電気品室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－14－2 区分 I 非常用電気品室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－15 D／G（A）室／（B）室／D／G 補機（A）室／（B）室消火系
VI－1－1－4－8－2－1－2－15－1
D／G（A）室／
（B）室／D／G補機（A）室
（B）室消火系 ハロン
1301 貯蔵容器
VI－1－1－4－8－2－1－2－15－2
D／G
（A）室
（B）室／D／G 補機（A）室
（B）室消火系 主配管
（常設）
VI－1－1－4－8－2－1－2－16 B1F ハッチ室消火系
VI－1－1－4－8－2－1－2－16－1 B1F ハッチ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－16－2 B1F ハッチ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－17 区分IIIHPCS 電気品室消火系
VI－1－1－4－8－2－1－2－17－1 区分IIIHPCS 電気品室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－17－2 区分IIIHPCS 電気品室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－18 区分II非常用 MCC 室消火系
VI－1－1－4－8－2－1－2－18－1 区分 II 非常用 MCC 室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－18－2 区分 II 非常用 MCC 室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－19 導電率計ラック室消火系
VI－1－1－4－8－2－1－2－19－1 導電率計ラック室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－19－2 導電率計ラック室消火系 主配管（常設）
$\mathrm{VI}-1-1-4-8-2-1-2-20 \quad$ FPC ポンプ（A）（B）室消火系
VI－1－1－4－8－2－1－2－20－1 FPC ポンプ（A）（B）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－20－2 FPC ポンプ（A）（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－21 HWH 熱交換器・ポンプ室消火系
VI－1－1－4－8－2－1－2－21－1 HWH 熱交換器・ポンプ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－21－2 HWH 熱交換器・ポンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－22 緊急用電気品室（1）／（2）消火系
VI－1－1－4－8－2－1－2－22－1 緊急用電気品室（1）／（2）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－22－2 緊急用電気品室（1）／（2）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－23 区分 I 非常用 D／G 制御盤室消火系
VI－1－1－4－8－2－1－2－23－1 区分 I 非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－23－2 区分 I 非常用 D／G 制御盤室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－24 区分III非常用 D／G 制御盤室消火系
VI－1－1－4－8－2－1－2－24－1 区分III非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－24－2 区分III非常用 D／G 制御盤室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－25 ディーゼル発電機（HPCS）室消火系
VI－1－1－4－8－2－1－2－25－1 ディーゼル発電機（HPCS）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－25－2 ディーゼル発電機（HPCS）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－26 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系
VI－1－1－4－8－2－1－2－26－1 区分II非常用 D／G 制御盤室／R－12 階段室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－26－2 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－27 区分IIIバッテリ室消火系
VI－1－1－4－8－2－1－2－27－1 区分IIIバッテリ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－27－2 区分IIIバッテリ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－28 送風機•緊急用電気品室消火系
VI－1－1－4－8－2－1－2－28－1 送風機•緊急用電気品室消火系 ハロン 1301 貯蔵容器 VI－1－1－4－8－2－1－2－28－2 送風機•緊急用電気品室消火系 主配管（常設） VI－1－1－4－8－2－1－2－29 燃料デイタンク（B）室消火系

VI－1－1－4－8－2－1－2－29－1 燃料デイタンク（B）室消火系 ハロン 1301 貯蔵容器 VI－1－1－4－8－2－1－2－29－2 燃料デイタンク（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－30 SOL 冷凍機室消火系
VI－1－1－4－8－2－1－2－30－1 SOL 冷凍機室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－30－2 SOL 冷凍機室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－31 HECW 冷凍機・ポンプ（A）（C）室消火系
VI－1－1－4－8－2－1－2－31－1 HECW 冷凍機・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－31－2 HECW 冷凍機・ポンプ（A）（C）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－32 燃料デイタンク（A）室消火系
VI－1－1－4－8－2－1－2－32－1 燃料デイタンク（A）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－32－2 燃料デイタンク（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－33 燃料デイタンク（HPCS）室消火系
VI－1－1－4－8－2－1－2－33－1 燃料デイタンク（HPCS）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－33－2 燃料デイタンク（HPCS）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－34 空調機械（A）室／（B）室消火系
VI－1－1－4－8－2－1－2－34－1 空調機械（A）室／（B）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－34－2 空調機械（A）室／（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－35 250V 直流主母線盤室／125V（A）－1 室消火系
VI－1－1－4－8－2－1－2－35－1 250V 直流主母線盤室／ 125 V （A）－1 室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－35－2 250V 直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管（常設） VI－1－1－4－8－2－1－2－36 DC250V バッテリ室消火系

VI－1－1－4－8－2－1－2－36－1 DC250V バッテリ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－36－2 DC250V バッテリ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－37 計測制御電源（B）室消火系

VI－1－1－4－8－2－1－2－37－1 計測制御電源（B）室消火系 ハロン 1301 貯蔵容器 VI－1－1－4－8－2－1－2－37－2 計測制御電源（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－38 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 VI－1－1－4－8－2－1－2－38－1 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－38－2 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系主配管（常設）

VI－1－1－4－8－2－1－2－39 常用•共通 M／C•P／C 室消火系
VI－1－1－4－8－2－1－2－39－1 常用•共通 M／C•P／C 室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－39－2 常用•共通 M／C•P／C 室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－40 計測制御電源（A）室消火系
VI－1－1－4－8－2－1－2－40－1 計測制御電源（A）室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－40－2 計測制御電源（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－41 T．S（計測制御電源（B）室北）消火系
VI－1－1－4－8－2－1－2－41－1 T．S（計測制御電源（B）室北）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－41－2 T．S（計測制御電源（B）室北）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－42 T．S（更衣室北）消火系
VI－1－1－4－8－2－1－2－42－1 T．S（更衣室北）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－42－2 T．S（更衣室北）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－43 T．S（更衣室西）消火系
VI－1－1－4－8－2－1－2－43－1 T．S（更衣室西）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－43－2 T．S（更衣室西）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－44 区分 I／II／常用系ケーブル処理室消火系
VI－1－1－4－8－2－1－2－44－1 区分 I／II／常用系ケーブル処理室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－44－2 区分 I／II／常用系ケーブル処理室消火系 主配管（常設） VI－1－1－4－8－2－1－2－45 区分IIIケーブル処理室消火系

VI－1－1－4－8－2－1－2－45－1 区分IIIケーブル処理室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－45－2 区分IIIケーブル処理室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－46 DC125V 代替バッテリ室消火系
VI－1－1－4－8－2－1－2－46－1 DC125V 代替バッテリ室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－46－2 DC125V 代替バッテリ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－47 T．S（区分 II ケーブル処理室北）消火系
VI－1－1－4－8－2－1－2－47－1 T．S（区分 II ケーブル処理室北）消火系 ハロン 1301 貯蔵容

器
VI－1－1－4－8－2－1－2－47－2 T．S（区分 II ケーブル処理室北）消火系 主配管（常設） VI－1－1－4－8－2－1－2－48 PCPS 区分 I エリア消火系

VI－1－1－4－8－2－1－2－48－1 PCPS 区分I エリア消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－48－2 PCPS 区分 I エリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－49 PCPS 区分IIエリア消火系
VI－1－1－4－8－2－1－2－49－1 PCPS 区分IIエリア消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－49－2 PCPS 区分 II エリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－50 PCPS 区分IIIエリア消火系
VI－1－1－4－8－2－1－2－50－1 PCPS 区分IIIエリア消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－50－2 PCPS 区分IIIエリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－51 PCPS 区分 NON エリア消火系
VI－1－1－4－8－2－1－2－51－1 PCPS 区分 NON エリア消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－51－2 PCPS 区分 NON エリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－52 緊急対策室他消火系
VI－1－1－4－8－2－1－2－52－1 緊急対策室他消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－52－2 緊急対策室他消火系 主配管（常設）
VI－1－1－4－8－2－1－2－53 緊急時対策所軽油タンク（A）室消火系
VI－1－1－4－8－2－1－2－53－1 緊急時対策所軽油タンク（A）室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－53－2 緊急時対策所軽油タンク（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－54 緊急時対策所軽油タンク（B）室消火系
VI－1－1－4－8－2－1－2－54－1 緊急時対策所軽油タンク（B）室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－54－2 緊急時対策所軽油タンク（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－55 緊急時対策所軽油タンク（C）室消火系
VI－1－1－4－8－2－1－2－55－1 緊急時対策所軽油タンク（C）室消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－55－2 緊急時対策所軽油タンク（C）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－56 E／B 電気品室消火系
VI－1－1－4－8－2－1－2－56－1 E／B 電気品室消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－56－2 E／B 電気品室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－57 R／B MCC 2SB－1 消火系
VI－1－1－4－8－2－1－2－57－1 R／B MCC 2 SB -1 消火系 ハロン 1301 貯蔵容器

VI－1－1－4－8－2－1－2－57－2 R／B MCC 2SB－1 消火系 主配管（常設）
VI－1－1－4－8－2－1－2－58 SLC ポンプ（A）（B）消火系
VI－1－1－4－8－2－1－2－58－1 SLC ポンプ（A）（B）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－58－2 SLC ポンプ（A）（B）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－59 HECW 冷凍機・ポンプ（B）（D）消火系
VI－1－1－4－8－2－1－2－59－1 HECW 冷凍機・ポンプ（B）（D）消火系 ハロン 1301 貯蔵容器
VI－1－1－4－8－2－1－2－59－2 HECW 冷凍機・ポンプ（B）（D）消火系 主配管（常設）

VI－6 図面

9 その他発電用原子炉の附属施設

9.3 火災防護設備

9．3．2 消火設備

9．3．2．2 ハロンガス消火設備

第 9－3－2－2－1－1 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 系統図
第 9－3－2－2－1－2 図 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 系統図
第 9－3－2－2－1－3 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 系統図
第 9－3－2－2－1－4 図 RHR（C）室／RCIC タービンポンプ室消火系 系統図
第 9－3－2－2－1－5 図 RCW 熱交換器・ポンプ（A）（C）室消火系 系統図
第 9－3－2－2－1－6 図 B2F 南側通路／バルブラッピング室消火系 系統図
第 9－3－2－2－1－7 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 系統図
第 9－3－2－2－1－8 図 CRD ポンプ室消火系 系統図
第9－3－2－2－1－9 図 MUWC ポンプ室消火系 系統図
第 9－3－2－2－1－10 図 B2F／B1F／1F 西側通路／排風機室消火系 系統図
第 9－3－2－2－1－11 図 PLR－VVVF 室／区分II非常用電気品室消火系 系統図
第 9－3－2－2－1－12－1 図 B1Fインナー通路消火系 系統図（1／2）
第 9－3－2－2－1－12－2 図 B1Fインナー通路消火系 系統図（2／2）
第 9－3－2－2－1－13 図 DC RCIC MCC 室消火系 系統図
第 9－3－2－2－1－14 図 区分 I 非常用電気品室消火系 系統図
第 $9-3-2-2-1-15$ 図 $D / G(A)$ 室／（B）室／D／G補機（A）室／（B）室消火系 系統図
第9－3－2－2－1－16 図 B1F ハッチ室消火系 系統図
第 9－3－2－2－1－17 図 区分III HPCS 電気品室消火系 系統図
第 9－3－2－2－1－18 図 区分II非常用MCC 室消火系 系統図
第 9－3－2－2－1－19 図 導電率計ラック室消火系 系統図
第 9－3－2－2－1－20 図 FPCポンプ（A）（B）室消火系 系統図
第 9－3－2－2－1－21 図 HWH 熱交換器・ポンプ室消火系 系統図
第 9－3－2－2－1－22 図 緊急用電気品室（1）／（2）消火系 系統図
第 9－3－2－2－1－23 図 区分 I 非常用D／G 制御盤室消火系 系統図
第 9－3－2－2－1－24 図 区分III非常用D／G 制御盤室消火系 系統図
第9－3－2－2－1－25 図 ディーゼル発電機（HPCS）室消火系 系統図
第 9－3－2－2－1－26 図 区分II非常用 D／G 制御盤室／R－12 階段室消火系 系統図
第9－3－2－2－1－27 図 区分IIIバッテリ室消火系 系統図
第9－3－2－2－1－28 図 送風機•緊急用電気品室消火系 系統図

第 9－3－2－2－1－29 図 燃料デイタンク（B）室消火系 系統図

第 9－3－2－2－1－30 図第 9－3－2－2－1－31 図第 9－3－2－2－1－32 図第 9－3－2－2－1－33 図第 9－3－2－2－1－34 図第 9－3－2－2－1－35 図第 9－3－2－2－1－36 図第 9－3－2－2－1－37 図第 9－3－2－2－1－38 図第 9－3－2－2－1－39 図第 9－3－2－2－1－40 図第 9－3－2－2－1－41 図第 9－3－2－2－1－42 図第 9－3－2－2－1－43 図第 9－3－2－2－1－44 図第 9－3－2－2－1－45 図第 9－3－2－2－1－46 図第 9－3－2－2－1－47 図第 9－3－2－2－1－48 図第 9－3－2－2－1－49 図第 9－3－2－2－1－50 図第 9－3－2－2－1－51 図第9－3－2－2－1－52 図第 9－3－2－2－1－53 図第 9－3－2－2－1－54 図第 9－3－2－2－1－55 図第 9－3－2－2－1－56 図第 9－3－2－2－1－57 図第 9－3－2－2－1－58 図第 9－3－2－2－1－59 図第 9－3－2－2－2－1 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－2 図 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 ハロン 1301

貯蔵容器構造図
第 9－3－2－2－2－3 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－4 図 RHR（C）室／RCIC タービンポンプ室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－5 図 RCW 熱交換器・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－6 図 B2F 南側通路／バルブラッピング室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－7 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－8 図
第 9－3－2－2－2－9 図 MUWC ポンプ室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－10 図 $\mathrm{B} 2 \mathrm{~F} / \mathrm{B} 1 \mathrm{~F} / 1 \mathrm{~F}$ 西側通路／排風機室消火系 ハロン 1301 貯蔵容器構造図

第9－3－2－2－2－11 図 PLR－VVVF 室／区分II非常用電気品室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－12 図 B1F インナー通路消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－13 図 DC RCIC MCC 室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－14 図 区分 I 非常用電気品室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－15 図
D／G（A）室
（B）室／D／G補機（A）室
（B）室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－16 図 B1F ハッチ室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－17 図 区分III HPCS 電気品室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－18 図 区分 II 非常用 MCC 室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－19 図 導電率計ラック室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－20 図 FPC ポンプ（A）（B）室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－21 図 HWH 熱交換器・ポンプ室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－22 図 緊急用電気品室（1）／（2）消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－23 図 区分 I 非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－24 図 区分III非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－25 図 ディーゼル発電機（HPCS）室消火系 ハロン 1301 貯蔵容器構造図
第 9－3－2－2－2－26 図 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－27 図 区分IIIバッテリ室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－28 図 送風機•緊急用電気品室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－29 図第 9－3－2－2－2－30 図第 9－3－2－2－2－31 図第 9－3－2－2－2－32 図第 9－3－2－2－2－33 図第 9－3－2－2－2－34 図第 9－3－2－2－2－35 図燃料デイタンク（B）室消火系 ハロン 1301 貯蔵容器構造図 SOL 冷凍機室消火系 ハロン 1301 貯蔵容器構造図 HECW 冷凍機・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器構造図燃料デイタンク（A）室消火系 ハロン 1301 貯蔵容器構造図燃料デイタンク（HPCS）室消火系 ハロン 1301 貯蔵容器構造図空調機械（A）室／（B）室消火系 ハロン 1301 貯蔵容器構造図 250V 直流主母線盤室／125V（A）－ 1 室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－36 図第 9－3－2－2－2－37 図第9－3－2－2－2－38図

DC250V バッテリ室消火系 ハロン 1301 貯蔵容器構造図計測制御電源（B）室消火系 ハロン 1301 貯蔵容器構造図代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 ハロン1301貯蔵容器構造図

第 9－3－2－2－2－39 図 常用•共通 $M / C \cdot P / C$ 室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－40 図第 9－3－2－2－2－41 図第 9－3－2－2－2－42 図第 9－3－2－2－2－43 図第 9－3－2－2－2－44 図
計測制御電源（A）室消火系 ハロン 1301 貯蔵容器構造図
T．S（計測制御電源（B）室北）消火系 ハロン 1301 貯蔵容器構造図
T．S（更衣室北）消火系 ハロン 1301 貯蔵容器構造図
T．S（更衣室西）消火系 ハロン 1301 貯蔵容器構造図
区分 I／II／常用系ケーブル処理室消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－45 図 区分IIIケーブル処理室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－46 図 DC125V 代替バッテリ室消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－2－47 図第 9－3－2－2－2－48 図第 9－3－2－2－2－49 図第 9－3－2－2－2－50 図第 9－3－2－2－2－51 図第 9－3－2－2－2－52 図第 9－3－2－2－2－53 図第 9－3－2－2－2－54 図第 9－3－2－2－2－55 図第 9－3－2－2－2－56 図第 9－3－2－2－2－57 図第 9－3－2－2－2－58 図

T．S（区分 II ケーブル処理室北）消火系 ハロン 1301 貯蔵容器構造図 PCPS 区分 I エリア消火系 ハロン 1301 貯蔵容器構造図

PCPS 区分IIエリア消火系 ハロン 1301 貯蔵容器構造図
PCPS 区分IIIエリア消火系 ハロン 1301 貯蔵容器構造図
PCPS 区分 NONエリア消火系 ハロン 1301 貯蔵容器構造図
緊急対策室他消火系 ハロン 1301 貯蔵容器構造図
緊急時対策所軽油タンク（A）室消火系 ハロン 1301 貯蔵容器構造図
緊急時対策所軽油タンク（B）室消火系 ハロン 1301 貯蔵容器構造図
緊急時対策所軽油タンク（C）室消火系 ハロン 1301 貯蔵容器構造図
E / B 電気品室消火系 ハロン 1301 貯蔵容器構造図
R／B MCC 2SB－1 消火系 ハロン 1301 貯蔵容器構造図
SLC ポンプ（A）（B）消火系 ハロン 1301 貯蔵容器構造図

第 9－3－2－2－2－59 図 HECW 冷凍機・ポンプ（B）（D）消火系 ハロン 1301 貯蔵容器構造図第 9－3－2－2－3－1 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 機器の配置を明示 した図面

第 9－3－2－2－3－2 図 LPCSポンプ・ラック室／HPCS ポンプ・ラック室消火系 機器の配置を明示した図面

第 9－3－2－2－3－3 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 機器の配置を明示した図面

第 9－3－2－2－3－4 図 RHR（C）室／RCIC タービンポンプ室消火系 機器の配置を明示した図面

第 9－3－2－2－3－5 図 RCW 熱交換器・ポンプ（A）（C）室消火系 機器の配置を明示した図面第 9－3－2－2－3－6 図 B2F 南側通路／バルブラッピング室消火系 機器の配置を明示した図面

第 9－3－2－2－3－7 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 機器の配置を明示した図面

第9－3－2－2－3－8 図 CRDポンプ室消火系 機器の配置を明示した図面
第 9－3－2－2－3－9 図 MUWC ポンプ室消火系 機器の配置を明示した図面
第 9－3－2－2－3－10 図 B2F／B1F／1F 西側通路／排風機室消火系 機器の配置を明示した図面

第 9－3－2－2－3－11 図 PLR－VVVF 室／区分II非常用電気品室消火系 機器の配置を明示した図面
第 9－3－2－2－3－12－1 図 B1F インナー通路消火系 機器の配置を明示した図面（その1）
第9－3－2－2－3－12－2 図 B1F インナー通路消火系 機器の配置を明示した図面（その 2）
第 9－3－2－2－3－12－3 図 B1F インナー通路消火系 機器の配置を明示した図面（その3）
第9－3－2－2－3－12－4 図 B1F インナー通路消火系 機器の配置を明示した図面（その4）
第 9－3－2－2－3－13 図 DC RCIC MCC 室消火系 機器の配置を明示した図面
第 9－3－2－2－3－14 図 区分 I 非常用電気品室消火系 機器の配置を明示した図面
第9－3－2－2－3－15 図 D／G（A）室／（B）室／D／G 補機（A）室／（B）室消火系 機器の配置を明示 した図面

第9－3－2－2－3－16 図 B1F ハッチ室消火系 機器の配置を明示した図面
第 9－3－2－2－3－17 図 区分IIIHPCS 電気品室消火系 機器の配置を明示した図面第9－3－2－2－3－18 図 区分 II 非常用 MCC 室消火系 機器の配置を明示した図面第 9－3－2－2－3－19 図 導電率計ラック室消火系 機器の配置を明示した図面第 9－3－2－2－3－20 図 FPC ポンプ（A）（B）室消火系 機器の配置を明示した図面第9－3－2－2－3－21 図 HWH 熱交換器・ポンプ室消火系 機器の配置を明示した図面

第9－3－2－2－3－22 図 緊急用電気品室（1）／（2）消火系 機器の配置を明示した図面
第9－3－2－2－3－23 図 区分 I 非常用D／G 制御盤室消火系 機器の配置を明示した図面
第 9－3－2－2－3－24 図 区分III非常用 D／G 制御盤室消火系 機器の配置を明示した図面第 9－3－2－2－3－25 図第 9－3－2－2－3－26 図 ディーゼル発電機（HPCS）室消火系 機器の配置を明示した図面区分 II 非常用 D／G 制御盤室／R－12 階段室消火系 機器の配置を明示 した図面

第9－3－2－2－3－27 区図 区分IIIバッテリ室消火系 機器の配置を明示した図面第 9－3－2－2－3－28 図第 9－3－2－2－3－29 図第 9－3－2－2－3－30 図第 9－3－2－2－3－31 図第 9－3－2－2－3－32 図第 9－3－2－2－3－33 図第 9－3－2－2－3－34 図第 9－3－2－2－3－35 図送風機•緊急用電気品室消火系 機器の配置を明示した図面燃料デイタンク（B）室消火系 機器の配置を明示した図面 SOL 冷凍機室消火系 機器の配置を明示した図面 HECW 冷凍機・ポンプ（A）（C）室消火系 機器の配置を明示した図面燃料デイタンク（A）室消火系 機器の配置を明示した図面燃料デイタンク（HPCS）室消火系 機器の配置を明示した図面空調機械（A）室／（B）室消火系 機器の配置を明示した図面 250V 直流主母線盤室／ 125 V （A）－ 1 室消火系 機器の配置を明示した図面

第 9－3－2－2－3－36 図 DC250V バッテリ室消火系 機器の配置を明示した図面第 9－3－2－2－3－37 図 計測制御電源（B）室消火系 機器の配置を明示した図面第 9－3－2－2－3－38図 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 機器の配置 を明示した図面
第 9－3－2－2－3－39 図 常用•共通 M／C•P／C 室消火系 機器の配置を明示した図面第 9－3－2－2－3－40 図 計測制御電源（A）室消火系 機器の配置を明示した図面第 9－3－2－2－3－41 図 T．S（計測制御電源（B）室北）消火系 機器の配置を明示した図面第 9－3－2－2－3－42 図 T．S（更衣室北）消火系 機器の配置を明示した図面第 9－3－2－2－3－43 図 T．S（更衣室西）消火系 機器の配置を明示した図面第 9－3－2－2－3－44 図 区分 I／II／常用系ケーブル処理室消火系 機器の配置を明示した図面

第9－3－2－2－3－45 区図 区分IIIケーブル処理室消火系 機器の配置を明示した図面第9－3－2－2－3－46 図 DC125V 代替バッテリ室消火系 機器の配置を明示した図面第 9－3－2－2－3－47 図 T．S（区分 II ケーブル処理室北）消火系 機器の配置を明示した図面第 9－3－2－2－3－48 図第 9－3－2－2－3－49 図第 9－3－2－2－3－50 図第9－3－2－2－3－51 図 PCPS 区分 NONエリア消火系 機器の配置を明示した図面

第 9－3－2－2－3－52 図 緊急対策室他消火系 機器の配置を明示した図面
第 9－3－2－2－3－53 図 緊急時対策所軽油タンク（A）室消火系 機器の配置を明示した図面
第 9－3－2－2－3－54 図 緊急時対策所軽油タンク（B）室消火系 機器の配置を明示した図面
第 9－3－2－2－3－55 図 緊急時対策所軽油タンク（C）室消火系 機器の配置を明示した図面
第 9－3－2－2－3－56 図 E／B 電気品室消火系 機器の配置を明示した図面
第 9－3－2－2－3－57 図 R／B MCC 2SB－1 消火系 機器の配置を明示した図面
第 9－3－2－2－3－58 図 SLC ポンプ（A）（B）消火系 機器の配置を明示した図面
第 9－3－2－2－3－59 図 HECW 冷凍機・ポンプ（B）（D）消火系 機器の配置を明示した図面
第 9－3－2－2－4－1－1 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 主配管の配置を明示した図面（その1）

第 9－3－2－2－4－1－2 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 主配管の配置を明示した図面（その 2 ）

第 9－3－2－2－4－1－3 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 主配管の配置を明示した図面（その 3）

第 9－3－2－2－4－2－1 図 LPCSポンプ・ラック室／HPCS ポンプ・ラック室消火系 主配管の配置を明示した図面（その1）

第9－3－2－2－4－2－2 図 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 主配管の配置を明示した図面（その 2）

第 9－3－2－2－4－3－1 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その 1）
第 9－3－2－2－4－3－2 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その 2）

第 9－3－2－2－4－3－3 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その3）

第 9－3－2－2－4－3－4 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その4）

第 9－3－2－2－4－3－5 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その5）

第 9－3－2－2－4－3－6 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その6）

第 9－3－2－2－4－3－7 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その7）

第 9－3－2－2－4－3－8 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その8）

第 9－3－2－2－4－3－9 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その9）

第9－3－2－2－4－3－10 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その10）

第9－3－2－2－4－3－11図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管の配置を明示 した図面（その11）

第 9－3－2－2－4－4－1 図 RHR（C）室／RCIC タービンポンプ室消火系 主配管の配置を明示し た図面（その1）

第 9－3－2－2－4－4－2 図 RHR（C）室／RCIC タービンポンプ室消火系 主配管の配置を明示し た図面（その 2）

第 9－3－2－2－4－4－3 図 RHR（C）室／RCIC タービンポンプ室消火系 主配管の配置を明示し た図面（その3）

第 9－3－2－2－4－4－4 図 RHR（C）室／RCIC タービンポンプ室消火系 主配管の配置を明示し た図面（その4）

第 9－3－2－2－4－4－5 図 RHR（C）室／RCIC タービンポンプ室消火系 主配管の配置を明示し た図面（その5）

第 9－3－2－2－4－5－1 図 RCW 熱交換器・ポンプ（A）（C）室消火系 主配管の配置を明示した図面（その 1）
第 9－3－2－2－4－5－2 図 RCW 熱交換器・ポンプ（A）（C）室消火系 主配管の配置を明示した図面（その 2）
第 9－3－2－2－4－6－1 図 B2F 南側通路／バルブラッピング室消火系 主配管の配置を明示し た図面（その 1）

第 9－3－2－2－4－6－2 図 B2F 南側通路／バルブラッピング室消火系 主配管の配置を明示し た図面（その 2 ）

第 9－3－2－2－4－6－3 図 B2F 南側通路／バルブラッピング室消火系 主配管の配置を明示し た図面（その3）

第 9－3－2－2－4－7－1 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 主配管の配置を明示し た図面（その 1）

第 9－3－2－2－4－7－2 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 主配管の配置を明示し た図面（その 2）

第 9－3－2－2－4－7－3 図 IA•SA 空気圧縮機室／B2F 東側通路消火系 主配管の配置を明示し た図面（その 3）

第 9－3－2－2－4－8 図 CRD ポンプ室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－9 図 MUWC ポンプ室消火系 主配管の配置を明示した図面

第 9－3－2－2－4－10－1 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その 1）

第 9－3－2－2－4－10－2 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その 2）

第 9－3－2－2－4－10－3 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その3）

第 9－3－2－2－4－10－4 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その4）

第9－3－2－2－4－10－5 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その5）

第 9－3－2－2－4－10－6 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その6）

第 9－3－2－2－4－10－7 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その7）

第9－3－2－2－4－10－8 図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示し た図面（その8）

第 9－3－2－2－4－11－1 図 PLR－VVVF 室／区分II非常用電気品室消火系 主配管の配置を明示 した図面（その1）

第 9－3－2－2－4－11－2 図 PLR－VVVF 室／区分II非常用電気品室消火系 主配管の配置を明示 した図面（その 2）
第 9－3－2－2－4－11－3 図 PLR－VVVF 室／区分 II 非常用電気品室消火系 主配管の配置を明示 した図面（その3）
第 9－3－2－2－4－11－4 図 PLR－VVVF 室／区分II非常用電気品室消火系 主配管の配置を明示 した図面（その4）
第 9－3－2－2－4－11－5 図 PLR－VVVF 室／区分II非常用電気品室消火系 主配管の配置を明示 した図面（その5）
第 9－3－2－2－4－12－1 図 B1F インナー通路消火系
第9－3－2－2－4－12－2 図 B1F インナー通路消火系
第 9－3－2－2－4－12－3 図 B1F インナー通路消火系
第 9－3－2－2－4－12－4 図 B1F インナー通路消火系
第 9－3－2－2－4－12－5 図 B1F インナー通路消火系
第 9－3－2－2－4－12－6 図 B1F インナー通路消火系
第 9－3－2－2－4－12－7 図 B1F インナー通路消火系
第 9－3－2－2－4－12－8 図 B1F インナー通路消火系 主配管の配置を明示した図面（その 8）

第9－3－2－2－4－13－1 図 DC RCIC MCC 室消火系 主配管の配置を明示した図面（その 1）
第 9－3－2－2－4－13－2 図 DC RCIC MCC 室消火系 主配管の配置を明示した図面（その 2）
第 9－3－2－2－4－14－1 図 区分 I 非常用電気品室消火系 主配管の配置を明示した図面（そ の 1）

第 9－3－2－2－4－14－2 図 区分 I 非常用電気品室消火系 主配管の配置を明示した図面（そ の 2）

第 9－3－2－2－4－15－1 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 1）

第 9－3－2－2－4－15－2 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 2）

第9－3－2－2－4－15－3 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その3）

第9－3－2－2－4－15－4 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その4）

第 9－3－2－2－4－15－5 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その5）
第9－3－2－2－4－15－6 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その6）

第 9－3－2－2－4－15－7 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その7）
第 9－3－2－2－4－15－8 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その8）

第 9－3－2－2－4－15－9 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その9）

第 9－3－2－2－4－15－10 図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置 を明示した図面（その10）

第 9－3－2－2－4－16 図 B1F ハッチ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－17 図 区分IIIHPCS 電気品室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－18－1 図 区分 II 非常用 MCC 室消火系 主配管の配置を明示した図面（その 1）

第 9－3－2－2－4－18－2 図 区分 II 非常用 MCC 室消火系 主配管の配置を明示した図面（その 2）

第 9－3－2－2－4－18－3 図 区分 II 非常用 MCC 室消火系 主配管の配置を明示した図面（その 3）

第 9－3－2－2－4－19 図 導電率計ラック室消火系 主配管の配置を明示した図面
第9－3－2－2－4－20 図 FPC ポンプ（A）（B）室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－21－1 図 HWH 熱交換器・ポンプ室消火系 主配管の配置を明示した図面（そ の 1）

第 9－3－2－2－4－21－2 図 HWH 熱交換器・ポンプ室消火系 主配管の配置を明示した図面（そ の 2）

第9－3－2－2－4－22－1 図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（そ の 1）

第9－3－2－2－4－22－2 図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（そ の 2）

第 9－3－2－2－4－22－3 図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（そ の 3）

第 9－3－2－2－4－22－4 図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（そ の 4）

第9－3－2－2－4－23 図 区分 I 非常用 D／G 制御盤室消火系 主配管の配置を明示した図面第 9－3－2－2－4－24 図 区分III非常用D／G 制御盤室消火系 主配管の配置を明示した図面第9－3－2－2－4－25 図 ディーゼル発電機（HPCS）室消火系 主配管の配置を明示した図面第 9－3－2－2－4－26－1 図 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系 主配管の配置を明示した図面（その 1）

第 9－3－2－2－4－26－2 図 区分II非常用 D／G 制御盤室／R－12 階段室消火系 主配管の配置を明示した図面（その 2）

第 9－3－2－2－4－26－3 図 区分II非常用 D／G 制御盤室／R－12 階段室消火系 主配管の配置を明示した図面（その 3 ）

第 9－3－2－2－4－27 図 区分IIIバッテリ室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－28－1 図 送風機•緊急用電気品室消火系 主配管の配置を明示した図面（そ の 1）

第9－3－2－2－4－28－2 図 送風機•緊急用電気品室消火系 主配管の配置を明示した図面（そ の 2）

第 9－3－2－2－4－29 図 燃料デイタンク（B）室消火系 主配管の配置を明示した図面第 9－3－2－2－4－30－1 図 SOL 冷凍機室消火系 主配管の配置を明示した図面（その1）第9－3－2－2－4－30－2 図 SOL 冷凍機室消火系 主配管の配置を明示した図面（その 2）第 9－3－2－2－4－31－1 図 HECW 冷凍機・ポンプ（A）（C）室消火系 主配管の配置を明示した図面（その 1）

第 9－3－2－2－4－31－2 図 HECW 冷凍機・ポンプ（A）（C）室消火系 主配管の配置を明示した図

面（その 2）
第9－3－2－2－4－32 図 燃料デイタンク（A）室消火系 主配管の配置を明示した図面第9－3－2－2－4－33 図 燃料デイタンク（HPCS）室消火系 主配管の配置を明示した図面第 9－3－2－2－4－34－1 図 空調機械（A）室／（B）室消火系 主配管の配置を明示した図面（そ の 1）

第 9－3－2－2－4－34－2 図 空調機械（A）室／（B）室消火系 主配管の配置を明示した図面（そ の 2）
第 9－3－2－2－4－35－1 図 250 V 直流主母線盤室／ 125 V （A）－1 室消火系 主配管の配置を明示 した図面（その1）
第 9－3－2－2－4－35－2 図 250 V 直流主母線盤室 $/ 125 \mathrm{~V}$（A）－ 1 室消火系 主配管の配置を明示 した図面（その2）
第 9－3－2－2－4－35－3 図 250 V 直流主母線盤室／ 125 V （A）－1 室消火系 主配管の配置を明示 した図面（その3）
第 9－3－2－2－4－35－4 図 250 V 直流主母線盤室／ 125 V （A）－1 室消火系 主配管の配置を明示 した図面（その4）
第9－3－2－2－4－36 図 DC250V バッテリ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－37－1 図 計測制御電源（B）室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－37－2 図 計測制御電源（B）室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－38－1図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－38－2図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－38－3図 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－38－4図 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－38－5図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その5）
第9－3－2－2－4－38－6図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その6）
第9－3－2－2－4－38－7図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その7）
第9－3－2－2－4－38－8図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その8）

第 9－3－2－2－4－39－1 図 常用•共通 $M / C \cdot P / C$ 室消火系 主配管の配置を明示した図面（その
1）
第 9－3－2－2－4－39－2 図 常用•共通 M／C•P／C 室消火系 主配管の配置を明示した図面（その 2）

第9－3－2－2－4－40－1 図 計測制御電源（A）室消火系 主配管の配置を明示した図面（その1）第9－3－2－2－4－40－2図 計測制御電源（A）室消火系 主配管の配置を明示した図面（その 2）第 9－3－2－2－4－41－1 図 T．S（計測制御電源（B）室北）消火系 主配管の配置を明示した図面 （その 1）

第9－3－2－2－4－41－2 図 T．S（計測制御電源（B）室北）消火系 主配管の配置を明示した図面 （その 2）

第 9－3－2－2－4－42 図 T．S（更衣室北）消火系 主配管の配置を明示した図面
第9－3－2－2－4－43－1 図 T．S（更衣室西）消火系 主配管の配置を明示した図面（その 1）
第9－3－2－2－4－43－2 図 T．S（更衣室西）消火系 主配管の配置を明示した図面（その 2）
第 9－3－2－2－4－44－1 図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示 した図面（その1）
第 9－3－2－2－4－44－2 図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示 した図面（その 2）
第 9－3－2－2－4－44－3 図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示 した図面（その3）
第 9－3－2－2－4－44－4 図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示 した図面（その4）
第 9－3－2－2－4－44－5 図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示 した図面（その5）

第9－3－2－2－4－45 図 区分IIIケーブル処理室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－46 図 DC125V 代替バッテリ室消火系 主配管の配置を明示した図面
第 9－3－2－2－4－47 図 T．S（区分 II ケーブル処理室北）消火系 主配管の配置を明示した図面

第 9－3－2－2－4－48 図 PCPS 区分 I エリア消火系 主配管の配置を明示した図面第 9－3－2－2－4－49 図 PCPS 区分IIエリア消火系 主配管の配置を明示した図面第 9－3－2－2－4－50 図 PCPS 区分IIIエリア消火系 主配管の配置を明示した図面第 9－3－2－2－4－51－1 図 PCPS 区分 NON エリア消火系 主配管の配置を明示した図面（その 1）

第 9－3－2－2－4－51－2 図 PCPS 区分 NON エリア消火系 主配管の配置を明示した図面（その 2）

第 9－3－2－2－4－51－3 図 PCPS 区分 NON エリア消火系 主配管の配置を明示した図面（その 3）

第 9－3－2－2－4－52－1 図 緊急対策室他消火系 主配管の配置を明示した図面（その1）第 9－3－2－2－4－52－2 図 緊急対策室他消火系第 9－3－2－2－4－52－3 図 緊急対策室他消火系第 9－3－2－2－4－52－4 図緊急対策室他消火系第 9－3－2－2－4－52－5 図緊急対策室他消火系第 9－3－2－2－4－52－6 図 緊急対策室他消火系第 9－3－2－2－4－52－7 図 緊急対策室他消火系第 9－3－2－2－4－52－8 図 緊急対策室他消火系第 9－3－2－2－4－52－9 図 緊急対策室他消火系 主配管の配置を明示した図面（その9）第 9－3－2－2－4－52－10 図 緊急対策室他消火系 主配管の配置を明示した図面（その10）第 9－3－2－2－4－53 図 緊急時対策所軽油タンク（A）室消火系 主配管の配置を明示した図面第9－3－2－2－4－54 図 緊急時対策所軽油タンク（B）室消火系 主配管の配置を明示した図面第 9－3－2－2－4－55 図 緊急時対策所軽油タンク（C）室消火系 主配管の配置を明示した図面第 9－3－2－2－4－56 図 E／B 電気品室消火系 主配管の配置を明示した図面第 9－3－2－2－4－57 図 R／B MCC 2SB－1 消火系 主配管の配置を明示した図面第 9－3－2－2－4－58－1 図 SLCポンプ（A）（B）消火系 主配管の配置を明示した図面（その 1）第9－3－2－2－4－58－2 図 SLC ポンプ（A）（B）消火系 主配管の配置を明示した図面（その 2）第 9－3－2－2－4－59－1 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 1）
第 9－3－2－2－4－59－2 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 2）
第 9－3－2－2－4－59－3 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 3）

第 9－3－2－2－4－59－4 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 4）

第 9－3－2－2－4－59－5 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その5）

第 9－3－2－2－4－59－6 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 6）

第 9－3－2－2－4－59－7 図 HECW 冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面 （その 7）

VI－1－1－4－8－2－1－2－1－1 設定根拠に関する説明書 （RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	8

【設定根拠】
（概要）
火災防護設備として設置するRHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系のハ ロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数
RHR（A）室	3	
RHR（B）室	3	8
B3F 南側通路•R／A HCW• LCW サンプ室	7	

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要
なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－1－2 設定根拠に関する説明書 （RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系主配管（常設））

名	称	ハロン 1301 貯蔵容器 RHR ポンプ（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,60.5,89.1$

【設定根拠】
（概要）
本配管は，RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系のハロン 1301 貯蔵容器 と RHR ポンプ（B）室を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	RHRポンプ（A）室分岐点 RHR ポンプ（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42.7

【設定根拠】
（概要）
本配管は，RHR ポンプ（A）室分岐点と RHR ポンプ（A）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B3F 南側通路，R／A HCW•LCWサンプ室分岐点 B3F 南側通路，R／A HCW•LCW サンプ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	60.5

【設定根拠】
（概要）
本配管は，B3F 南側通路，R／A HCW•LCW サンプ室分岐点と B3F 南側通路，R／A HCW• LCW サンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するため に設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－2－1 設定根拠に関する説明書 （LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系 ハロン 1301 貯蔵容器）

		称
名	ハロン 1301 貯蔵容器	
容	$\mathrm{L} /$ 個	$70 以 上 ~(70)$
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個	数	-

【設定根拠】
（概要）
火災防護設備として設置するLPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－2－2 設定根拠に関する説明書
（LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系
主配管（常設））

名	称	ハロン 1301 貯蔵容器 LPCSポンプ室，LPCS計装ラック室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76．3，89．1

【設定根拠】
（概要）
本配管は，LPCSポンプ・ラック室／HPCS ポンプ・ラック室消火系のハロン 1301 貯蔵容器と LPCS ポンプ室，LPCS 計装ラック室を接続する配管であり，発電所内で発生 した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm ， 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HPCS ポンプ室，HPCS 計装ラック室分岐点 HPCSポンプ室，HPCS計装ラック室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，HPCS ポンプ室，HPCS 計装ラック室分岐点と HPCS ポンプ室，HPCS 計装ラ ック室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－3－1 設定根拠に関する説明書 （RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	13

【設定根拠】
（概要）
火災防護設備として設置するRCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－3－2 設定根拠に関する説明書

（RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 HPCW 熱交換器・ポンプ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76．3，89．1，114．3

【設定根拠】
（概要）
本配管は，RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系のハロン 1301 貯蔵容器と HPCW 熱交換器・ポンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 ひび消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm ， $89.1 \mathrm{~mm}, 114.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B2F ハッチ室分岐点 B2F ハッチ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42.7

【設定根拠】
（概要）
本配管は，B2F ハッチ室分岐点とB2F ハッチ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	$\begin{gathered} \text { R/B NSDサンプ室分岐点 } \\ \text { ~ } \\ \text { R/B NSD サンプ室 } \end{gathered}$
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42.7

【設定根拠】
（概要）
本配管は，R／B NSD サンプ室分岐点とR／BNSD サンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊ 3 に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	RCW熱交換器（B）（D）室，RCWポンプ（B）（D）室分岐点 RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	114.3

【設定根拠】
（概要）
本配管は，RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室分岐点と RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 114.3 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－4－1 設定根拠に関する説明書

 （RHR（C）室／RCICタービンポンプ室消火系 ハロン 1301 貯蔵容器）| | | 称 |
| :--- | :---: | :---: |
| 名 | ハロン 1301 貯蔵容器 | |
| 容 | 量 | $\mathrm{L} /$ 個 |
| 最高使用圧力 | MPa | 70 以上 (70) |
| 最高使用温度 | ${ }^{\circ} \mathrm{C}$ | 5.2 |
| 個 | 数 | - |

【設定根拠】
（概要）
火災防護設備として設置する RHR（C）室／RCIC タービンポンプ室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である $70 \mathrm{~L} /$ 個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より1個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（RHR（C）室／RCICタービンポンプ室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－4－2 設定根拠に関する説明書

（RHR（C）室／RCIC タービンポンプ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 RCICタービンポンプ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48．6，89．1

【設定根拠】
（概要）
本配管は，RHR（C）室／RCICタービンポンプ室消火系のハロン 1301 貯蔵容器と RCIC タービンポンプ室を接続する配管であり，発電所内で発生した火災を早期に消火する ために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm ， 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

名	RHRポンプ（C）室分岐点	

【設定根拠】
（概要）
本配管は，RHRポンプ（C）室分岐点と RHR ポンプ（C）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。
VI-1-1-4-8-2-1-2-5-1 設定根拠に関する説明書
（RCW 熱交換器・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器）

		称
名	ハロン 1301 貯蔵容器	
容	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2
最高使用温度		${ }^{\circ} \mathrm{C}$
個	数	-

【設定根拠】
（概要）
火災防護設備として設置する RCW 熱交換器・ポンプ（A）（C）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 13 個の貯蔵容器を設置する設計と する。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－5－2 設定根拠に関する説明書

（RCW 熱交換器・ポンプ（A）（C）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 RCW 熱交換器・ポンプ（A）（C）室
最高使用圧力	MPa	5． 2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，114．3

【設定根拠】
（概要）
本配管は，RCW 熱交換器・ポンプ（A）（C）室消火系のハロン 1301 貯蔵容器と RCW 熱交換器・ポンプ（A）（C）室を接続する配管であり，発電所内で発生した火災を早期に消火 するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 114.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－6－1 設定根拠に関する説明書
（B2F 南側通路／バルブラッピング室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	10

【設定根拠】
（概要）
火災防護設備として設置する B2F 南側通路／バルブラッピング室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である $70 \mathrm{~L} /$ 個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。 ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（B2F 南側通路／バルブラッピング室消火系）

消火対象 消防法で要求される 必要貯蔵容器個数＊ 設置個数		
B2F 南側通路 RHR（A）計装ラック室	9	10
バルブラッピング室	6	

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－6－2 設定根拠に関する説明書

（B2F 南側通路／バルブラッピング室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 バルブラッピング室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$60.5,76.3,89.1$

【設定根拠】
（概要）
本配管は，B2F 南側通路／バルブラッピング室消火系のハロン 1301 貯蔵容器とバル ブラッピング室を接続する配管であり，発電所内で発生した火災を早期に消火するた めに設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $60.5 \mathrm{~mm}, ~ 76.3 \mathrm{~mm}$ ， 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B2F南側通路，RHR（A）計装ラック室分岐点 B2F 南側通路，RHR（A）計装ラック室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，B2F 南側通路，RHR（A）計装ラック室分岐点と B2F 南側通路，RHR（A）計装ラ ック室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－7－1 設定根拠に関する説明書

 （IA•SA 空気圧縮機室／B2F 東側通路消火系 ハロン 1301 貯蔵容器）| 名 | | 称 | ハロン 1301 貯蔵容器 |
| :--- | :---: | :---: | :---: |
| 容 | 量 | $\mathrm{L} /$ 個 | $70 以 上 ~(70)$ |
| 最高使用圧力 | MPa | 5.2 | |
| 最高使用温度 | ${ }^{\circ} \mathrm{C}$ | 40 | |
| 個 | 数 | - | 8 |

【設定根拠】
（概要）
火災防護設備として設置する IA•SA 空気圧縮機室／B2F 東側通路消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。

ハロン 1301 貯蔵容器の設置個数を表 1 に示す。

表1 ハロン 1301 貯蔵容器設置個数
（IA•SA 空気圧縮機室／B2F 東側通路消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記 $*: ~$ 消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－7－2 設定根拠に関する説明書

（IA•SA 空気圧縮機室／B2F 東側通路消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 $\mathrm{IA} \cdot \mathrm{SA}$ 空気圧縮機（A）（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76．3，89．1

【設定根拠】
（概要）
本配管は，IA•SA 空気圧縮機室／B2F 東側通路消火系のハロン 1301 貯蔵容器と IA• SA 空気圧縮機（A）（B）室を接続する配管であり，発電所内で発生した火災を早期に消火 するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm ， 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B2F 東側通路分岐点 B2F 東側通路
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42.7

【設定根拠】
（概要）
本配管は，B2F 東側通路分岐点と B2F 東側通路を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－8－1 設定根拠に関する説明書

（CRD ポンプ室消火系 ハロン 1301 貯蔵容器）

		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	5

【設定根拠】
（概要）
火災防護設備として設置する CRD ポンプ室消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 5 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－8－2 設定根拠に関する説明書
 （CRD ポンプ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 CRD ポンプ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 76.3

【設定根拠】
（概要）
本配管は，CRD ポンプ室消火系のハロン 1301 貯蔵容器と CRD ポンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 76.3 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－9－1 設定根拠に関する説明書

（MUWC ポンプ室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	3

【設定根拠】
（概要）
火災防護設備として設置する MUWC ポンプ室消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 3 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－9－2 設定根拠に関する説明書

 （MUWC ポンプ室消火系 主配管（常設））| 名 | 称 | ハロン 1301 貯蔵容器
 MUWC ポンプ室 |
| :---: | :---: | :---: |
| 最高使用圧力 | MPa | 5.2 |
| 最高使用温度 | ${ }^{\circ} \mathrm{C}$ | 40 |
| 外 径 | mm | 89．1， 48.6 |

【設定根拠】
（概要）
本配管は，MUWC ポンプ室消火系のハロン 1301 貯蔵容器と MUWC ポンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内 ${ }^{33}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 48.6 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－10－1 設定根拠に関する説明書 （ $\mathrm{B} 2 \mathrm{~F} / \mathrm{B} 1 \mathrm{~F} / 1 \mathrm{~F}$ 西側通路／排風機室消火系 ハロン 1301 貯蔵容器）

名		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	$70 以 上(70)$
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	32

【設定根拠】
（概要）
火災防護設備として設置する $\mathrm{B} 2 \mathrm{~F} / \mathrm{B} 1 \mathrm{~F} / 1 \mathrm{~F}$ 西側通路／排風機室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（B2F／B1F／1F 西側通路／排風機室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－10－2 設定根拠に関する説明書
（B2F／B1F／1F 西側通路／排風機室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 \sim
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	幾室

【設定根拠】
（概要）
本配管は，B2F／B1F／1F 西側通路／排風機室消火系のハロン 1301 貯蔵容器と排風機室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 89． 1 mm ，139． 8 mm とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B1F 西側通路分岐点 B1F 西側通路
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	114.3

【設定根拠】
（概要）
本配管は，B1F 西側通路分岐点と B1F 西側通路を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 114．3mmとする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	B2F 西側通路分岐点 B2F 西側通路
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，B2F 西側通路分岐点とB2F 西側通路を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

【設定根拠】
（概要）
本配管は， $1 F$ 西側通路分岐点と $1 F$ 西側通路を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 89． 1 mm ， 114.3 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－11－1 設定根拠に関する説明書 （PLR－VVVF 室／区分 II 非常用電気品室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	15

【設定根拠】
（概要）
火災防護設備として設置する PLR－VVVF 室／区分II非常用電気品室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（PLR－VVVF 室／区分 II 非常用電気品室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－11－2 設定根拠に関する説明書 （PLR－VVVF 室／区分 II 非常用電気品室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 区分 II 非常用電気品室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76．3，89．1

【設定根拠】
（概要）
本配管は，PLR－VVVF 室／区分II非常用電気品室消火系のハロン 1301 貯蔵容器と区分II非常用電気品室を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm ， 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	静止型PLRポンプ電源装置室分岐点静止型 PLR ポンプ電源装置室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89.1

【設定根拠】
（概要）
本配管は，静止型 PLRポンプ電源装置室分岐点と静止型 PLRポンプ電源装置室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 89．1mmとする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－12－1 設定根拠に関する説明書
（B1F インナー通路消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最 高 使 用 圧 力	MPa	5.2
最 高 使 用 温 度	${ }^{\circ} \mathrm{C}$	40
個 数	－	68

【設定根拠】
（概要）
火災防護設備として設置するB1F インナー通路消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とする。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために必要 な個数を設置する。また，容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より多く貯蔵容器を設置する設計とする。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－12－2 設定根拠に関する説明書
（B1F インナー通路消火系 主配管（常設））

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，B1F インナー通路消火系のハロン1301貯蔵容器とB1F インナー通路（1） を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，B1F インナー通路消火系のハロン1301貯蔵容器とB1F インナー通路（2） を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，B1F インナー通路消火系のハロン1301貯蔵容器とB1F インナー通路（3） を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm ，114． 3 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，B1F インナー通路消火系のハロン 1301 貯蔵容器と B1F インナー通路（4） を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－13－1 設定根拠に関する説明書
（DC RCIC MCC 室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する DC RCIC MCC 室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－13－2 設定根拠に関する説明書
（DC RCIC MCC 室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器

【設定根拠】
（概要）
本配管は，DC RCIC MCC 室消火系のハロン 1301 貯蔵容器と DC RCIC MCC 室を接続す る配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－14－1 設定根拠に関する説明書 （区分 I 非常用電気品室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度		${ }^{\circ} \mathrm{C}$	40
個	数	-	13

【設定根拠】
（概要）
火災防護設備として設置する区分 I 非常用電気品室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 13 個の貯蔵容器を設置する設計と する。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－14－2 設定根拠に関する説明書
（区分I非常用電気品室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 区分 I 非常用電気品室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89.1

【設定根拠】
（概要）
本配管は，区分 I 非常用電気品室消火系のハロン 1301 貯蔵容器と区分 I 非常用電気品室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－15－1 設定根拠に関する説明書 （ $\mathrm{D} / \mathrm{G}(\mathrm{A})$ 室／（B）室／D／G補機（A）室／（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	11

【設定根拠】
（概要）
火災防護設備として設置する D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系の八 ロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（D／G（A）室／（B）室／D $/ \mathrm{G}$ 補機（ A ）室／（ B ）室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数
ディーゼル発電機（A）室	10	
ディーゼル発電機（B）室	10	11
D $/ G$ 補機 (A) 室	5	
D / G 補機（B）室	5	

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－15－2 設定根拠に関する説明書
（ $\mathrm{D} / \mathrm{G}(\mathrm{A})$ 室／（B）室／D／G補機（A）室／（B）室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 D / G 補機（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$60.5,76.3,89.1$

【設定根拠】
（概要）
本配管は， $\mathrm{D} / \mathrm{G}(\mathrm{A})$ 室／（B）室／D／G補機（A）室／（B）室消火系のハロン 1301 貯蔵容器 と D / G 補機（B）室を接続する配管であり，発電所内で発生した火災を早期に消火する ために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $60.5 \mathrm{~mm}, ~ 76.3 \mathrm{~mm}$ ， 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	ディーゼル発電機（B）室分岐点 ディーゼル発電機（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，ディーゼル発電機（B）室分岐点とディーゼル発電機（B）室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	ディーゼル発電機（A）室分岐点 ディーゼル発電機（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，ディーゼル発電機（A）室分岐点とディーゼル発電機（A）室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	D／G補機（A）室分岐点 D／G補機（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	60.5

【設定根拠】
（概要）
本配管は，D / G 補機（A）室分岐点と D / G 補機（A）室を接続する配管であり，発電所内 で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊${ }^{*}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－16－1 設定根拠に関する説明書
（B1Fハッチ室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	4

【設定根拠】
（概要）
火災防護設備として設置するB1Fハッチ室消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 4 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－16－2 設定根拠に関する説明書
（B1Fハッチ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 B1Fハッチ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 76.3

【設定根拠】
（概要）
本配管は，B1F ハッチ室消火系のハロン 1301 貯蔵容器とB1F ハッチ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 76.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－17－1 設定根拠に関する説明書 （区分IIIHPCS 電気品室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	6

【設定根拠】
（概要）
火災防護設備として設置する区分IIIHPCS 電気品室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 6 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－17－2 設定根拠に関する説明書 （区分IIIHPCS 電気品室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器区分IIIHPCS 電気品室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89.1

【設定根拠】
（概要）
本配管は，区分IIIHPCS 電気品室消火系のハロン 1301 貯蔵容器と区分IIIHPCS 電気品室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89． 1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－18－1 設定根拠に関する説明書 （区分II非常用 MCC 室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	4

【設定根拠】
（概要）
火災防護設備として設置する区分II非常用 MCC 室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 4 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－18－2 設定根拠に関する説明書 （区分II非常用MCC 室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器区分 II 非常用 MCC 室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，76．3

【設定根拠】
（概要）
本配管は，区分II非常用 MCC 室消火系のハロン 1301 貯蔵容器と区分II非常用 MCC室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 76.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－19－1 設定根拠に関する説明書 （導電率計ラック室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する導電率計ラック室消火系のハロン1301貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 L /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－19－2 設定根拠に関する説明書 （導電率計ラック室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器導電率計ラック室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，導電率計ラック室消火系のハロン 1301 貯蔵容器と導電率計ラック室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm ， 34.0 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－20－1 設定根拠に関する説明書 （FPC ポンプ（A）（B）室消火系 ハロン 1301 貯蔵容器）

		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	$70 以 上 ~(70)$
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	2

【設定根拠】
（概要）
火災防護設備として設置する FPC ポンプ（A）（B）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 2 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－20－2 設定根拠に関する説明書 （FPC ポンプ（A）（B）室消火系 主配管（常設））

名	称	$\begin{gathered} \text { ハロン } 1301 \text { 貯蔵容器 } \\ \sim \\ \text { FPC ポンプ (A) (B) 室 } \end{gathered}$
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，FPCポンプ（A）（B）室消火系のハロン 1301 貯蔵容器と FPCポンプ（A）（B）室 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊${ }^{2}$ を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 89． $1 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－21－1 設定根拠に関する説明書 （HWH 熱交換器・ポンプ室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	4

【設定根拠】
（概要）
火災防護設備として設置する HWH 熱交換器・ポンプ室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 4 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－21－2 設定根拠に関する説明書 （HWH 熱交換器・ポンプ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 HWH 熱交換器・ポンプ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外径	mm	89．1， 60.5

【設定根拠】
（概要）
本配管は，HWH 熱交換器・ポンプ室消火系のハロン 1301 貯蔵容器と HWH 熱交換器• ポンプ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 60.5 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－22－1 設定根拠に関する説明書
（緊急用電気品室（1）／（2）消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	4

【設定根拠】
（概要）
火災防護設備として設置する緊急用電気品室（1）／（2）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炬施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（緊急用電気品室（1）／（2）消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数
緊急用電気品室（1）	3	4
緊急用電気品室（2）	3	4

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－22－2 設定根拠に関する説明書
（緊急用電気品室（1）／（2）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 緊急用電気品室（2）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$60.5,89.1$

【設定根拠】
（概要）
本配管は，緊急用電気品室（1）／（2）消火系のハロン 1301 貯蔵容器と緊急用電気品室 （2）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm ， 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	緊急用電気品室（1）分岐点 ～緊急用電気品室（1）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	60.5

【設定根拠】
（概要）
本配管は，緊急用電気品室（1）分岐点と緊急用電気品室（1）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－23－1 設定根拠に関する説明書 （区分 I 非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する区分 I 非常用 D／G 制御盤室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－23－2 設定根拠に関する説明書
（区分 I 非常用 D／G 制御盤室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 区分 I 非常用 D／G 制御盤室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，区分 I 非常用 D／G制御盤室消火系のハロン 1301 貯蔵容器と区分 I 非常用 D／G 制御盤室を接続する配管であり，発電所内で発生した火災を早期に消火するた めに設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－24－1 設定根拠に関する説明書 （区分III非常用 D／G 制御盤室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	4

【設定根拠】
（概要）
火災防護設備として設置する区分III非常用 D／G 制御盤室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 4 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－24－2 設定根拠に関する説明書 （区分III非常用 D／G 制御盤室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 区分III非常用 D／G 制御盤室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 60.5

【設定根拠】
（概要）
本配管は，区分III非常用 D／G 制御盤室消火系のハロン 1301 貯蔵容器と区分III非常用 D／G 制御盤室を接続する配管であり，発電所内で発生した火災を早期に消火するた めに設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 60.5 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－25－1 設定根拠に関する説明書 （ディーゼル発電機（HPCS）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	9

【設定根拠】
（概要）
火災防護設備として設置するディーゼル発電機（HPCS）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 9 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－25－2 設定根拠に関する説明書
（ディーゼル発電機（HPCS）室消火系 主配管（常設））

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，ディーゼル発電機（HPCS）室消火系のハロン 1301 貯蔵容器とディーゼル発電機（HPCS）室を接続する配管であり，発電所内で発生した火災を早期に消火するた めに設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm ， 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－26－1 設定根拠に関する説明書 （区分 II 非常用 D／G 制御盤室／R－12 階段室消火系 ハロン 1301 貯蔵容器）

		称
名	ハロン 1301 貯蔵容器	
容	量	$\mathrm{L} /$ 個
最高使用圧力	MPa	$70 以 上 ~(70)$
最高使用温度	${ }^{\circ} \mathrm{C}$	5.2
個	数	-

【設定根拠】
（概要）
火災防護設備として設置する区分 II 非常用D／G制御盤室／R－12階段室消火系のハロ ン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炬施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。

ハロン 1301 貯蔵容器の設置個数を表 1 に示す。

表1 ハロン 1301 貯蔵容器設置個数
（区分 II 非常用 D／G 制御盤室／R－12階段室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－26－2 設定根拠に関する説明書
（区分 II 非常用 D／G 制御盤室／R－12階段室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 R－12 階段室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42．7，76．3，89．1

【設定根拠】
（概要）
本配管は，区分 II非常用 D／G 制御盤室／R－12 階段室消火系のハロン 1301 貯蔵容器 と R－12 階段室を接続する配管であり，発電所内で発生した火災を早期に消火するため に設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 76.3 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	区分 II 非常用D／G制御盤室，窒素ボンベ設置スペース分岐点区分II非常用D／G制御盤室，窒素ボンベ設置スペース
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，区分 II 非常用 D／G 制御盤室，窒素ボンベ設置スペース分岐点と区分II非常用 D / G 制御盤室，窒素ボンベ設置スペースを接続する配管であり，発電所内で発生 した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 ひび消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 76． 3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－27－1 設定根拠に関する説明書 （区分IIIバッテリ室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度		${ }^{\circ} \mathrm{C}$	40
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する区分IIIバッテリ室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－27－2 設定根拠に関する説明書 （区分IIIバッテリ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器区分IIIバッテリ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，34．0，27．2

【設定根拠】
（概要）
本配管は，区分IIIバッテリ室消火系のハロン 1301 貯蔵容器と区分IIIバッテリ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 34.0 \mathrm{~mm}, ~ 27.2 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－28－1 設定根拠に関する説明書 （送風機•緊急用電気品室消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度		${ }^{\circ} \mathrm{C}$	40
個	数	-	24

【設定根拠】
（概要）
火災防護設備として設置する送風機•緊急用電気品室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 24 個の貯蔵容器を設置する設計と する。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－28－2 設定根拠に関する説明書
（送風機•緊急用電気品室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 送風機•緊急用電気品室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，114．3

【設定根拠】
（概要）
本配管は，送風機•緊急用電気品室消火系のハロン 1301 貯蔵容器と送風機•緊急用電気品室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, ~ 114.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－29－1 設定根拠に関する説明書 （燃料デイタンク（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置する燃料デイタンク（B）室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－29－2 設定根拠に関する説明書 （燃料デイタンク（B）室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 燃料デイタンク（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$34.0,60.5,89.1$

【設定根拠】
（概要）
本配管は，燃料デイタンク（B）室消火系のハロン 1301 貯蔵容器と燃料デイタンク（B）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量 ${ }^{* 2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $34.0 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－30－1 設定根拠に関する説明書
（SOL 冷凍機室消火系 ハロン 1301 貯蔵容器）

		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	3

【設定根拠】
（概要）
火災防護設備として設置するS0L 冷凍機室消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 3 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－30－2 設定根拠に関する説明書
（SOL 冷凍機室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 SOL 冷凍機室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 42.7

【設定根拠】
（概要）
本配管は，SOL 冷凍機室消火系のハロン 1301 貯蔵容器と SOL 冷涷機室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 42.7 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－31－1 設定根拠に関する説明書 （HECW 冷凍機・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器）

		称
名	ハロン 1301 貯蔵容器	
容	$\mathrm{L} /$ 個	70 以上 (70)
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個	数	-

【設定根拠】
（概要）
火災防護設備として設置する HECW 冷凍機・ポンプ（A）（C）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 5 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－31－2 設定根拠に関する説明書 （HECW 冷凍機・ポンプ（A）（C）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 HECW 冷凍機・ポンプ（A）（C）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，76．3

【設定根拠】
（概要）
本配管は，HECW 冷涷機・ポンプ（A）（C）室消火系のハロン 1301 貯蔵容器と HECW 冷涷機・ポンプ（A）（C）室を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 76.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－32－1 設定根拠に関する説明書 （燃料デイタンク（A）室消火系 ハロン 1301 貯蔵容器）

名		称
容	量	$\mathrm{L} /$ 個

【設定根拠】
（概要）
火災防護設備として設置する燃料デイタンク（A）室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－32－2 設定根拠に関する説明書
（燃料デイタンク（A）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器燃料デイタンク（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$34.0,60.5,89.1$

【設定根拠】
（概要）
本配管は，燃料デイタンク（A）室消火系のハロン 1301 貯蔵容器と燃料デイタンク（A）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $34.0 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－33－1 設定根拠に関する説明書 （燃料デイタンク（HPCS）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置する燃料デイタンク（HPCS）室消火系用のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－33－2 設定根拠に関する説明書 （燃料デイタンク（HPCS）室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 燃料デイタンク（HPCS）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$34.0,60.5,89.1$

【設定根拠】
（概要）
本配管は，燃料デイタンク（HPCS）室消火系のハロン 1301 貯蔵容器と燃料デイタン ク（HPCS）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34． $0 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－34－1 設定根拠に関する説明書 （空調機械（A）室（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	20

【設定根拠】
（概要）
火災防護設備として設置する空調機械（A）室／（B）室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炬施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（空調機械（A）室／（B）室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－34－2 設定根拠に関する説明書
（空調機械（A）室／（B）室消火系 主配管（常設））

		ハロン1301貯蔵容器 名

【設定根拠】
（概要）
本配管は，空調機械（A）室／（B）室消火系のハロン 1301 貯蔵容器と空調機械（A）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

		空調機械（B）室分岐点 名

【設定根拠】
（概要）
本配管は，空調機械（B）室分岐点と空調機械（B）室を接続する配管であり，発電所内 で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 89．1mmとする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－35－1 設定根拠に関する説明書
（ 250 V 直流主母線盤室／ 125 V （A）-1 室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	6
【設定根拠】 （概要）		

火災防護設備として設置する 250 V 直流主母線盤室／125V（A）－ 1 室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ 70L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とする。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要 とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より1個多く貯蔵容器を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（250V 直流主母線盤室／125V（A）－ 1 室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数
250 V 直流主母線盤室	5	6
DC125V バッテリ（A）-1 室	2	6

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－35－2 設定根拠に関する説明書
（250V直流主母線盤室／ 125 V （A）-1 室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 DC125V バッテリ（A）－ 1 室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,60.5,89.1$

【設定根拠】
（概要）
本配管は，250V 直流主母線盤室／125V（A）－1 室消火系のハロン 1301 貯蔵容器と DC125V バッテリ（A）－1 室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 ひび消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	250V直流主母線盤室分岐点 250V 直流主母線盤室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,60.5$

【設定根拠】
（概要）
本配管は，250V直流主母線盤室分岐点と 250 V 直流主母線盤室を接続する配管であ り，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, 60.5 \mathrm{~mm}$ とする。

注記 $~$ 1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－36－1 設定根拠に関する説明書 （DC250V バッテリ室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	2
【設定根拠】 （概要）		

火災防護設備として設置する DC250V バッテリ室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とする。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために消防法で要求される必要な貯蔵容器個数＊である 2 個の貯蔵容器を設置する設計とする。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－36－2 設定根拠に関する説明書 （DC250V バッテリ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 DC250Vバッテリ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,60.5,89.1$

【設定根拠】
（概要）
本配管は，DC250V バッテリ室消火系のハロン 1301 貯蔵容器と DC250Vバッテリ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－37－1 設定根拠に関する説明書
（計測制御電源（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	8

【設定根拠】
（概要）
火災防護設備として設置する計測制御電源（B）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために必要な個数＊を設置する。また，容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より多く貯蔵容器を設置する設計とする。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－37－2 設定根拠に関する説明書
（計測制御電源（B）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 計測制御電源（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$60.5,89.1$

【設定根拠】
（概要）
本配管は，計測制御電源（B）室消火系のハロン 1301 貯蔵容器と計測制御電源（B）室 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－38－1 設定根拠に関する説明書 （代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	$\mathrm{L} /$ 個	40以上（40）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	5
【設定根拠】 （概要）		

火災防護設備として設置する代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ $40 L /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とする。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要 とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より1個多く貯蔵容器を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－38－2 設定根拠に関する説明書 （代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系

主配管（常設））

名	称	$\begin{gathered} \text { ハロン1301貯蔵容器 } \\ \text { ~ } \\ \text { DC125Vバッテリ } \end{gathered}$
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34．0，42．7，60．5，89．1

【設定根拠】
（概要）
本配管は，代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系のハロン 1301 貯蔵容器と DC125V バッテリ（B）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34． $0 \mathrm{~mm}, ~ 42.7 \mathrm{~mm}, 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	125V代替充電器盤室分岐点 125V代替充電器盤室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34.0

【設定根拠】
（概要）
本配管は， 125 V 代替充電器盤室分岐点と 125 V 代替充電器盤室を接続する配管であ り，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1} 1$ 及び消火に必要なハロン 1301 ガス量 ${ }^{* 2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34.0 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	RSS盤室分岐点 RSS盤室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34.0

【設定根拠】
（概要）
本配管は，RSS 盤室分岐点と RSS 盤室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 ${ }^{* 2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34.0 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	DC125Vバッテリ（A）室分岐点

【設定根拠】
（概要）
本配管は，DC125V バッテリ（A）室分岐点と DC125V バッテリ（A）室を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－39－1 設定根拠に関する説明書
（常用•共通 M／C•P／C 室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	24

【設定根拠】
（概要）
火災防護設備として設置する常用•共通 M／C•P／C 室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために必要な個数を設置する。また，系統分離対策として容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多い 24 個の貯蔵容器を設置する設計と

する。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－39－2 設定根拠に関する説明書
（常用•共通 M／C•P／C 室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 常用•共通 $M / C \cdot P / C$ 室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89.1

【設定根拠】
（概要）
本配管は，常用•共通 M／C•P／C室消火系のハロン 1301 貯蔵容器と常用•共通 M／C• P／C 室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－40－1 設定根拠に関する説明書
（計測制御電源（A）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	11

【設定根拠】
（概要）
火災防護設備として設置する計測制御電源（A）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために必要な個数を設置する。また，系統分離対策として容器弁の単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多い 11 個の貯蔵容器を設置する設計と

する。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－40－2 設定根拠に関する説明書
（計測制御電源（A）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器計測制御電源（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 60.5

【設定根拠】
（概要）
本配管は，計測制御電源（A）室消火系のハロン 1301 貯蔵容器と計測制御電源（A）室 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 60.5 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－41－1 設定根拠に関する説明書
（T．S（計測制御電源（B）室北）消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	2

【設定根拠】
（概要）
火災防護設備として設置する T．S（計測制御電源（B）室北）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 2 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－41－2 設定根拠に関する説明書
（T．S（計測制御電源（B）室北）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 T．S（計測制御電源（B）室北）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$34.0,60.5,89.1$

【設定根拠】
（概要）
本配管は，T．S（計測制御電源（B）室北）消火系のハロン 1301 貯蔵容器と T．S（計測制御電源（B）室北）を接続する配管であり，発電所内で発生した火災を早期に消火するた めに設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $34.0 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－42－1 設定根拠に関する説明書
（T．S（更衣室北）消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	40 以上 (40)
最高使用圧力	MPa	5.2	
最高使用温度		${ }^{\circ} \mathrm{C}$	40
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置するT．S（更衣室北）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ 40L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－42－2 設定根拠に関する説明書
（T．S（更衣室北）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 T．S（更衣室北）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，T．S（更衣室北）消火系のハロン 1301 貯蔵容器とT．S（更衣室北）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－43－1 設定根拠に関する説明書
（T．S（更衣室西）消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置するT．S（更衣室西）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－43－2 設定根拠に関する説明書
（T．S（更衣室西）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 T．S（更衣室西）
最高使用圧力	MPa	5． 2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，T．S（更衣室西）消火系のハロン 1301 貯蔵容器とT．S（更衣室西）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－44－1 設定根拠に関する説明書
（区分 I／II／常用系ケーブル処理室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	6

【設定根拠】
（概要）
火災防護設備として設置する区分 I／II／常用系ケーブル処理室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設定する。また，容器弁の

単一故障を考慮し，消防法で要求される必要な貯蔵容器個数＊より 1 個多く貯蔵容器 を設置する設計とする。

ハロン 1301 貯蔵容器の設置個数を表1に示す。

表1 ハロン 1301 貯蔵容器設置個数
（区分 I／II／常用系ケーブル処理室消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数
常用系ケーブル処理室	5	6
区分 I ケーブル処理室	5	6
区分IIケーブル処理室	5	

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要
なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－44－2 設定根拠に関する説明書 （区分 I／II／常用系ケーブル処理室消火系 主配管（常設））

名	称	ハロン1301貯蔵容器 常用系ケーブル処理室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,48.6,89.1$

【設定根拠】
（概要）
本配管は，区分 I／II／常用系ケーブル処理室消火系のハロン 1301 貯蔵容器と常用系ケーブル処理室を接続する配管であり，発電所内で発生した火災を早期に消火す るために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 48.6 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	区分 I ケーブル処理室分岐点1区分 I ケーブル処理室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，区分 I ケーブル処理室分岐点 1 と区分 I ケーブル処理室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。
 ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	区分 I ケーブル処理室分岐点2 区分 I ケーブル処理室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，区分 I ケーブル処理室分岐点 2 と区分 I ケーブル処理室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。
 ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	区分 II ケーブル処理室分岐点 区分 II ケーブル処理室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，区分 IIケーブル処理室分岐点と区分 II ケーブル処理室を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

> VI-1-1-4-8-2-1-2-45-1 設定根拠に関する説明書(区分IIIケーブル処理室消火系 ハロン 1301 貯蔵容器)
O 2 （1）VI－1－1－4－8－2－1－2－45－1 R 0

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	19 以上（19）
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する区分IIケーブル処理室消火系のハロン1301貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 19L／個以上とする。

公称値については，要求される容量と同じ19L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－45－2 設定根拠に関する説明書
（区分IIIケーブル処理室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器区分IIIケーブル処理室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34．0，60．5，89．1

【設定根拠】
（概要）
本配管は，区分IIIケーブル処理室消火系のハロン 1301 貯蔵容器と区分IIIケーブル処理室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 34． $0 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－46－1 設定根拠に関する説明書 （DC125V 代替バッテリ室消火系 ハロン 1301 貯蔵容器）

		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	$70 以 上 ~(70)$
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	2

【設定根拠】
（概要）
火災防護設備として設置するDC125V 代替バッテリ室消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 2 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－46－2 設定根拠に関する説明書
（DC125V 代替バッテリ室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 DC125V 代替バッテリ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外径	mm	89．1， 34.0

【設定根拠】
（概要）
本配管は，DC125V代替バッテリ室消火系のハロン 1301 貯蔵容器と DC125V 代替バッ テリ室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置 する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 89． 1 mm ， 34.0 mm とする。

注記＊1 ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－47－1 設定根拠に関する説明書 （T．S（区分 II ケーブル処理室北）消火系

ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	40 以上 (40)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置するT．S（区分IIケーブル処理室北）消火系のハロン 1301貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ 40L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－47－2 設定根拠に関する説明書
（T．S（区分 II ケーブル処理室北）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 T．S（区分 II ケーブル処理室北）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1， 27.2

【設定根拠】
（概要）
本配管は，T．S（区分IIケーブル処理室北）消火系のハロン 1301 貯蔵容器と T．S（区分 II ケーブル処理室北）を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89.1 mm ，27． 2 mm とする。

注記＊1 ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－48－1 設定根拠に関する説明書 （PCPS 区分 I エリア消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	40 以上 (40)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する PCPS 区分 I エリア消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ 40L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－48－2 設定根拠に関する説明書 （PCPS 区分 I エリア消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 PCPS 区分 I エリア
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34．0，27．2， 21.7

【設定根拠】
（概要）
本配管は，PCPS 区分 I エリア消火系のハロン 1301 貯蔵容器と PCPS 区分 I エリアを接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34． 0 mm ，27．2 mm，21．7 mmとする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－49－1 設定根拠に関する説明書 （PCPS 区分IIエリア消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	40 以上 (40)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する PCPS 区分IIエリア消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ 40L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－49－2 設定根拠に関する説明書 （PCPS 区分IIエリア消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 PCPS 区分 IIエリア
最高使用圧力	MPa	5． 2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$34.0,27.2,21.7$

【設定根拠】
（概要）
本配管は，PCPS 区分IIエリア消火系のハロン 1301 貯蔵容器と PCPS 区分 IIエリアを接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34． 0 mm ，27．2 mm，21．7 mmとする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－50－1 設定根拠に関する説明書 （PCPS 区分IIIエリア消火系 ハロン 1301 貯蔵容器）

		名 称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	40 以上 (40)
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	1

【設定根拠】
（概要）
火災防護設備として設置する PCPS 区分IIIエリア消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 40L／個以上とする。

公称値については，要求される容量と同じ 40L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－50－2 設定根拠に関する説明書 （PCPS 区分IIIエリア消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器

【設定根拠】
（概要）
本配管は，PCPS 区分IIIエリア消火系のハロン 1301 貯蔵容器と PCPS区分IIIエリアを接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 27． 2 mm とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－51－1 設定根拠に関する説明書 （PCPS 区分 NONエリア消火系 ハロン 1301 貯蔵容器）

		称	ハロン1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	68 以上（68）
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	7

【設定根拠】
（概要）
火災防護設備として設置する PCPS 区分 NONエリア消火系のハロン 1301 貯蔵容器 は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 68L／個以上とする。

公称値については，要求される容量と同じ 68L／個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 7 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－51－2 設定根拠に関する説明書 （PCPS 区分 NONエリア消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 PCPS 区分 NONエリア
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48．6， 42.7

【設定根拠】
（概要）
本配管は，PCPS 区分 NONエリア消火系のハロン 1301 貯蔵容器と PCPS 区分 NONエリ アを接続する配管であり，発電所内で発生した火災を早期に消火するために設置す る。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm ， 42.7 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－52－1 設定根拠に関する説明書
（緊急対策室他消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70 以上（70）
最高使用圧力	MPa	5． 2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	8

【設定根拠】
（概要）
火災防護設備として設置する緊急対策室他消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の個数は，ハロン 1301 貯蔵容器にて消火する火災区域又は火災区画のうち，最も多くのハロン 1301 ガス量を必要とする火災区域又は火災区画の必要貯蔵容器本数を基に設置する設計とする。 ハロン 1301 貯蔵容器の設置個数を表 1 に示す。

表1 ハロン 1301 貯蔵容器設置個数
（緊急対策室他消火系）

消火対象	消防法で要求される 必要貯蔵容器個数＊	設置個数

注記＊：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－52－2 設定根拠に関する説明書
（緊急対策室他消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器非常用フィルタ室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外径	mm	89．1，76．3，48．6

【設定根拠】
（概要）
本配管は，緊急対策室他消火系のハロン 1301 貯蔵容器と非常用フィルタ室を接続 する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 89． $1 \mathrm{~mm}, 76.3 \mathrm{~mm}, 48.6 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	通信機械室分岐点 通信機械室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の通信機械室分岐点と通信機械室を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊${ }^{*}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	予備品保管室分岐点 予備品保管室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の予備品保管室分岐点と予備品保管室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	緊急対策室分岐点 緊急対策室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	76.3

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の緊急対策室分岐点と緊急対策室を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量 ${ }^{* 2}$ を 30 秒以内 ${ }^{3}{ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 76.3 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射へッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	緊急対策エリア用空調機械室分岐点 緊急対策エリア用空調機械室
最高使用圧力	MPa	5． 2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	42.7

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の緊急対策エリア用空調機械室分岐点と緊急対策エ リア用空調機械室を接続する配管であり，発電所内で発生した火災を早期に消火する ために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	SPDS 室分岐点 SPDS 室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	60.5

【設定根拠】
（概要）
本配管は，緊急対策室他消火系のSPDS 室分岐点と SPDS 室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 60.5 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	電気品（A）室分岐点 \qquad電気品（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の電気品（A）室分岐点と電気品（A）室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5．2MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第3項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	電気品（B）室分岐点電気品（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，緊急対策室他消火系の電気品（B）室分岐点と電気品（B）室を接続する配管 であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量 $*^{2}$ を 30 秒以内 ${ }^{3} 3$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48.6 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－53－1 設定根拠に関する説明書 （緊急時対策所軽油タンク（A）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70 以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置する緊急時対策所軽油タンク（A）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－53－2 設定根拠に関する説明書 （緊急時対策所軽油タンク（A）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器軽油タンク（A）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，48．6，34．0

【設定根拠】
（概要）
本配管は，緊急時対策所軽油タンク（A）室消火系のハロン 1301 貯蔵容器と軽油タン ク（A）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 48.6 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－54－1 設定根拠に関する説明書 （緊急時対策所軽油タンク（B）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70 以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置する緊急時対策所軽油タンク（B）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－54－2 設定根拠に関する説明書 （緊急時対策所軽油タンク（B）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器軽油タンク（B）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，48．6，34．0

【設定根拠】
（概要）
本配管は，緊急時対策所軽油タンク（B）室消火系のハロン 1301 貯蔵容器と軽油タン ク（B）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊ 3 に放射可能な設計とし，メーカ社内基準に基づき定め た $89.1 \mathrm{~mm}, 48.6 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－55－1 設定根拠に関する説明書 （緊急時対策所軽油タンク（C）室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	1

【設定根拠】
（概要）
火災防護設備として設置する緊急時対策所軽油タンク（C）室消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周辺最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 1 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－55－2 設定根拠に関する説明書 （緊急時対策所軽油タンク（C）室消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器軽油タンク（C）室
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	89．1，48．6，34．0

【設定根拠】
（概要）
本配管は，緊急時対策所軽油タンク（C）室消火系のハロン 1301 貯蔵容器と軽油タン ク（C）室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 48.6 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－56－1 設定根拠に関する説明書 （E／B 電気品室消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	10

【設定根拠】
（概要）
火災防護設備として設置するE／B電気品室消火系のハロン 1301 貯蔵容器は，以下 の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 10 個の貯蔵容器を設置する設計とす る。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－56－2 設定根拠に関する説明書 （E／B 電気品室消火系 主配管（常設））

		ハロン 1301 貯蔵容器 名

【設定根拠】
（概要）
本配管は，E／B 電気品室消火系のハロン 1301 貯蔵容器と E / B 電気品室を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 76.3 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－57－1 設定根拠に関する説明書
（R／B MCC 2SB－1 消火系 ハロン 1301 貯蔵容器）

		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	$70 以 上(70)$
最高使用圧力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	2

【設定根拠】
（概要）
火災防護設備として設置する R／B MCC 2 SB－1 消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために消防法で要求される必要な貯蔵容器個数＊である 2 個の貯蔵容器を設置する設計とす る。

注記＊：消防法施行規則第二十条第3項第二号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－57－2 設定根拠に関する説明書 （R／B MCC 2SB－1 消火系 主配管（常設））

【設定根拠】
（概要）
本配管は，R／B MCC 2SB－1消火系のハロン 1301 貯蔵容器と R／B MCC 2 SB－1噴射 ヘッド 1 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上＊1 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3}$ 氾放射可能な設計とし，メーカ社内基準に基づき定めた $89.1 \mathrm{~mm}, 42.7 \mathrm{~mm}, 34.0 \mathrm{~mm}$ とする。

注記 $* 1$ ：消防法施行規則第二十条第 2 項において定められている噴射ヘッドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第二号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第2項第一号において定められている放射時間 を示す。

本配管は，R／B MCC $2 S B-1$ 消火系の R／B MCC $2 S B-1$ 分岐点と R／B MCC $2 S B-1$噴射ヘッド 2 を接続する配管であり，発電所内で発生した火災を早期に消火するため に設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{*} 1$ 及び消火に必要なハロン 1301 ガス量 ${ }^{* 2}$ を 30 秒以内 ${ }^{* 3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34．0mmとする。

注記 $* 1$ ：消防法施行規則第二十条第 2 項において定められている噴射ヘッドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第二号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 2 項第一号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－58－1 設定根拠に関する説明書
（SLC ポンプ（A）（B）消火系 ハロン 1301 貯蔵容器）

名	称	ハロン 1301 貯蔵容器
容 量	L／個	70以上（70）
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
個 数	－	5

【設定根拠】
（概要）
火災防護設備として設置するSLCポンプ（A）（B）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行らために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器 を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とする。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行らために消防法で要求される必要な貯蔵容器個数＊である5個の貯蔵容器を設置する設計とする。

注記＊：消防法施行規則第二十条第3項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－58－2 設定根拠に関する説明書
（SLCポンプ（A）（B）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器
		SLCポンプ（A）（B）噴射ヘッド 4
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34．0，42．7，60．5，89．1

【設定根拠】
（概要）
本配管は，SLC ポンプ（A）（B）消火系のハロン 1301 貯蔵容器と SLC ポンプ（A）（B）噴射 ヘッド 4 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内 ${ }^{3} 3$ に放射可能な設計とし，メーカ社内基準に基づき定めた $34.0 \mathrm{~mm}, ~ 42.7 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第1項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	SLC（A）（B）分岐点 1
		SLCポンプ（A）（B）噴射ヘッド1
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34.0

【設定根拠】
（概要）
本配管は，SLC（A）（B）分岐点 1 と SLCポンプ（A）（B）噴射ヘッド 1 を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 34.0 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	SLC（A）（B）分岐点2
		SLCポンプ（A）（B）噴射ヘッド2
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34.0

【設定根拠】
（概要）
本配管は， $\operatorname{SLC}(\mathrm{A}) ~(B)$ 分岐点 2 と SLC ポンプ（A）（B）噴射ヘッド 2 を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 34.0 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第1項第三号において定められている放射時間 を示す。

名	称	SLC（A）（B）分岐点3
		\sim
		SLCポンプ（A）（B）噴射ヘッド 3
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	34.0

【設定根拠】
（概要）
本配管は，SLC（A）（B）分岐点 3 と SLCポンプ（A）（B）噴射ヘッド 3 を接続する配管で あり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{11}$ 及び消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 34.0 mm とする。

注記 $* 1$ ：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

VI－1－1－4－8－2－1－2－59－1 設定根拠に関する説明書
（HECW 冷涷機・ポンプ（B）（D）消火系 ハロン 1301 貯蔵容器）

名		称	ハロン 1301 貯蔵容器
容	量	$\mathrm{L} /$ 個	$70 以 上(70)$
最高使用圧原力	MPa	5.2	
最高使用温度	${ }^{\circ} \mathrm{C}$	40	
個	数	-	16

【設定根拠】
（概要）
火災防護設備として設置する HECW 冷凍機・ポンプ（B）（D）消火系のハロン 1301 貯蔵容器は，以下の機能を有する。

本容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響 を限定し，早期の消火を行うために設置する。

1．容量の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の容量は，高圧ガス保安法 の適合品である一般汎用型のハロン 1301 貯蔵容器を使用することから，当該貯蔵容器の容量はメーカにて定めた容量である 70L／個以上とする。

公称値については，要求される容量と同じ $70 \mathrm{~L} /$ 個とする。

2．最高使用圧力の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用圧力は，貯蔵容器を設置する場所の周囲最高温度 $40^{\circ} \mathrm{C}$ における貯蔵容器内部圧力と同じ 5.2 MPa とす る。

3．最高使用温度の設定根拠
設計基準対象施設として使用するハロン 1301 貯蔵容器の最高使用温度は，消防法施行規則第二十条第 4 項第四号に基づき $40^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠

設計基準対象施設として使用するハロン 1301 貯蔵容器は，火災により発電用原子炉施設の安全性が損なわれないよう，火災の影響を限定し，早期の消火を行うために消防法で要求される必要な貯蔵容器個数＊である 16 個の貯蔵容器を設置する設計と する。

注記 $*$ ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要 なハロン 1301 ガス量に基づき算出した個数を示す。

VI－1－1－4－8－2－1－2－59－2 設定根拠に関する説明書
（HECW 冷涷機・ポンプ（B）（D）消火系 主配管（常設））

名	称	ハロン 1301 貯蔵容器 HECW冷凍機・ポンプ（B）（D）噴射ヘッド5
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	$42.7,60.5,76.3,89.1,114.3$

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）消火系のハロン 1301 貯蔵容器と HECW 冷凍機• ポンプ（B）（D）噴射ヘッド5を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及び消火に必要なハロン 1301 ガス量＊2を 30 秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた $42.7 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}, ~ 76.3 \mathrm{~mm}, ~ 89.1 \mathrm{~mm}, 114.3 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点 1
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド1
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 1 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 1 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点2
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド2
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48． 6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 2 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 2 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点3
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド3
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48． 6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 3 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 3 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点4
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド8
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48．6， 60.5

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 4 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 8 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 48． $6 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点5
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド6
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48． 6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 5 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 6 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点 6
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド7
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 6 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 7 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点7
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド11
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48．6， 60.5

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 7 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 11 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 48． $6 \mathrm{~mm}, ~ 60.5 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点8
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド9
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 8 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 9 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点9
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド 10
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 9 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 10 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点10
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド14
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48．6， 60.5

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 10 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 14 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた $48.6 \mathrm{~mm}, 60.5 \mathrm{~mm}$ とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点11
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド 12
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48.6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 11 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 12 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 及消火に必要なハロン 1301 ガス量＊2 を 30 秒以内＊${ }^{3}$ に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊ 3 ：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

名	称	HECW冷凍機・ポンプ（B）（D）分岐点12
		\sim
		HECW冷凍機・ポンプ（B）（D）噴射ヘッド 13
最高使用圧力	MPa	5.2
最高使用温度	${ }^{\circ} \mathrm{C}$	40
外 径	mm	48． 6

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 12 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 13 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{* 1}$ 及び消火に必要なハロン 1301 ガス量＊2を30秒以内＊3 に放射可能な設計とし，メーカ社内基準に基づき定めた 48． 6 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊2：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

		HECW冷凍機・ポンプ（B）（D）分岐点 13
名		

【設定根拠】
（概要）
本配管は，HECW 冷凍機・ポンプ（B）（D）分岐点 13 と HECW 冷凍機・ポンプ（B）（D）噴射 ヘッド 4 を接続する配管であり，発電所内で発生した火災を早期に消火するために設置する。

1．最高使用圧力の設定根拠
本配管の最高使用圧力は，ハロン 1301 貯蔵容器の最高使用圧力と同じ 5.2 MPa とす る。

2．最高使用温度の設定根拠
本配管の最高使用温度は，ハロン 1301 貯蔵容器の最高使用温度と同じ $40^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，噴射ヘッドの放射圧力を 0.9 MPa 以上 ${ }^{1}$ 及 ひび消火に必要なハロン 1301 ガス量＊2を30秒以内＊3に放射可能な設計とし，メーカ社内基準に基づき定めた 42.7 mm とする。

注記＊1：消防法施行規則第二十条第 1 項第二号において定められている噴射ヘッ ドの放射圧力を示す。
＊ 2 ：消防法施行規則第二十条第 3 項第一号において定められている消火に必要なハロン 1301 ガス量を示す。
＊3：消防法施行規則第二十条第 1 項第三号において定められている放射時間 を示す。

ハロン 1301 拧蔵容器

工事計画認可申請	第 $9-3-2-2-1-5$ 図
女川原子力発電所第2号機	

名 RCW熱交换器。ポンプ（A）（C）室消火系
系統図
東北電力株式会社

$$
\begin{array}{|l|l|}
\hline \text { 工事計画認可申請 } & \text { 第9-3-2-2-1-8図 } \\
\hline
\end{array}
$$

備考	
D	外径mm
t	厚さ mm
M	材料

備考	工事計画認可申請		第9－3－2－2
D 外径 mm t 厘土	女川原子力発電所 第2号機		
$\begin{array}{\|c\|l\|} \hline \mathrm{t} & \text { 厚さ mm } \\ \hline \mathrm{M} & \text { 材料 } \\ \hline \end{array}$			
設備の申請範囲）	$\begin{aligned} & \text { 名 } \\ & \text { 称 } \end{aligned}$	B1F イン系	通路消火系 （1／2）
		東 北 電 力	式 会 社

> 工事計画認可申請 \quad 第 $9-3-2-2-1-13$ 図女川原子力発電所第2号機

ハロン 1301 拧蔵容器 t 厚さ mm M ${ }^{\text {林料 }}$

工事計画認可申請 \quad 第9－3－2－2－1－16図女川原子力発電所第2号機

B1Fハッチ室消火系 系統図
東北電力株式会社
$385 \quad 0316$

ハロン 1301 眝蔵容器

俌考	
D	外径 mm
t	厚さ mm
M	材料

> 工事計画認可申請 \quad 第 $9-3-2-2-1-17$ 図女川原子力発電所第2号機

工事計画認可申請 \quad 第9－3－2－2－1－18図女川原子力発電所第2号機

名	区分I非常用MCC室消火系 系統図

ハロン 1301 眝蔵容器

ハロン1301拧蔵容器

借考	
D	
t	外径 mm
t	厚さ mm
M	材料

工事計画認可申請女川原子力発電所第2号機
名
HWH熱交换器。ポンプ室消火系 系統匡

工事計画認可申請 \quad 第9－3－2－2－1－23図

M）林料

女川原子力発電所第2号機

区分I非常用D $/ G$ 制御盤室消火系 系統図

ヘロン 1301 淂蔵容器

M

ハロン1301貯蔵容器

> 工事計画認可申請女川原子力発電所第2号機

80A

ヘロン 1301 盯蔵容器
$9 \Leftrightarrow 9 \Leftrightarrow 9 \Leftrightarrow 9$
ハロン 1301 館蔵容器 －外隻mm M 村料

ハロン 1301 拧蔵容器

ハロン 1301 犑蔵容器 | M 材料 |
| :---: |

$$
\begin{aligned}
& \text { HECW泠涷機。ポンプ (A) (C) 室消火系 } \\
& \text { 采統図 }
\end{aligned}
$$

ハロン 1301 貯蔵容器

火災防变設供のうち消火設備（ハロンガス消火設備）（当誩設供の申請範囲）

ハロン 1301 貯蔵容器

工事計画認可申請 \quad 第9－3－2－2－1－42図

M 材料

工事計画認可申請女川原子力発電所第2号機

| 名 | |
| :--- | :--- | :--- |
| 较 | T．S（更衣室西）消火系 系統図 |

ハロン1301貯蔵容器

ヘロン 1301 既蔵容器
－外隻mm
M ${ }^{\text {林料 }}$
 M 材料

－原さ mm
M ${ }^{\text {林料 }}$

ロン 1301 狩蔵容器

工事計画認可申請女川原子力発電所第2号機

PCPS区分NONエリア消火系 系統図

工事計画認可申請女川原子力発電所 第 2 号機

| t | 厚さ mm |
| :--- | :--- | M 材料

	事計画認可申請	第9－3－2－2－1－56図
女川原子力発電所第2号機		
名 称	E / B 電気品室消火采	系統図
東北電力株式会社		
		4250316

工事計画認可申請女川原子力発電所第2号機

火災防護設備のうち消火設備（ハロンガス消火設備）（当該設備の申請範囲）

ハロン1301貯蔵容器

第 9－3－2－2－2－1 図 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

1	ハロン1301貯蔵容器	5	SM520B
番号	品名	個数	材料
部品表			

第 9－3－2－2－2－2 図 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 （mm）		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	$\begin{array}{r} +10 \mathrm{~mm} \\ 0 \mathrm{~mm} \end{array}$	同上
胴部厚さ			同上
底部厚さ			同上

注：主要寸法は，工事計画記載の公称値。

第9－3－2－2－2－3 図 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－4 図 RHR（C）室／RCICタービンポンプ室消火系ハロン 1301 貯蔵容器構造図別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

ハロソ1301师蔵容器 70L／個

工事計画認可申請 第 9－3－2－2－2－5 図女川原子力発電所 第2号機
注1：寸法はmmを示す。
注1：才法はmmを示す。
注 $2: ~$

第 9－3－2－2－2－5 図 RCW 熱交換器・ポンプ（A）（C）室消火系 ハロン 1301 貯蔵容器構造図別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法(mm)		許容範囲	根 拠
外径	267.4	± 1.0 \％	製造能力，製造実績を考慮したメーカ基準
高さ	1515	$\begin{array}{r} +10 \mathrm{~mm} \\ 0 \mathrm{~mm} \end{array}$	同上
胴部厚さ			同上
底部厚さ			同上

注：主要寸法は，工事計画記載の公称値。

1	ハロン1301貯蔵容器	10	SM520B
番号	品名	個数	材料
部品表			

第9－3－2－2－2－6 図 B2F 南側通路／バルブラッピング室消火系ハロン 1301 貯蔵容器構造図別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

1	ハロン1301貯蔵容器	8	SM520B
番号	品名	個数	材料
部品表			

	工事計画認可申請	第9－3	－2－7図
女川原子力発電所 第2号機			
$\begin{array}{\|l\|l\|} \hline \text { 名 } \\ \text { 称 } \end{array}$	$\mathrm{IA} \cdot \mathrm{SA}$ 空気圧縮機室／B2F東側通路消火系 ハロン 1301 貯蔵容器構造図		
東北電力株式会社			
囲みの内容は商業機宓の鋧点から公開できません。			0512

第 9－3－2－2－2－7 図 IA•SA 空気圧縮機室／B2F 東側通路消火系ハロン 1301 貯蔵容器構造図別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－8 図 CRDポンプ室消火系 ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1.0 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。
(s)

第 9－3－2－2－2－9 図 MUWCポンプ室消火系 ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1.0 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ			同上

注：主要寸法は，工事計画記載の公称値。

第9－3－2－2－2－10図 B2F／B1F／1F 西側通路／排風機室消火系ハロン 1301 貯蔵容器構造図別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－11 図 PLR－VVVF 室／区分 II 非常用電気品室消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－12 図 B1F インナー通路消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠	
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準	
高さ	1515	+10 mm 0 mm	同上	
胴部厚さ				
底部厚さ		同上		

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－13 図 DC RCIC MCC 室消火系 ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1.0 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

7本ユニット設置

A～矩根连

ハロソ1301眝蔵容器 70L／個

注1：才法はmmを示す。 注2：特記なき寸法は公称值を示す。	工事計画認可申請 第 9－3－2－2－2－14 図
	女川原子力発電所 第2号機
	東北電力株式会社

第 9－3－2－2－2－14 図 区分I非常用電気品室消火系 ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲
［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1.0 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

第 9－3－2－2－2－15 図 $D / G(A)$ 室／（B）室／D／G補機（A）室／（B）室消火系ハロン 1301 貯蔵容器構造図 別紙

工事計画記載の公称値の許容範囲

［容器類］
ハロン 1301 貯蔵容器

主要寸法 (mm)		許容範囲	根 拠
外径	267.4	$\pm 1 \%$	製造能力，製造実績を考慮したメーカ基準
高さ	1515	+10 mm 0 mm	同上
胴部厚さ		同上	
底部厚さ		同上	

注：主要寸法は，工事計画記載の公称値。

ハロン1301捾营容器70L／佃

