

図5－29 各ステップにおけるひび割れ図
（底版，解析ケース（4），S s－N $1(++)$ ）

八。せん断力に対する評価結果
せん断耐力式及び材料非線形解析によるせん断破壊に対する評価結果を，表5 －21に示す。

同表より，全部材で照査用せん断力がせん断耐力を下回ることを確認した。

表 5－21（1）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析：全応力解析）

注記 $* 1$ ：評価位置は図5－31に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表 5－21（2）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析：全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊1		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	Ss－F 3	＋＋	アーチ	1	645	1110	0.59
			側壁	2	1601	2838＊3	0.57
			底版	4	1863	$2725{ }^{* 3}$	0.69
		－＋	アーチ	1	630	1110	0.57
			側壁	3	1507	2927＊3	0.52
			底版	4	1780	2674＊3	0.67
	S s -N 1	＋＋	アーチ	1	892	1110	0.81
			側壁	2	1867	$2625 * 3$	0.72
			底版	4	2239	2589＊3	0.87
		－＋	アーチ	1	878	1110	0.80
			側壁	3	1850	$2745 * 3$	0.68
			底版	4	2204	2581＊3	0.86
（2）	S s－D 2	＋＋	アーチ	1	911	1110	0.83
			側壁	2	1736	2834＊3	0.62
			底版	4	2030	$2700 * 3$	0.76
	S s－N 1	＋＋	アーチ	1	880	1110	0.80
			側壁	2	1853	2693＊3	0.69
			底版	4	2224	$2600 * 3$	0.86
（3）	Ss－D 2	＋＋	アーチ	1	908	1110	0.82
			側壁	2	1740	2804＊3	0.63
			底版	4	2041	$2645 * 3$	0.78
	S s -N 1	＋＋	アーチ	1	909	1110	0.82
			側壁	2	1883	$2487 * 3$	0.76
			底版	4	2257	2583＊3	0.88
（4）	S s－D 2	＋＋	アーチ	1	926	1110	0.84
			側壁	2	1753	2820＊3	0.63
			底版	4	2044	$2636 * 3$	0.78
		－＋	底版	4	1891	$2188 * 3$	0.87

注記 $* 1$ ：評価位置は図5－31に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊3：材料非線形解析によるせん断耐力

表 5－21（3）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析：全応力解析）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（4）	S s－N 1	$++$	アーチ	1	905	1110	0.82
			側壁	2	1874	2559＊3	0． 74
			底版	4	2228	2537＊3	0.88

注記＊1：評価位置は図5－31に示す。
$* 2:$ 照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表 5－21（4）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析：有効応力解析）

注記 $~$ 1：評価位置は図 5－31に示す。
＊2：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表5－21（5）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析：有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{y} \text { d }}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（6）	$\mathrm{Ss}-\mathrm{F} 3$	$++$	アーチ	1	559	1110	0.51
			側壁	3	1105	2625＊3	0． 43
			底版	4	1464	1611	0.91
		$-+$	アーチ	1	562	1110	0.51
			側壁	2	1154	$2880 * 3$	0.41
			底版	4	1417	1622	0.88
	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	$++$	アーチ	1	802	1110	0.73
			側壁	2	1383	2698＊3	0.52
			底版	4	1479	1514	0.98
		－＋	アーチ	1	798	1110	0.72
			側壁	3	1376	$2774 * 3$	0.50
			底版	4	1581	1630	0.97
（7）	S s－D 3	－＋	アーチ	1	848	1110	0． 77
			側壁	3	1393	$2207 * 3$	0.64
			底版	4	1653	$2275{ }^{* 3}$	0． 73
（8）	S s－D 3	－＋	アーチ	1	833	1110	0.76
			側壁	3	1388	$2209 * 3$	0.63
			底版	4	1626	$2280 * 3$	0． 72

注記 $* 1$ ：評価位置は図5－31に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

図 5－31 評価位置図（土砂部（断面（1））
（2）岩盤部（断面（5）
構造強度を有することの確認及びSクラスの施設を支持する機能を損なわないことの確認におけるせん断破壊に対する評価結果を表5－22に示す。照査値は，応力度を許容限界 で除した値として時々刻々求め，全時刻において最大となる照査値を記載する。

同表より，全ケースにおいて発生応力度は短期許容応力度を下回ることを確認した。

表5－22 せん断破壊に対する評価結果

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生 せん断力 V （kN）	発生 応力度 $\tau_{\text {d }}$ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\tau_{\text {a1 }}$ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\tau_{\mathrm{d}} / \tau_{\mathrm{al}}$
（1）	S s－D 1	＋＋	覆工部	1	67	0.20	0.63	0.32
		－＋	覆工部	1	69	0.20	0.63	0.32
	Ss－D 2	＋＋	覆工部	1	73	0.22	0． 63	0.35
		－＋	覆工部	1	74	0.22	0.63	0.35
	Ss－D 3	＋＋	覆工部	1	62	0.18	0.63	0.29
		－＋	覆工部	1	67	0.20	0.63	0.32
	S s－F 1	＋＋	覆工部	1	53	0.16	0.63	0.26
		－＋	覆工部	1	55	0.16	0.63	0.26
	Ss－F 2	＋＋	覆工部	1	69	0.20	0.63	0.32
		$-+$	覆工部	1	73	0.21	0.63	0.34
	S s－F 3	＋＋	覆工部	1	53	0.16	0.63	0.26
		－＋	覆工部	1	50	0.15	0.63	0.24
	S s - N 1	＋＋	覆工部	1	50	0.15	0.63	0.24
		－＋	覆工部	1	44	0.13	0.63	0.21
（2）	Ss－D 2	$-+$	覆工部	1	71	0.21	0.63	0.34
（3）	S s－D 2	－＋	覆工部	1	80	0.24	0.63	0． 39
（4）	S s－D 2	－＋	覆工部	1	79	0.23	0.63	0.37

注記 $*: ~$ 評価位置は図 5－32に示す。

図 5－32 評価位置図（岩盤部（断面（5）））

5.3 基礎地盤の支持性能に対する評価結果

5．3．1 土砂部（断面（1））
土砂部（断面（1）における基礎地盤（狐崎部層）の支持性能に対する評価結果を表 5— 23 に示す。また，最大接地圧分布図を図 $5-33$ に示す。照査値は，接地圧を許容限界で除 した値として時々刻々求め，全時刻において最大となる照査値を記載する。

同表より，基礎地盤（狐崎部層）に発生する接地圧が極限支持力を下回ることを確認し た。

表 5－23（1）基礎地盤（狐崎部層）の支持性能に対する評価結果（全応力解析）

解析 ケース	地震動		最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 極限支持力 } \\ \mathrm{R}_{\mathrm{u}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 R_{d} / R_{u}
（1）	$\mathrm{S} s-\mathrm{D} 1$	$++$	3.0	13.7	0． 22
		－＋	3.0	13.7	0． 22
	S s－D 2	＋＋	2.9	13.7	0． 22
		－＋	3.3	13.7	0． 25
	S s－D 3	＋＋	2.9	13.7	0． 22
		－＋	2.7	13.7	0． 20
	S s－F 1	＋＋	2． 8	13.7	0． 21
		－＋	2.9	13.7	0． 22
	S s－F 2	＋＋	2.9	13.7	0． 22
		－＋	3． 3	13.7	0． 25
	S s－F 3	＋＋	3.0	13.7	0． 22
		－＋	2． 7	13.7	0． 20
	S s－N 1	＋＋	3.2	13.7	0． 24
		$-+$	3.0	13.7	0． 22
（2）	S s－D 2	$++$	2.9	13.7	0.22
	S s－N 1	＋＋	3.2	13.7	0． 24
（3）	S s－D 2	$++$	3.0	13.7	0． 22
	S s－N 1	＋＋	3.3	13.7	0． 25
（4）	S s－D 2	$++$	2． 9	13.7	0． 22
	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$++$	3.2	13.7	0.24

表5－23（2）基礎地盤（狐崎部層）の支持性能に対する評価結果（有効応力解析）

解析 ケース	地震動		最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \hline \text { 極限支持力 } \\ \mathrm{R}_{\mathrm{u}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 R_{d} / R_{u}
（6）	S s－D 1	$++$	2.8	13.7	0.21
		－＋	2.8	13.7	0.21
	S s－D 2	$++$	3.0	13.7	0． 22
		－＋	3.0	13.7	0． 22
	S s－D 3	$++$	3.1	13.7	0.23
		－＋	3.1	13.7	0． 23
	S s－F 1	＋＋	2.8	13.7	0． 21
		－＋	2.8	13.7	0.21
	S s－F 2	＋＋	2． 7	13.7	0． 20
		－＋	2． 7	13.7	0． 20
	Ss－F 3	＋＋	2． 7	13.7	0． 20
		－＋	2.6	13.7	0． 19
	S s－N 1	$++$	2.9	13.7	0． 22
		－＋	2.8	13.7	0.21
（7）	S s－D 3	－＋	3.1	13.7	0． 23
（8）	S s－D 3	－＋	3.0	13.7	0.22

図 5－33（1）基礎地盤の最大接地圧分布図（土砂部（断面（1）））
（全応力解析）（解析ケース（1）S S s F $2(-+)$ ）

図 5－33（2）基礎地盤の最大接地圧分布図（土砂部（断面（1）））
（有効応力解析）（解析ケース（6），S s－D $3(++)$ ）

5．3．2 岩盤部（断面（5））

岩盤部（断面⑤）における基礎地盤（狐崎部層）の支持性能に対する評価結果を表 5— 24 に示す。また，最大接地圧分布図を図 $5-34$ に示す。照査値は，接地圧を許容限界で除 した値として時々刻々求め，全時刻において最大となる照査値を記載する。

同表より，基礎地盤（狐崎部層）に発生する接地圧が極限支持力を下回ることを確認し た。

表 5－24 基礎地盤（狐崎部層）の支持性能に対する評価結果

解析 ケース	地震動		$\begin{gathered} \text { 最大接地圧 } \\ R_{d} \quad\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 極限支持力 } \\ \mathrm{R}_{\mathrm{u}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 R_{d} / R_{u}
（1）	S s－D 1	＋＋	0.5	13.7	0.04
		$-+$	0.4	13.7	0.03
	S s－D 2	＋＋	0.5	13． 7	0.04
		－＋	0.5	13.7	0.04
	S s－D 3	＋＋	0.4	13.7	0.03
		－＋	0.4	13.7	0.03
	S s－F 1	＋＋	0.4	13.7	0.03
		－＋	0.4	13.7	0.03
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.4	13.7	0.03
		－＋	0.4	13.7	0.03
	S s－F 3	$++$	0.4	13.7	0.03
		－＋	0.4	13.7	0.03
	S s－N 1	＋＋	0.4	13.7	0.03
		－＋	0.4	13.7	0.03
（2）	S s－D 2	－＋	0.5	13.7	0.04
（3）	S s－D 2	－＋	0.5	13.7	0.04
（4）	S s－D 2	－＋	0.5	13.7	0.04

$7^{\text {南 }}$

図 5－34 基礎地盤の最大接地圧分布図（岩盤部（断面（5）））
（解析ケース（3），S s－D $2(-+)$ ）

6．まとめ
排気筒連絡ダクトについては，基準地震動 S s による耐震評価として，土砂部（断面（1）では全応力解析及び有効応力解析，岩盤部（断面（5））では全応力解析により，曲げ・軸力系の破壊， せん断破壊，及び基礎地盤の支持性能に対する評価を実施した。

構造部材の健全性については，構造部材の応力度，層間変形角，ひずみ，曲げモーメント及び せん断力が要求性能に応じた許容限界を下回ることを確認した。

基礎地盤の支持性能評価については，基礎地盤に発生する応力（接地圧）が極限支持力に基づ く許容限界を下回ることを確認した。

排気筒連絡ダクト土砂部（断面（1）においては，曲げ・軸力系の破壊，せん断破壊，及び基礎地盤の支持性能のいずれにおいても，全応力解析の最大照査値が大きい値となった。過剰間隙水圧比は，排気筒連絡ダクト土砂部（断面（1）の頂部において 0.8 程度を示しているが，液状化に は至っていない。この排気筒連絡ダクト土砂部（断面①）における頂部の最大せん断ひずみは，有効応力解析では全応力解析に比べ 2% を超える範囲が広範囲に広がっており，せん断ひずみの最大値についても全応力解析では3 \％に対し 9% 程度と大きな値となっている。一方，排気筒連絡 ダクト土砂部（断面（1）の側壁付近のせん断ひずみは同等である。以上より，有効応力解析の方 が，頂部付近で剛性低下して水平方向の摩擦力が小さくなった結果，全応力解析の方が厳しくな った。

以上から，排気筒連絡ダクトは，基準地震動S s による地震力に対して，構造強度を有するこ と，及びSクラスの施設を支持する機能を損なわないことを確認した。

参考資料3 断層交差部の影響評価

1．評価方法

排気筒連絡ダクトは断層と交差する構造物であることから，敷地内に分布する断層が排気筒連絡ダクトの耐震性に与える影響について検討を行う。排気筒連絡ダクトの断層交差部における影響検討では，基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認する。

2．評価条件

2.1 評価対象断面の方向

「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「2．1 評価対象断面の方向」と同様とする。
2.2 評価対象断面の選定

「資料 1 屋外重要土木構造物の耐震安全性評価について」のうち「4．5 排気筒連絡ダクト」に基づき，土砂部のうち TF－1 断層と交差する断面（2）と，岩盤部のうち $0 \mathrm{~F}-1$ 断層と交差する断面（7）を選定する。

評価対象断面位置図を図2－1 に，評価対象断面地質図を図2－2 及び図2－3 に示 す。

図 2－1 排気筒連絡ダクトの評価対象断面位置図

図 2－2 排気筒連絡ダクト（土砂部）評価対象地質断面図（断面（2）

図 2－3 排気筒連絡ダクト（岩盤部）評価対象地質断面図（断面（7）
2.3 使用材料及び材料の物性値等

使用材料及び材料の物性値は「資料 3 排気筒連絡ダクトの耐震安全性評価につい て」のうち「2．3 使用材料及び材料の物性値」，地盤物性値は「資料3排気筒連絡 ダクトの耐震安全性評価について」のうち「2．4 地盤物性値」，評価構造物諸元は
「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「2．5 評価構造物諸元」と同様とする。

2.4 地下水位

地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定す る。設計用地下水位の一覧を表 $2-1$ に，設計用地下水位を図 $2-4$ 及び図 $2-5$ に示 す。

表 2－1 設計用地下水位の一覧

評価対象断面	設計用地下水位
土砂部（断面（2））	0. P．+5.80 m
岩盤部（断面（7）	0. P．$+10.10 \mathrm{~m} \sim 0$. P．+12.00 m

図2－4 設計用地下水位（土砂部，（断面（2））

図 2－5 設計用地下水位（岩盤部，（断面（7））
2.5 評価フロー

排気筒連絡ダクトの地震応答解析フロー及び耐震評価フローを図 $2-6$ 及び図 $2-7$ に示す。

図 2－6 排気筒連絡ダクト断層交差部の地震応答解析フロー

図 2－7 排気筒連絡ダクト断層交差部の耐震評価フロー
2.6 適用規格

「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「 2.8 適用規格」 と同様とする。

3．地震応答解析

3.1 地震応答解析手法

「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「3．1 地震応答解析手法」と同様とする。
3.2 地震応答解析モデルの設定

女川原子力発電所第 2 号機における屋外重要土木構造物等の断層交差部の断層評価 においては，「資料 1 屋外重要土木構造物の耐震安全性評価について」の「参考資料 4 断層評価部の影響評価」における「1．断層が接する構造物の抽出」に既述の通り，地質観察により断層の影響を否定できない領域を全て断層幅として保守的に評価している。

構造物へ与える影響は，構造物直下の粘土状物質の断層幅が支配的と考えられるも のの，断層の挙動は深部まで連続する断層が一体となって変形することから，深部で の断層幅も考慮しモデル化する断層幅を決定する。つまり，直下の粘土状物質の幅と深部を含めた断層の平均幅のうち大きい方でモデル化する。

表 3－1 に示すように，排気筒連絡ダクトの TF－1 断層と交差する土砂部（断面（2）） と， $0 F-1$ 断層と交差する岩盤部（断面（7））のいずれも，モデル化領域の地質調査よ り得られた断層の平均幅が大きいため，土砂部（断面（2））の TF－1 断層は 1146 mm ，岩盤部（断面（7）の $0 \mathrm{~F}-1$ 断層は 95 mm 用いて評価を行う。

二次元有限要素解析による影響評価においては，粘土状物質以外の亀裂部等も含め た断層幅を全て粘土状物質によりモデル化する。なお，解析用物性値一覧と使用する粘土状物質の物性値は「資料1屋外重要土木構造物の耐震安全性評価について」の「参考資料 4 断層評価部の影響評価」に示す。
二次元有限要素解析における断層のモデル化は，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術く技術資料〉（土木学会，2009 年）」（以下「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術〈技術資料〉」という。）を参考に，ソリッド要素及びジョイント要素により行う。また，松本ら＊の「ソリッド要素による弱層の モデルに対し，ジョイント要素を用いた弱層のモデルは，同程度の地盤応答を再現で きる」という知見と「設置変更許可時の基礎地盤及び周辺斜面の安定性評価」におけ る断層のモデル化方針を踏まえ，排気筒連絡ダクト（土砂部（断面（2）））と交差し層厚の厚い TF－1 断層はソリッド要素でモデル化し，その他の断層についてはジョイン ト要素によりモデル化する。

ジョイント要素は「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術く技術資料〉」を参考に，ばね値をせん断弾性係数と断層の厚さの関係から式 $3-1$ 及び式 3 －2 のとおり設定する。表 3－1 に影響評価を行う断層幅とモデル化の一覧を示す。

資料 3－（参考）3－9

断層以外については，「資料 3 排気筒連絡ダクトの耐震安全性評価」のうち「3．2地震応答解析モデルの設定」に基づきモデル化する。地震応答解析モデルを図 $3-1$及び図 3－2に示す。
せん断ばね：

$$
\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{G}}{\mathrm{t}}
$$

垂直ばね：

$$
\mathrm{k}_{\mathrm{n}}=\frac{2(1-v)}{1-2 v} \cdot \frac{\mathrm{G}}{\mathrm{t}}
$$

注記 $~: ~$ 松本ら：非線形動的解析における地盤の弱層のモデル化に関する一考察，土木学会第 66 回年次学術講演会（平成 23 年度）

表 3－1 屋外重要土木構造物等と直下に分布する断層

構造物	断層	構造物直下の粘土状物質の幅 （mm）	モデル化領域の断層の平均幅 （mm）
排気筒連絡ダクト （土砂部（断面（2）））	TF－1 断層	50	1146
排気筒連絡ダクト （岩盤部（断面（7）））	OF－1 断層	0	95

注：赤枠は評価対象として選定した断層

表 3－2 断層幅及びモデル化方法

構造物	断層	断層幅（mm）	モデル化方法
排気筒連絡ダクト （土砂部（断面（2）））	TF－1 断層	1146	ソリッド要素
	SF－2（1）断層	125	ジョイント要素
	SF－2（2）断層	125	ジョイント要素
	0F－2 断層	50	ジョイント要素
排気筒連絡ダクト （岩盤部（断面（7）））	0F－1 断層	95	ジョイント要素
	$\mathrm{TF}-1$ 断層	605	ジョイント要素
	SF－2（2）断層	742	ジョイント要素

側方粘性境界

図 3－1 排気筒連絡ダクト（土砂部（断面（2）））の地震応答解析モデル図

図 3－2 排気筒連絡ダクト（岩盤部（断面（7）））の地震応答解析モデル図

3.3 減衰定数

減衰定数は「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「3．3減衰定数」に基づき設定する。

固有値解析結果の一覧を表 $3-3$ に，固有値解析におけるモード図を図 $3-3$ に，係数 α ，β を表 $3-4$ に，固有値解析に基づき設定した Rayleigh 減衰を表図 $3-4$ に示 す。

> 表 3-3 (1) 固有値解析結果 (土砂部 (断面 (2)))

固有振動数 （Hz）	有効質量比（\％）		刺激係数		備考	
	Tx	T y	$\beta \mathrm{x}$	$\beta \mathrm{y}$		
1	1.504	14	0	61.10	1.80	1 次として採用
2	1.748	14	0	7.62	-9.34	-
3	2.119	14	0	2.62	-1.32	-
4	2.292	14	1	-1.37	-8.04	-
5	2.500	14	1	-1.18	1.18	-
6	2.706	14	1	1.47	7.37	-
7	3.056	14	1	-0.41	0.27	-
8	3.444	14	1	0.14	-6.24	-
9	3.772	15	1	-6.80	0.46	-
10	3.849	15	1	-5.10	-6.61	-

表 $3-3$（2）固有値解析結果（岩盤部（断面（7））

	固有振動数 （Hz）	有効質量比（\％）		刺激係数		備考
		T x	T y	$\beta \mathrm{x}$	$\beta \mathrm{y}$	
1	3． 703	6	0	37.33	3.02	1 次として採用
2	4.653	30	0	－77． 60	5.03	－
3	5． 472	44	1	58.24	－9．98	－
4	6.061	49	1	36． 75	－0． 44	－
5	6． 698	57	1	-43.16	1． 44	－
6	7． 440	67	1	51.33	－6． 07	－
7	7.515	74	1	－41． 69	10．34	－
8	8.132	74	1	4.69	1.02	－
9	8． 524	76	2	17． 75	－13．32	－
10	8． 894	76	2	－7． 59	3.78	－

資料3－（参考）3－13

図 $3-3$（1）固有値解析結果（モード図）（土砂部（断面（2）））

図 $3-3$（3）固有値解析結果（モード図）（土砂部（断面（2）））

図 $3-3$（6）固有値解析結果（モード図）（岩盤部（断面 7 7））

表 3－4 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

評価対象断面	α	β
土砂部（断面（2））	2.835×10^{-1}	1.058×10^{-3}
岩盤部（断面（7））	6.980×10^{-1}	4.298×10^{-4}

図 3－4（1）設定した Rayleigh 減衰（土砂部（断面（2）））

図 3－4（1）設定したRayleigh 減衰（岩盤部（断面（7）））
3.4 荷重の組合せ

「資料3 排気筒連絡ダクトの耐震安全性評価について」のうち「3．4荷重の組合せ」と同様とする。
3.5 地震応答解析の解析ケース

断層交差部の耐震安全性評価において，土砂部（断面（2）については，基準地震動 S s（7 波）及びこれらに水平動の位相反転を考慮した地震動（7波）を加えた全14波を用いて基本ケース（ケース（1）を実施する。岩盤部（断面（7）については，基準地震動 S s（7 波）及びこれらに水平動の位相反転を考慮した地震動（7波）を加え た全 14 波を用いて基本ケース（ケース（1））を実施し，断層による影響を確認したこ とから，ばらつきケース及び更なるばらつきケースまで実施し，基準地震動 S s に対 して十分な構造強度及び支持機能を有していることを確認する。

4．評価内容
4.1 入力地震動の設定

入力地震動は，「資料3排気筒連絡ダクトの耐震安全性評価について」のうち「4．1 入力地震動」に基づき設定する。
図 4－1～図4－28に入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示 す。

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－1 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－F 1 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－F 2 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2））（鉛直成分：S s－F 2 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2））（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （土砂部（断面（2）））（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7））（水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7））（水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7））（水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7））（水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7））（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （岩盤部（断面（7）））（鉛直成分：S s－N 1）

4．2 許容限界の設定
「資料 3 排気筒連絡ダクトの耐震安全性評価について」のうち「許容限界の設定」 と同様とする。

5．評価結果

5.1 地震応答解析結果

5．1．1 解析ケースと照査値
（1）土砂部（断面（2））
土砂部（断面（2）における曲げ・軸力系の破壊に対する照査の実施ケースと照査値を表5－1に，せん断破壊に対する照査の実施ケースと照査値を表5－2に，基礎地盤の支持性能に対する照査の実施ケースと照査値を表5－3に示す。

なお，せん断破壊に対する照査に用いるせん断耐力は，せん断耐力式により算定しているが，照査値が 1.0 を超えるケースについては，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析を実施するこ とにより，より高い精度でせん断耐力を求め照査を行っている。

以下に，排気筒連絡ダクトの曲げ・軸力系の破壊に対する照査，せん断破壊に対する照査及び基礎地盤の支持性能に対する照査結果を示す。なお，評価位置を図 5－1に示す。

図 5－1 評価位置図

表 5－1 曲げ・軸力系の破壊に対する実施ケースと照査値

解析ケース地震動		曲げ・軸力系の破壊に対する照査＊			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.51			
	－＋	0.53			
S s－D 2	$++$	0.60			
	$-+$	0.68			
Ss－D 3	$++$	0.37			
	－＋	0.34			
S s－F 1	$++$	0.59			
	$-+$	0.54			
S s－F 2	＋＋	0.58			
	$-+$	0． 49			
Ss－F 3	$++$	0． 28			
	$-+$	0.31			
$\mathrm{S} s-\mathrm{N} 1$	$++$	0.41			
	－＋	0． 42			

注記＊：照査値は，構造強度を有することに対する評価結果（層間変形角） と S クラスの施設を支持する機能に対する評価結果（ひずみ）の厳しい方を記載

表5－2（1）せん断破壊に対する実施ケースと照査値（アーチ）

解析ケース地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.70			
	－＋	0． 74			
S s－D 2	＋＋	0.73			
	－＋	0． 80			
S s－D 3	＋＋	0.58			
	－＋	0.60			
S s－F 1	＋＋	0.76			
	－＋	0.78			
S s－F 2	＋＋	0.74			
	－＋	0.71			
S s－F 3	＋＋	0.53			
	－＋	0． 46			
S s－N 1	＋＋	0.72			
	－＋	0.68			

注＊：せん断耐力式による照査値を示す。
注記＊：評価位置を図5－1 に示す。

表5－2（2）せん断破壊に対する実施ケースと照査値（側壁）

解析ケース地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	$\begin{aligned} & 0.60 * 2 \\ & (1.51) \end{aligned}$			
	－＋	$\begin{aligned} & 0.58 * 2 \\ & (1.53) \end{aligned}$			
S s－D 2	＋＋	$\begin{aligned} & 0.55 * 2 \\ & (1.52) \end{aligned}$			
	－＋	$\begin{aligned} & 0.62 * 2 \\ & (1.44) \end{aligned}$			
S s－D 3	＋＋	$\begin{aligned} & 0.54 * 2 \\ & (1.32) \end{aligned}$			
	－＋	$\begin{aligned} & 0.51 * 2 \\ & (1.34) \end{aligned}$			
S s－F 1	＋＋	$\begin{aligned} & 0.59 * 2 \\ & (1.40) \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.64 * 2 \\ & (1.41) \end{aligned}$			
S s－F 2	＋＋	$\begin{aligned} & 0.58 * 2 \\ & (1.37) \end{aligned}$			
	－＋	$\begin{aligned} & 0.55 * 2 \\ & (1.44) \end{aligned}$			
S s－F 3	＋＋	$\begin{aligned} & \hline 0.49 * 2 \\ & (1.32) \end{aligned}$			
	－＋	$\begin{aligned} & 0.48 * 2 \\ & (1.27) \end{aligned}$			
S s－N 1	＋＋	$\begin{aligned} & \hline 0.60 * 2 \\ & (1.58) \end{aligned}$			
	－＋	$\begin{aligned} & 0.62 * 2 \\ & (1.53) \end{aligned}$			

注記＊1：評価位置を図5－1 に示す。
＊2：材料非線形解析によるせん断耐力を用いた照查を示す。なお， （ ）内に記載の数値は，せん断耐力式による照査値を示す。

表5－2（3）せん断破壊に対する実施ケースと照查値（底版）

解析ケース地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	$\begin{aligned} & 0.70 * 2 \\ & (1.24) \end{aligned}$			
	－＋	$\begin{aligned} & 0.72 * 2 \\ & (1.18) \end{aligned}$			
S s－D 2	＋＋	$\begin{aligned} & 0.80^{* 2} \\ & (1.16) \end{aligned}$			
	－＋	$\begin{aligned} & 0.71 * 2 \\ & (1.17) \end{aligned}$			
S s－D 3	＋＋	$\begin{aligned} & 0.61 * 2 \\ & (1.06) \end{aligned}$			
	－＋	$\begin{aligned} & 0.58 * 2 \\ & (1.00) \end{aligned}$			
S s－F 1	＋＋	$\begin{aligned} & 0.80^{* 2} \\ & (1.25) \end{aligned}$			
	－＋	$\begin{aligned} & 0.70 * 2 \\ & (1.13) \end{aligned}$			
S s－F 2	＋＋	$\begin{aligned} & 0.73^{* 2} \\ & (1.20) \end{aligned}$			
	－＋	$\begin{aligned} & 0.70 * 2 \\ & (1.14) \end{aligned}$			
S s－F 3	＋＋	0.91			
	－＋	$\begin{aligned} & 0.64^{* 2} \\ & (1.04) \end{aligned}$			
S s－N 1	＋＋	$\begin{aligned} & 0.87 * 2 \\ & (1.15) \end{aligned}$			
	－＋	$\begin{aligned} & 0.77^{* 2} \\ & (1.27) \end{aligned}$			

注記 $* 1$ ：評価位置を図5－1 に示す。
＊ 2 ：材料非線形解析によるせん断耐力を用いた照査を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。

表 5－3 基礎地盤の支持性能に対する実施ケースと照査値

解析ケース 地震動		基礎地盤の支持性能に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.21			
	－＋	0． 20			
S s－D 2	$++$	0． 23			
	－＋	0.26			
S s－D 3	$++$	0.17			
	－＋	0． 19			
S s－F 1	＋＋	0.21			
	$-+$	0.25			
S s－F 2	$++$	0.22			
	－＋	0.21			
S s－F 3	＋＋	0.21			
	$-+$	0． 19			
S s－N 1	＋＋	0.21			
	－＋	0． 22			

（2）岩盤部（断面 7 ）
岩盤部（断面（7）における曲げ・軸力系の破壊に対する照査の実施ケースと照査値を表5－4に，せん断破壊に対する照査の実施ケースと照査値を表5－5に，基礎地盤の支持性能に対する照査の実施ケースと照査値を表 5－6に示す。

表 5－4 曲げ・軸力系の破壊に対する実施ケースと照査値

解析ケース地震動		曲げ・軸力系の破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0． 40			
	$-+$	0． 41			
S s－D 2	＋＋	0.36			
	－＋	0.35			
S s－D 3	＋＋	0.29			
	－＋	0.39			
S s－F 1	$++$	0.33			
	－＋	0.26			
S s－F 2	＋＋	0.32	0.28	0.32	0.34
	－＋	0.38			
S s－F 3	＋＋	0． 34			
	－＋	0.37			
S s－N 1	$++$	0． 46			
	－＋	0． 41			

表 5－5 せん断破壊に対する実施ケースと照査値

解析ケース 地震動		せん断破壊に対する照査＊			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.59			
	$-+$	0． 70			0． 74
S s－D 2	+ ＋	0.69			
	$-+$	0.58			
S s－D 3	$++$	0.67			
	$-+$	0． 47			
$\mathrm{S} \mathrm{s}-\mathrm{F} 1$	$++$	0． 40			
	－＋	0． 43			
S s－F 2	$++$	0． 70	0.67	0． 72	0． 74
	$-+$	0.54			
S s－F 3	＋＋	0.53			
	－＋	0.51			
S s－N 1	$++$	0.50			
	$-+$	0.59			

注記＊：赤枠は，「資料3 排気筒連絡ダクトの耐震安全性評価について」 のうち「3．5 地震応答解析の解析ケース」に基づき，解析ケース （2）～（4）を実施する地震動の基本ケース（1）の照査値を示す。

表 5－6 基礎地盤の支持性能に対する実施ケースと照査値

解析ケース地震動		基礎地盤の支持性能に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.04			
	$-+$	0． 04			
S s－D 2	$++$	0.04			
	$-+$	0.04			
Ss－D 3	$++$	0.04			
	$-+$	0.04			
S s－F 1	$++$	0.03			
	$-+$	0.03			
$\mathrm{S} s-\mathrm{F} 2$	$++$	0.04	0.04	0.04	0.05
	$-+$	0.04			
$\mathrm{S} s-\mathrm{F} 3$	$++$	0． 04			
	$-+$	0.04			
S s－N 1	$++$	0.04			
	$-+$	0.03			

5．1．2 層間変形時刻歴波形

土砂部（断面（2）における排気筒連絡ダクトの曲げ・軸力系の破壊に対する照査において，各解析ケースのうち照査値が最も厳しくなるケースの層間変形角時刻歴波形を図5－1に示す。

図 5－1 曲げ・軸力系の破壊に対する照査が最も厳しくなるケースの層間変形角時刻歴波形（解析ケース（1）地震動 S s－F $1(++)$ ）

5．1．3 断面力分布

岩盤部（断面（7）における排気筒連絡ダクトの曲げ・軸力系の破壊に対する照査において，最も厳しい照査値となる時刻における断面力分布図（曲げモーメン ト，軸力，せん断）を図 5－2 に示す。また，土砂部（断面（2））及び岩盤部（断面（7）におけるせん断破壊に対する照査について，各解析ケースのらち部材毎の照査値が最大となる時刻における断面力分布図（曲げモーメント，軸力，せん断） を図5－3及び図5－4に示す。

数傎：評揀位置における断面力
（c）せん断力（kN）
図 5－2 曲げ・軸力の評価に対する照査値最大時の断面力図（岩盤部（断面（7）））
（解析ケース（1），地震動 S s－N $1 \quad(++)$ ）
資料3－（参考）3－62

数値：評価位粗における断面力
（a）曲げモーメント（kN•m）

数値：評侕位置における断面力
（b）軸力（ kN$) ~(+$ ：引張，- ：圧縮）

数值：評価位置における断面力
（c）せん断力（kN）
図 5－3 せん断破壊に対する照査値最大時＊の断面力図（土砂部（断面（2）））
（解析ケース（1），地震動 S s－N $1(++)$ ）
注：材料非線形解析による評価結果
資料 3－（参考）3－63

数值：評侕位置における断面力
（a）曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

$\square_{-}^{1500 \mathrm{kN}}{ }_{0}$

数值：評侕位瞋における断面力
（b）軸力 $(\mathrm{kN})(+:$ 引張，- ：圧縮）

-100 kN
-50
0

数值：評俇位置における断面力
（c）せん断力（ kN ）
図 5－4 せん断破壊に対する照査値最大時の断面力図（岩盤部（断面（7）））
（解析ケース（4），地震動 S s－F $2(++)$ ）
資料 3－（参考）3－64

5．1．4 最大せん断ひずみ分布
（1）土砂部（断面（2））
曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示すケースについて，地盤に発生した最大せん断ひずみを確認する。

最大照査値を示す解析ケースの一覧を表 5－7 に，最大せん断ひずみ分布図を図5－5に示す。

表 5－7 最大照査値を示すケースの一覧

評価項目	
曲げ・軸力系	せん断
ケース（1）	ケース（1）
S s－D 2 $(-+)$	S s $-\mathrm{N} 1 \quad(++)$

最大せん断ひず
み

0.02
 0.015
 0.01
 0.00 E
 0

（a）全体図

（b）構造物周辺拡大図

図 5－5（1）最大せん断ひずみ分布図（土砂部（断面（2））） （解析ケース（1），地震動 S s－D $2(-+)$ ）

最大せん断ひず み

0.02
 0.01 E
 0.01
 0.00 E
 0

（a）全体図

（b）構造物周辺拡大図
図5－5（2）最大せん断ひずみ分布図（土砂部（断面（2））） （解析ケース（1），地震動 S s－N $1 \quad(++)$ ）
（2）岩盤部（断面（7）
曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示すケースについて，地盤に発生した最大せん断ひずみを確認する。
最大照査値を示す解析ケースの一覧を表 5－8 に，最大せん断ひずみ分布図を図5－6に示す。

表 5－8 最大照査値を示すケースの一覧

評価項目	
曲げ・軸力系	せん断
ケース①	ケース（4）
S s $-\mathrm{N} 1(++)$	S s－F $2(++)$

（a）全体図

（b）構造物周辺拡大図

図 5－6（1）最大せん断ひずみ分布図（岩盤部（断面（7））） （解析ケース（1），地震動 S s－N $1(++)$ ）

最大せん断ひずみ

0． 02
0.015
0.01

0． 005

0
（a）全体図

（b）構造物周辺拡大図

図5－6（2）最大せん断ひずみ分布図（岩盤部（断面 7 7））
（解析ケース（4），地震動 S s－F $2(++)$ ）

5.2 構造部材の健全性に対する評価結果

5．2．1 曲げ・軸力系の破壊に対する評価結果
（1）土砂部（断面（2））
構造強度を有することの確認における曲げ・軸力系の破壊に対する各評価位置 での最大照査値を表5－9に示す。また，Sクラスの施設を支持する機能を損なわ ないことの確認における曲げ・軸力系の破壊に対する各評価位置での最大照査値 を表5－10に示す。

表5－3のとおり，照査用層間変形角は限界層間変形角（層間変形角 $1 / 100$ ） を下回ることを確認した。

表 5－9のとおり，S クラスの施設を支持する機能を有する底版におけるコンク リートの圧縮ひずみ及び主筋ひずみが，許容限界（コンクリートの圧縮ひずみ： 2000μ ，主筋ひずみ： 1725μ ）を下回ることを確認した。

表 5－9 曲げ・軸力系の破壊に対する最大照査値（層間変形角）

解析 ケース	地震動	照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$ $(++)$	1.27×10^{-3}	1.0×10^{-2}	0.13

注記 $*$ ：照査用層間変形角 $\mathrm{R} d=$ 発生する層間変形角 $\mathrm{R} \times$ 構造解析係数 $\gamma \mathrm{a}$

表 5－10（1）曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

評価位置${ }^{* 1}$		解析 ケース	地震動	照査用ひずみ＊2 ε_{d}	限界ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	4	（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(-+)$	858μ	2000μ	0.43

注記＊ 1：評価位置は図5－7に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表 5－10（2）曲げ・軸力系の破壊に対する最大照査値（主筋ひずみ）

評価位置${ }^{* 1}$		解析 ケース	地震動	照査用ひずみ＊2 ε_{d}	限界ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	$\boxed{4}$	(1)	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(-+)$	1170μ	1725μ	0.68

注記＊1：評価位置は図5－7に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

底版

4

図 5－7 評価位置図
（2）岩盤部（断面（7）
構造強度を有することの確認及びSクラスの施設を支持する機能を損なわない
ことの確認における曲げ・軸力系の破壊に対する各評価位置での照査値を表5—
11 に示す。
同表のとおり，発生応力度は短期許容応力度を下回ることを確認した。

表 $5-11$（1）曲げ・軸力系の破壊に対する最大照査値（コンクリート）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）	発生応力度 $\sigma^{\prime}{ }_{\mathrm{c}}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度 σ＇са （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{aligned} & \text { 照査値 } \\ & \sigma^{\prime}{ }_{c} / \sigma_{\sigma}^{\prime} \text { ca } \end{aligned}$
覆工部	1	（1）	S s－D $1 \quad(++)$	63	－117	3.5	11.7	0． 30

注記 $*: ~$ 評価位置は図5－8に示す。

表 5－11（2）曲げ・軸力系の破壊に対する最大照査値（鉄筋）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）	発生応力度 σ s （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma \mathrm{sa} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
覆工部	1	（1）	S s－N $1 \quad(++)$	49	－6	135	294	0． 46

注記 $~$ ：評価位置は図 5－8に示す。

図 5－8 評価位置図

5．2．2 せん断破壊に対する評価結果

（1）土砂部（断面（2））
せん断破壊に対する各評価位置での最大照査値を表5－12に示す。

表 5－12 せん断破壊に対する最大照査値

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{y} \mathrm{~d}}(\mathrm{kN})$	照査値 $V_{d} / V_{y d}$
アーチ	1	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (-+) \end{gathered}$	883	$1110 * 3$	0． 80
側壁	2	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 1 \\ (-+) \end{gathered}$	1507	2370 ＊${ }^{\text {4 }}$	0.64
底版	4	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	1887	$2191 * 4$	0． 87

注記＊1：評価位置は図5－7に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：部材非線形解析によるせん断耐力
＊4：材料非線形解析によるせん断耐力
（2）岩盤部（断面（7）
せん断破壊に対する各評価位置での最大照査値を表5－13に示す。

表 5－13 せん断破壊に対する最大照査値

評価位置＊		解析 ケース	地震動	発生 せん断力 V (kN)	発生 応力度 τ_{d} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\tau_{\mathrm{a} 1}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{d}} / \tau_{\mathrm{a} 1}$
覆工部	1	（4）	$\mathrm{S} \mathrm{s}-\mathrm{F} 2$ $(++)$	159	0.46	0.63	0.74

注記＊：評価位置は図5－8に示す。
5.3 基礎地盤の支持性能に対する評価結果
5.3 .1 土砂部（断面（2））

土砂部（断面（2））における基礎地盤（狐崎部層）の支持性能に対する評価結果 を表5－14に示す。また，最大接地圧分布図を図5－9に示す。

同表より，基礎地盤（狐崎部層）に発生する接地圧が極限支持力を下回ること を確認した。

表 5－14 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $R_{d}\left(N / m^{2}\right)$	極限支持力 $R_{u}\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(-+)$	3.5	13.7	0.26

構造物底面

図 5－9 接地圧分布図（S s－D $2(-+))$
（解析ケース（1）：標準ケース）

5．3．2 岩盤部（断面（7）

岩盤部（断面（7）における基礎地盤（狐崎部層）の支持性能に対する評価結果 を表5－15に示す。また，最大接地圧分布図を図5－10に示す。

同表より，基礎地盤（狐崎部層）に発生する接地圧が極限支持力を下回ること を確認した。

表 5－15 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（4）	$\mathrm{S} \mathrm{s}-\mathrm{F} 2$ $(++)$	0.6	13.7	0.05

図 5－10 接地圧分布図（S s－F $2(++))$
（解析ケース（4）：コンクリートの実強度に基づく圧縮強度を考慮したケース）

6．まとめ
敷地内に分布する断層が屋外重要土木構造物等の耐震性に与える影響を検討するため，排気筒連絡ダクト（土砂部（断面（2））），排気筒連絡ダクト（岩盤部（断面（7）））につい て影響評価を実施した。

断層を考慮した影響評価を行った結果，排気筒連絡ダクト（土砂部（断面（2）））につ いては，断層厚さを保守的に厚く設定した評価において，基本ケース（ケース（1）の14波による評価を行い，断層による影響が無いこと及び基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認した。排気筒連絡ダクト（岩盤部（断面 ⑦）については，断層厚さを保守的に厚く設定した評価において，基本ケース（ケー ス（1）の14波により断層の影響を確認したことから，ばらつきケース及び更なるばらつ きケースまで実施し，基準地震動 S s に対して十分な構造強度及び支持機能を有してい ることを確認した。

1．はじめに
女川原子力発電所においては，液状化検討対象施設を幅広く抽出するために，水位が高 めに評価されるような解析条件にて浸透流解析を実施し，これを包絡するよう設計用地下水位を設定している。

これに対し，地下水位低下設備の信頼性向上（多重化等）により，平常時の地下水位は設計用地下水位より低くなる可能性がある。

排気筒連絡ダクト土砂部は，設計用地下水位と平常時水位の差が大きく，かつアーチ構造を有していることから，地下水位が低い場合の耐震評価への影響が大きいと考えられる。 また，盛土内に設置された線状構造物であることから，地下水の移動をせき止めることで偏圧の影響が想定される。ここでは，排気筒連絡ダクト土砂部のらち，設計用地下水位と平常時水位の差が最も大きく，かつ耐震評価結果が最も厳しい断面（1）を対象に影響検討を行ら。

影響検討は，「補足－600－1【地盤の支持性能について】3．3．2 耐震評価における設計用地下水位設定方針」に記載した以下のパターンに対し実施する。

- 地下水位が低いことによる構造物周辺の地盤応答の影響に対する検討（パターンB）
- 構造物の両側面に発生する水位差による偏圧の影響に対する検討（パターンC）

2．評価方針

地盤応答への影響検討及び偏圧の影響検討は，設計用地下水位と平常時水位の差が大き く，耐震評価結果が最も厳しい土砂部（断面（1）を評価対象断面とする。排気筒連絡ダク トにおける設計用地下水位及び平常時水位を図 2－1 及び図2－2に示す。
耐震評価は「資料3 排気筒連絡ダクトの耐震安全性評価について」における土砂部（断面（1））の評価条件に基づき実施するものとし，設計用地下水位及び影響検討用地下水位を表 2－1，地震応答解析モデル図を図2－3 に示す。

地盤応答への影響検討に用いる検討用地下水位は，設計用地下水位と水位差が最も大き くなる岩盤上面に設定し，偏圧の影響検討に用いる検討用地下水位は，排気筒連絡ダクト が地下水の移動をせき止めた場合に最も偏圧が作用するよう，排気筒連絡ダクトより山側 の水位を頂版上面，海側を岩盤上面に設定する。

影響検討に用いる地震動は，「資料3排気筒連絡ダクトの耐震安全性評価について」の解析ケース①（基本ケース）の結果において，鉄筋コンクリート部材の曲げ・軸力系の破壊に対する評価で最も照査値が厳しいS s－D $2(++)$ 及びせん断破壊に対する評価で最も照査値が厳しいS s－N 1 （ + ＋）を用いる。

図 2－1 排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較（縦断）

$\begin{array}{ll} & \begin{array}{l}\text { 設計用地下水位 } \\ \text { 予 } \\ \text { 測解析による地下水位 } \\ \text { 平常時水位 }\end{array} \\ =-==\end{array}$
図 2－2 排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較 （横断（土砂部，断面（1）））

枠囲みの内容は防護上の観点から公開できません。
資料 3－（参考）4－2

表 2－1 設計用地下水位及び影響検討用地下水位

検討ケース	地下水位
標準 （設計用地下水位）	0. P．+5.73 m
地盤応答への影響 （地盤応答への影響検討用地下水位）	0．P．－9． 10 m
偏圧への影響 （偏圧の影響検討用地下水位）	0．P．-1.50 m 0. P．－9． 10 m

図 2－3 地震応答解析モデル図（土砂部（断面（1））

3．評価結果
排気筒連絡ダクトはSクラス施設の間接支持構造物であることから，構造強度を有する ことの確認及びS クラスの施設を支持する機能を損なわないことの確認についての影響 を確認する。

構造強度を有することの確認における曲げ・軸力系の破壊に対する評価結果を表 3－1 に示す。また，Sクラスの施設を支持する機能を損なわないことの確認における曲げ・軸力系の破壊に対する評価結果を表3－2に示す。

せん断耐力式によるせん断破壊に対する評価結果を表3－3に示す。
影響検討の結果，地下水位が低い場合の地盤応答への影響と構造物の両側面に発生する水位差による偏圧への影響は軽微であることを確認した。

表 3－1 曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
【S s－D $2(++)$ 】

検討ケース	照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
標準	1.41×10^{-3}	1.0×10^{-2}	0.15
地盤応答への影響	1.39×10^{-3}	1.0×10^{-2}	0.14
偏圧への影響	1.43×10^{-3}	1.0×10^{-2}	0.15

注記 $⿻ 丷 木 斤$ ：照査用層間変形角 $\mathrm{R}_{\mathrm{d}}=$ 最大層間変形角 $\mathrm{R} \times$ 構造解析係数 $\gamma \mathrm{a}$

表3－2（1）曲げ・軸力系の破壊に対する評価結果（コンクリートの圧縮ひずみ，底版） （Sクラスの施設を支持する機能を損なわないことの確認）【 S s－D 2（＋＋）】

検討ケース	照査用ひずみ＊ ε_{d}	限界ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
標準	860μ	2000μ	0.43
地盤応答への影響	806μ	2000μ	0.41
偏圧への影響	806μ	2000μ	0.41

注記 $*: ~$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表 $3-2$（2）曲げ・軸力系の破壊に対する評価結果（主筋ひずみ，底版） （Sクラスの施設を支持する機能を損なわないことの確認）【 S s－D 2（＋＋）】

検討ケース	照査用ひずみ＊ ε_{d}	限界ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
標準	1349μ	1725μ	0.79
地盤応答への影響	1201μ	1725μ	0.70
偏圧への影響	1204μ	1725μ	0.70

注記 $*: ~$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表 3－3 せん断破壊に対する評価結果【S s－N $1 \quad(++)$ 】

解析 ケース	評価位置＊${ }^{1}$		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 （部材非線形 解析） $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$	照査値 （材料非線形 解析） $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
標準	アーチ	1	892	1110	0.81	－
	側壁	2	1867	1074	1． 74	0． 72
	底版	4	2239	1640	1． 37	0.87
地盤応答 への影響	アーチ	1	827	1110	0． 75	－
	側壁	2	1729	1075	1． 61	＊ 3
	底版	4	2062	1641	1． 26	＊ 3
偏圧 への影響	アーチ	1	856	1110	0.78	－
	側壁	2	1794	1074	1． 68	＊ 3
	底版	4	2159	1640	1． 32	$* 3$

注記＊ 1 ：評価位置は図 $3-1$ に示す。
＊2：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：標準ケースよりせん断耐力式の照査値が小さいので，材料非線形解析を用いれば照査値 1.0 未満となる見込み。

底版

4

図 3－1 評価位置図

4．まとめ
排気筒連絡ダクトは，地下水位が低いことで非保守的になる可能性のあるアーチ構造で，耐震設計への影響が考えられることから，地下水位が低い場合の地盤応答への影響と構造物の両側面に発生する水位差による偏圧への影響検討を行った。

評価の結果，標準ケースに比べて地下水位が低い場合と構造物の両側面に発生する水位差による偏圧が作用した場合の照査値はほとんど変わらないことから，平常時の地下水位 が設計用地下水位より低くなること及び偏圧力が作用することの影響は軽微であること を確認した。

地下水位が高い方が盛土の単位体積重量が増加するため，盛土の慣性力が大きくなり排気筒連絡ダクトへの作用土圧は大きくなる傾向となる。また，静水圧（揚圧力）も大きく なる。一方で，地下水位が高い方が，有効上載圧が小さくなることで盛土の初期せん断弾性係数 G_{0} 及びせん断強度 τ_{f} が小さくなり，発生せん断応力は小さくなる傾向となる。こ れらのことから，全応力解析において盛土の地下水位が構造物の耐震性に及ぼす影響が軽微であるという結果になったと考えられる。

参考資料5 非線形はり要素のモデル化方法に関する補足

1．はじめに
排気筒連絡ダクト（土砂部）の地震応答解析に用いる解析コードは，全応力解析では「SLAP Ver．6．64」を，有効応力解析では「FLIP Ver．7．3．0＿2」をそれぞれ使用している。地震応答解析では，構造物の鉄筋コンクリート部材を非線形はり要素によりモデル化して いるが，解析コードの制約から全応力解析ではファイバーモデルを，有効応力解析ではM －ϕ モデル（修正武田モデル）を使用している。ここでは，非線形はり要素のモデルの違 いが解析結果へ与える影響について検討を行う。

2．評価方針

検証対象は，排気筒連絡ダクト（土砂部）と同程度の規模のカルバート型構造物とする。図2－1 に検証モデルの概要を示す。構造物の内空高さは 5 m ，幅は 5 m ，部材厚は 1 m であ り，図 2－1（c）に示す鉄筋コンクリート断面を仮定する。表2－1 に材料の諸元を示す。解析では，構造物を部材軸心位置に設置したはり要素によりモデル化し，隅角部には剛域を設定する。

解析における荷重の載荷方法を図2－2に示す。まず，載荷ステップ 1 において，常時土圧を想定した鉛直荷重及び水平荷重を分布荷重として各部材に静的に作用させる。次に，載荷ステップ 2 において，地震時の繰り返し荷重を想定し正負交番載荷を行う。正負交番載荷は，部材降伏後の挙動までを追跡するため変位制御で行うこととし，頂版端部の節点 に降伏変位 $\delta \mathrm{Y}$ の 0.5 倍， 1 倍， 1.5 倍の水平変位振幅を静的に与える。図 $2-3$ に入力変位振幅を示す。

検討は，はり要素にファイバーモデルを使用した場合，及びM－ C モデル（修正武田モ デル）を使用した場合について実施する。使用する解析コードは，ファイバーモデルは「SLAP Ver．6．64」，M－ M モデルは「FLIP Ver．7．3．0＿2」とする。

図 2－1 検証モデルの概要

表 2－1 材料の諸元

コンクリート	項 目	設定値
	設計基準強度	$20.5 \mathrm{~N} / \mathrm{mm}^{2}$
	ヤング係数	$23250 \mathrm{~N} / \mathrm{mm}^{2}$
鉄 筋	ポアソン比	0.2
	降伏強度	$345 \mathrm{~N} / \mathrm{mm}^{2}$
	ヤング係数	$200000 \mathrm{~N} / \mathrm{mm}^{2}$

（a）載荷ステップ 1

（b）載荷ステップ 2（正負交番載荷）

図2－2 荷重の載荷方法

図 2－3 入力変位振幅（正負交番載荷）

3．検証結果
解析によって得られた荷重一変位関係を図3－1 に示す。ファイバーモデルとM－ M モ デルとで，荷重一変位の履歴は似ており，全体的な挙動は両解析で概水整合している。

解析の最終ステップにおける各部材の断面力分布を図3－2 及び図3－3に示す。せん断力及び曲げモーメントの分布は，両解析で概ね一致している。

図 3－1 荷重一変位関係

図 3－2 断面力分布（せん断力）

（b）左側壁

（c）右側壁

（d）底版

図 3－3 断面力分布（曲げモーメント）

4．まとめ
非線形はり要素にファイバーモデル及びM一 M モデルを適用した場合の影響について，排気筒連絡ダクト（土砂部）と同程度の規模のカルバート型構造物を模擬した検証モデル を対象に，正負交番載荷による繰返し荷重を考慮した解析を行い，両モデルによる挙動が概ね整合することを確認した。

以上により，解析コードの制約から全応力解析ではファイバーモデルを，有効応力解析 では $\mathrm{M}-\phi$ モデル（修正武田モデル）を用いているが，構造物における非線形はり要素の モデルの違いによる評価結果の差がほとんど無いことから，両モデルの使い分けは問題無 いことを確認した。

資料4 原子炬機器冷却海水配管ダクト（水平部）の耐震安全性評価
1．評価方法 資料 4－1
2．評価条件 資料 4－1
2.1 構造及び補強の概要 資料 4－1
2.2 評価対象断面の方向 資料 4－6
2．3 評価対象断面の選定 資料 4－8
2.4 使用材料及び材料の物性値． 資料 4－9
2.5 地盤物性値 資料 4－9
2.6 評価構造物諸元 資料 4－14
2.7 地下水位 資料 4－15
2.8 耐震評価フロー 資料 4－16
2.9 適用規格 資料 4－18
3．地震応答解析 資料 4－20
3.1 地震応答解析手法 資料 4－20
3.2 地震応答解析モデルの設定。 資料 4－23
3．2．1 解析モデル領域 資料 4－23
3．2．2 境界条件 資料 4－25
3．2．3 構造物のモデル化 資料 4－28
3．2．4 地盤及び MMR のモデル化 資料 4－28
3．2．5 ジョイント要素の設定． 資料 4－29
3．2．6 材料特性の設定 資料 4－32
3.3 減衰定数 資料 4－34
3.4 荷重の組合せ 資料 4－40
3．4．1 機器•配管荷重 資料 4－41
3．4．2 外水圧 資料 4－41
3．4．3 積載荷重 資料 4－41
3.5 地震応答解析の解析ケース 資料 4－42
3．5．1 耐震評価における解析ケース 資料 4－42
3．5．2 機器•配管系に対する応答加速度抽出のための解析ケース 資料 4－49
4．評価内容 資料 4－53
4． 1 入力地震動の設定 資料 4－53
4.2 許容限界の設定 資料 4－82
4．2．1 曲げ・軸力系の破壊に対する許容限界 資料 4－82
4．2．2 せん断破壊に対する許容限界（せん断耐力式によるせん断耐力） 資料 4－84
4．2．3 せん断破壊に対する許容限界（材料非線形解析によるせん断耐力） 資料 4－91
4．2．4 基礎地盤の支持性能に対する許容限界 資料 4－104
5．評価結果 資料 4－105
5.1 地震応答解析結果 資料 4－105
5．1．1 解析ケースと照査値 資料 4－105
5．1．2 層間変形角時刻歴波形（曲げ・軸力系の破壊に対する照査） 資料 4－112
5．1．3 断面力分布（せん断破壊に対する照査） 資料 4－113
5．1．4 最大せん断ひずみ分布． 資料 4－115
5.2 構造部材の健全性に対する評価結果 資料 4－117
5．2．1 曲げ・軸力系の破壊に対する評価結果 資料 4－117
5．2．2 せん断破壊に対する評価結果． 資料 4－126
5.3 基礎地盤の支持性能に対する評価結果． 資料 4－144
5．3．1 基礎地盤（狐崎部層） 資料 4－144
5．3．2 MMR（既設） 資料 4－146
6．まとめ 資料 4－151

参考資料
参考資料 1 機器•配管系の耐震評価に適用する影響検討ケース・•••• 資料 4－（参考）1－1参考資料 2 静的地震力に対する耐震評価••••••••••••••• 資料 4－（参考）2－1
\square ：本日の説明範囲

1．評価方法

原子炉機器冷却海水配管ダクト（水平部）は，耐震重要施設及び常設重大事故等対処設備であ る原子炉補機冷却海水系配管，高圧炉心スプレイ補機冷却海水系配管等を間接支持しており，支持性能が要求される。

原子炉機器冷却海水配管ダクト（水平部）については，基準地震動 S s による耐震評価として，構造部材の曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持性能に対する評価を実施する。

構造部材の健全性評価については，構造部材の層間変形角，曲げモーメント及びせん断力が要求性能に応じた許容限界を下回ることを確認する。基礎地盤の支持性能評価については，基礎地盤に発生する応力（接地圧）が極限支持力に基づく許容限界を下回ること，マンメイドロック（以下「MMR」という。）に発生する応力（接地圧）が支圧強度を下回ること及び MMR の健全性を確認 する。

2．評価条件

2.1 構造及び補強の概要

原子炉機器冷却海水配管ダクト（水平部）の位置を図2－1に示す。
原子炉機器冷却海水配管ダクト（水平部）は，鉄筋コンクリート造の地中構造物である。
原子炉機器冷却海水配管ダクト（水平部）の平面図を図 $2-2$ に，断面図を図 $2-3$ に，概略配筋図を図2－4に示す。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）と原子炉建屋を結ぶ，延長 6.10 m ，内空幅 $2.10 \mathrm{~m} \sim 3.35 \mathrm{~m}$ ，内空高さ 6.70 m の鉄筋コンクリート造，四連ボックスカルバート構造の地中構造物であり，MMR を介して十分な支持性能を有する岩盤 に設置されている。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）及 び原子炉建屋との接合部に耐震ジョイントが設置されており，延長方向に断面変化がない線状構造物である。

新規制基準への適合を踏まえ，基準地震動 S s が大加速化したことに伴い，せん断破壊に対 する耐震補強として，後施工せん断補強工法（CCb 工法）による補強を図2－5に示す箇所に行 っている。

図2－1 原子炉機器泠却海水配管ダクト（水平部）の位置図

（単位：m）
図 2－2 原子炉機器冷却海水配管ダクト（水平部）平面図

南
北
0．P．+14.80 m

（単位：m）
図 2－3 原子炉機器冷却海水配管ダクト（水平部）断面図（ $\mathrm{A}-\mathrm{A}$ 断面）

$\square: \mathrm{CCb}$ 工法適用箇所

図 2－4 原子炉機器冷却海水配管ダクト（水平部）概略配筋図

図 2－5 原子炉機器冷却海水配管ダクト（水平部）評価対象地質断面図（A－A 断面）

図 2－6（2）CCb 工法を適用する部材

：CCb による耐震補強箇所
図 2－6（2）CCb 工法を適用する部材

2.2 評価対象断面の方向

評価対象断面の方向の選定に係る考え方を表 $2-1$ に示す。原子炉機器冷却海水配管ダクト （水平部）の東西方向は加振方向と平行に配置される側壁又は隔壁を耐震上見込むことができ ることから，強軸方向となる。一方，南北方向は，加振方向と平行に配置される構造部材がな いことから，弱軸方向となる。

以上のことから，原子炉機器冷却海水配管ダクト（水平部）の耐震評価では，構造の安定性 に支配的な弱軸方向である南北方向を評価対象断面とする。

表 2－1 原子炉機器冷却海水配管ダクト（水平部）の評価対象断面の方向の選定

	南北方向の加振	東西方向の加振
原子娬機器却海水配管ク$卜$水平部		
	－南北方向は，加振方向に平行な壁部材がなく，弱軸方向にあたる。	－東西方向は，加振方向に平行な側壁及び隔壁を耐震設計上見込む ことができ，強軸方向にあたる。
	弱軸方向を評価対象断面とする。	

2．3 評価対象断面の選定

原子炉機器冷却海水配管ダクト（水平部）の平面図を図 $2-2$ に，断面図を図 $2-3$ に，概略配筋図を図2－4に示す。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）と原子炉建屋を結ぶ，延長 6.10 m ，内空幅 $2.10 \mathrm{~m} \sim 3.35 \mathrm{~m}$ ，内空高さ 6.70 m の鉄筋コンクリート造，四連ボックスカルバート構造の地中構造物であり，MMR を介して十分な支持性能を有する岩盤 に設置されている。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）及 び原子炉建屋との接合部に耐震ジョイントが設置されており，延長方向に断面変化がない線状構造物である。

評価対象断面は，「資料1 屋外重要土木構造物の耐震安全性評価について」の「4． 6 原子炉機器冷却海水配管ダクト」に示すとおり，構造的特徴や周辺状況等を踏まえ，構造物の弱軸方向となる南北方向（A－A 断面）を代表として，耐震評価を実施する。

原子炉機器冷却海水配管ダクト（水平部）の評価対象地質断面図を図 $2-5$ に示す。

2.4 使用材料及び材料の物性値

構造物の使用材料を表2－2に，材料物性値を表2－3に示す。

表2－2 使用材料

材料	仕様
コンクリート	設計基準強度 $\quad 20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表2－3 材料の物性値

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	設計基準強度	2.33×10^{4}	解析ケース＊2 （1），（2），（3）
		実強度＊${ }^{\text {1 }}$	3.02×10^{4}	解析ケース＊2（4）
	ポアソン比		0.2	

注記＊ 1 ：既設構造物のコア採取による圧縮強度試験の結果を使用する。
＊2：解析ケースについては，
「3．5 地震応答解析の解析ケース」に示す。

2.5 地盤物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。地盤の物性値を表2－4～表2－7に示す。
表 2－4 地盤の解析用物性値（狐崎部層）

岩種•岩級		物理特性	強度特性			変形特性					
		単位体積重量$\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	静的－動的特性			静的特性		動的特性			
		せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left(^{\circ}\right)$	残留強度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	静弾性係数 $\mathrm{E}_{\mathrm{S}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \hline \text { 静ポアソン比 } \\ v_{\mathrm{s}} \end{gathered}$	動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 動ポアソン比 } \\ v_{\mathrm{d}} \\ \hline \end{gathered}$	減衰定数 h		
（ ${ }^{\text {b }}$ 級	砂岩		26.4	1.72	43.0	$1.30 \sigma^{0.73}$	1，770	0.25	表2－5 参照		0.03
C_{H} 級		26． 2	1． 72	43.0	$1.30 \sigma^{0.73}$	1，770	0． 24			0.03	
$\mathrm{Cam}^{\text {級 }}$		25.2	0． 49	47.0	$1.16 \sigma^{0.62}$	980	0.26			0.03	
C_{L} 級		24.1	0． 46	44.0	$0.73 \sigma^{0.76}$	400	0.31			0． 03	
D 級		20． 2	0． 10	24.0	$0.41 \sigma^{0.49}$	78	0． 38	$\begin{aligned} & \mathrm{G}_{0}=255.4 \sigma^{0.26} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /\left(1+119 \gamma^{0.63}\right) \end{aligned}$		$\begin{aligned} & \mathrm{h}= \\ & 0.085 \gamma / \\ & (0.00026+\gamma) \\ & +0.028 \end{aligned}$	

表2－5 地盤の解析用物性値（狐崎部層）

岩種•岩級		速度層	動的変形特性		
		動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	動ポアソン比 v_{d}		
B 級	砂岩		第2速度層	1.5×10^{3}	0． 44
		第3速度層	5.9×10^{3}	0.40	
$\begin{aligned} & \text { 及び } \\ & C_{H} \text { 級 } \end{aligned}$		第4速度層	13.2×10^{3}	0． 36	
		第5速度層	16.5×10^{3}	0． 35	
C_{M} 級		第 1 速度層	0． 2×10^{3}	0.48	
		第 2 速度層	1.5×10^{3}	0． 44	
		第3速度層	5． 7×10^{3}	0． 40	
		第4速度層	12.7×10^{3}	0． 36	
		第5速度層	15.8×10^{3}	0． 35	
C_{L} 級		第 1 速度層	0． 2×10^{3}	0.48	
		第 2 速度層	1． 4×10^{3}	0.44	
		第3速度層	5.5×10^{3}	0． 40	
D 級		第 1 速度層	表 $2-4$ 参照	0.48	
		第 2 速度層		0． 44	

表 2－6 地盤の解析用物性値（盛土他）

岩種•岩級	物理特性 単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	強度特性				変形特性				
		静的－動的特性				静的特性		動的特性		
		せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left(^{\circ}\right)$	$\begin{gathered} \hline \text { 引張強度 } \\ \sigma_{\mathrm{t}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 残留強度 } \\ & \tau\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ & \hline \end{aligned}$	静弾性係数 $\mathrm{E}_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 静ポアソン比 } \\ v_{\mathrm{s}} \\ \hline \end{gathered}$	動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 動ポアソン比 } \\ v_{\mathrm{d}} \\ \hline \end{gathered}$	減衰定数 h
盛土	20.6	0． 06	30.0	－	$0.06+\sigma \tan 30.0^{\circ}$	$198 \sigma^{0.60}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=382 \sigma^{0.71} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00036)^{* 1} \end{aligned}$	0． 48	$\mathrm{h}=0.183 \gamma /(\gamma+0.000261)$
旧表土	19.0	0． 08	26.2	－	$0.08+\sigma \tan 26.2^{\circ}$	$302 \sigma^{0.80}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=211 \sigma^{0.42} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00087) \end{aligned}$	0． 46	$\begin{aligned} & \gamma<3 \times 10^{-4} \\ & \mathrm{~h}=0.125+0.020 \log \gamma \\ & 3 \times 10^{-4} \leqq \gamma<2 \times 10^{-2} \\ & \mathrm{~h}=0.374+0.091 \log \gamma \\ & 2 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
$\begin{gathered} \text { 断層 } \\ \text { 及びシーム*2 } \end{gathered}$	18.6	0． 067	22.2	－	$0.067+\sigma \tan 22.2^{\circ}$	圧縮方向 $124.5 \sigma^{0.90}$ せん断方向 $44.43 \sigma^{0.90}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=192.3 \sigma^{0.74} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.0012)^{* 1} \end{aligned}$	0． 46	$\begin{aligned} & \gamma<1 \times 10^{-4} \\ & \mathrm{~h}=0.024 \\ & 1 \times 10^{-4} \leqq \gamma<1.6 \times 10^{-2} \\ & \mathrm{~h}=0.024+0.089(\log \gamma+4) \\ & 1.6 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
セメント改良土	21.6	0． 65	44.3	0． 46	$0.21+\sigma \tan 40.9^{\circ}$	690	0． 26	$\begin{aligned} & \mathrm{G}_{0}=1670 \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00085) \end{aligned}$	0． 36	$\begin{aligned} & \gamma<3.8 \times 10^{-5} \\ & \mathrm{~h}=0.014 \\ & 3.8 \times 10^{-5} \leqq \gamma \\ & \mathrm{~h}=0.151+0.0311 \log \gamma \end{aligned}$
改良地盤	20.6	1． 39	22.1	0.65	$0.51+\sigma \tan 34.6^{\circ}$	4， 480	0． 19	$\begin{aligned} & \mathrm{G}_{0}=1940 \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00136) \end{aligned}$	0． 35	$\begin{aligned} & \gamma<1.2 \times 10^{-4} \\ & \mathrm{~h}=0.031 \\ & 1.2 \times 10^{-4} \leqq \gamma<5.2 \times 10^{-3} \\ & \mathrm{~h}=0.227+0.0501 \mathrm{og} \gamma \\ & 5.2 \times 10^{-3} \leqq \gamma \\ & \mathrm{~h}=0.113 \end{aligned}$

[^0]表 2－7 地盤の解析用物性値（MMR）

	物理特性	強度特性				変形特性			
	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left({ }^{\circ}\right)$	引張強度 $\sigma_{t}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	残留強度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断翢性 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比	減衰定数 （\％）
$\begin{gathered} \text { MMR (既設) } \\ \left(\mathrm{f}^{\prime} \mathrm{ck}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	22.6	3.12	－＊	1． 43	－＊	20590	8579	0.2	3

＊：内部摩擦角及び残留強度は保守的に考慮しない。

2.6 評価構造物諸元

原子炉機器冷却海水配管ダクト（水平部）の諸元を表 $2-8$ に，評価部位を図 $2-6$ に示す。

表2－8 評価部位とその仕様

部位		仕様		材料		要求機能
		部材幅 （mm）	部材高 （mm）	$\begin{aligned} & \text { コンクリート } \\ & \mathrm{f}^{\prime} \mathrm{ck}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{aligned}$	鉄筋	
頂版	1 2 3 4 3 4	1，000	1，500	20.5	SD345	－
側壁	519	1，000	1，500	20.5	SD345	支持機能
隔壁	7	1，000	1，200	20.5	SD345	支持機能
	6 8	1，000	800	20.5	SD345	
底版	10 11 12 13	1，000	1，500	20.5	SD345	－

図 2－6 評価部位

2.7 地下水位

設計用地下水位については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定する。設計用地下水位の一覧を表 2－9に，設計用地下水位を図 $2-7$ に示す。

表 2－9 設計用地下水位

施設名称	設計用地下水位
原子炉機器冷却海水配管ダクト（水平部）	0．P．$-10.50 \mathrm{~m} \sim 0$. P．-3.50 m

図 2－7 原子炉機器冷却海水配管ダクト（水平部）の設計用地下水位
2.8 耐震評価フロー

原子炉機器冷却海水配管ダクト（水平部）の地震応答解析フロー及び耐震評価フローを図 2 －8及び図 2－9に示す。

図 2－8 原子炉機器冷却海水配管ダクト（水平部）の地震応答解析フロー

図 2－9 原子炉機器冷却海水配管ダクト（水平部）の耐震評価フロー

2.9 適用規格

原子炉機器冷却海水配管ダクト（水平部）の耐震評価にあたつては，コンクリート標準示方書［構造性能照査編］（土木学会 2002 年制定）（以下「コンクリート標準示方書」という。），原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）を適用するが，鉄筋コンクリート部材の曲げ・軸力系及びせん断破壊の許容限界の一部については，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル （2005年6月 土木学会 原子力土木委員会）（以下「土木学会マニュアル」という。）を適用 する。また，基礎地盤の支持性能の許容限界は，道路橋示方書•同解説（I 共通編•IV下部構造編）（社団法人 日本道路協会，平成14年3月）を適用する。

また，材料非線形解析によりせん断耐力を求める場合の材料定数についてはコンクリート標準示方書［設計編］（土木学会 2017 年制定）（以下「コンクリート標準示方書 2017」という。） を適用する。

表2－10に適用する規格，基準類を示す。

表 2－10 適用する規格，基準類

項 目	適用する規格，基準類	備考	確認項目
使用材料及び材料定数	－コンクリート標準示方書［構造性能照査編］（土木学会 2002年制定）	－鉄筋コンクリートの材料諸元（ $\gamma, \mathrm{E}, ~ \nu$ ）	－
	－コンクリート標準示方書［設計編］（土木学会2017年制定）	－コンクリートの材料定数（材料非線形解析によるせん断耐力 の算定）	－
荷重及び荷重の組合せ	－コンクリート標準示方書［構造性能照査編］（土木学会 2002年制定）	－永久荷重，偶発荷重等の適切な組合せを検討	－
許容限界	－原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（2005年6月土木学会 原子力土木委員会）	－曲げ・軸力系の破壊 に対する照査は，限界層間変形角を設定 した上で，発生層間変形角が限界層間変形角を下回ることを確認＊	－構造強度を有するこ と
		－せん断破壊に対する照査は，発生せん断力がせん断耐力を下回ることを確認＊	－S クラスの施設を支持する機能を損なわ ないこと －構造強度を有するこ と
	－コンクリート標準示方書［構造性能照査編］（土木学会 2002年制定）	－曲げ・軸力系の破壊 に対する照査におい ておおむすね弾性範囲 として，発生曲げモ ーメントが降伏曲げ モーメントを下回る ことを確認＊	－S クラスの施設を支持する機能を損なわ ないこと
	－道路橋示方書•同解説 （I 共通編•IV下部構造編） （社団法人 日本道路協会，平成14年3月）	－基礎地盤の支持性能 に対する照査は，基礎に発生する応力が極限支持力を下回る ことを確認＊	－
地震応答解析	－原子力発電所耐震設計技術指針 J E A G 4601－1987（社団法人日本電気協会電気技術基準調査委員会）	－有限要素法による二次元モデルを用いた時刻歴非線形解析	－

注記＊：妥当な安全余裕を考慮する。

3．地震応答解析

3.1 地震応答解析手法

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 及び弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うこととし，解析手法については，図 $3-1$ に示す解析手法の選定フローに基づき設定する。解析手法は，「資料1 屋外重要土木構造物の耐震安全性評価について」の「4．6 原子炉機器冷却海水配管ダクト」に示すとおり，全応力解析とする。

構造部材については，非線形はり要素を用いることとし，構造部材の非線形特性については，鉄筋コンクリートの $\mathrm{M}-\phi$ 関係を適切にモデル化する。

地盤については，平面ひずみ要素でモデル化することとし，岩盤は線形でモデル化する。盛土，旧表土及び改良地盤については，地盤のひずみ依存性を適切に考慮できるようマルチスプ リングモデルを用いることとし，ばね特性は双曲線モデル（修正GHEモデル）を用いて非線形性 を考慮する。

地震応答解析については，解析コード「Soi1 Plus Ver． 2015 Build3」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コード） の概要」に示す。

地震応答解析手法の選定フローを図 $3-2$ に示す。

図3－1 解析手法の選定フロー

図 3－2 地震応答解析手法の選定フロー

3.2 地震応答解析モデルの設定

3．2．1 解析モデル領域
地震応答解析モデルは，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう，十分広い領域とする。具体的には，原子力発電所耐震設計技術指針 J E A G 4 601－1987（社団法人 日本電気協会 電気技術基準調查委員会）を参考に，図 3－3に示 すとおりモデル幅を構造物基礎幅の 5 倍以上，モデル高さを構造物基礎幅の 2 倍以上とす る。

なお，解析モデルの境界条件は，側面及び底面ともに粘性境界とする。
地盤の要素分割については，波動をなめらかに表現するために，対象とする波長の5分の 1 程度を考慮し，要素高さを1m程度まで細分割して設定する。
構造物の要素分割については，土木学会マニュアルに従い，要素長さを部材の断面厚さ又は有効高さの 2.0 倍以下とし， 1.0 倍程度まで細分して設定する。

図 3－3 モデル化範囲の考え方

二次元地震応答解析モデルは，検討対象構造物とその周辺地盤をモデル化した不整形地盤に加え，この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は，不整形地盤の左右端と同じ地質構成を有する一次元地盤モデルである。二次元地震応答解析における自由地盤の常時応力解析から不整形地盤の地震応答解析までの フローを図 3－4に示す。

図 3－4 自由地盤の常時応力解析から不整形地盤（二次元有限要素法）の地震応答解析までのフロー

3．2．2 境界条件

（1）固有値解析時
固有値解析を実施する際の境界条件は，境界が構造物を含めた周辺地盤の振動特性に影響を与えないよう設定する。ここで，底面境界は地盤のせん断方向の卓越変形モードを把握するために固定とし，側面は実地盤が側方に連続していることを模擬するため水平口ー ラーとする。境界条件の概念図を図 3－5 に示す。

固定
図 3－5 固有値解析における境界条件の概念図
（2）常時応力解析時
常時応力解析は，地盤や構造物の自重等の静的な荷重を載荷することによる常時応力を算定するために行う。そこで，常時応力解析時の境界条件は底面固定とし，側方は自重等 による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を図3－6に示す。

図 3－6 初期応力解析における境界条件の概念図
（3）地震応答解析時
地震応答解析時の境界条件については，有限要素解析における半無限地盤を模擬するた め，粘性境界を設ける。底面の粘性境界については，地震動の下降波がモデル底面境界か ら半無限地盤へ通過していく状態を模擬するため，ダッシュポットを設定する。側方の粘性境界については，自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側方を通過 していく状態を模擬するため，自由地盤の側方にダッシュポットを設定する。評価対象地質断面図及び地震応答解析モデル図を図 3－7に示す。なお，北側に設置される階段状の改良地盤は，耐震評価において保守的な評価となるよう盛土としてモデル化する。

（b）地震応答解析モデル図

図 3－7 原子炉機器冷却海水配管ダクト（水平部）の評価対象断面図及び地震応答解析モデル図 （ $\mathrm{A}-\mathrm{A}$ 断面）

3．2．3 構造物のモデル化

原子炉機器冷却海水配管ダクト（水平部）では，構造部材を非線形はり要素でモデル化 する。鉄筋コンクリート部材のはり要素の交点には，コンクリート標準示方書に基づき剛域を設ける。

原子炉機器冷却海水配管ダクト（水平部）の解析モデルにおける構造物部分の拡大図を図 3－8に示す。

図 3－8 原子炉機器冷却海水配管ダクト（水平部）の地震応答解析モデル（構造物部分拡大）

3．2．4 地盤及び MMR のモデル化
D級を除く岩盤及び MMR は線形の平面ひずみ要素でモデル化する。また，盛土，改良地盤及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素で モデル化する。

3．2．5 ジョイント要素の設定

「地盤と構造物（MMR 含む）」，「地盤と改良地盤」及び「MMR と構造物」（以下「地盤と構造物等」という。）の接合面にジョイント要素を設けることにより，地震時の地盤 と構造物の接合面における剥離及びすべりを考慮する。

ジョイント要素は，「地盤と構造物等」の接合面で法線方向及びせん断方向に対して設定する。法線方向については，常時状態以上の引張荷重が生じた場合，剛性及び応力をゼ ロとし，剥離を考慮する。せん断方向については，「地盤と構造物等」の接合面における せん断抵抗力以上のせん断荷重が生じた場合，せん断剛性をゼロとし，すべりを考慮す る。

せん断強度 $\tau \mathrm{f}$ は次式の Mohr—Coulomb 式により規定される。粘着力 c 及び内部摩擦角 ϕ は周辺地盤の c，ϕ とし，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基 づき表 3－1 のとおりとする。また，要素間の粘着力 c 及び内部摩擦角 ϕ は，表 3－2 のと おり設定する。

$$
\begin{aligned}
& \tau_{\mathrm{f}}=\mathrm{c}+\sigma^{\prime} \tan \phi \\
& \text { ここで, } \sigma \text {, : 面直圧 } \\
& \tau_{\mathrm{f}} \text { : せん断強度 } \\
& \text { c : 粘着力 } \\
& \phi \quad \text { : 内部摩擦角 }
\end{aligned}
$$

表 3－1 周辺地盤との境界に用いる強度特性（狐崎部層）

地盤	粘着力 $\mathrm{c}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi \quad\left({ }^{\circ}\right)$
盛土 ${ }^{* 1}$	0.10	33.9
盛土＊2	0.06	30.0
CM_{M} 級	0.49	47.0
CH_{H} 級	1.72	43.0
改良地盤	1.39	22.1
MMR	3.10	40.0

注記 $* 1$ ：地下水位以浅
＊2：地下水位以深

表 3－2 要素間の粘着力と内部摩擦角

条件	粘着力c（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	内部摩擦角 $\phi\left({ }^{\circ}\right.$ ）
盛土－改良地盤	盛土のc	盛土の ϕ
盛土－MIR	盛土のc	盛土の ϕ
盛土一構造物	盛土のc	盛土の ϕ
改良地盤一岩盤（ ${ }_{\text {M M 級）}}$	岩盤のc	岩盤のc
岩盤—MIR	岩盤のc	岩盤のc
構造物—MMR	MIVR のc	MIRR のc

ジョイント要素のばね定数は，数値解析上，不安定な挙動を起こさない程度に十分な値と し，松本らの方法（松本ら：基礎構造物における地盤•構造物境界面の実用的な剛性評価法，応用力学論文集 Vo1． 12 pp1061－1070，2009）に従い，表3－3 のとおり設定する。 ジョイント要素の力学特性を図 3－9に，ジョイント要素の配置を図 3－10に示す。

表3－3 ジョイント要素のばね定数

地盤	圧縮剛性 k_{n} $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断剛性 k s $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
盛土	1.0×10^{6}	1.0×10^{6}
岩盤	1.0×10^{7}	1.0×10^{7}

せん断応力

図 3－9 ジョイント要素の力学特性

図 3－10 ジョイント要素の配置

3．2．6 材料特性の設定

鉄筋コンクリート部材は，非線形はり要素であるM－фモデルを用いてモデル化する。非線形特性の設定においては，コンクリート及び鉄筋の非線形性を考慮する。材料の非線形性はコンクリート標準示方書に基づき設定する。

図 3－11 に鉄筋コンクリート部材におけるM－ϕ 関係のトリリニアモデルによる骨格曲線を示す。履歴特性は，図 3－12に示すとおり修正武田モデルを適用する。 $\mathrm{M}-\phi$ モデル に用いるコンクリートの応力ーひずみ関係を図 3－13に，鉄筋の応力ーひずみ関係を図 3 －14に示す。

図 3－11 鉄筋コンクリート部材の $\mathrm{M}-\phi$ 関係
（土木学会マニュアルより引用）

図 3－12 鉄筋コンクリート部材の履歴特性（修正武田モデル）
（道路橋示方書（V耐震設計編）•同解説（平成 14 年 3 月）より引用）

図 3－13 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書より引用）

図 3－14 構造部材の非線形特性（鉄筋の応力ーひずみ関係） （コンクリート標準示方書より引用）

3.3 減衰定数

減衰定数は，「資料1 屋外重要土木構造物の耐震安全性評価について」の「9．地震応答解析における減衰定数」に基づき，粘性減衰及び履歴減衰で考慮する。

粘性減衰は，固有値解析にて求められる解析モデル全体の固有周期と各材料の減衰比に基づ き，質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。Rayleigh 減衰の設定フローを図 3－15に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス，［m］：質量マトリックス，
［k］：剛性マトリックス
α, β ：係数

固有値解析

- 盛土•旧表土の減衰定数 ： 2.0%
- 回級岩盤の減衰定数 ： 2.8%
- D 級以外の岩盤の減衰定数 ：3． 0%
- MMR の減衰定数 ：3． 0%
- セメント改良土の減衰定数 ：1． 4%
- 改良地盤の減衰定数 ：3．0\％
- 構造物の減衰定数 ：5． 0%
- 固有振動数 f_{i}
- 固有振動数における減衰定数 h_{i}

Rayleigh 減衰における係数 α, β

$$
\alpha=\frac{2 \omega_{1} \omega_{2}\left(\mathrm{~h}_{1} \omega_{2}-\mathrm{h}_{2} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}, \quad \beta=\frac{2\left(\mathrm{~h}_{2} \omega_{2}-\mathrm{h}_{1} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}
$$

$\omega_{1}=2 \pi \mathrm{f}_{1}, ~ \omega_{2}=3 \omega_{1}, \mathrm{~h}_{1}=\mathrm{h}_{2}=0.02$

Rayleigh 減衰 $\quad[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス

図 3－15 Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定にあたつては，低次のモードの変形が支配的な地中埋設構造物に対して，その特定の振動モードの影響が大きいことを考慮して， 1 次及び 2 次モ ードの固有振動数において，過大な減衰とならないように定めている。

1 次固有振動数（ f_{1} ）は，地震応答解析の解析モデルの固有値解析結果から算定する。 2 次固有振動数（ f_{2} ）は，図 3－15に示すとおり，水平成層地盤の 2 次固有振動数が 1 次固有振動数の 3 倍であることから，固有値解析から算定した 1 次固有振動数（ f_{1} ）の 3 倍とする。固有値解析結果の一覧を表 3－4に，固有値解析におけるモード図を図 $3-16$ に，係数 $\alpha, ~ \beta$ を表3－5に，固有値解析結果に基づき設定した Rayleigh 減衰を図 3－17に示す。

表 3－4 固有値解析結果

	固有振動数 （Hz）	有効質量比（\％）		刺激係数		備考
		T x	T y	$\beta \mathrm{x}$	$\beta \mathrm{y}$	
1	2． 883	12	0	57． 26	－5． 47	1 次として採用
2	3.095	6	0	－39． 88	－9． 45	－
3	4． 413	6	0	－39．08	－6． 05	－
4	4． 997	5	1	－36． 47	11.85	－
5	5． 456	3	0	－28． 18	－6． 07	－
6	5.931	3	0	28.64	9．99	－
7	6． 259	0	0	7． 94	7． 90	－
8	6． 314	0	0	－1．44	－10．52	－
9	6． 404	1	1	16． 03	－19．49	－
10	6． 483	3	0	－27．15	－0．17	－

1 次モード $\mathrm{f}_{1}=2.883 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 57.26$ ）	$2 \text { 次モード } \quad \mathrm{f}_{2}=3.095 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-39.88$ ）
$3 \text { 次モード } \quad \mathrm{f}_{3}=4.413 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-39.08$ ）	4 次モード $\quad \mathrm{f}{ }_{4}=4.997 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-36.47$ ）
5 次モード \quad f ${ }_{5}=5.456 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-28.18$ ）	6 次モード $\mathrm{f}_{6}=5.931 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 28.64$ ）

図 3－16 固有値解析結果（モード図）（1／2）

図 3－16 固有値解析結果（モード図）（2／2）

表 3－5 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

α	β
5.434×10^{-1}	5.520×10^{-4}

図 3－17 設定した Rayleigh 減衰

3． 4 荷重の組合せ

耐震評価にて考慮する荷重は，通常運転時の荷重（永久荷重）及び地震荷重を抽出し，それ ぞれを組み合せて設定する。地震荷重には，地震時土圧及び機器•配管系からの反力による荷重が含まれるものとする。

地震時に原子炉機器冷却海水配管ダクト（水平部）に作用する機器•配管系からの反力につ いては，機器•配管系を解析モデルに付加質量として与えることで考慮する。

なお，原子炉機器冷却海水配管ダクト（水平部）の運転時，設計基準事故時及び重大事故時 の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括される ことから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

荷重の組合せを表3－6に示す。

表 3－6 荷重の組合せ

種別	荷重			算定方法の概要
永久 荷重 （常時荷重）	固定 荷重	躯体自重	\bigcirc	－設計図書に基づいて，対象構造物の体積に材料の密度を乗じて設定す る
		機器•配管荷重	\bigcirc	－機器•配管系の重量に基づいて設定 する。
		土被り荷重	\bigcirc	－常時応力解析により設定する。
		永久上載荷重	－	－地盤表面に恒常的に置かれる設備等はないことから考慮しない。
		静止土圧	\bigcirc	－常時応力解析により設定する。
		外水圧	\bigcirc	－地下水位に応じた静水圧として考慮する。 －地下水の密度を考慮する。
		積載荷重	\bigcirc	－地表面に考慮する。
偶発荷重		水平地震動	\bigcirc	－基準地震動 S s による水平•鉛直同
		鉛直地震動	\bigcirc	時加振を考慮する。

3．4．1 機器•配管荷重

地震時に原子炉機器冷却海水配管ダクト（水平部）に作用する機器•配管系の荷重図を図 3－18に，荷重値の一覧を表3－7に示す。機器•配管系の荷重は解析モデルに単位奥行き（1m）あたりの付加質量として与えることで考慮する。

表 3－8 荷重を考慮する主な機器•配管の一覧

側壁，隔壁	$20.59 \mathrm{kN} / \mathrm{m}$	- 原子灲補機冷却海水系配管（RSW 配管） - 配管サポート
	7． $75 \mathrm{kN} / \mathrm{m}$	－高圧炉心スプレイ補機冷却海水系配管 （HPSW 配管） －配管サポート
	$24.52 \mathrm{kN} / \mathrm{m}$	- タービン補機冷却海水系配管（TSW 配管） - 配管サポート

図 3－18 機器•配管系の荷重図

3．4．2 外水圧

外水圧は，地下水位に応じた静水圧を設定する。地下水位については，「2．6 地下水位」 のとおりとし，地下水の密度として， $1.00 \mathrm{~g} / \mathrm{cm}^{3}$ を考慮する。

3．4．3 積載荷重

地震時に原子炉機器冷却海水配管ダクト（水平部）に作用する積載荷重は，積雪荷重以外は想定されないが，保守的な配慮として，単位奥行き（1m）あたりの付加重量として地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。

なお，積雪荷重は，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測さ れた月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮 した値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮した $0.301 \mathrm{kN} / \mathrm{m}^{2}$ としている。

地表面への積載荷重は，単位奥行き（1m）あたりの付加質量として考慮する。

3.5 地震応答解析の解析ケース

3．5．1 耐震評価における解析ケース
（1）地盤物性のばらつきを考慮した解析ケース
原子炉機器冷却海水配管ダクト（水平部）は，構造物が地中に埋設された鉄筋コンクリ ート構造物であり，構造物の耐震性に支配的な損傷モードは地盤のせん断変形に伴う構造部材の曲げ・軸力系の破壊及びせん断破壊となる。そのため，ばらつきを考慮する物性値 は，評価対象構造物周辺に主として盛土及び改良地盤といった，動的変形特性にひずみ依存性がある地盤が分布し，これらの地盤が地震時に構造物への応答に大きく影響を与える と判断される場合は，これらの物性のばらつきについて影響を確認する。

ばらつきを考慮する物性は，地盤のせん断変形を定義するせん断弾性係数とし，平均値 を基本ケース（表 3－10に示すケース（1）とした場合に加えて，平均値士 $1.0 \times$ 標準偏差 （ σ ）のケース（表 3－10に示すケース（2），（3））について確認を行う。

地盤のばらつきの設定方法の詳細は，「補足－600－1 地盤の支持性能について」に示す。
（2）材料物性のばらつきを考慮した解析ケース
材料物性のばらつきについては，剛性を定義するコンクリートのヤング係数が，コンク リートの設計基準強度に対応して定まることを踏まえ，コンクリートの設計基準強度を基本ケースとし，ヤング係数をコンクリートの実強度に対応して定めたケースについて確認 を行う（表3－10に示すケース（4））。

屋外重要土木構造物等の耐震性に支配的な要因である土圧は，構造物と周囲の地盤の剛性差により生じることから，構造物の剛性が低下し，地盤との剛性差が小さくなることは，耐震裕度が向上することとなる。したがって，屋外重要土木構造物等のコンクリートは設計基準強度に対応する剛性を基本とし，ばらつきの考慮としては，土圧が大きく評価され るようコンクリートの実強度に対応する剛性について確認を行う。なお，屋外重要土木構造物等は，屋外かつ湿潤した地盤に接して地中に埋設されていることから，建物と異なり乾燥する環境にはなく，点検においても乾燥収縮による有害なひび割れは確認されておら ず，コンクリートの剛性低下は顕在化していない。

一方，機器•配管系の耐震評価においては，建物•構築物で考慮しているコンクリート の初期剛性低下を考慮したケースについて影響を確認する（表 3－10に示すケース⑤）。

原子炉機器冷却海水配管ダクト（水平部）における実強度は，構造物ごとのコア抜き強度 $\mathrm{f}^{\prime}{ }_{\mathrm{ck}}$ の平均値とし，ヤング係数は実強度の平均値からコンクリート標準示方書 2017 に基づき算出する。原子炉機器冷却海水配管ダクト（水平部）の実強度およびヤング係数を表3－8及び表3－9に示す。

また，耐震評価における解析ケースの一覧を表 3－10に示す。

表 3－8 原子炉機器冷却海水配管ダクト（水平部）の実強度及びヤング係数

実強度＊$^{*} /$ ヤング係数 $^{37.2 \mathrm{~N} / \mathrm{mm}^{2}}$	$30.2 \mathrm{kN} / \mathrm{mm}^{2}$

注記＊：原子炉機器冷却海水配管ダクト（水平部）のコア採取による圧縮強度試験結果を表3－9に示す。

表 3－9 原子炬機器冷却海水配管ダクト（水平部）のコア採取による圧縮強度試験結果

採取位置＊* 採取年	供試体数 （本）	実強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		ヤング係数 $\left(\mathrm{kN} / \mathrm{mm}{ }^{2}\right)$		
		3	最大	最小	最大	最小
隔壁	2018	3	41.9	33.9	31.4	29.2

注記 $*:$ コア採取位置は図 3－19に示す。

- コア採取位置（隔壁，2012年）
- ：コア採取位置（隔壁，2018 年）

図 3－19 コア採取位置図

表 3－10 耐震評価における解析ケースの一覧

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性	
		盛土，旧表土， D級岩盤 （ G_{0} ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH｜級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②）	設計基準強度	平均値 $+1 \sigma$	平均値
ケース③	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊1	平均値	平均値
ケース⑤）＊2	初期剛性低下考慮	平均値	平均値

注記＊1 ：既設構造物のコア採取による圧縮強度試験に基づき表3－8に示すとおりとする。
＊2：機器•配管系の耐震評価に適用する。原子炬建屋の剛性低下率のうち特異的なオペフロ の値を除いた中で最大となるN S 方向の剛性低下率を設定する。
（3）耐震評価における解析ケースの組合せ
屋外重要土木構造物等の耐震評価においては，基準地震動 S s（7 波）及びこれらに水平動の位相反転を考慮した地震動（7波）を加えた全14波を用いてケース（1）（基本ケース） を実施する。

上記のケース（1）において，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査 において照査値が 0.5 以上となるすべての照査項目に対して，最も厳しい地震動を用いて，図 3－20 に示すケース（2）～④を実施する。また，上記解析ケースの結果を踏まえ，更に照查値が大きくなる可能性がある場合は，追加解析を実施する。

耐震評価に対する解析ケースの組合せを表3－11に示す。また，追加解析ケースを実施 する地震動の選定フローを図 3－21 に示す。

なお，「資料 1 屋外重要土木構造物の耐震安全性評価について」の「参考資料 7 地中構造物への鉛直地震動の位相が与える影響」において，原子炉機器冷却海水配管ダクト（水平部）のような，地中に埋没された RC 構造物は，鉛直地震動の影響をほぼ受けないこと を確認しているため，鉛直地震動については，位相の反転を考慮しない。

図 3－20 耐震評価における解析ケース

表 3－11 原子炉機器冷却海水配管ダクト（水平部）の耐震評価における解析ケース

解析ケース			ケース①	ケース（2）	ケース③）	ケース（4）
			基本ケース	地盤物性のばら つき（＋1 o ）を考慮した解析ケー ス	地盤物性のばら つき（－1 σ ）を考慮した解析ケー ス	材料物性（コンク リート）に実強度 を考慮した解析 ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づく 圧縮強度 ${ }^{*} 2$
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 想 } \end{aligned}$	S s－D 1	＋＋＊${ }^{1}$	\bigcirc	【追加解析ケースについて】 基準地震動 S s（7 波）に水平動の位相反転を考慮した地震動（7波）を加えた全14波に対 し，全応力解析による基本ケース（1）を実施し，曲げ・軸力系の破壊，せん断破壊，基礎地盤 の支持力照査の各照査項目に照査値が 0.5 以上となる照査項目に対して，最も厳しい（許容限界に対する裕度が最も小さい）地震動を用いてケース（2）～（4）を実施する。 すべての照査項目の照査値がいずれも 0.5 未満の場合は，照査値が最も厳しくなる地震動 を用いてケース（2）～（4）を実施する。 また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。		
		$-{ }^{* 1}$	\bigcirc			
	S s－D 2	$++^{* 1}$	\bigcirc			
		$-+^{* 1}$	\bigcirc			
	Ss－D 3	$++^{* 1}$	\bigcirc			
		$-{ }^{* 1}$	\bigcirc			
	S s－F 1	$+{ }^{* 1}$	\bigcirc			
		$-+^{* 1}$	\bigcirc			
	S s－F 2	＋＋${ }^{1}$	\bigcirc			
		$-{ }^{* 1}$	\bigcirc			
	Ss－F 3	$+{ }^{* 1}$	\bigcirc			
		$-+^{* 1}$	\bigcirc			
	$\mathrm{S} s-\mathrm{N}^{\prime}$	$+{ }^{* 1}$	\bigcirc			
		$-{ }^{* 1}$	\bigcirc			

注：「資料1屋外重要土木構造物の耐震安全性評価について」の「参考資料 7 地中構造物への鉛直地震動の位相が与える影響」において，原子炉機器冷却海水配管ダクト（水平部）のような，地中に埋没された RC 構造物は，鉛直地震動の影響をほぼ受けないことを確認しているため，鉛直地震動については，位相の反転を考慮しない。
注記＊1：耐震評価にあたつては，土木学会マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

図 3－21 追加解析を実施する地震動の選定フロー

3．5．2 機器•配管系に対する応答加速度抽出のための解析ケース

原子炉機器泠却海水配管ダクト（水平部）に支持される機器•配管系の耐震評価に適用 する床応答への保守的な配慮として，基準地震動 S s（ 7 波），弾性設計用地震動 Sd （7波）及びこれらに水平動の位相反転を考慮した地震動（ 28 波）を用いて，ケース（1）に加え，図 3－26に示すケース（2）～（4）の解析を実施する。

また，基準地震動 S s（7 波）を用いて，初期剛性低下を考慮したケース（5）について影響を確認する。

機器•配管系に対する応答加速度及び応答変位抽出の基本ケースであるケース⑪対し て，最も地盤が固い条件となるケース（2）及び最も地盤が軟らかいケース（3），最も材料特性 が固い条件のケース（4）を実施することで地盤剛性等のばらつきの影響を網羅的に考慮する。機器•配管系の耐震評価に適用する解析ケースを図 3－22 及び表 3－12 に示す。
なお，基準地震動 S s（7 波）におけるケース（5）の地震応答解析結果については，「参考資料1 機器•配管系の耐震評価に適用する影響検討ケース」に示す。

図 3－22 機器•配管系の耐震評価に適用する解析ケース

表 3－12（1）機器•配管系の応答加速度及び応答変位抽出のための解析ケースの組合せ （基準地震動 S s ）

解析ケース＊3			全応力解析				
			ケース①	ケース（2）	ケース③）	ケース④	ケース⑤
			基本ケース＊2	地盤物性のば らつき（＋1 o ） を考慮した解析ケース	地盤物性のば らつき（－1o） を考慮した解析ケース	材料物性（コン クリート）に実強度を考慮し た解析ケース	材料物性（コン クリート）に剛性低下を考慮し た解析ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ	平均値	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2	剛性低下に基づ く圧縮強度＊4
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S s－D 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	S s－D 2	$+*^{*}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	S s－D 3	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	S s－F 1	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	S s－F 2	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	$\mathrm{S} s-\mathrm{F} 3$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	S s－N 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－

注：「資料1屋外重要土木構造物の耐震安全性評価について」の「参考資料 7 地中構造物への鉛直地震動の位相が与える影響」において，原子炉機器冷却海水配管ダクト（水平部）の ような，地中に埋没された RC 構造物は，鉛直地震動の影響をほぼ受けないことを確認し ているため，鉛直地震動については，位相の反転を考慮しない。
注記 $* 1$ ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
＊3：○は設計に用いる解析ケースを示し，\triangle は影響検討ケースを示す。
＊ 4 ：機器•配管系の耐震評価に適用する。原子炉建屋の剛性低下率のうち特異的なオペフロの値を除いた中で最大となる NS 方向の剛性低下率を設定する。

表 3－12（2）機器•配管系の応答加速度及び応答変位抽出のための解析ケースの組合せ
（弾性設計用地震動 S d）

解析ケース			全応力解析			
			ケース①	ケース（8）	ケース③	ケース（4）
			基本ケース	地盤物性のば らつき（－1o） を考慮した解析ケース	地盤物性の ばらつき（－ 1 o）を考慮 した解析ケ ース	材料物性（コン クリート）に実強度を考慮し た解析ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S d－D 1	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－D 2	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－D 3	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－F 1	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Sd －F 2	$++^{* 11}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$S \mathrm{~d}-\mathrm{F} 3$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－N 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		－＋${ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記＊1：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転さ せたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

4．評価内容

4．1 入力地震動の設定
入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $4-1$ に入力地震動算定の概念図を，図 $4-2 \sim$ 図 $4-29$ に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver．3．10」 を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

図 4－1 入力地震動算定の概念図（基準地震動 S s 及び弾性設計用地震動 $\mathrm{S} d$ ）

図4－2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

図4－4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 2）

図4－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（a）加速度応答スペクトル

図4－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 3 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－D 3）

図4－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 1）

図4－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S s－F 1）

図4－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 2）

図4－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 3）

図4－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－N1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{D} 1$ ）

図4－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－F1）

図4－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S d－F 1 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S d－F2）

図4－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S d－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分： $\mathrm{S} \mathrm{d}-\mathrm{N} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図4－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S d－N 1）

4.2 許容限界の設定

4．2．1 曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における曲げ・軸力系の破壊に対する許容限界は，土木学会マニュアルに基づき，限界層間変形角（層間変形角 $1 / 100$ ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，層間変形角 $1 / 100$ の状態は，かぶり コンクリートが剥落する前の状態であることが，屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値 とすることで構造全体としての安定性等が確保できるとして設定されたものである。
また，側壁及び隔壁のアンカー定着部に要求されるSクラスの施設を支持する機能を損 なわないことの確認においては，鉄筋の降伏を許容限界として降伏曲げモーメントとする。曲げ・軸力系の破壊に対する照查に用いる照査用層間変形角は，地震応答解析により得 られた応答値に安全係数（構造解析係数） 1.2 を，照査用曲げモーメントは，地震応答解析 により得られた応答値に安全係数（構造解析係数） 1.0 を乗じることにより，曲げ・軸力系 の破壊に対する安全余裕を見込んだ評価を実施する。
鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表4－1 に示す。
また，後施工せん断補強工法（セラミックキャップバー工法）（以下，「CCb 工法」とい う。）を適用する部材については，CCb 工法はおおむね弾性範囲となる状況下で使用する ことから，コンクリート及び鉄筋のひずみが，部材降伏に相当する限界ひずみ（コンクリ ートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ）を下回ることを確認する。原子炉機器冷却海水配管ダクト（水平部）において CCb 工法を適用する部材を図 4－30 に示す。

表 4－1 曲げ・軸力系の破壊に対する許容限界

確認項目	許容限界	
構造強度を有すること	限界層間変形角	$1 / 100 * 1$
Sクラスの施設を支持す る機能を損なわないこと	曲げモーメント	降伏曲げモーメント＊2

注記 $* 1$
$\gamma_{i} \cdot \frac{R_{d}}{R_{L}}<1.0$
ここで，γ_{i} ：構造物係数（ $\left.\gamma_{\mathrm{i}}=1.0\right)$
R_{L} ：限界層間変形角 $(=1 / 100)$
R_{d} ：照査用層間変形角 $\mathrm{R}_{\mathrm{d}}=\gamma_{\mathrm{a}} \cdot \mathrm{R}$
γ_{a} ：構造解析係数（ $\gamma_{\mathrm{a}}=1.2$ ）
R ：発生層間変形角
$* 2 \quad \gamma_{i} \cdot \frac{M_{d}}{M_{y}}<1.0$
ここで，γ_{i} ：構造物係数 $\left(\gamma_{\mathrm{i}}=1.0\right)$
M_{y} ：鉄筋降伏に相当する曲げモーメント
M_{d} ：照査用曲げモーメント $\mathrm{M}_{\mathrm{d}}=\gamma_{\mathrm{a}} \cdot \mathrm{M}$
γ_{a} ：構造解析係数（ $\gamma_{\mathrm{a}}=1.0$ ）
M ：発生曲げモーメント

：CCb による耐震補強箇所
図 4－30 CCb 工法を用いる部材

4．2．2 せん断破壊に対する許容限界（せん断耐力式によるせん断耐力）

構造強度を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，土木学会マ ニュアルに基づくせん断耐力とする。

せん断耐力は，土木学会マニュアルに基づき「（1）棒部材式」，「（2）ディープビーム式」 のせん断耐力式で求まるせん断耐力のうち，いずれか大きい方とする。

せん断耐力式による照查において照查用せん断力が上記のせん断耐力を上回る場合，材料非線形解析により部材のせん断耐力を求め許容限界とする。

また，CCb 工法を用いる構造部材については「（3）CCb によりせん断補強された部材の せん断耐力式」によることとする。

せん断破壊に対する照査のフローを図 4－31に示す。

なお，せん断照査に用いる照査用せん断力については，安全係数（構造解析係数）1．05 を乗じることにより，せん断破壊に対して安全余裕を見込んだ評価を実施する。

注記 $*$ ：照査用せん断力 $V_{d}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}

図 0－31 せん断破壊に対する照査フロー
（1）棒部材式
$V_{y d}=V_{c d}+V_{\text {sd }}$
ここで，$V_{y d}$ ：せん断耐力
$V_{c d}$ ：コンクリートが分担するせん断耐力
$V_{s d}$ ：せん断補強鉄筋が分担するせん断耐力
$V_{c d}=\beta_{d} \cdot \beta_{p} \cdot \beta_{n} \cdot \beta_{a} \cdot f_{v c d} \cdot b_{w} \cdot d / \gamma_{b c}$
$\mathrm{f}_{\mathrm{vcd}}=0.20 \sqrt[3]{\mathrm{f}^{\prime}{ }_{\mathrm{cd}}}$ ただし， $\mathrm{f}_{\mathrm{vcd}}>0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ となる場合は $\mathrm{f}_{\mathrm{vcd}}=0.72 \quad\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
$\beta_{\mathrm{d}}=\sqrt[4]{1 / \mathrm{d}} \quad(\mathrm{d}[\mathrm{m}])$
ただし，$\beta_{\mathrm{d}}>1.5$ となる場合は $\beta_{\mathrm{d}}=1.5$
$\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}} \quad$ ただし，$\beta_{\mathrm{p}}>1.5$ となる場合は $\beta_{\mathrm{p}}=1.5$
$\beta_{\mathrm{n}}=1+\mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}} \geq 0\right)$ ただし，$\beta_{\mathrm{n}}>2.0$ となる場合は $\beta_{\mathrm{n}}=2.0$
$=1+2 \mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}}{ }^{\prime}<0\right)$ ただし，$\beta_{\mathrm{n}}<0$ となる場合は $\beta_{\mathrm{n}}=0$
$\beta_{\mathrm{a}}=0.75+\frac{1.4}{\mathrm{a} / \mathrm{d}}$ ただし，$\beta_{\mathrm{a}}<1.0$ となる場合は $\beta_{\mathrm{a}}=1.0$
ここで， $\mathrm{f}^{\prime}{ }_{\mathrm{cd}}$ ：コンクリート圧縮強度の設計用値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ で設計基準強度 $\mathrm{f}^{\prime}{ }_{\mathrm{ck}}$ を材料係数 γ_{mc} で除したもの
p_{v} ：引張鉄筋比 $\mathrm{p}_{\mathrm{v}}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{b}_{\mathrm{w}} \cdot \mathrm{d}\right)$
A_{s} ：引張側鋼材の断面積
$\mathrm{b}_{\mathrm{w}} \quad$ ：部材の有効幅
d ：部材の有効高さ
$N^{\prime}{ }_{d}$ ：設計軸圧縮力
$\mathrm{M}_{\mathrm{d}} \quad$ ：設計曲げモーメント
$M_{0} \quad: M_{d}$ に対する引張縁において，軸方向力によって発生する応力を打ち消すのに必要なモーメント（デコンプレッションモーメント） $\mathrm{M}_{0}=\mathrm{N}^{\prime}{ }_{\mathrm{d}} \cdot \mathrm{D} / 6$
D ：断面高さ
a／d ：せん断スパン比
γ_{bc} ：部材係数
γ_{mc} ：材料係数

```
V Sd}={\mp@subsup{A}{\mathbb{W}}{}\mp@subsup{f}{\mathrm{ wyd }}{}(\operatorname{sin}\alpha+\operatorname{cos}\alpha)/s}z/\mp@subsup{\gamma}{\mathrm{ bs}}{
    ここで, }\mp@subsup{\textrm{A}}{W}{}\mathrm{ : 区間 s におけるせん断補強鉄筋の総断面積
    f wyd : せん断補強鉄筋の降伏強度を }\mp@subsup{\gamma}{ms}{}\mathrm{ で除したもので,
                                    400N/mm}\mp@subsup{}{}{2}\mathrm{ 以下とする。ただし, コンクリート圧縮強度の特性値
                    f}\mp@subsup{}{ck}{\prime}\mathrm{ が 60N/mm}\mp@subsup{}{}{2}\mathrm{ 以上のときは 800N/mm}\mp@subsup{}{}{2}\mathrm{ 以下とする。
                    \alpha : せん断補強鉄筋と部材軸のなす角度
                    s : せん断補強鉄筋の配置間隔
                            z : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で
                d/1.15とする。
                    \gamma bs
                    \gamma ms:材料係数
（2）ディープビーム式
\(V_{\text {ydd }}=V_{\text {cdd }}+V_{\text {sdd }}\)
ここで，\(V_{y d d}\) ：せん断耐力
\(\mathrm{V}_{\mathrm{cdd}}\) ：コンクリートが分担するせん断耐力
\(V_{\text {sdd }}\) ：せん断補強鉄筋が分担するせん断耐力
\[
V_{c d d}=\beta_{d} \cdot \beta_{\mathrm{p}} \cdot \beta_{\mathrm{n}} \cdot \mathrm{f}_{\mathrm{dd}} \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{~d} / \gamma_{\mathrm{bc}}
\]
\[
\begin{array}{lr}
\mathrm{f}_{\mathrm{dd}}=0.19 \sqrt{\mathrm{f}^{\prime}{ }_{c d}} \\
\beta_{\mathrm{d}}=\sqrt[4]{1 / \mathrm{d}}(\mathrm{~d}[\mathrm{~m}]) \\
\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}} & \begin{array}{l}
\text { ただし, } \beta_{\mathrm{d}}>1.5 \text { となる場合は } \beta_{\mathrm{d}}=1.5 \\
\text { ただし, } \beta_{\mathrm{p}}>1.5 \text { となる場合は } \beta_{\mathrm{p}}=1.5
\end{array} \\
\beta_{\mathrm{a}}=\frac{5}{1+(\mathrm{a} / \mathrm{d})^{2}} & \\
\text { ここで, } \gamma_{\mathrm{bc}} \quad: \text { 部材係数 } &
\end{array}
\]
\[
\begin{aligned}
V_{\text {sdd }} & =\phi \cdot V_{\text {sd }} \\
\phi & =-0.17+0.3 \mathrm{a} / \mathrm{d}+0.33 / \mathrm{p}_{\mathrm{wb}} \quad \text { ただし } 0 \leq \phi \leq 1
\end{aligned}
\]
\[
\text { ここで, } \mathrm{p}_{\mathrm{wb}} \quad: \text { せん断補強鉄筋比 (\%) }
\]
```

土木学会マニュアルでは，コンクリート標準示方書におけるせん断耐力式のうち棒部材式において等価せん断スパンにより設定可能な係数 β a を考慮している。これは，屋外重要土木構造物が地中に埋設されたラーメン構造で，土圧，水圧及び地震時慣性力等の多数 の分布荷重が作用していることにより分布荷重が卓越し，スパン内に反曲点が存在する等 の載荷形態にある条件下では，せん断耐力が増大するという実験的知見を踏まえ，より合理的なせん断耐力を与えるよう，コンクリート標準示方書のせん断耐力式を精緻化したも のである。

また，土木学会マニュアルにおけるせん断耐力式による評価においては，表 4－2に示す とおり，複数の安全係数が見込まれていることから，せん断破壊に対して安全余裕を見込 んだ評価を実施することが可能である。

表 4－2 せん断耐力式による評価おいて考慮している安全係数

安全係数			せん断照査		内容
			応答値算定	限界値算定	
材料係数	コンクリート	γ_{mc}	1.0	1． 3	コンクリートが負担するせ ん断力を低減
	鉄筋	γ s	1.0	1.0	－
部材係数	コンクリート	$\gamma \mathrm{bc}$	－	1． 3	コンクリートが負担するせ ん断力を低減＊
	鉄筋	$\gamma \mathrm{bs}$	－	1.1	せん断補強筋が負担するせ ん断力を低減＊
構造解析係数		γ a	1.05	－	応答値（断面力）の割り増 し

注記＊：土木学会マニュアルでは，部材係数 $\gamma_{\mathrm{b}}=\gamma_{\mathrm{b} 1} \cdot \gamma_{\mathrm{b} 2}$

$$
\begin{aligned}
& \gamma_{\mathrm{b} 1}=\left\{\begin{array}{cl}
1.3 & (\text { コンクリート }) \\
1.1 & (\text { 鉄筋 })
\end{array}\right. \\
& \gamma_{\mathrm{b} 2}=\left\{\begin{array}{cl}
1.0 & (\mathrm{R} \leqq 0.01) \\
\frac{100 \mathrm{R}+2}{3} & (0.01<\mathrm{R} \leqq 0.025) \\
1.5 & (\mathrm{R}>0.025)
\end{array}\right.
\end{aligned}
$$

ここで， R ：層間変形角
とされている。
原子炉機器冷却海水配管ダクト（水平部）は，層間変形角 $1 / 100$ を鉄筋コンクリー ト部材の曲げ・軸力系の破壊に対する許容限界とすることから， $\boldsymbol{\gamma}_{\mathrm{b} 2}=1.0$ とする。
（3）CCb によりせん断補強された部材のせん断耐力式
セラミックキャップバー（以下「CCb」という。）工法による後施工せん断補強を行う構造部材のせん断耐力については，「建設技術審査証明報告書 技術名称 後施工セラミッ ク定着型せん断補強鉄筋「セラミックキャップバー（CCb）一般財団法人土木研究センタ
ー」」（以下「建設技術証明書」という。）に示されている以下の設計式により求める。 $V_{p y d}=V_{c d}+V_{s d}+V_{\text {ccbd }}$
$\mathrm{V}_{\mathrm{CCbd}}=\beta_{\mathrm{aw}} \cdot \mathrm{V}_{\mathrm{awd}}$ $=\beta_{\mathrm{aw}} \cdot\left\{\mathrm{A}_{\mathrm{aw}} \cdot \mathrm{f}_{\mathrm{awyd}}\left(\sin \alpha_{\mathrm{aw}}+\cos \alpha_{\mathrm{aw}}\right) / \mathrm{S}_{\mathrm{aw}}\right\} \mathrm{z} / \gamma_{\mathrm{b}} \quad$ ••式（2） $\beta_{\mathrm{aw}}=\eta=1-\frac{\ell_{\mathrm{y}}}{2 \mathrm{~S}_{\mathrm{rb}}}$

ただし，$\ell_{\mathrm{y}}-\mathrm{d}^{\prime} \leq 0$ となる場合は $\ell_{\mathrm{y}}-\mathrm{d}^{\prime}=0$ とする。

ここに，V_{cd} ：せん断補強鋼材を用いない壁部材の単位幅あたりのせん断耐力
$V_{s d}$ ：既存のせん断補強鋼材により受け持たれる壁部材の単位幅あたりの せん断耐力
$\mathrm{V}_{\mathrm{CCbd}}$ ：セラミックキャップバー（CCb）により受け持たれる壁部材の単位幅 あたりのせん断耐力
$V_{a w d}$ ：セラミックキャップバー（CCb）を通常のスターラップと見なして求 められる壁部材の単位幅あたりのせん断耐力
β_{aw} ：セラミックキャップバー（CCb）のせん断耐力の向上への有効性を示 す係数
$A_{a \mathrm{w}}$ ：単位長さ当たりの区間 $\mathrm{S}_{\mathrm{a} w}$ におけるセラミックキャップバー（CCb） の総断面積
fawyd：セラミックキヤップバー（CCb）の設計降伏強度で $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下と する。
$\alpha_{\text {aw }}$ ：セラミックキャップバー（CCb）が部材軸となす角度
$S_{\text {a w }}$ ：セラミックキャップバー（CCb）の配置間隔
z ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で一般に d／1．15としてよい。
γ_{b} ：部材係数（一般に1．10としてよい）
ℓ_{y} ：セラミックキャップバー（CCb）の先端型定着体の定着長（5Dとして よい）
S_{rb} ：補強対象部材の圧縮鉄筋と引張鉄筋の間隔
d ：補強対象部材の有効高さ
d ：差し込み側の部材表面から圧縮鋼材図心までの距離

セラミックキャップバー（CCb）が負担するせん断耐力は，先端型定着体の定着長が 5D であることから，通常のせん断鉄筋に比べ補強効率が低下することから，セラミックキ ヤップバー（CCb）が負担するせん断耐力は同定着長と補強対象部材の主鉄筋間隔から算出される有効率 β a wを通常のせん断補強鉄筋の負担分に乗じることにより考慮されて いる。図 4－32に有効率算定における概念図を示す。

（a）斜めひび割れ内に定着不良が生じたせん断補強鉄筋

（b）標準型

図 4－32 セラミックキャップバー（CCb）の有効率算定の概念図

4．2．3 せん断破壊に対する許容限界（材料非線形解析によるせん断耐力）
（1）評価条件
図 4－31 のせん断破壊に対する照査フローに示すとおり，照査用せん断力が，せん断耐力式によるせん断耐力を上回る場合は，材料非線形解析によりせん断耐力を算定し，せん断耐力が照査用せん断力を上回ることを確認する。

「4．2．2 せん断破壊に対する許容限界（せん断耐力式によるせん断耐力）」で示したせ ん断耐力式は，既往の実験等から一般化されたものであることから，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析を実施することによ り，より高い精度でせん断耐力を求め，構造部材のせん断照査を行う。

表 4－3 及び表 4－4に材料非線形解析の概要を示す。
材料非線形解析は，90年代までに，ひび割れの進展モデルや破壊エネルギーの概念等，基本となるモデルが提示され，様々な問題に適用されながら有効性と信頼性を高めており， コンクリート標準示方書 2017 や土木学会マニュアル等で取り扱われている。

材料非線形解析にて用いる鉄筋コンクリートの構成則については種々あるが，ここでは，現在までに実務でも使用され，適用性と信頼性が確認されており，コンクリート標準示方書 2017 において標準とされる以下の手法とする。

①鉄筋とコンクリートとの一体性を前提とする分散ひび割れモデルにてモデル化する。
（2）鉄筋との複合作用が支配的な鉄筋周辺のコンクリートについては，平均化構成則を用い る。

③鉄筋との複合作用が及ばない領域では，コンクリートの破壊力学の概念を導入する。

なお，材料非線形解析の適用にあたつては，当該構造物の構造的な特徴や荷重条件が類似する既往の実験等から得られたせん断耐力と，材料非線形解析によるせん断耐力を比較 し，その適用性を判断した上で，モデル化や各種パラメータの設定に係る解析者の差を考慮した安全係数を設定する。

材料非線形解析においては，解析コード「WCOMD Studio」を使用する。

表 4－3 材料非線形解析の位置付け（土木学会マニュアル）

表 4－4 部材非線形解析と材料非線形解析の特徴

	部材非線形解析		材料非線形解析	
モデル化	骨組モデル		有限要素	
解析次元	一次元		二次元	三次元
構成則	$\mathrm{M}-\Phi, \mathrm{M}-\theta$ 等	応力ーひずみ関係		
要素	はり要素	ファイバー要素	平面ひずみ要素	立体要素
特徴	（沉 用 性） （解析時間）	狭い $\leftarrow \quad \rightarrow$ 広い 短い $\leftarrow \quad \rightarrow$ 長い		

a．適用基準
材料非線形解析については，土木学会マニュアル，コンクリート標準示方書 2017 等に基づき実施する。基準と異なる設定を用いる場合には，設定根拠の妥当性を確認する。

表4－5に参考とする主な基準•文献を示す。

表 4－5 参考とする主な基準等

項 目	参考とする主な基準等	備 考
材料定数材料特性	- コンクリート標準示方書2017 - 土木学会マニュアル	－
許容限界	－	－せん断力ー相対変位関係より設定した許容限界（破壊基準）が，部材係数の設定における材料非線形解析にて，実験結果とおおむね整合的 であることを確認。

b．材料定数
耐震評価に用いる材料定数は，文献等を基に設定する。コンクリート及び鉄筋の材料定数を表4－6及び表4－7に示す。

表 4－6 コンクリートの材料定数

	設定値	諸 元
単位体積重量	$0.0 \mathrm{kN} / \mathrm{m}^{3}$	材料非線形解析による荷重に含まれ ることからら考慮しない
圧縮強度	$15.8 \mathrm{~N} / \mathrm{mm}^{2}$	設計基準強度（設計図書 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$ ） ／材料係数＊
引張強度	$1.33 \mathrm{~N} / \mathrm{mm}^{2}$	引張強度／材料係数＊
圧縮ピークひずみ	0.2%	コンクリート標準示方書 2017
ひび割れ一せん断 伝達係数	1.0	コンクリート標準示方書 2017
破壊エネルギー	$0.0681 \mathrm{~N} / \mathrm{mm}$	コンクリート標準示方書 2017

注記＊：材料係数を 1.3 として算出

表 4－7 鉄筋の材料定数

		設定値	諸 元
単位体積重量		$0.0 \mathrm{kN} / \mathrm{m}^{3}$	材料非線形解析による荷重に含まれ ることから考慮しない
ヤング係数		$200 \mathrm{kN} / \mathrm{mm}^{2}$	コンクリート標準示方書2017
降伏 強度	主鉄筋	2000 N／mm ${ }^{2}$	せん断破壊先行型の破壊形態となる よう曲げ耐力が増大するように設定
	せん断 補強筋	$345 \mathrm{~N} / \mathrm{mm}^{2}$	設計図書（SD345）

c．解析モデルの要素分割
材料非線形解析の対象とする構造部材を平面ひずみ要素でモデル化する。構造部材の モデル化にあたっては，図 4－33に示すとおり，鉄筋の付着が有効な領域を鉄筋コンク リート要素としてモデル化し，付着の影響が及ばない領域を無筋コンクリート要素とし てモデル化する。

部材厚方向の要素分割数については，鉄筋を含む要素と無筋要素を明確に指定できる分割数が望ましいこと，及び 3 層以上の分割数をとる場合，解析結果に大きな差異が生 じないことから 3 層以上に設定することとする。
具体的には，鉄筋を含む要素は，鉄筋を中心としてかぶり厚さの 2 倍とし，無筋領域 については，要素形状が極端に扁平とならないように分割する。

なお，対象とする構造部材に接合する部材は，弾性要素でモデル化し，モデル下端を固定境界とする。

図 4－33 鉄筋付着有効領域と無筋領域の分割の概要
d．コンクリートの非線形特性
耐震評価に用いる要素は鉄筋コンクリート要素及び無筋コンクリート要素に分類され るが，それぞれの非線形特性は同一の考え方で表される。
（a）圧縮応力下における応力ーひずみ関係
図 4－34に一軸圧縮応力下における応力ーひずみ関係を示す。
圧縮応力下の応力ーひずみの骨格曲線は，最大応力点までの硬化域と，最大応力点 を超えた軟化域で表され，残留塑性ひずみと除荷再載荷時の剛性低下を考慮している。

また，ひび割れ発生後のコンクリートの圧縮強度については，図4－35に示す，低減係数を破壊パラメータに乗じることで，ひび割れ発生後の圧縮強度の低下を考慮す る。

$$
\begin{aligned}
& \sigma_{\mathrm{c}}^{\prime}=\mathrm{E}_{0} \mathrm{~K}\left(\varepsilon^{\prime}{ }_{\mathrm{c}}-\varepsilon^{\prime}{ }_{\mathrm{p}}\right) \geq 0 \\
& \mathrm{E}_{0}=\frac{2 \cdot \mathrm{f}^{\prime} \mathrm{cd}}{\varepsilon^{\prime}{ }_{\text {peak }}}
\end{aligned}
$$

$$
K=\exp \left\{-0.73 \frac{\varepsilon_{\max }^{\prime}}{\varepsilon_{\text {peak }}^{\prime}}\left(1-\exp \left(-1.25 \frac{\varepsilon_{\text {max }}^{\prime}}{\varepsilon_{\text {peak }}^{\prime}}\right)\right)\right\}
$$

$$
\varepsilon_{\mathrm{p}}^{\prime}=\varepsilon_{\max }^{\prime}-2.86 \cdot \varepsilon^{\prime}{ }_{\text {peak }}\left\{1-\exp \left(-0.35 \frac{\varepsilon_{\text {max }}^{\prime}}{\varepsilon_{\text {peak }}}\right)\right\}
$$

ここに， $\mathrm{f}^{\prime}{ }_{\mathrm{cd}}=\mathrm{f}^{\prime}{ }_{\mathrm{ck}} / \gamma_{\mathrm{c}}$
$\varepsilon^{\prime}{ }_{\text {peak }}$ ：圧縮強度に対応するひずみ（一般に， 0.002 としてもよい）
$\varepsilon^{\prime}{ }_{\text {max }}$ ：過去に受けた圧縮ひずみの最大値
$\varepsilon^{\prime}{ }_{p}$ ：塑性ひずみ
K ：弾性剛性残存率

図 4－34 圧縮応力下におけるコンクリートの非線形特性 （コンクリート標準示方書 2017 より引用）

図 4－35 弾性剛性残存率の低減係数
（コンクリート標準示方書 2017 より引用）
（b）引張応力下における応力ーひずみ関係
引張応力下における応力ーひずみ関係は，ひび割れ発生までは線形弾性とし，ひび割れ強度以降は，鉄筋とコンクリートの付着の影響等を考慮し，図4－36に示す骨格曲線を用いて，ひび割れ間のコンクリートに引張応力分担を考慮する。

引張力を受ける無筋コンクリート要素では，引張軟化挙動は，破壊エネルギー（Gf） によって定義する。引張軟化挙動の考慮にあたっては，図 4－37に示すひび割れ発生後の軟化曲線とひび割れ発生点からの除荷曲線とで囲まれる面積がGf／Le（要素寸法）に一致するように，軟化特性を表す係数Cを用いる。

f_{t} ：設計引張強度
$\varepsilon_{\mathrm{tu}}$ ：引張軟化開始ひずみ
c ：引張軟化特性を表す係数
図 4－36 引張対応力下における鉄筋とコンクリートの付着効果を考慮した

> 応力 - ひずみ関係
（コンクリート標準示方書 2017 より引用）

図 4－37 応力—ひずみ曲線と破壊エネルギーGf の関係
（c）ひび割れ面でのせん断伝達関係
コンクリートのひび割れ発生後にひび割れ角度を固定する固定ひび割れモデルで は，ひび割れ面のずれによるせん断応力伝達特性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は，斜めひび割れの発生に伴う剛性低下や破壊を評価するため，図4－38に示すとおり，ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ \＆の比をパラメータとし，コンクリートの剛性低下を考慮するモデルを用 いる。

ここに，β ：ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ ε の比 (γ / ε)
$\tau \quad:$ ひび割れ面でのせん断応力
$\tau_{\text {max }}$ ：除荷開始時せん断応力
$\beta_{\text {max }}$ ：除荷開始時せん断ひずみ γ とひび割れ開口ひずみ ε の比

図 4－38 ひび割れ面でのせん断伝達モデル

$$
\text { (コンクリート標準示方書 } 2017 \text { より引用) }
$$

e．鉄筋の非線形特性
ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均応力ー平均ひずみ関係 は，単体鉄筋の応力ーひずみ関係と異なり，図 4－39に示すひずみ硬化特性を考慮する。

f y ：鉄筋単体の降伏強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
f u ：鉄筋単体の引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{E}_{\mathrm{s}} \quad: \quad$ 鉄筋単体のヤング率 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ϵ_{y} ：鉄筋単体の降伏ひずみ
ϵ_{sh} ：鉄筋単体のひずみ硬化開始ひずみ
p ：鉄筋比
f_{1} ：コンクリートの引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 4－39 ひずみ硬化域までモデル化した鉄筋の平均応力ー平均ひずみ関係 （コンクリート標準示方書 2017 より引用）
f．鉄筋コンクリートとしてのモデル化
コンクリートと鉄筋の界面の付着特性をテンションスティフニング効果（引張特性 が硬化する現象）として，鉄筋コンクリート要素の中に取り込むことにより，鉄筋コン クリートの構成則を直接与える。
鉄筋コンクリートの引張応力下の平均応力は，以下の式で表される。

$$
\bar{\sigma}_{\text {RC }}=\frac{A_{\mathrm{S}}}{A_{\mathrm{RC}}} \bar{\sigma}_{\mathrm{S}}+\frac{A_{\mathrm{C}}}{A_{\mathrm{RC}}} \bar{\sigma}_{\mathrm{C}}
$$

ここに， $\bar{\sigma}_{S}, \bar{\sigma}_{C}$ ：それぞれ鉄筋とコンクリートの平均応力
A_{S}, A_{C} ：それぞれ鉄筋とコンクリートの断面積，$A_{R C}=A_{S}+A_{C}$
g．荷重の組合せ
材料非線形解析においては，地震応答解析（部材非線形解析）により得られた荷重を用いることから，荷重の組み合わせは，地震応答解析と同様である。
（2）評価内容
a．耐震評価フロー
材料非線形解析を用いたせん断耐力の評価フローを図4－40に示す。

図 4－40 材料非線形解析の耐震評価フロー
b．荷重の設定
材料非線形解析にて考慮する荷重は，地震応答解析（二次元時刻歴応答解析（全応力解析））から得られる荷重を考慮する。具体的には，地震応答解析で評価対象部材のせ ん断照査結果が厳しくなる時刻における断面力（曲げモーメント，軸力，せん断力）を材料非線形解析モデルに図4－41に示すとおりに作用させる。

材料非線形解析では，地震応答解析で得られた照査時刻の断面力分布を再現できる荷重分布を算出し，この荷重比率を維持しながら漸増載荷する。

作用荷重は，常時荷重及び地震時荷重を，図4－42に示すとおり載荷し材料非線形解析を実施する。

図 4－41 材料非線形解析における載荷状況

図 4－42 荷重の作用手順
c．せん断耐力
材料非線形解析を用いたせん断耐力は，材料非線形解析におけるせん断力一相対変位関係から設定する。具体的には，図 4－43に示す例のとおり，せん断力 Q 一相対変位 δ関係においてせん断力の増分に対して相対変位が急増する直前の点又はせん断力が最大 となる点を部材のせん断耐力と判断する。

図 4－43 材料非線形解析を用いたせん断耐力の設定例

d．安全係数の設定

材料非線形解析では，地震応答解析（二次元時刻歴応答解析（全応力解析））で得ら れる断面力（曲げモーメント，軸力，せん断力）を材料非線形解析に作用させた時のせ ん断力 V と材料非線形解析で得られるせん断耐力 $\mathrm{V} y$ に，以下のとおり部材係数 $\gamma_{\mathrm{b} 1}$ ， $\gamma_{b 2}$ ，構造解析係数 γ_{a} ，構造物係数 γ_{i} を考慮し，照査用せん断力 V_{d} ，設計せん断耐力 V_{yd} を算定する。

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\gamma_{\mathrm{i}} \cdot \gamma_{\mathrm{a}} \cdot \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{yd}}=\mathrm{V}_{\mathrm{y}} /\left(\gamma_{\mathrm{b}_{1}} \cdot \gamma_{\mathrm{b} 2}\right)
\end{aligned}
$$

考慮する安全係数の設定結果を表 4－8 に示す。ここで，部材係数 $\gamma_{\mathrm{b} 1}$ については，実験又はせん断耐力式により得られるせん断耐力と材料非線形解析により得られるせん断耐力との比率により設定することとし，解析における構成則の相違や，要素の種類，要素分割，材料物性の設定，入力増分等，多岐にわたる解析者間の差を考慮する。

具体的には，土木学会マニュアルに示される 17 ケースの材料非線形解析を実施し，実験又はせん断耐力との差が最も大きいCase No． 7 の部材係数 1.13 を設定する（表4－9）。

表 4－8 考慮する安全係数の設定結果

安全係数		値	設定根拠
部材係数	$\gamma_{\mathrm{b} 1}$	1.13	別途実施する材料非線形解析により設定
	$\gamma_{\mathrm{b} 2}$	1.0	地震応答解析による層間変形角より設定
構造物係数	γ_{i}	1.0	構造物の重要度は，基準地震動 S s によ り評価することで包絡されていると判断
構造解析係数	γ_{a}	1.05	各種文献より保守的に設定
材料係数	γ_{m}	1.3	文献に基づく標準的な設定

表 4－9 部材係数 $\gamma_{\mathrm{b} 1}$ の設定結果

Case No．	試験結果	解析結果	部材係数 （解析結果／実験結果） （2）／（1）	備考
	せん断耐力 （kN） （1）	せん断耐力 （kN） （2）		
1	475	422.8	0.89	
2	1187	1258.2	1.06	
3	324	356.4	1． 10	
4	294	308.7	1． 05	
5	581	511.3	0.88	
6	329	335.6	1． 02	
7	1587	1793.3	1.13	最大値
8	350	392.0	1． 12	
9	855	880.7	1． 03	
10	165	102.3	0.62	
11	333	316.4	0.95	
12	127	100.3	0． 79	
13	188	118.4	0.63	
14	163	117.4	0． 72	
15	273	177.5	0.65	
16	356	291.9	0． 82	
17	432	246.2	0.57	

4．2．4 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表 4－10に示す。

表 4－10 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
a．接地圧に対する許容限界
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書に基づき， コンクリートの支圧強度とする。MMR（既設）の許容限界を表4－11に示す。

表 4－11 MMR（既設）の支持性能に対する許容限界

評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{c} \mathrm{k}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	15.6

b．健全性に対する許容限界
MMR（既設）に発生するせん断応力に対する許容限界は，表2－7に基づき，MMR（既設） のせん断強度 $\tau_{\mathrm{f}}=\tau_{0}=\mathrm{f}^{\prime}{ }_{\mathrm{ck}} / 5$ とする。

また，せん断破壊に対する健全性の確認において参照する引張破壊については，表 2
－7に示す引張強度を超える引張応力が発生した場合に引張破壊と判定する。
MMR（既設）のせん断強度及び引張強度を表4－12に示す。

表 4－12 MMR（既設）のせん断強度及び引張強度

せん断強度＊1 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	引張強度 ${ }^{*} 2$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
3.12	1.43

注記＊1：せん断強度 τ_{f} は，粘着力 $\tau_{0}=\mathrm{f}{ }_{\mathrm{ck}} / 5$ のみ見込むこととし， $\sigma \tan \phi$ は考慮しないことで安全側に配慮する。
＊2：コンクリート標準示方書に基づき設定

5．評価結果

5.1 地震応答解析結果

地震応答解析結果として，「層間変形角時刻歴波形」，断面力に対し照査を行っている項目 のうち最も厳しい照査値に対する「断面力分布」，曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示すケースの地盤の「最大せん断ひずみ分布」を記載す る。なお，断面力分布は単位奥行きあたりの断面力を図示する。

5．1．1 解析ケースと照査値

耐震評価においては，「資料 1 屋外重要土木構造物の耐震安全性評価について」のう ち「10．屋外重要土木構造物等の耐震評価における追加解析ケースの選定」に基づき，す べての基準地震動 S s に対して実施するケース①都いいて，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査において，照査値が 0.5 以上となるすべての照査項目に対 して，最も厳しい（許容限界に対する裕度が最も小さい）地震動を用いて，ケース（2）～（4） を実施する。

また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合 は，追加解析を実施する。

以下に，原子炉機器冷却海水配管ダクトの曲げ・軸力系に対する照査及びせん断破壊 に対する照査結果を示す。なお，評価位置を図 5－1 に示す。

図 5－1 評価位置図
（1）曲げ・軸力系の破壊に対する照査
表 5－1 に曲げ・軸力系の破壊に対する照査の実施ケースと照査値を示す。
曲げ・軸力系の破壊に対する照査は，限界層間変形角又は降伏曲げモーメントを許容限界とする。なお，詳細については，「5．2．1 曲げ・軸力系の破壊に対する評価結果」に示す。

曲げ・軸力系の破壊に対する照査値は，ばらつきを考慮しても 0.71 であり，要求機能 を満足していると評価できる。

表 5－1 曲げ・軸力系の破壊に対する照査の実施ケースと照査値

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊1，22			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.56			
	－＋	0.56			
S s－D 2	＋＋	0.54			
	－＋	0.54			
S s－D 3	＋＋	0.53			
	－＋	0.52			
S s－F 1	＋＋	0.53			
	－＋	0． 53			
$\mathrm{S} s-\mathrm{F} 2$	＋＋	0.55			
	－＋	0.56			
S s－F 3	＋＋	0.53			
	－＋	0.51			
S s－N 1	$++$	0.57	0.56	0.71	0.69
	－＋	0.57		0．70	

注記＊1：照査値は，構造強度を有することに対する評価結果（層間変形角）と S クラスの施設を支持する機能に対する評価結果（曲げモーメント）の厳 しい方を記載。
＊2：赤枠は，前述図3－22 のフローに基づき，解析ケース（2）～（4）を実施す る地震動の基本ケース①の照査値を示す。
（2）せん断破壊に対する照査
表 5－2 にせん断破壊に対する照査の実施ケースと照査値を示す。
せん断破壊に対する照査は，せん断耐力を許容限界とする。
せん断破壊に対する照査に用いるせん断耐力は，せん断耐力式により算定しているが，照査値が 1.0 を超えるケースについては，構造部材の形状，作用荷重及び鉄筋コンクリー トの非線形特性を踏まえた材料非線形解析を実施することにより，より高い精度でせん断耐力を求め照査を行っている。材料非線形解析によりせん断耐力を求めた照査値について は，せん断耐力式による照査値を併記している。

なお，詳細については，「5．2．2 せん断破壊に対する評価結果」に示す。
せん断破壊に対する照査値は，より高い精度でせん断耐力を評価する材料非線形解析に よる照査を用い，ばらつきを考慮しても 0.60 であり，要求機能を満足していると評価で きる。

表 5－2（1）せん断破壊に対する照査の実施ケースと照査値（頂版＊${ }^{*},{ }^{2}$ ）

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	＋＋	0.60			
	－＋	0.61			
S s－D 2	＋＋	0.60			
	－＋	0． 62			
$\mathrm{S} \mathrm{s}-\mathrm{D} 3$	＋＋	0.58			
	－＋	0.57			
$S \mathrm{~s}-\mathrm{F} 1$	＋＋	0.52			
	－＋	0.58			
$\mathrm{S} s-\mathrm{F} 2$	＋＋	0.55			
	－＋	0． 57			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0． 59			
	－＋	0． 55			
S s－N 1	＋＋	0． 62	0.56	0． 72	0.68
	－＋	0.56			

注：せん断耐力式による照査値を示す。
注記＊1 ：評価位置は図5－2に示す。
注記＊2：頂版は，CCb 工法を適用していない。

表 5－2（2）せん断破壊に対する照査の実施ケースと照査値（側壁＊${ }^{*}$ ，${ }^{2}$ ）

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	$++$	0． 49			
	－＋	0． 44			
S s－D 2	＋＋	0.50			
	－＋	0． 48			
S s－D 3	＋＋	0.41			
	－＋	0． 41			
S s－F 1	＋＋	0.50			
	－＋	0． 44			
S s－F 2	＋＋	0． 50			
	－＋	0． 46			
S s－F 3	＋＋	0． 44			
	－＋	0． 48			
S s－N 1	＋＋	0． 48	0． 43	0.64	0.55
	－＋	0.56			

注：せん断耐力式による照査値を示す。
注記 $* 1$ ：評価位置は図 5－2 に示す。
注記＊2：側壁は，CCb 工法を適用していない。

表 5－2（3）せん断破壊に対する照査の実施ケースと照査値（隔壁 ${ }^{* 1,2}$ ）

解析ケース 地震動		せん断破壊に対する照査＊3，4			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$++$	0.71			
	－＋	0.68			
S s－D 2	＋＋	0.67			
	－＋	0.68			
S s－D 3	＋＋	0.61			
	－＋	0.59			
S s－F 1	＋＋	0.62			
	－＋	0.64			
$S \mathrm{~s}-\mathrm{F} 2$	＋＋	0.65			
	－＋	0.64			
S s－F 3	＋＋	0.62			
	－＋	0． 63			
S s－N 1	＋+	$\begin{gathered} 0.83 \\ 【 0.25 】 \end{gathered}$	0.69	$\begin{aligned} & 0.60 * 5 \\ & (1.04) \\ & 【 0.32 】 \end{aligned}$	$\begin{gathered} 0.96 \\ 【 0.29 】 \end{gathered}$
	－＋	0.76			

注記＊1：評価位置は図5－2に示す。
＊2：図5－2に示す隔壁80にCCb工法を適用する。
＊3：赤枠は，前述図 3－22 のフローに基づき，解析ケース（2）～（4）を実施する地震動の基本ケース（1）の照査値を示す。
＊4：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。
＊5：せん断耐力式を用いた照査値が 0.8 以上の場合，CCb 工法を適用する部材に おける最大照査値を【】内に示す。

> 凡例
（ ）：せん断耐力式による照査値

【】：CCb 工法を適用する
部材における最大照査値

表5－2（4）せん断破壊に対する照査の実施ケースと照査値（底版＊1）

解析ケース 地震動		せん断破壊に対する照査＊2			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0． 43			
	－＋	0． 40			
S s－D 2	$++$	0． 42			
	$-+$	0． 44			
S s－D 3	＋＋	0． 40			
	－＋	0． 40			
$S \mathrm{~s}-\mathrm{F} 1$	＋＋	0.38			
	－＋	0.37			
$S \mathrm{~s}-\mathrm{F} 2$	＋＋	0.39			
	－＋	0.36			
$\mathrm{S} s$－F 3	＋＋	0． 40			
	－＋	0． 44			
S s－N 1	＋＋	0.37	0． 36	0． 44	0． 45
	－＋	0.39			

注：せん断耐力式による照査値を示す。
注記 $* 1$ ：評価位置は図 5－2 に示す。
＊2：底版は，CCb 工法を適用していない。
（3）基礎地盤の支持性能に対する照査
表 5－3 に基礎地盤の支持性能に対する照査の実施ケースと照査値を示す。
基礎地盤の支持性能に対する照査は，極限支持力及び支圧強度を許容限界とする。な
お，詳細については，「5．3 基礎地盤の支持性能に対する評価結果」に示す。
基礎地盤の支持性能に対する照査は，ばらつきを考慮しても極限支持力に基づく許容限界に対して 0.5 未満であり，要求機能を満足していると評価できる。

表 5－3 基礎地盤の支持性能に対する照査の実施ケースと照査値

解析ケース 地震動		基礎地盤の支持性能に対する照査＊			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.15			
	－＋	0.15			
S s－D 2	＋＋	0.16			
	－＋	0． 15			
S s－D 3	$++$	0.14			
	－＋	0． 14			
S s－F 1	＋＋	0． 13			
	－＋	0.13			
$\mathrm{S} \mathrm{s}-\mathrm{F} 2$	$++$	0.15			
	－＋	0． 13			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0． 14			
	－＋	0． 14			
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	0． 14	0.13	0． 20	0.13
	－＋	0.17			

注記＊：基礎地盤（狐崎部層）に対する評価結果と MMR（既設）に対する評価結果 （接地圧）の厳しい方を記載。

5．1．2 層間変形角時刻歴波形（曲げ・軸力系の破壊に対する照査）
原子炉機器冷却海水配管ダクト（水平部）の曲げ・軸力系の破壊に対する照査において，各解析ケースのうち最も厳しい照査値となる結果を表 5－4 に示す。また，該当する解析 ケースの層間変形角時刻歴波形を図5－1 に示す。

表 5－4 曲げ・軸力系の破壊に対する照査結果
（最も厳しい照查値とその地震動）

解析ケース	地震動	照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	1.54×10^{-3}	1.0×10^{-2}	0.16

注記 $*:$ 照查用層間変形角 $\mathrm{R}_{\mathrm{d}}=$ 最大層間変形角 $\mathrm{R} \times$ 構造解析係数 γ_{a}

図 5－1 曲げ・軸力系の破壊に対する照査が最も厳しくなるケースの層間変形角時刻歴波形
（解析ケース③ 地震動 S s－N $1(++)$ ）

5．1．3 断面力分布（せん断破壊に対する照査）

せん断破壊に対する照査について，各解析ケースのうち最も厳しい照査値となる結果を表 5－5 に示す。また，部材ごとの照査値が最大となる時刻における断面力分布図（曲げモ ーメント，軸力，せん断力）を図 5－3 に示す。

表 5－5 せん断破壊に対する照査結果
（各部材において最も厳しい照査値とその地震動）

評価位置＊${ }^{1}$		ケース	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
頂版	21	（3）	$\begin{gathered} \hline \text { S s }-\mathrm{N} 1 \\ (++) \end{gathered}$	953	$1329 * 3$	0． 72
側壁	50	（3）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	1482	$2348 * 3$	0.64
隔壁	70	（3）	$\begin{gathered} \hline \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	313	$522 * 4$	0.60
底版	11	（4）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	533	$1188 * 3$	0． 45

注記＊1：評価位置は図5－2に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊3：せん断耐力式によるせん断新耐力
＊4：材料非線形解析によるせん断新耐力

南 \qquad

注記＊：赤枠はCCb 工法を適用している部材を示す。

図 5－2 評価位置図

図 5－3 せん断破壊に対する照査値最大時＊の断面力図 （隔壁，解析ケース（3），地震動 S s－N $1(++)$ ）注記＊：材料非線形解析による評価結果

5．1．4 最大せん断ひずみ分布

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示すケー スについて地盤に発生した最大せん断ひずみを確認する。
最大照査値を示す解析ケースの一覧を表5－6に，最大せん断ひずみ分布図を図5－4に示す。

表 5－6 最大照查値を示す解析ケースの一覧

評価項目	
曲げ・軸力系の破壊に対する照查	せん断破壊に対する照査
ケース（3）	ケース（3）
S s－N 1（＋＋）	S s－N 1（＋＋）

注：耐震評価における解析ケース一覧

解析ケース	ケース（1）	ケース（2）	ケース③	ケース（4）
	基本ケース	地盤物性のばら つき（＋1 σ ）を考慮した解析ケ ース	地盤物性のばら つき（－1 o）を考慮した解析ケ ース	材料物性（コン クリート）に実強度を考慮した解析ケース
地盤物性	平均値	平均値＋1 σ	平均値－1 σ	平均値
材料物性	設計基準強度	設計基準強度	設計基準強度	実強度に基づく圧縮強度

（a）全体図

（b）構造物周辺拡大図

図 5－4 最大せん断ひずみ分布図
(解析ケース (3) , 地震動 S s - N 1 (+ +))

5.2 構造部材の健全性に対する評価結果

5．2．1 曲げ・軸力系の破壊に対する評価結果
構造強度を有することの確認における曲げ・軸力系の破壊に対する評価結果を表 5－7 に示す。また，S クラスの施設を支持する機能を損なわないことの確認における曲げ・軸力系の破壊に対する評価結果を表5－8に示す。照査値は，層間変形角，曲げモーメントを許容限界で除した値として時々刻々求め，全時刻において最大となる照査値を記載する。表5－9より，全ケースにおいて照査用層間変形角は限界層間変形角（層間変形角1／100） を下回ることを確認した。

表5－8より，S クラスの施設を支持する機能を有する側壁及び隔壁について，照査用曲 げモーメントが降伏曲げモーメントを下回ることを確認した。

また，表5－9より，後施工せん断補強工法を適用する箇所（隔壁）の照査用曲げモーメ ントは，降伏曲げモーメントに至っておらず，CC b 工法の適用範囲内であることを確認し た。

表 5－7 曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	$\begin{gathered} \text { 照査値 } \\ \mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}} \end{gathered}$
（1）	S s－D 1	＋＋	9． 51×10^{-4}	1． 0×10^{-2}	0． 10
		－＋	9.53×10^{-4}	1.0×10^{-2}	0.10
	S s－D 2	＋＋	8.03×10^{-4}	1． 0×10^{-2}	0.09
		－＋	8． 45×10^{-4}	1.0×10^{-2}	0.09
	Ss－D 3	＋＋	7.11×10^{-4}	1． 0×10^{-2}	0.08
		－＋	6． 77×10^{-4}	1． 0×10^{-2}	0.07
	S s－F 1	＋＋	7.22×10^{-4}	1.0×10^{-2}	0.08
		－＋	7.33×10^{-4}	1． 0×10^{-2}	0.08
	S s－F 2	＋＋	8.00×10^{-4}	1． 0×10^{-2}	0.08
		$-+$	8.54×10^{-4}	1． 0×10^{-2}	0.09
	Ss－F 3	＋＋	7.37×10^{-4}	1.0×10^{-2}	0.08
		$-+$	6.31×10^{-4}	1． 0×10^{-2}	0.07
	S s -N 1	＋＋	8.54×10^{-4}	1． 0×10^{-2}	0.09
		$-+$	8.51×10^{-4}	1． 0×10^{-2}	0.09
（2）	S s - N 1	＋＋	6． 36×10^{-4}	1． 0×10^{-2}	0． 07
（3）	$\mathrm{Ss}-\mathrm{N} 1$	＋＋	1． 54×10^{-3}	1.0×10^{-2}	0.16
		$-+$	1.50×10^{-3}	1.0×10^{-2}	0.15
（4）	S s－N 1	＋＋	7.69×10^{-4}	1.0×10^{-2}	0.08

注記 $*:$ 照查用層間変形角 $\mathrm{R}_{\mathrm{d}}=$ 最大層間変形角 $\mathrm{R} \times$ 構造解析係数 γ_{a}

表 5－8（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		$\begin{gathered} \text { 照査用 } \\ \text { 曲げモーメント } 2 \\ M_{d}(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}}$
（1）	$\mathrm{St}-\mathrm{D} 1$	＋＋	頂版	－	－	－	－
			側壁	50	947	2255	0． 42
			隔壁	70	433	779	0． 56
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	60	966	2204	0． 44
			隔壁	90	415	743	0.56
			底版	－	－	－	－
	S s－D 2	＋＋	頂版	－	－	－	－
			側壁	60	843	2140	0． 40
			隔壁	90	436	811	0.54
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	60	902	2191	0． 42
			隔壁	90	409	761	0． 54
			底版	－	－	－	－
	S s－D 3	＋＋	頂版	－	－	－	－
			側壁	50	797	2210	0． 37
			隔壁	70	398	760	0． 53
			底版	－	－	－	－
		$-+$	頂版	－	－	－	－
			側壁	60	808	2166	0.38
			隔壁	90	390	753	0． 52
			底版	－	－	－	－

注記 $* 1$ ：評価位置は図 $5-5$ に示す。
＊2：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ_{a} a

表 5－8（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）

解析 ケース	地震動		評価位置＊${ }^{1}$		照査用曲げモーメント＊2 $\mathrm{M}_{\mathrm{d}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}} \end{gathered}$
（1）	S s－F 1	＋＋	頂版	－	－	－	－
			側壁	50	730	2226	0.33
			隔壁	70	423	808	0.53
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	60	773	2181	0.36
			隔壁	90	405	771	0.53
			底版	－	－	－	－
	S s－F 2	＋＋	頂版	－	－	－	－
			側壁	50	876	2139	0.41
			隔壁	70	413	758	0.55
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	60	906	2061	0． 44
			隔壁	90	377	682	0.56
			底版	－	－	－	－
	S s－F 3	$++$	頂版	－	－	－	－
			側壁	50	830	2095	0． 40
			隔壁	90	465	884	0.53
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	60	778	2031	0.39
			隔壁	70	434	853	0.51
			底版	－	－	－	－

注記 $* 1$ ：評価位置は図5－5に示す。
＊2：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ_{a}

表 5－8（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）

解析 ケース	地震動		評価位置＊${ }^{1}$		照査用曲げモーメント＊2 $\mathrm{M}_{\mathrm{d}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m})$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}}$
（1）	S s－N 1	＋＋	頂版	－	－	－	－
			側壁	60	874	2032	0.43
			隔壁	70	561	992	0.57
			底版	－	－	－	－
		$-+$	頂版	－	－	－	－
			側壁	50	899	2110	0． 43
			隔壁	90	520	924	0.57
			底版	－	－	－	－
（2）	S s－N 1	$++$	頂版	－	－	－	－
			側壁	60	759	2041	0.38
			隔壁	90	364	656	0.56
			底版	－	－	－	－
（3）	S s－N 1	＋＋	頂版	－	－	－	－
			側壁	60	1178	2024	0.59
			隔壁	90	435	615	0.71
			底版	－	－	－	－
		$-+$	頂版	－	－	－	－
			側壁	50	1167	2029	0.58
			隔壁	70	413	596	0.70
			底版	－	－	－	－
（4）	S s－N 1	＋＋	頂版	－	－	－	－
			側壁	60	1109	2055	0.54
			隔壁	90	458	665	0.69
			底版	－	－	－	－

注記＊1：評価位置は図5－5に示す。
＊2：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ_{a}

表 5－9（1）曲げ・軸力系の破壊に対する評価結果（CCb 工法の適用範囲内の確認）

解析 ケース	地震動		評価位置＊${ }^{1}$		$\begin{gathered} \text { 照査用 } \\ \text { 曲げモーメント*2 } \\ \mathrm{M}_{\mathrm{d}}(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}} \end{gathered}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$++$	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1356	2967	0． 46
			底版	－	－	－	－
			頂版	－	－	－	－
			側壁	－	－	－	－
		＋	隔壁	80	1328	2914	0.46
			底版	－	－	－	－
			頂版	－	－	－	－
		＋	側壁	－	－	－	－
		＋	隔壁	80	1161	2735	0.43
	S		底版	－	－	－	－
	S S D 2		頂版	－	－	－	－
			側壁	－	－	－	－
		－＋	隔壁	80	1216	2813	0． 44
			底版	－	－	－	－
	S s－D 3	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1173	2875	0.41
			底版	－	－	－	－
		$-+$	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1125	2815	0.40
			底版	－	－	－	－

注記＊1：評価位置は図5－5に示す。
＊2：CCb 工法を適用した部位は図 4－30に示す。
＊ 3 ：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ a

表 5－9（2）曲げ・軸力系の破壊に対する評価結果（CCb 工法の適用範囲内の確認）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		$\begin{gathered} \hline \text { 照査用 } \\ \text { 曲げモーメント*2 } \\ M_{d}(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}} \quad(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}}$
（1）	S s－F 1	$++$	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1167	2932	0． 40
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1156	2885	0． 41
			底版	－	－	－	－
	$\mathrm{S} s$－F 2	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1132	2716	0． 42
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1224	2804	0． 44
			底版	－	－	－	－
	S s－F 3	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1292	3087	0． 42
			底版	－	－	－	－
		$-+$	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1195	3073	0.39
			底版	－	－	－	－

注記＊1：評価位置は図 5－5に示す。
＊2：CCb 工法を適用した部位は図 4－30に示す。
＊ 3 ：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ_{a}

表 5－9（3）曲げ・軸力系の破壊に対する評価結果（CCb 工法の適用範囲内の確認）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		照査用曲げモーメント＊2 $\mathrm{M}_{\mathrm{d}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ \mathrm{M}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{M}_{\mathrm{d}} / \mathrm{M}_{\mathrm{y}} \end{gathered}$
（1）	$\mathrm{S} s-\mathrm{N} 1$	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1330	3013	0． 45
			底版	－	－	－	－
			頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1275	2855	0． 45
			底版	－	－	－	－
（2）	$\mathrm{S} s-\mathrm{N} 1$	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1098	2765	0． 40
			底版	－	－	－	－
（3）	$\mathrm{St}-\mathrm{N} 1$	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1594	2640	0.61
			底版	－	－	－	－
		－＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1600	2662	0.61
			底版	－	－	－	－
（4）	S s－N 1	＋＋	頂版	－	－	－	－
			側壁	－	－	－	－
			隔壁	80	1471	2882	0． 52
			底版	－	－	－	－

注記＊1：評価位置は図5－5に示す。
＊2：CCb 工法を適用した部位は図4－30に示す。
＊3：照査用曲げモーメント＝発生曲げモーメント×構造解析係数 γ a

底版
\square ：CCb 工法を適用する部材
図5－5 評価位置図

5．2．2 せん断破壊に対する評価結果
（1）せん断耐力式による評価結果
せん断破壊に対する評価結果のらち，せん断耐力式による評価結果を表5－10に示す。
照査値は，せん断力を許容限界で除した值として時々刻々求め，全時刻において最大とな る照査値を記載する。

同表中には，照査値が 1.0 を上回る解析ケース，部材があることから，次項「（2）材料非線形解析による評価結果」にて照査値が 1.0 を下回ることを確認する。

表 5－10（1）せん断破壊に対する評価結果（せん断耐力式）

注記＊1：評価位置は図5－5に示す。
＊ 2 ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 $\gamma \mathrm{a}$

表 5－10（2）せん断破壊に対する評価結果（せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置 ${ }^{*}{ }^{1}$		照査用 せん断力＊ 2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－F 1	＋＋	頂版	24	701	1349	0.52
			側壁	50	683	1392	0.50
			隔壁	90	183	296	0.62
			底版	11	447	1188	0.38
		$-+$	頂版	21	760	1314	0.58
			側壁	60	1013	2346	0． 44
			隔壁	70	197	310	0.64
			底版	11	432	1188	0.37
	$S \mathrm{~s}-\mathrm{F} 2$	＋＋	頂版	21	719	1310	0.55
			側壁	60	1208	2439	0.50
			隔壁	70	173	270	0.65
			底版	11	457	1188	0． 39
		－＋	頂版	21	725	1288	0.57
			側壁	60	1037	2287	0． 46
			隔壁	70	178	280	0． 64
			底版	14	416	1188	0.36
	Ss－F 3	＋＋	頂版	21	763	1304	0.59
			側壁	50	607	1395	0． 44
			隔壁	90	175	286	0.62
			底版	14	465	1188	0． 40
		－＋	頂版	24	747	1365	0.55
			側壁	50	659	1400	0． 48
			隔壁	70	176	282	0.63
			底版	11	511	1188	0． 44

注記＊1：評価位置は図5－5に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ a

表 5－10（3）せん断破壊に対する評価結果（せん断耐力式）

解析 ケース	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－N 1	$++$	頂版	21	812	1322	0.62
			側壁	50	1078	2247	0． 48
			隔壁	70	257	312	0.83
			底版	11	431	1188	0.37
		$-+$	頂版	24	755	1366	0． 56
			側壁	60	1273	2283	0.56
			隔壁	90	229	302	0.76
			底版	11	454	1188	0.39
（2）	S s－N 1	$++$	頂版	21	722	1311	0.56
			側壁	50	964	2281	0.43
			隔壁	70	221	322	0． 69
			底版	11	417	1188	0.36
（3）	$\mathrm{S} s-\mathrm{N} 1$	$++$	頂版	21	953	1329	0． 72
			側壁	50	1482	2348	0.64
			隔壁	70	309	298	1． 04
			底版	11	1361	3123	0． 44
（4）	S s－N 1	$++$	頂版	21	879	1304	0.68
			側壁	50	1214	2216	0． 55
			隔壁	70	287	299	0.96
			底版	11	533	1188	0.45

注記 $* 1$ ：評価位置は図5－5に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
（2）材料非線形解析による評価結果
a．評価条件
前項「（1）部材非線形解析による評価結果」では，原子炉機器冷却海水配管ダクト（水平部）の隔壁において，発生するせん断力がせん断耐力式によるせん断耐力を上回る結果となった。

せん断耐力式は，既往の実験等から一般化されたものであることから，ここでは，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析 を実施することにより，より高い精度でせん断耐力を求め，構造部材のせん断破壊に対 する健全性を確認する。

図5－6に材料非線形解析によりせん断破壊に対する評価を実施する対象部材を示す。 また，評価対象部材の要素分割図を図 5－7 に，要素プロパティ番号図を及び図5－8，要素プロパティ条件を表5－11に示す。
：評価対象部材
頂版

図 5－6 材料非線形解析における評価対象部材

750	160	160		
	$\begin{array}{r} 200 \\ 750 \quad 240 \end{array}$			750
4200				

図 5－7 要素分割図

図5－8 要素プロパティ番号図

表 $5-11$		要素プロパティ条件	
番号	材料	引張硬化軟化係数	
		C x	C y
1	RC	1.9	0.4
2	無筋	1.5	1.7
3	無筋	1.5	1.1
4	無筋	1.5	3.7
5	無筋	1.7	1.7

材料非線形解析によるせん断耐力の算定において考慮する荷重は，地震応答解析から得られる荷重を考慮する。具体的には地震応答解析で評価対象部材のせん断照査が厳し くなる時刻における断面力（曲げモーメント，軸力，せん断力）を材料非線形解析モデ ルに図 5－10のように作用させる。材料非線形解析では，地震応答解析から得られた照查時刻の断面力分布を再現できる荷重分布を算出し，この荷重を 100 分割したものを Δ $\mathrm{M}, ~ \Delta \mathrm{Q}, ~ \Delta \mathrm{~N}$ とし，これらの比率を維持しながら漸増載荷する。

なお，作用荷重は，常時荷重（ $\left.\Delta \mathrm{M}_{\mathrm{s}}, \Delta \mathrm{Q}_{\mathrm{s}}, \Delta \mathrm{N}_{\mathrm{s}}\right)$ 及び地震時荷重（ $\Delta \mathrm{M}_{\mathrm{d}}, \Delta \mathrm{Q}$ $\mathrm{d}, ~ \Delta \mathrm{~N}_{\mathrm{d}}$ ）とし，図5－11に作用手順を示す。表5－12に代表例として，材料非線形解析による評価において最も照査値が厳しい解析ケースにおける $\Delta M, \Delta Q, \Delta N$ を示す。

図5－9 材料非線形解析における載荷状況

図5－10 荷重の作用手順

表 5－12 材料非線形解析における作用荷重

部材			隔壁
地震動			Ss－N1（＋＋）
解析ケース			解析ケース（3）
常時荷重	曲げモーメント（kN•m）	$\Delta \mathrm{M}$	2.2920
	せん断力（kN）	ΔQ_{1}	－0．0185
		ΔQ_{2}	0.0000
		ΔQ_{3}	0.0000
		ΔQ_{4}	0.0000
		ΔQ_{5}	0.0000
		ΔQ_{6}	0.0000
		ΔQ_{7}	0.0000
		ΔQ_{8}	0.0000
	軸力（kN）	ΔN_{1}	－13．2931
		ΔN_{2}	－0．1687
		ΔN_{3}	－0．2661
		ΔN_{4}	－0．2661
		ΔN_{5}	－0．2661
		ΔN_{6}	－0．2661
		ΔN_{7}	－0．2661
		ΔN_{8}	－0．1688
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 時 } \\ & \text { 荷 } \\ & \text { 重 } \end{aligned}$	曲げモーメント（kN $\cdot \mathrm{m}$ ）	$\Delta \mathrm{M}$	5.6952
	せん断力（kN）	ΔQ_{1}	1.9201
		ΔQ_{2}	0.1401
		ΔQ_{3}	0.2191
		ΔQ_{4}	0.2152
		ΔQ_{5}	0.2014
		ΔQ_{6}	0.1828
		ΔQ_{7}	0.1850
		ΔQ_{8}	0.0806
	軸力（kN）	ΔN_{1}	－9．0308
		ΔN_{2}	－0．0098
		ΔN_{3}	－0．0119
		ΔN_{4}	－0．0081
		ΔN_{5}	－0．0044
		ΔN_{6}	－0．0005
		ΔN_{7}	0.0033
		ΔN_{8}	0.0045

b．評価結果
（a）隔壁の評価結果
評価対象部材（隔壁）における荷重－変位曲線を図 5－11に示す。
同図は，評価対象部材において最も厳しい照査値となる地震動と解析ケースの組合 せ（解析ケース（3），地震動 S s－N 1（＋＋））の結果を示している。

図中の赤丸で示した 100 ステップは，地震応答解析（部材非線形解析）において得 られた断面力図を再現した状態である。189 ステップ以降，水平変位の急増が認めら れる。

図5－12に，各ステップにおけるひび割れ図を示す。
ひび割れ図に着目すると，189 ステップまでは，荷重の増加に伴って徐々にひび割 れが進展していくが，189 ステップ以降は，斜めひび割れが圧縮縁側に進展する様相 を示している。したがって， 189 ステップ以降の水平変位の発生は，斜めひび割れの進展に伴うものであると判断される。

以上のとおり，評価対象部材に対する材料非線形解析では，斜めひび割れの進展に よりせん断破壊に至ることを考慮し，189 ステップ（図中の青丸）をせん断耐力発生時の状態として設定する。

また，図5－13に，各ステップにおける変形図を示す。

図 5－11 荷重－変位曲線
（隔壁，解析ケース③ 地震動 S s－N $1 \quad(++)$ ）

図 5－12 各ステップにおけるひび割れ図
（隔版，解析ケース③ 地震動 S s－N $1(++)$ ）

図 5－13 各ステップにおける変形図
（隔壁，解析ケース③ 地震動 S s－N 1（＋＋））
（b）せん断力に対する評価結果
せん断耐力式及び材料非線形解析によるせん断破壊に対する評価結果を，表 5－13 に示す。

同表より，全部材で発生するせん断力がせん断耐力を下回ることを確認した。

表 5－13（1）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析）

注記＊ 1 ：評価位置は図5－5に示す。
$* 2:$ 照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}

表 5－13（2）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－F 1	$++$	頂版	24	701	1349	0.52
			側壁	50	683	1392	0.50
			隔壁	90	183	296	0． 62
			底版	11	447	1188	0.38
		－＋	頂版	21	760	1314	0.58
			側壁	60	1013	2346	0． 44
			隔壁	70	197	310	0.64
			底版	11	432	1188	0.37
	S s－F 2	$++$	頂版	21	719	1310	0.55
			側壁	60	1208	2439	0.50
			隔壁	70	173	270	0.65
			底版	11	457	1188	0.39
		－＋	頂版	21	725	1288	0.57
			側壁	60	1037	2287	0． 46
			隔壁	70	178	280	0.64
			底版	14	416	1188	0.36
	S s－F 3	＋＋	頂版	21	763	1304	0.59
			側壁	50	607	1395	0． 44
			隔壁	90	175	286	0． 62
			底版	14	465	1188	0． 40
		－＋	頂版	24	747	1365	0.55
			側壁	50	659	1400	0． 48
			隔壁	70	176	282	0.63
			底版	11	511	1188	0． 44

注記＊1：評価位置は図5－5に示す。
＊2：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}

表 5－13（3）せん断破壊に対する評価結果（せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N1	$++$	頂版	21	812	1322	0.62
			側壁	50	1078	2247	0． 48
			隔壁	70	257	312	0.83
			底版	11	431	1188	0． 37
		$-+$	頂版	24	755	1366	0． 56
			側壁	60	1273	2283	0.56
			隔壁	90	229	302	0.76
			底版	11	454	1188	0.39
（2）	S s－N 1	$++$	頂版	21	722	1311	0.56
			側壁	50	964	2281	0． 43
			隔壁	70	221	322	0． 69
			底版	11	417	1188	0.36
（3）	S s－N 1	$++$	頂版	21	953	1329	0． 72
			側壁	50	1482	2348	0.64
			隔壁	70	313	$522^{* 3}$	0． $60 * 3$
			底版	11	1361	3123	0． 44
（4）	S s－N 1	＋＋	頂版	21	879	1304	0.68
			側壁	50	1214	2216	0.55
			隔壁	70	287	299	0． 96
			底版	11	533	1188	0.45

注記＊1：評価位置は図5－5に示す。
$* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 $\mathrm{V} \times$ 構造解析係数 γ_{a}
＊3：材料非線形解析によるせん断耐力

5． 3 基礎地盤の支持性能に対する評価結果

5．3．1 基礎地盤（狐崎部層）
基礎地盤（狐崎部層）の支持性能に対する評価結果を表 5－14に示す。また，最大接地圧分布図を図5－14に示す。照査値は，接地圧を許容限界で除した値として時々刻々求め，全時刻において最大となる照査値を記載する。

同表より，基礎地盤（狐崎部層）に発生する接地圧が極限支持力を下回ることを確認し た。

表 5－14 基礎地盤（狐崎部層）の支持性能に対する評価結果

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		接地圧 $\mathrm{R}_{\mathrm{a}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 照査値 } \\ R_{a} / R_{u} \end{gathered}$
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	1.5	13.7	0.11
		－＋	1.4	13.7	0.11
	$\mathrm{S} s-\mathrm{D} 2$	＋＋	1.4	13． 7	0.11
		－＋	1.4	13.7	0.11
	S s－D 3	＋＋	1.4	13．7	0.11
		－＋	1.3	13.7	0.10
	S s－F 1	＋＋	1.4	13． 7	0.11
		－＋	1.3	13.7	0.10
	S s－F 2	$++$	1.5	13.7	0.11
		－＋	1.4	13.7	0.11
	Ss－F 3	＋＋	1.5	13． 7	0.11
		－＋	1.5	13.7	0.11
	S s－N 1	＋＋	1.5	13.7	0.11
		－＋	1.6	13.7	0.12
（2）	S s－N 1	$++$	1． 4	13.7	0.11
（3）	S s－N 1	＋＋	2.0	13.7	0.15
（4）	S s－N 1	＋＋	1.6	13.7	0.12

図 5－14 基礎地盤の最大接地圧分布図
（解析ケース（3），S s－N $1(++)$ ）

5．3．2 MMR（既設）

（1）接地圧に対する評価
MMR（既設）の接地圧に対する支持性能の評価結果を表5－15に示す。また，最大接地圧分布図を図 5－15 に示す。照査値は，接地圧を支圧強度で除した値として時々刻々求め，全時刻において最大となる照査値を記載する。

同表より，MMR（既設）に発生する接地圧が支圧強度を下回ることを確認した。

表 5－15 MMR（既設）の接地圧に対する支持性能に対する評価結果

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 接地圧 } \\ \mathrm{R}_{\mathrm{a}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { 支圧強度 } \\ & \mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{R}_{\mathrm{a}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}} \end{gathered}$
（1）	S s－D 1	＋＋	2.2	15.6	0.15
		－＋	2.2	15.6	0.15
	S s－D 2	＋＋	2.4	15.6	0.16
		－＋	2.3	15.6	0． 15
	S s－D 3	＋＋	2.1	15.6	0.14
		$-+$	2.1	15.6	0.14
	S s－F 1	$++$	2.0	15.6	0.13
		－＋	2.0	15.6	0． 13
	S s－F 2	$++$	2.2	15.6	0.15
		－＋	2.0	15.6	0． 13
	Ss－F 3	＋＋	2.1	15.6	0． 14
		－＋	2.1	15.6	0． 14
	S s－N 1	＋＋	2.1	15.6	0.14
		－＋	2.5	15.6	0.17
（2）	S s－N 1	＋＋	1.9	15.6	0.13
（3）	S s－N 1	＋＋	3.0	15.6	0． 20
（4）	S s－N 1	＋＋	2.0	15.6	0． 13

図 5－15 MMR（既設）の最大接地圧分布図 （解析ケース（3），S s－N $1(++)$ ）
（2）健全性評価
MMR（既設）のせん断破壊に対する局所安全係数を表5－16に，引張破壊に対する局所安全係数を表5－17に示す。
$\mathrm{f}_{\mathrm{s}}=\mathrm{R} / \mathrm{S}$
ここに， f s ：局所安全係数
R ：せん断強度または引張強度
S ：発生せん断応力または発生引張応力

表5－15及び表5－16より，せん断破壊及び引張破壊している要素はなく，MMR（既設）の安定性に影響を及ぼすことはない。

以上から，MMR（既設）の健全性を確認した。

表 5－16 MMR（既設）のせん断破壊に対する局所安全係数

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		せん断応力 $\mathrm{S}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	せん断強度 R（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値＊ R／S
（1）	S s－D 1	＋＋	0.79	3.12	3.94
		－＋	0.81	3． 12	3.85
	S s－D 2	＋＋	0.94	3.12	3.31
		－＋	0.89	3.12	3.50
	Ss－D 3	＋＋	0.76	3.12	4． 10
		－＋	0.76	3.12	4． 10
	S s－F 1	＋＋	0.75	3． 12	4． 16
		－＋	0.73	3.12	4.27
	S s－F 2	＋＋	0.83	3.12	3.75
		－＋	0． 72	3.12	4.33
	S s－F 3	＋＋	0.83	3.12	3.75
		－＋	0.78	3.12	4.00
	S s - N 1	＋＋	0.77	3． 12	4． 05
		－＋	0.96	3.12	3.25
（2）	S s - N 1	＋＋	0.66	3.12	4.72
（3）	S s - N 1	＋＋	1． 24	3.12	2.51
（4）	S s - N 1	＋＋	0． 77	3.12	4.05

注記＊：最小安全率として最小値となる数値を記載。照査値R／S >1.0 であることを確認する

表 5－17 MMR（既設）の引張破壊に対する局所安全係数

解析 ケース	地震動		$\begin{aligned} & \hline \text { 引張応力 } \\ & \mathrm{S}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{aligned}$	$\begin{gathered} \text { 引張強度 } \\ \mathrm{R}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値＊ R／S
（1）	$\mathrm{S} s$－D 1	$++$	0． 40	1． 43	3.57
		－＋	0.32	1.43	4． 46
	S s－D 2	$++$	0． 47	1． 43	3.04
		－＋	0． 42	1． 43	3． 40
	S s－D 3	＋＋	0.37	1． 43	3.86
		$-+$	0.25	1． 43	5． 72
	S s－F 1	$++$	0． 37	1． 43	3.86
		－＋	0． 28	1.43	5.10
	S s－F 2	$++$	0.55	1． 43	2． 60
		－＋	0． 41	1． 43	3． 48
	S s－F 3	$++$	0． 43	1． 43	3.32
		－＋	0.32	1． 43	4． 46
	S s－N 1	$++$	0． 47	1． 43	3.04
		－＋	0.58	1． 43	2． 46
（2）	S s－N 1	＋＋	0． 44	1.43	3． 25
（3）	S s－N 1	$++$	0.58	1． 43	2． 46
（4）	S s－N 1	＋＋	0． 46	1． 43	3.10

注記 $*: ~$ 最小安全率として最小値となる数値を記載。照査値 $\mathrm{R} / \mathrm{S}>1.0$ であることを確認する。

6．まとめ
原子炉機器冷却海水配管ダクト（水平部）については，基準地震動 S s による耐震評価とし て，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持性能に対する評価を実施した。

構造部材の健全性評価については，鉄筋コンクリート部材の層間変形角，曲げモーメント及び せん断力が要求性能に応じた許容限界を下回ることを確認した。

基礎地盤の支持性能評価については，基礎地盤に発生する応力（接地圧）が極限支持力に基づ く許容限界を下回ること，MMR に発生する応力（接地圧）が支圧強度を下回ること及び MMR の健全性を確認した。

以上から，原子炉機器冷却海水配管ダクト（水平部）は，基準地震動 S s による地震力に対し て，構造強度を有すること，及びS クラスの施設を支持する機能を損なわないことを確認した。

資料 5 原子炉機器冷却海水配管ダクト（鉛直部）の耐震安全性評価

追而

参考資料 2 については，別途示す。
参考資料 3 については，別途示す。
断面（6）の評価結果については，別途示す。
1．評価方法 資料5－1
2．評価条件 資料 5－1
2.1 適用規格 資料 5－1
2.2 構造及び補強の概要 資料 5－4
2.3 耐震評価フロー 資料 5－16
2.4 地震時荷重算出断面の選定。 資料 5－19
2.5 使用材料及び材料の物性値。 資料 5－24
2.6 地盤物性値 資料 5－24
2.7 評価構造物諸元 資料 5－29
2.8 地下水位 資料 5－32
3．地震応答解析 資料 5－34
3.1 地震応答解析手法 資料 5－34
3.2 地震応答解析モデルの設定。 資料 5－37
3．2．1 解析モデル領域 資料 5－37
3．2．2 境界条件 資料 5－39
3．2．3 構造物のモデル化 資料 5－44
3．2．4 隣接構造物のモデル化。 資料 5－45
3．2．5 地盤及び MMR のモデル化 資料 5－45
3．2．6 ジョイント要素の設定． 資料 5－45
3.3 減衰定数 資料 5－51
3.4 荷重の組合せ 資料 5－59
3．4．1 機器•配管荷重 資料 5－60
3．4．2 外水圧 資料 5－63
3．4．3 積載荷重 資料 5－63
3.5 地震応答解析の解析ケース 資料 5－64
3．5．1 耐震評価における解析ケース 資料 5－64
4．二次元構造解析 資料 5－70
4． 1 評価対象部材 資料 5－70
4．2 解析方法 資料 5－72
4.3 解析モデルの諸元 資料 5－72
4．3．1 解析モデル 資料 5－72
4．3．2 使用材料及び材料の物性値 資料 5－75
4.4 入力荷重 資料 5－75
4．4．1 常時荷重 資料 5－76
4．4．2 慣性力 資料 5－82
4．4．3 地震時土圧及び周面せん断力 資料 5－85
5．評価内容 資料 5－88
5.1 入力地震動の設定 資料 5－88
5.2 許容限界の設定 資料 5－117
5．2．1 鉄筋コンクリート部材の健全性に対する許容限界 資料 5－117
5．2．2 鋼材の健全性に対する許容限界 資料 5－142
5．2．3 基礎地盤の支持性能に対する許容限界 資料 5－144
6 評価結果 資料 5－145
6.1 地震応答解析結果 資料 5－145
6．1．1 解析ケースと照査値 資料 5－145
6．1．2 作用荷重分布図 資料 5－162
6．1．3 最大せん断ひずみ分布， 資料 5－164
6．2 二次元構造解析結果 資料 5－169
6．2．1 曲げ・軸力系の破壊に対する照査． 資料 5－169
6．2．2 せん断破壊に対する照査 資料 5－183
6.3 構造部材の健全性に対する評価結果 資料 5－189
6．3．1 曲げ・軸力系の破壊に対する評価結果 資料 5－189
6．3．2 せん断破壊に対する評価結果 資料 5－246
6.4 基礎地盤の支持性能に対する評価結果。 資料 5－295
7．まとめ 資料 5－296

参考資料
参考資料1 津波に対する止水機能を有する施設の評価について・•••••資料5－（参考）1－1
参考資料 2 静的地震力に対する評価結果••••••••••••••••資料 5－（参考）2－1
参考資料 3 側壁新設部の既設部との接合方法について・•••••••••資料5－（参考）3－1
参考資料 4 地震応答解析モデルの検証について・••••••••••• 資料 5－（参考）4－1
参考資料5 頂版及び底版への側壁モーメントの影響について・••••••資料5－（参考）5－1
参考資料 6 鋼材端部を固定境界とした場合の照査結果••••••••••資料5－（参考）6－1
\square ：本日の説明範囲

1．評価方法

原子炉機器冷却海水配管ダクト（鉛直部）（以下「海水配管ダクト（鉛直部）」という。）は，耐震重要施設及び常設重大事故等対処設備である原子炉補機冷却海水系配管，高圧炉心スプレイ補機冷却海水系配管等を側壁及び隔壁で間接支持しており，支持機能が要求される。頂版には浸水防止設備である浸水防止蓋を間接支持する支持機能及び浸水防止のための止水機能が要求され る。

海水配管ダクト（鉛直部）については，基準地震動 S s による耐震評価として，構造部材の曲 げ・軸力系の破壊，せん断破壊及び基礎地盤の支持性能に対する評価を実施する。

構造部材の健全性評価については，鉄筋コンクリート部材の応力度，ひずみ及びせん断力が要求性能に応じた許容限界を下回ることを確認する。また鋼材については，応力度が許容限界を下回ること及び座屈に対する安定性を確認する。

基礎地盤の支持性能評価については，基礎地盤に発生する応力（接地圧）が極限支持力に基づ く許容限界を下回ること，マンメイドロック（以下「MMR」という。）に発生する応力（接地圧） が支圧強度を下回ること及び MMR の健全性を確認する。

2．評価条件

2.1 適用規格

海水配管ダクト（鉛直部）の耐震評価にあたつては，コンクリート標準示方書［構造性能照査編］（土木学会 2002 年制定）（以下「コンクリート標準示方書」という。），原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調査委員会） を適用するが，鉄筋コンクリート部材の曲げ・軸力系の破壊及びせん断破壊の許容限界の一部 については，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（2005年6月土木学会 原子力土木委員会）（以下「土木学会マニュアル」という。）を，鋼材の曲げの許容限界については，道路橋示方書•同解説（I 共通編•II鋼橋編）（社団法人 日本道路協会，平成 14 年 3 月）適用する。基礎地盤の支持性能の許容限界については，道路橋示方書•同解説 （I 共通編•IV下部構造編）（社団法人 日本道路協会，平成14年3月）を適用する。
また，材料非線形解析によりせん断耐力を求める場合の材料定数については，コンクリート標準示方書［設計編］（土木学会 2017 年制定）（以下「コンクリート標準示方書 2017」とい う。）を適用する。
表 2－1 に適用する規格，基準類を示す。

表 2－1（1）適用する規格，基準類

項 目	適用する規格，基準類	備考	確認項目
使用材料及 び材料定数	－コンクリート標準示方書 ［構造性能照査編］（土木学会 2002 年制定）	－鉄筋コンクリートの材料諸元 （ γ, E, ν ）	－
	－コンクリート標準示方書［設計編］（土木学会 2017年制定）	－コンクリートの材料定数（材料非線形解析によるせん断耐力の算定）	－
荷重及び荷重の組合せ	－コンクリート標準示方書 ［構造性能照査編］（土木学会 2002 年制定）	－永久荷重，偶発荷重等の適切 な組合せを検討	－
許容限界	－原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル （2005年6月 土木学会原子力土木委員会）	－曲げ・軸力系の破壊に対する照査において，圧縮縁コンク リートひずみが 1.0%（10000 μ ）を下回ることを確認＊	－構造強度を有 すること
		－せん断破壊に対する照査は，発生せん断力がせん断耐力を下回ることを確認＊	－構造強度を有 すること －S クラスの施設を支持する機能を損なわ ないこと
	－コンクリート標準示方書 ［構造性能照査編］（土木学会 2002 年制定）	－曲げ・軸力系の破壊に対する照査において，発生応力度が短期許容応力度を下回ること を確認及びおおむね弾性範囲 として発生ひずみが限界ひず み（コンクリート圧縮 2000 μ ，主筋ひずみ 1725μ ）を下回ることを確認＊	－構造強度を有 すること －S クラスの施設を支持する機能を損なわ ないこと －止水機能を損 なわないこと
		－せん断破壊に対する照査は，発生応力度が短期許容応力度 を下回ることを確認	
	－道路橋示方書•同解説 （I 共通編•II鋼橋編）（日本道路協会 平成14年3月）	－鋼材の曲げ・軸力系の破壊 に対する照査において，発生応力度が短期許容応力度を下回ることを確認	－
	－道路橋示方書•同解説 （I 共通編•IV下部構造編）（日本道路協会平成 14 年 3 月）	－基礎地盤の支持性能に対す る照査は，基礎に発生する応力が極限支持力を下回ること を確認＊	－

注記＊：妥当な安全余裕を考慮する。

表 2－1（2）適用する規格，基準類

項 目	適用する規格，基準類	備考	確認項目
地震応答解析	－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（社団法人日本電気協会 電気技術基準調査委員会）	－有限要素法による二次元モデ ルを用いた時刻歴非線形解析	－

2.2 構造及び補強の概要

海水配管ダクト（鉛直部）の位置図を図 $2-1$ に，平面図を図 $2-2$ に，鉛直縦断図を図 $2-3$及び図 2－4に，水平断面図を図 2－5～図2－10に，概略配筋図を図2－11～図2－16に示す。

海水配管ダクト（鉛直部）は，海水ポンプ室と原子炉機器冷却海水配管ダクト（水平部）「以下「海水配管ダクト（水平部）という。」を結ぶ，鉄筋コンクリート及び鋼材から構成される地中構造物であり，幅（横断方向）34．55m，延長（鉛直方向）24．00m，高さ $4.70 \sim 5.90 \mathrm{~m}$ の 9 連 の構造である。

図 2－2 の平面図に示すとおり，海水配管ダクト（鉛直部）は，海水ポンプ室の西側側壁と一体となる5連カルバートの南北に揚水井戸及び側壁が設置された構造であり，中央の5連のう ち南側の 4 連部が海水配管ダクト（水平部）に連続しており，原子炉補機冷却海水系配管及び高圧炉心スプレイ補機冷却海水系配管等が設置されている。北側のカルバート部はアクセス用 の空間である。西側の構造境界である海水配管ダクト（水平部）との接合部には耐震ジョイン トが設置されており，東側は，海水配管ダクト（鉛直部）と比較して規模•重量が十分に大き い海水ポンプ室に懸架され一体構造となっている。

中央の 5 連カルバート部と揚水井戸の計 7 連部分が既設の構造である。鉛直部は，図 $2-3$ の鉛直縦断図に示すとおり深度方向に隔壁の配置が変化し，図2－4に示すとおり断面（2）～⑤の4 つの内空断面と頂版（断面（1）及 び底版（断面（6）を有する構造物である。

新規制基準への適合を目的とした耐震補強として，既設の 7 連構造に対し，北端及び南端の側壁の追加，鋼材の設置，後施工せん断補強工法（CC b 工法）の適用，地盤改良を施工してお り，補強工事の概要と目的を以下に示す。

北端及び南端の側壁は，既設部材が南北方向にせん断変形するのを抑えるために新たに設置 した鉄筋コンクリート壁（設計基準強度 $50.0 \mathrm{~N} / \mathrm{mm}^{2}$ ）である。補強部材は，既設部と海水ポンプ室側壁に鉄筋の定着を取り一体化しており，一体化の方法については，参考資料 3 に詳細を示 す。

断面（2），（3），（4）に設置した鋼材（SM490）及び断面（2），（5）に施工した後施工せん断補強工法（CCb工法）は共に，東西方向に作用する面直土圧への抵抗であり，鋼材は軸力により，後施工せん断補強工法はせん断耐力の向上により抵抗する。鋼材（新設）の構造を図 $2-17$ に，CCb 工法 を適用した箇所を図2－18 及び図2－19に示す。

海水配管ダクト（鉛直部）の周囲は，海水ポンプ室への土圧低減を主目的に広範囲に地盤改良されている。ただし，高圧攪拌噴射に伴う既設躯体への損傷を防止するため既設躯体の近傍 1 m については，原地盤である盛土が分布している。地盤改良範囲の平面図を図2－20に示す。 また，図2－20に断面位置を示した，改良地盤部の南北断面図を図2－21に，躯体と改良地盤 の間の盛土部の南北断面を図 $2-22$ に，海水配管ダクト（鉛直部）の南北断面を図 $2-23$ に，東西断面図を図 2－24 にそれぞれ示す。海水配管ダクト（水平部）を通る南北断面では，改良地盤は門型の形状をしており，海水配管ダクト（鉛直部）の周囲では，改良地盤は北側と南側 に分布している。また，地盤改良部の南北断面には防潮壁のフーチング及び基礎杭が設置され ている。

図2－1 原子炉機器泠却海水配管ダクト（鉛直部）の位置図

海水ポンプ室
（単位：m）
\square ：側壁（新設部， $\mathrm{f}^{\prime} \mathrm{ck}^{\mathrm{c}}=50 \mathrm{~N} / \mathrm{mm}^{2}$ ）

図 2－2 原子炉機器冷却海水配管ダクト（鉛直部）平面図

＊注記：図中の \Vdash は鋼材を示し，\square は海水配管ダクト（水平部）との接続部を示す。

図 2－3 原子炉機器冷却海水配管ダクト（鉛直部）南北縦断図（ $\mathrm{A}-\mathrm{A}$ 断面）

図 2－4 原子炉機器冷却海水配管ダクト（鉛直部）東西縦断図（B－B 断面）

\square ：側壁（新設部，f ${ }^{\prime} \mathrm{ck}=50 \mathrm{~N} / \mathrm{mm}^{2}$ ）

図 2－5 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（1）

\square ：側壁（新設部，f ${ }^{\prime}{ }_{\mathrm{c} k}=50 \mathrm{~N} / \mathrm{mm}^{2}$ ）

図 2－6 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（2））

\square ：側壁（新設部， $\mathrm{f}^{\prime} \mathrm{ck}^{\mathrm{c}}=50 \mathrm{~N} / \mathrm{mm}^{2}$ ）

図 2－7 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（3）

\square ：側壁（新設部，f ${ }^{\prime}{ }_{\mathrm{c} k}=50 \mathrm{~N} / \mathrm{mm}^{2}$ ）

図 2－8 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（4））

図 2－9 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（5））

図 2－10 原子炉機器冷却海水配管ダクト（鉛直部）水平断面図（断面（6）

図 2－11 原子炉機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（1）

図 2－12 原子炉機器泠却海水配管ダクト（鋁直部）概略配筋図（断面（2）

図 2－13 原子炉機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（3）

図 2－14 原子炉機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（4）

図 2－15 原子炉機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（5））

図 2－16 原子炬機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（6）

断面図

接着系

A－A断面図

図 2－17 鋼材（新設）の構造

－CCb による耐震補強箇所

図 2－18 CCbによる耐震補強箇所（断面（2））

：CCbによる耐震補強箇所

図 2－19 CCb による耐震補強箇所（断面（5））

図 2－20 地盤改良範囲（平面図）

注記＊：防潮壁を投影して表示
図 2－21 地盤改良範囲（地盤改良部縦断図，（1）－（1）断面）

図 2－22 地盤改良範囲（盛土部縦断図，（2）－（2）断面）

図 2－23 地盤改良範囲（鉛直部縦断図，（3）－3）断面）

図 2－24 地盤改良範囲（鉛直部横断図，（4）－（4）断面）

2.3 耐震評価フロー

海水配管ダクト（鉛直部）の耐震評価フローを図 $2-25$ に示す。
海水配管ダクト（鋁直部）の東側は海水ポンプ室の側壁（厚さ 2 m ）に固定されており，質量は海水ポンプ室の約 8% と小さいことから，地震時の挙動は，海水ポンプ室に支配され，体となって挙動する。
海水配管ダクト（鉛直部）は，図 2－3 の南北縦断図で示したとおり，鉛直方向の荷重には多数の縦壁が面内変形で抵抗することから，鉛直方向が強軸となる。一方，水平方向は，図 2－6 ～図 2－9 の平面図のとおり，縦壁が面外変形で抵抗するため，相対的に剛性が小さく，弱軸と なる。従って，耐震評価は，水平輪切り断面に対して実施する。
図 2－5～図2－10に示す水平輪切り断面を南北方向加震した場合，海水配管ダクト（鉛直部）に作用する地震荷重は，図 $2-26$ 及び表 $2-2$ に示すとおり，慣性力（I＿NS，I＿UD）に加 え，東西方向の側壁に対し，面直力としての土圧（N2＿NS）及び鉛直方向の周面摩擦力
（S2＿NS）が作用する。また，南北方向の側壁に対し，周囲の地盤から水平方向の周面摩擦力
（S1＿NS）が作用する。
東西方向加震に対しては，図 $2-27$ 及び表 $2-2$ に示すとおり，慣性力（I＿EW，I＿UD）に加 え，南北方向の側壁に対し，面直力としての土圧（N1＿EW）及び鉛直方向の周面摩擦力
（S1＿EW）が作用する。また，東西方向の側壁に対し，東西方向の周面摩擦力（S2＿EW）が作用 する。

海水配管ダクト（鉛直部）の構造及び地震時に作用する荷重を考慮し，耐震評価は，図 $2-$ 5～図2－10に示す水平断面 6 断面に対して実施することする。作用させる地震時荷重は，基準地震動による東西方向加震と南北方向加震の地震時荷重を，保守的な評価となるよう両方向 へ同時に作用させる。また，頂版（断面（1）及び底版（断面（6）については，鋁直方向の慣性力も作用させる。
地震応答解析により抽出する応答値は，二次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。

なお，基礎地盤の支持性能については，海水配管ダクト（鉛直部）は海水ポンプ室に懸架さ れ一体構造になっていることから，添付資料「VI－2－2－8 海水ポンプ室の耐震性についての計算書」により確認する。

注記＊：添付書類「VI－2－2－8 海水ポンプ室の耐震性についての計算書」にて，基礎地盤の支持性能を確認する。

図 2－25 原子炉機器冷却海水配管ダクト（鉛直部）の耐震評価フロー

図 2－26 南北方向加震時に作用する地震時荷重

図 2－27 東西方向加震時に作用する地震時荷重

表 2－2 地震時荷重の説明

加震方向	記 号	荷重の説明	動解断面
南北	S1＿NS	南北壁に作用する水平周面摩擦力	C－C 断面
	N2＿NS	東西壁に作用する面直土圧	A－A 断面
	S2＿NS	東西壁に作用する鉛直周面摩擦力	A－A 断面
	I＿NS	南北方向慣性力	A－A 断面
	I＿UD	鉛直方向慣性力	A－A 断面
	N1＿EW	南北壁に作用する面直土圧	B－B 断面
	S1＿EW	南北壁に作用する鉛直周面摩擦力	B－B 断面
	S2＿EW	東西壁に作用する水平周面摩擦力	S1＿NS と同じ
	I＿EW	東西方向慣性力	B－B 荷重とする
	I＿UD	鉛直方向慣性力	
	I－B 断面		

2.4 地震時荷重算出断面の選定

地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，「資料 1 屋外重要土木構造物の耐震安全性評価について」の「4．6 原子炉機器冷却海水配管ダクト」に示すとおり，図 2 -28 ～図2－21 に示す構造物のほぼ中心を通る南北方向（A－A 断面）及び東西方向（B－B 断面） に加え，南北壁に作用する水平周面摩擦力を算出する南北方向（C－C 断面）の 3 断面（断面位置は図 2－3 参照）とする。なお，東西方向（B－B 断面）の地震時荷重は添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」の応答とする。
2.3 耐震評価フローで記載した南北方向加震時及び東西方向加震時に作用する地震時荷重の うち，水平周面摩擦力を除く縦断面の地震応答解析により評価可能な地震荷重と算出断面の関係を図2－28に示す。

図 2－28 原子炉機器泠却海水配管ダクト（鉛直部）地震時荷重算出用地質断面図（A－A 断面：南北）

図 2－29 原子炉機器冷却海水配管ダクト（鉛直部）地震時荷重算出用地質断面図（B－B 断面：東西）

図 2－30 原子炉機器冷却海水配管ダクト（鉛直部）地震時荷重算出用地質断面図（ $\mathrm{C}-\mathrm{C}$ 断面：南北）

南北壁に作用する水平周面摩擦力（S1＿NS）は，以下により算定する。なお，東西壁に作用す る水平周面摩擦力（S2＿EW）は，作用面積が小さいため南北壁に作用する周面摩擦力を用いるこ ととした。

周面摩擦力は，図 2－32に示した平面図中の C－C 断面位置において，南北加振時に海水配管 ダクト（鉛直部）とそれに接する盛土の位相差により生じる摩擦力である。

図 3－32 海水ポンプ室～原子炉建屋間の模式平面図

水平周面摩擦力の算定手順を図 $2-33$ に示す。
南北加振に対して盛土は，改良地盤及び海水ポンプ室に変形を拘束されるため大きな変形は生じないと考えられるものの，保守的な評価として，盛土層が南北方向に最大水平変位を示し た場合の摩擦力として評価する。盛土層の最大水平変位算出断面は，図2－32のC－C 断面とす る。

海水配管ダクト（鉛直部）と原子炉建屋または改良地盤の間の水平面において，盛土の最大変位は盛土層の中央部で発生するものとし，盛土内の地盤変位分布を，応答変位法で用いられ る算定式（共同溝指針）で評価し，海水配管ダクト（鉛直部）との接合面（変位ゼロ）におけ るせん断ひずみ γ を算定する。地盤変位分布の評価式は，固定端と最大変位間の地盤の 1 次モ ードの変位分布を評価する式である。
盛土層の層厚は，地盤の浅部（パターン（1）では，海水配管ダクト（鉛直部）と原子炉建屋 の離隔であり，地盤の深部（パターン（2）では，海水配管ダクト（鉛直部）と改良地盤の離隔 とする。

周面摩擦力は，表 2－6に示す盛土の動せん断弾性係数（G／G0－γ 関係）に基づき，せん断ひ ずみ γ に対応するせん断剛性を算定し，せん断ひずみとせん断剛性の積により算定される。

図 2－33 水平周面摩擦力の算定手順

2.5 使用材料及び材料の物性値

構造物の使用材料を表2－3に，材料の物性値を表2－4に示す。

表 2－3 使用材料

材料		仕様	
コンクリート	側壁，隔壁，頂版	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$	
	側壁（新設部）	設計基準強度 $50.0 \mathrm{~N} / \mathrm{mm}^{2}$	
	SD345		
鉄筋	SM490		

表2－4 材料の物性値

材料	項目			材料諸元	備考
鉄筋コンクリート	単位体積重量（kN／m ${ }^{3}$ ）			24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	設計	$20.5 \mathrm{~N} / \mathrm{mm}^{2}$	2． 33×10^{4}	解析ケース＊3 （1），（2），（3）
		強度	$50.0 \mathrm{~N} / \mathrm{mm}^{2}$	3． 30×10^{4}	
		実強度	37． $2 \mathrm{~N} / \mathrm{mm}^{2 * 1}$	3.02×10^{4}	解析ケース＊3 （4）
			70． $0 \mathrm{~N} / \mathrm{mm}^{2 * 2}$	3.70×10^{4}	
	ポアソン比			0.2	
鋼材	単位体積重量（kN／m²）			77.0	
	ヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）			2． 00×10^{5}	
	ポアソン比			0.3	

注記＊1：既設構造物のコア採取による圧縮強度試験の結果を使用する。
＊2：「資料1 屋外重要土木構造物の耐震安全性評価について」の「参考資料5新設 する構造物のコンクリートの圧縮強度の設定」に基づき設定した圧縮強度とする。
＊ 3 ：解析ケースについては，「3．5 地震応答解析の解析ケース」に示す。

2.6 地盤物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。地盤の物性値を表2－4～表2－6に示す。

岩種•岩級		物理特性	強度特性			変形特性					
		単位体積重量$\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	静的•動的特性			静的特性		動的特性			
		せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left(^{\circ}\right)$	残留強度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	静弾性係数 $\mathrm{E}_{\mathrm{S}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \hline \text { 静ポアソン比 } \\ v_{\mathrm{s}} \end{gathered}$	動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 動ポアソン比 } \\ v_{\mathrm{d}} \\ \hline \end{gathered}$	減衰定数 h		
（ 級 $^{\text {c }}$	砂岩		26.4	1． 72	43.0	$1.30 \sigma^{0.73}$	1，770	0.25	表 $2-5$（2）参照		0.03
$\mathrm{CH}^{\text {級 }}$		26.2	1． 72	43.0	$1.30 \sigma^{0.73}$	1，770	0.24	0.03			
C_{M} 級		25.2	0． 49	47.0	$1.16 \sigma^{0.62}$	980	0.26	0． 03			
C_{L} 級		24.1	0． 46	44.0	$0.73 \sigma^{0.76}$	400	0.31	0.03			
D 級		20． 2	0． 10	24.0	$0.41 \sigma^{0.49}$	78	0． 38	$\begin{aligned} & \mathrm{G}_{0}=255.4 \sigma^{0.26} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /\left(1+119 \gamma^{0.63}\right) \end{aligned}$		$\begin{aligned} & \mathrm{h}= \\ & 0.085 \gamma / \\ & (0.00026+\gamma) \\ & +0.028 \end{aligned}$	

表2－5（2）地盤の解析用物性値（狐崎部層）

岩種•岩級		速度層	動的変形特性		
		動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	動ポアソン比 ν d		
$\begin{aligned} & \hline \mathrm{B} \text { 級 } \\ & \text { 及び } \\ & \mathrm{C}_{\mathrm{H}} \text { 級 } \end{aligned}$	砂岩		第 2 速度層	1.5×10^{3}	0． 44
		第3速度層	5.9×10^{3}	0． 40	
		第4速度層	13.2×10^{3}	0.36	
		第5速度層	16.5×10^{3}	0.35	
C_{M} 級		第 1 速度層	0.2×10^{3}	0． 48	
		第 2 速度層	1.5×10^{3}	0.44	
		第3速度層	5.7×10^{3}	0． 40	
		第4速度層	12.7×10^{3}	0． 36	
		第 5 速度層	15.8×10^{3}	0． 35	
C_{L} 級		第 1 速度層	0.2×10^{3}	0． 48	
		第2速度層	1． 4×10^{3}	0． 44	
		第3速度層	5.5×10^{3}	0． 40	
D 級		第 1 速度層	表 $2-5$（1）参照	0． 48	
		第2速度層		0． 44	

表 2－6 地盤の解析用物性値（盛土他）

岩種•岩級	物理特性 単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	強度特性				変形特性				
		静的－動的特性				静的特性		動的特性		
		せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left(^{\circ}\right)$	$\begin{gathered} \hline \text { 引張強度 } \\ \sigma_{\mathrm{t}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 残留強度 } \\ & \tau\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ & \hline \end{aligned}$	静弾性係数 $\mathrm{E}_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 静ポアソン比 } \\ v_{\mathrm{s}} \\ \hline \end{gathered}$	動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 動ポアソン比 } \\ v_{\mathrm{d}} \\ \hline \end{gathered}$	減衰定数 h
盛土	20.6	0． 06	30.0	－	$0.06+\sigma \tan 30.0^{\circ}$	$198 \sigma^{0.60}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=382 \sigma^{0.71} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00036)^{* 1} \end{aligned}$	0． 48	$\mathrm{h}=0.183 \gamma /(\gamma+0.000261)$
旧表土	19.0	0． 08	26.2	－	$0.08+\sigma \tan 26.2^{\circ}$	$302 \sigma^{0.80}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=211 \sigma^{0.42} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00087) \end{aligned}$	0． 46	$\begin{aligned} & \gamma<3 \times 10^{-4} \\ & \mathrm{~h}=0.125+0.020 \log \gamma \\ & 3 \times 10^{-4} \leqq \gamma<2 \times 10^{-2} \\ & \mathrm{~h}=0.374+0.091 \log \gamma \\ & 2 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
$\begin{gathered} \text { 断層 } \\ \text { 及びシーム*2 } \end{gathered}$	18.6	0． 067	22.2	－	$0.067+\sigma \tan 22.2^{\circ}$	圧縮方向 $124.5 \sigma^{0.90}$ せん断方向 $44.43 \sigma^{0.90}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=192.3 \sigma^{0.74} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.0012)^{* 1} \end{aligned}$	0． 46	$\begin{aligned} & \gamma<1 \times 10^{-4} \\ & \mathrm{~h}=0.024 \\ & 1 \times 10^{-4} \leqq \gamma<1.6 \times 10^{-2} \\ & \mathrm{~h}=0.024+0.089(\log \gamma+4) \\ & 1.6 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
セメント改良土	21.6	0． 65	44.3	0． 46	$0.21+\sigma \tan 40.9^{\circ}$	690	0． 26	$\begin{aligned} & \mathrm{G}_{0}=1670 \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00085) \end{aligned}$	0． 36	$\begin{aligned} & \gamma<3.8 \times 10^{-5} \\ & \mathrm{~h}=0.014 \\ & 3.8 \times 10^{-5} \leqq \gamma \\ & \mathrm{~h}=0.151+0.0311 \log \gamma \end{aligned}$
改良地盤	20.6	1． 39	22.1	0.65	$0.51+\sigma \tan 34.6^{\circ}$	4， 480	0． 19	$\begin{aligned} & \mathrm{G}_{0}=1940 \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00136) \end{aligned}$	0． 35	$\begin{aligned} & \gamma<1.2 \times 10^{-4} \\ & \mathrm{~h}=0.031 \\ & 1.2 \times 10^{-4} \leqq \gamma<5.2 \times 10^{-3} \\ & \mathrm{~h}=0.227+0.0501 \mathrm{og} \gamma \\ & 5.2 \times 10^{-3} \leqq \gamma \\ & \mathrm{~h}=0.113 \end{aligned}$

[^1]表 2－7 地盤の解析用物性値（MMR）

	物理特性	強度特性				変形特性			
	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left({ }^{\circ}\right)$	$\begin{gathered} \text { 引張強度 } \\ \sigma_{\mathrm{t}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	残留強度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{aligned} & \text { ヤング係数 } \\ & \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{aligned}$	せん断㑉性 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比	減衰定数 （\％）
$\begin{gathered} \text { MIRR (既設) } \\ \left(\mathrm{f}, \mathrm{ck}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	22.6	3.12	－＊	1． 43	－＊	20590	8579	0.2	3

＊：内部摩擦角及び残留強度は保守的に考慮しない。

2.7 評価構造物諸元

原子炉機器冷却海水配管ダクト（鉛直部）の諸元を表2－8及び表2－9に，評価部位を図2 － 34 に示す。

表 2－8 評価部位とその仕様（鉄筋コンクリート部材）

評価部位		仕様		材料		要求機能
		部材幅 （mm）	部材高 （mm）	$\begin{aligned} & \text { コンクリート } \\ & \mathrm{f}^{\prime} \text { ck }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{aligned}$	鉄筋	
頂版		16350	700	20.5	SD345	止水機能支持機能
側壁	南北	$\begin{gathered} 2100 \sim \\ 3350 \end{gathered}$	$\begin{gathered} 700 \sim \\ 1500 \end{gathered}$	20.5	SD345	支持機能
	南北 （新設部）	5671	1138～ 1423	50.0	SD345	支持機能
	東西 （新設部）	$\begin{gathered} 2532 \sim \\ 3734 \end{gathered}$	4000	50.0	SD345	支持機能
隔壁	南北	$\begin{gathered} 1400 \sim \\ 3350 \end{gathered}$	$\begin{gathered} 300 \sim \\ 800 \end{gathered}$	20.5	SD345	支持機能
	東西	$\begin{gathered} 1400 \sim \\ 4700 \end{gathered}$	$\begin{gathered} 500 \sim \\ 1500 \end{gathered}$	20.5	SD345	支持機能

表 2－9 評価部位とその仕様（鋼材）

評価部位		仕様	材料	要求機能
		部材寸法（mm）		
鋼材	断面（2）	BH－ $300 \times 300 \times 22 \times 25$	SM490	－
	断面（3），断面（4）	BH－ $250 \times 250 \times 22 \times 25$	SM490	－

断面（3）

断面（4）

断面（5）

図2－34（1）評価部位
資料 5－30

断面（6）

図2－34（2）評価部位

2.8 地下水位

設計用地下水位は，添付資料「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定す る。設計用地下水位の一覧を表2－10に，設計用地下水位を図2－35～図2－37に示す。

表 2－10 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
原子炉機冷却海水配管ダクト （鉛直部）	A－A断面	0．P．$-3.50 \mathrm{~m} \sim 0$ ．P．-10.50 m
	B－B断面	0．P．$-8.50 \mathrm{~m} \sim 0 . \mathrm{P}+2.43 \mathrm{~m} *$
	C－C断面	0．P．$-3.50 \mathrm{~m} \sim 0$ ．P．-10.50 m

注記＊：朔望平均満潮位

図 2－35 設計用地下水位（A－A 断面）

図 2－36 設計用地下水位（B－B 断面）

図2－37 設計用地下水位（ $\mathrm{C}-\mathrm{C}$ 断面）

3．地震応答解析

3.1 地震応答解析手法

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うこととし，解析手法については，図 $3-1$ に示す解析手法の選定フローに基づき設定する。解析手法は，「資料1 屋外重要土木構造物の耐震安全性評価について」の「4．6 原子炉機器冷却海水配管ダクト」に示すとおり，全応力解析とする。

構造部材のらち南北方向断面については，原子炉機器冷却海水配管ダクト（鉛直部）が規模及び重量共に大きい海水ポンプ室に懸架されており，海水ポンプ室と一体となって挙動するこ とから海水ポンプ室の重量及び剛性となる平面応力要素を用いることとし，東西方向断面につ いては添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」に示す補機ポンプエリアの断面 のモデルとする。

地盤については，平面ひずみ要素でモデル化することとし，岩盤（D級岩盤以外）は線形で モデル化する。盛土，旧表土，改良地盤及びD級岩盤については，地盤のひずみ依存性を適切 に考慮できるようマルチスプリングモデルを用いることとし，ばね特性は双曲線モデル（修正 GHEモデル又はH－Dモデル）を用いて非線形性を考慮する。

地震応答解析については，解析コード「Soil Plus Ver． 2015 Build3」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

地震応答解析手法の選定フローを図 $3-2$ に示す。

図 3－1 解析手法の選定フロー

図 3－2 地震応答解析手法の選定フロー

3．2 地震応答解析モデルの設定

3．2．1 解析モデル領域
地震応答解析モデルは，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう，十分広い領域とする。具体的には，原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調查委員会）を参考に，図 3－3に示すとおりモデル幅を構造物基礎幅の 5 倍以上，モデル高さを構造物基礎幅の 2 倍以上と する。

なお，解析モデルの境界条件は，側面及び底面ともに粘性境界とする。
地盤の要素分割については，波動をなめらかに表現するために，対象とする波長の5分の 1 程度を考慮し，要素高さを1m程度まで細分割して設定する。

構造物の要素分割については，土木学会マニュアルに従い，要素長さを部材の断面厚さ又は有効高さの 2.0 倍以下とし， 1.0 倍程度まで細分して設定する。

図 3－3 モデル化範囲の考え方

二次元地震応答解析モデルは，検討対象構造物とその周辺地盤をモデル化した不整形地盤に加え，この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は，不整形地盤の左右端と同じ地質構成を有する一次元地盤モデルである。二次元全応力解析における自由地盤の初期応力解析から不整形地盤の地震応答解析までのフ ローを図3－4に示す。

図 3－4 自由地盤の常時応力解析から不整形地盤（二次元有限要素法）の地震応答解析までのフロー

3．2．2 境界条件

（1）固有値解析時
固有値解析を実施する際の境界条件は，境界が構造物を含めた周辺地盤の振動特性に影響を与えないよう設定する。ここで，底面境界は地盤のせん断方向の卓越変形モードを把握するために固定とし，側面は実地盤が側方に連続していることを模擬するため水平ロー ラーとする。境界条件の概念図を図3－5に示す。

構造物基礎幅 B の 2倍以上

固定
図 3－5 固有値解析における境界条件の概念図
（2）常時応力解析時
常時応力解析は，地盤や構造物の自重等の静的な荷重を載荷することによる常時応力を算定するために行う。そこで，常時応力解析時の境界条件は底面固定とし，側方は自重等 による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を図 3－6に示す。

図 3－6 常時応力解析における境界条件の概念図
（3）地震応答解析時
地震応答解析時の境界条件については，有限要素解析における半無限地盤を模擬するた め，粘性境界を設ける。底面の粘性境界については，地震動の下降波がモデル底面境界か ら半無限地盤へ通過していく状態を模擬するため，ダッシュポットを設定する。側方の粘性境界については，自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側方を通過 していく状態を模擬するため，自由地盤の側方にダッシュポットを設定する。地震時荷重算出用地質断面図及び地震応答解析モデル図を図 3－7～図3－9に示す。なお，北側に設置される階段状の改良地盤は，耐震評価において保守的な評価となるよう盛土としてモデ ル化する。周面摩擦力を算出する C－C 断面（図 3－9）の改良地盤は，図 2－20に示すと おり，海水配管ダクト（鉛直部）に作用する全体の荷重を評価するため，保守的な盛土の変位を算出するよう，躯体脇の盛土を含む幅を解析モデル上，盛土としている。

（a）地震時荷重算出用地質断面図

側方粘性境界

（b）地震応答解析モデル図（A－A 断面）
図 3－7 地震時荷重算出用地質断面図及び地震応答解析モデル図（ $\mathrm{A}-\mathrm{A}$ 断面）

（a）地震時荷重算出用地質断面図

（b）地震応答解析モデル図（B－B 断面）
図 3－8 地震時荷重算出用地質断面図及び地震応答解析モデル図（B－B 断面）

図 3－9 地震時荷重算出用地質断面図及び地震応答解析モデル図（C－C 断面）

3．2．3 構造物のモデル化

地震応答解析における構造物のモデル化は，原子炉機器冷却海水配管ダクト（鉛直部） が規模及び重量共に大きい海水ポンプ室に懸架されており，海水ポンプ室と一体となって挙動することから，海水ポンプ室の重量及び剛性を有する平面応力要素でモデル化する。

原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析モデルにおける構造物部分の拡大図を図 3－10に示す。 A－A 断面の海水配管ダクト（鉛直部）のモデル化の詳細及び検証内容については，参考資料 4 に示す。

図 3－10 原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析モデル （構造物部分拡大，A－A 断面）

3．2．4 隣接構造物のモデル化

原子炉機器冷却海水配管ダクト（鉛直部）は，規模•重量が十分に大きい海水ポンプ室 に懸架され一体構造となっていることから，「3．1 地震応答解析手法」に示すとおり，東西方向断面については，添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」に示す補機ポンプエリアの断面のモデルとする。

上記の断面において，原子炉建屋及び防潮堤が隣接構造物となり，改良地盤を介して隣接構造物の地震応答が伝達することが考えられるため，原子炉建屋及び防潮堤をモデル化 する。なお，B－B 断面の原子炉建屋と海水ポンプ室間の改良地盤の下部は，海水配管ダク ト（水平部）があるが，奥行き 77 m の改良地盤に対して 17.95 m と短いため，改良地盤と してモデル化している。海水配管ダクト（水平部）を無視した改良地盤のモデル化による土圧の検証について，参考資料 4 に示す。

3．2．5 地盤及び MMR のモデル化
D級を除く岩盤及びMMRは線形の平面ひずみ要素でモデル化する。また，盛土，旧表土，改良地盤及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。

3．2．6 ジョイント要素の設定

地盤と構造物の接合面にジョイント要素を設けることにより，地震時の地盤と構造物の接合面における剥離及びすべりを考慮する。

ジョイント要素は，地盤と構造物の接合面で法線方向及びせん断方向に対して設定す る。法線方向については，常時状態以上の引張荷重が生じた場合，剛性及び応力をゼロと し，剥離を考慮する。せん断方向については，地盤と構造物の接合面におけるせん断抵抗力以上のせん断荷重が生じた場合，せん断剛性をゼロとし，すべりを考慮する。

せん断強度 $\tau \mathrm{f}$ は次式の Mohr－Coulomb 式により規定される。粘着力 c 及び内部摩擦角 ϕ は周辺地盤の c，ϕ とし，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基 づき表 3－1 のとおりとする。また，要素間の粘着力 c 及び内部摩擦角 ϕ は，表 3－2 のと おり設定する。

$$
\tau_{\mathrm{f}}=\mathrm{c}+\sigma^{\prime} \tan \phi
$$

乙こで，	σ,	
	τ_{f}	面直圧
C	せん断強度	
	粘着力	
		内部摩擦角

表3－1 周辺地盤との境界に用いる強度特性（狐崎部層）

地盤	粘着力 $\mathrm{c}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left({ }^{\circ}\right)$
盛土 ${ }^{* 1}$	0.10	33.9
盛土 ${ }^{* 2}$	0.06	30.0
CM_{M} 級	0.49	47.0
MMR	3.10	40.0

注記 $* 1$ ：地下水位以浅
$* 2$ ：地下水位以深

表 3－2 要素間の粘着力と内部摩擦角

条件	粘着力 c （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	内部摩擦角 ϕ （ ${ }^{\circ}$ ）
盛土•旧表土－改良地盤	盛土•旧表土の c	盛土•旧表土の ϕ
盛土•旧表土——MR	盛土•旧表土の c	盛土•旧表土の ϕ
盛土•旧表土一構造物	盛土•旧表土 c	盛土•旧表土の ϕ
改良地盤－岩盤（D］級，C C 級，C C 級）	岩盤の c	岩盤の ϕ
改良地盤一岩盤（ $C_{\text {H }}$ 級）	改良地盤のc	改良地盤の ϕ
改良地盤一セメント改良土	セメント改良土の c	セメント改良土の ϕ
岩盤一構造物	岩盤の c	岩盤の ϕ
岩盤一MMR	岩盤の c	岩盤の ϕ
構造物－MMR	MIR の c	MIR の ϕ
背面補強工一盛土•旧表土	盛土•旧表土 c	盛土•旧表土 ϕ
背面補強工ーセメント改良土	セメント改良土の c	セメント改良土の ϕ
置換コンクリート－盛土•旧表土	盛土•旧表土の c	盛土•旧表土の ϕ
置換コンクリート－岩盤	岩盤のc	岩盤の ϕ
置換コンクリート—改良地盤	改良地盤の c	改良地盤の ϕ

また，ジョイント要素のばね定数は，数値解析上，不安定な挙動を起こさない程度に十分な値とし，松本らの方法（松本ら：基礎構造物における地盤•構造物境界面の実用的な剛性評価法，応用力学論文集 Vol． 12 pp1061－1070，2009）に従い，表3－3のとおり設定 する。

ジョイント要素の力学特性を図 3－11に，ジョイント要素の配置を図 3－12～図3－14 に示す。

表 $3-3$ ジョイント要素のばね定数

地盤	圧縮剛性 k_{n} $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断剛性 k_{s} $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
盛土	1.0×10^{6}	1.0×10^{6}
岩盤	1.0×10^{7}	1.0×10^{7}

図 3－11 ジョイント要素の力学特性

図 3－12 ジョイント要素の配置（A－A 断面：南北）

図 3－13 ジョイント要素の配置（B－B 断面：東西）

図 3－14 ジョイント要素の配置（C－C 断面：南北）

3.3 減衰定数

減衰定数は，「資料 1 屋外重要土木構造物の耐震安全性評価について」の「9．地震応答解析における減衰定数」に基づき，粘性減衰で考慮する。

粘性減衰は，固有値解析にて求められる解析モデル全体の固有周期と各材料の減衰比に基づ き，質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。Rayleigh 減衰の設定フローを図3－15に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス，［m］：質量マトリックス，［k］：剛性マトリックス α, β ：係数

固有値解析		）
盛土•旧表土の減衰定数	： 2.0%	
－D］級岩盤の減衰定数	： 2.8%	
－D級以外の岩盤の減衰定数	： 3.0%	
－MIR の減衰定数	：3．0\％	
－セメント改良土の減衰定数	： 1.4%	
－改良地盤の減衰定数	： 3.0%	
－構造物の減衰定数	：5．0\％	，

- 固有振動数 f_{i}
- 固有振動数における減衰定数 h_{i}

Rayleigh 減衰における係数 α, β
$\alpha=\frac{2 \omega_{1} \omega_{2}\left(\mathrm{~h}_{1} \omega_{2}-\mathrm{h}_{2} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}, \quad \beta=\frac{2\left(\mathrm{~h}_{2} \omega_{2}-\mathrm{h}_{1} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}$
$\omega_{1}=2 \pi \mathrm{f}_{1}, \omega_{2}=3 \omega_{1}, \mathrm{~h}_{1}=\mathrm{h}_{2}=0.02$

Rayleigh 減衰 $\quad[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス

図 3－15 Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定にあたつては，低次のモードの変形が支配的な地中埋設構造物に対して，その特定の振動モードの影響が大きいことを考慮して， 1 次及び 2 次 モードの固有振動数において，過大な減衰とならないように定めるている。

1 次固有振動数（ f_{1} ）は，地震応答解析の解析モデルの固有値解析結果から算定する。2次固有振動数（ f_{2} ）は，図 3－13に示すとおり，固有値解析から算定した 1 次固有振動数 （ f_{1} ）の 3 倍とする。

固有値解析結果の一覧を表3－4～表3－5に，固有値解析におけるモード図を図3－16～図 $3-17$ に，係数 $\alpha, ~ \beta$ を表3－6に，固有値解析結果に基づき設定した Rayleigh 減衰を図 3－ 18～図3－19に示す。

表 3－4 固有値解析結果（A－A 断面：南北）

固有振動数 （Hz）	有効質量比（\％）		刺激係数		備考	
	T x	T y	$\beta \mathrm{x}$	$\beta \mathrm{y}$		
1	2.873	10	0	71.06	-4.33	1 次として採用
2	3.084	4	0	-46.50	-8.37	
3	4.532	6	0	-54.61	-6.82	-
4	5.043	14	0	-83.84	12.79	-
5	5.499	24	0	110.97	6.51	-
6	5.813	6	0	55.84	4.37	-
7	6.260	1	0	-21.43	10.82	-
8	6.292	2	1	-27.64	23.36	-
9	6.337	0	0	-11.63	-7.16	-
10	6.462	3	0	-37.70	-13.38	-

表 3－5 固有値解析結果（B－B 断面：東西）

	固有振動数 (Hz)	有効質量比（\％）		刺激係数		備考
		T y	$\beta \mathrm{x}$	$\beta \mathrm{y}$		
1	2.928	7	0	60.36	-4.82	1 次として採用
2	3.934	15	0	-92.29	-7.33	-
3	4.182	6	0	-58.70	-2.76	-
4	4.721	2	0	-33.46	4.15	-
5	5.124	4	0	49.00	-0.02	-
6	5.841	2	0	-34.64	0.92	-
7	5.976	0	0	-5.88	0.68	-
8	6.401	0	0	-14.65	4.03	-
9	6.578	6	0	56.25	0.69	-
10	6.765	1	1	17.12	-16.52	-

図 3－16（1）固有値解析結果（モード図）（A－A 断面：南北）（1／2）

$7 \text { 次モード } \mathrm{f}_{7}=6.260 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}$ ：－ 21.43 ）	$8 \text { 次モード } \quad \mathrm{f}_{8}=6.292 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-27.64$ ）
$9 \text { 次モード } \quad \mathrm{f}_{9}=6.337 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-11.63$ ）	$10 \text { 次モード } \quad \mathrm{f}_{10}=6.462 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-37.70$ ）

図 3－16（2）固有値解析結果（モード図）（A－A 断面：南北）（2／2）

1 次モード $\mathrm{f}_{1}=2.928 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 60.36$ ）	$2 \text { 次モード } \quad \mathrm{ff}_{2}=3.934 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}$ ：－92．29）
3 次モード $\mathrm{f}_{3}=4.182 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-58.70$ ）	4 次モード $\mathrm{f}_{4}=4.721 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-33.46$ ）
5 次モード $\mathrm{f}_{5}=5.124 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 49.00$ ）	6 次モード $\mathrm{f}_{6}=5.841 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}$ ：-34.64 ）

図 3－17（1）固有値解析結果（モード図）（B－B 断面：東西）（1／2）

7 次モード $\quad \mathrm{f}_{7}=5.976 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-5.88$ ）	8 次モード $\mathrm{f}_{8}=6.401 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}:-14.65$ ）
9 次モード $\mathrm{f}_{9}=6.578 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 56.25$ ）	$10 \text { 次モード } \mathrm{f}_{10}=6.765 \mathrm{~Hz}$ （刺激係数 $\beta \mathrm{x}: 17.12$ ）

図 3－17（2）固有値解析結果（モード図）（B－B 断面：東西）（2／2）

表 3－6 Rayleigh 減衰における係数 $\alpha, \quad \beta$ の設定結果

地震時荷重算出断面	α	β
A－A 断面（南北）	5.416×10^{-1}	5.540×10^{-4}
B－B 断面（東西）	5.519×10^{-1}	5.440×10^{-4}

図 3－18 設定した Rayleigh 減衰（A－A 断面：南北）

図 3－19 設定した Rayleigh 減衰（B－B 断面：東西）

3． 4 荷重の組合せ

耐震評価にて考慮する荷重は，通常運転時の荷重（永久荷重）及び地震荷重を抽出し，それ ぞれを組み合せて設定する。地震荷重には，地震時土圧及び機器•配管系からの反力による荷重が含まれるものとする。

地震時に原子炉機器冷却海水配管ダクト（鉛直部）に作用する機器•配管系からの反力につ いては，機器•配管系を解析モデルに付加質量として与えることで考慮する。

なお，原子炉機器冷却海水配管ダクト（鉛直部）の運転時，設計基準事故時及び重大事故時 の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括される ことから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

荷重の組合せを表3－7に示す。

表 3－7 荷重の組合せ

種別	荷重			算定方法の概要
永久 荷重 （常時荷重）	固 定 荷 重	躯体自重	\bigcirc	－設計図書に基づいて，対象構造物 の体積に材料の密度を乗じて設定 する
		機器•配管荷重	\bigcirc	－機器•配管系の重量に基づいて設定する。
		土被り荷重	\bigcirc	－常時応力解析により設定する。
		永久上載荷重	－	－地盤表面に恒常的に置かれる設備等はないことから考慮しない。
		静止土圧	\bigcirc	－常時応力解析により設定する。
		外水圧	\bigcirc	－地下水位に応じた静水圧として考慮する。 －地下水の密度を考慮する。
		積載荷重	\bigcirc	－地表面に考慮する。
偶発荷重		水平地震動	\bigcirc	－基準地震動S s による水平•鉛直
（地震荷重）		鉛直地震動	\bigcirc	同時加振を考慮する。

3．4．1 機器•配管荷重

地震時に原子炉機器冷却海水配管ダクト（鉛直部）に作用する機器•配管系の荷重図を図 3－20に，荷重値の一覧を表3－8に示す。機器•配管系の荷重は解析モデルに単位奥行き（1m）あたりの付加質量として与えることで考慮する。

表 3－8 荷重を考慮する主な機器•配管の一覧

位置	重		考慮する荷重
頂版	11． 77		－浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））
	24． 52	kN	－浸水防止蓋（原子炉機器冷却海水配管ダクト）
	2． 35	kN	－鋼製蓋
	5． 88	kN	
	14.32	kN	
	3． 24	kN	
側壁，隔壁	20.59	kN／m	- 原子炉補機冷却海水系配管（RSW 配管） - 配管サポート
	7． 75	kN／m	－高圧炉心スプレイ補機冷却海水系配管 （HPSW 配管） －配管サポート
	24． 52	kN／m	- タービン補機冷却海水系配管（TSW 配管） - 配管サポート

断面（2）

断面（4）

図 3－20（1）機器•配管系の荷重図

断面（5）

図 3－20（2）機器•配管系の荷重図

3． 4.2 外水圧

外水圧は，地下水位に応じた静水圧を設定する。地下水位については「2．6 地下水位」のとおりとし，地下水の密度として $1.00 \mathrm{~g} / \mathrm{cm}^{3}$ を考慮する。

3．4．3 積載荷重

地震時に原子炬機器冷却海水配管ダクト（鉛直部）に作用する積載荷重は，積雪荷重以外は想定されないが，保守的な配慮として，単位奥行き（1m）あたりの付加重量として地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。

なお，積雪荷重は，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測さ れた月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮 した値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮し， $0.301 \mathrm{kN} / \mathrm{m}^{2}$ とする。

3.5 地震応答解析の解析ケース

3．5．1 耐震評価における解析ケース
（1）地盤物性のばらつきを考慮した解析ケース
原子炉機器泠却海水配管ダクト（鉛直部）は，構造物の大部分が地中に埋設された鉄筋 コンクリート構造物であり，構造物の耐震性に支配的な損傷モードは地盤のせん断変形を伴ら構造部材の曲げ・軸力系の破壊及びせん断破壊となる。そのため，ばらつきを考慮す る物性値は，評価対象構造物周辺に主として盛土，旧表土，D級岩盤，セメント改良土及 び改良地盤といった，動的変形特性にひずみ依存性がある地盤が分布し，これらの地盤が地震時に構造物への応答に大きく影響を与えると判断される場合は，これらの物性のばら つきについて影響を確認する。ばらつきを考慮する物性は，地盤のせん断変形を定義する せん断弾性係数とし，平均値を基本ケース（表3－11に示すケース（1）とした場合に加え て，平均値 $\pm 1.0 \times$ 標準偏差（ σ ）のケース（表 3－11に示すケース（2），（3）について確認を行う。

地盤のばらつきの設定方法の詳細は，「補足－600－1 地盤の支持性能について」に示す。
（2）材料物性のばらつきを考慮した解析ケース
材料物性のばらつきについては，剛性を定義するコンクリートのヤング係数が，コンク リートの設計基準強度に対応して定まることを踏まえ，コンクリートの設計基準強度を基本ケースとし，ヤング係数をコンクリートの実強度に対応して定めたケースについて確認 を行う（表3－11に示すケース（4）。

屋外重要土木構造物等の耐震性に支配的な要因である土圧は，構造物と周囲の地盤の剛性差により生じることから，構造物の剛性が低下し，地盤との剛性差が小さくなることは，耐震裕度が向上することとなる。したがって，屋外重要土木構造物等のコンクリートは設計基準強度に対応する剛性を基本とし，ばらつきの考慮としては，土圧が大きく評価され るようコンクリートの実強度に対応する剛性について確認を行う。なお，屋外重要土木構造物等は，屋外かつ湿潤した地盤に接して地中に埋設されていることから，建物と異なり乾燥する環境にはなく，点検においても乾燥収縮による有害なひび割れは確認されておら ず，コンクリートの剛性低下は顕在化していない。

原子炉機器冷却海水配管ダクト（鉛直部）における実強度は，構造物ごとのコア抜き強度 f ${ }^{\text {ck }}$ の平均値とし，ヤング係数は実強度の平均値からコンクリート標準示方書 2017 に基づき算出する。

なお，原子炬機器冷却海水配管ダクト（鉛直部）のコンクリートの実強度は，施工時期及び周辺環境が同じ原子炉機器冷却海水配管ダクト（水平部）のコア抜き強度とする。

原子炉機器冷却海水配管ダクト（鉛直部）の実強度及びヤング係数を表3－9及び表3－ 10 に示す。

また，耐震評価における解析ケースの一覧を表3－11に示す。

表 3－9 原子炉機器冷却海水配管ダクト（鉛直部）の実強度及びヤング係数

実強度	ヤング係数
$37.2 \mathrm{~N} / \mathrm{mm}^{2} * 1$	$30.2 \mathrm{kN} / \mathrm{mm}^{2}$
$70.0 \mathrm{~N} / \mathrm{mm}^{2} * 2,3$	$37.0 \mathrm{kN} / \mathrm{mm}^{2}$

＊2：補強として設置した新設の鉄筋コンクリート部材に適用する。
＊3：「資料1 屋外重要土木構造物の耐震安全性評価について」の「参考資料5 新設する構造物のコンクリートの圧縮強度の設定」に基づき設定した圧縮強度

表 3－10 原子炉機器冷却海水配管ダクト（鉛直部）のコア採取による圧縮強度試験結果

採取位置＊	採取年	供試体数 （本）	実強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）		ヤング係数（ $\mathrm{kN} / \mathrm{mm}^{2}$ ）	
			最大	最小	最大	最小
隔壁	2012	3	41.9	33.9	31.4	29． 2
隔壁	2018	3	39.8	36． 3	30.9	29.9

注記＊：コア採取位置は図3－21に示す。

- コア採取位置（隔壁，2012 年）
- コア採取位置（隔壁，2018 年）

図 3－21 コア採取位置

表 3－11 耐震評価における解析ケースの一覧

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性	
		盛土，旧表土，D級岩盤， セメント改良土，改良地盤 （ G 0 ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B 級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②）	設計基準強度	平均値 $+1{ }^{\text {o }}$	平均値
ケース③）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験に基づき表3－10に示すとおりとする。
（3）耐震評価における解析ケースの組合せ
屋外重要土木構造物等の耐震評価においては，基準地震動 S s（7 波）及びこれらに水平動の位相反転を考慮した地震動（7 波）を加えた全14波を用いてケース①（基本ケー ス）を実施する。

上記のケース① において，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査 において照査値が 0.5 以上となるすべての照査項目に対して，最も厳しい地震動を用い て，図 3－22に示すケース（2）～④を実施する。また，上記解析ケースの結果を踏まえ，更 に照査値が大きくなる可能性がある場合は，追加解析を実施する。
耐震評価に対する解析ケースの組合せを表 3－12に示す。また，追加解析ケースを実施 する地震動の選定フローを図 $3-23$ に示す。

なお，「資料 1 屋外重要土木構造物の耐震安全性評価について」の「参考資料 7 地中構造物への鉛直地震動の位相が与える影響」において，海水配管ダクト（鉛直部）のよう な，地中に埋没された RC 構造物は，鉛直地震動の影響をほぼ受けないことを確認してい るため，鉛直地震動については，位相の反転を考慮しない。

図 3－22 耐震評価における解析ケース

表 3－12 原子炉機器冷却海水配管ダクト（鉛直部）の耐震評価における解析ケース

解析ケース			全応力解析			
			ケース（1）	ケース（2）	ケース③）	ケース（4）
			基本ケース	地盤物性のばら つき（＋1 σ ）を考慮した解析ケ ース	地盤物性のばら つき（－1 σ ）を考慮した解析ケ ース	材料物性（コン クリート）に実強度を考慮した解析ケース
	地盤物性		平均値	平均値－1 σ	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づく 圧縮強度＊2
動位相	S s－D 1	＋＋＊1	\bigcirc	【追加解析ケースについて】基準地震動 S s（7 波）に水平動の位相反転 を考慮した地震動（7波）を加えた全 14 波 に対し，全応力解析による基本ケース（1）を実施し，曲げ・軸力系の破壊，せん断破壊，基礎地盤の支持力照査の各照査項目に照査値が 0.5 以上となる照査項目に対して，最も厳し い（許容限界に対する裕度が最も小さい）地震動を用いてケース（2）～（4）を実施する。 すべての照査項目の照查値がいずれも 0.5 未満の場合は，照査値が最も厳しくなる地震動 を用いてケース（2）～（4）を実施する。 また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。		
		$-+* 1$	\bigcirc			
	Ss－D 2	$++^{* 1}$	\bigcirc			
		$-+* 1$	\bigcirc			
	Ss - D 3	＋＋＊1	\bigcirc			
	S 5 D	－＋＊1	\bigcirc			
		$++^{* 1}$	\bigcirc			
	S S－F1	$-+^{* 1}$	\bigcirc			
	Ss－F 2	$++^{* 1}$	\bigcirc			
	S 52	$-+* 1$	\bigcirc			
	S s－F 3	＋＋＊1	\bigcirc			
		$-+* 1$	\bigcirc			
		$++^{* 1}$	\bigcirc			
	S ${ }^{\text {N }}$	$-+* 1$	\bigcirc			

注：「資料1屋外重要土木構造物の耐震安全性評価について」の「参考資料 7 地中構造物への鉛直地震動の位相が与える影響」において，海水配管ダクト（鉛直部）のような，地中に埋没された RC 構造物は，鉛直地震動の影響をほぼ受けないことを確認しているため，鉛直地震動については，位相の反転を考慮しない。
注記＊1：耐震評価にあたつては，土木学会マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転 させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

図 3－23 追加解析を実施する地震動の選定フロー

4．二次元構造解析

4.1 評価対象部材

二次元構造解析の評価対象部材は，原子炉機器冷却海水配管ダクト（鉛直部）を構成する構造部材である頂版，側壁，隔壁及び鋼材とする。頂版はシェル要素でモデル化し，側壁，隔壁及び鋼材は，はり要素でモデル化する。

断面（1）～（6）の解析モデル図及び評価対象部材を図 4－1～図4－6に示す。
＜1南

頂版
図 4－1 二次元構造解析の解析モデル図及び評価対象部材（断面（1）

図 4－2 二次元構造解析の解析モデル図及び評価対象部材（断面（2））

図 4－3 二次元構造解析の解析モデル図及び評価対象部材（断面③）

図 4－4 二次元構造解析の解析モデル図及び評価対象部材（断面（4））

図 4－5 二次元構造解析の解析モデル図及び評価対象部材（断面（5）

図 4－6 二次元構造解析の解析モデル図及び評価対象部材（断面⑥）

4．2 解析方法

原子炉機器冷却海水配管ダクト（鉛直部）の二次元構造解析は，「3．地震応答解析」より得 られた応答値に基づき，断面ごとに各基準地震動 S s の包絡荷重を作成し，東西方向及び南北方向から同時に入力し，各構造部材について，曲げ・軸力系の破壊及びせん断破壊に対する照査を実施する。なお，断面（1）の頂版及び断面（6）の底版は，鉛直方向に面外変形することから，水平方向及び鉛直方向の荷重を入力し，曲げ・軸力系の破壊及びせん断破壊に対する照査を実施する。また，側壁の曲げモーメントと頂版及び底版の曲げモーメント間で発生するモーメン ト分配の影響について，参考資料5 で確認している。

二次元構造解析には，解析コード「TDAPIII Ver．3．10．01」を用いる。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

4．3 解析モデルの諸元
4．3．1 解析モデル
（1）構造物のモデル化
面部材と壁部材から構成される断面（1）及び（6）は，面部材を線形シェル要素，壁部材をフ アイバーモデルによる非線形はり要素でモデル化する（図4－1 及び図4－6参照）。シェ ル要素における各要素の断面力の方向を図 4－7 に示す。

壁部材のみから構成される断面（2）～⑤の鉄筋コンクリート部材はファイバーモデルによ る非線形はり要素でモデル化し，鉄筋コンクリート躯体のせん断変形が保守的に評価され るよう，鋼材は両端をピン支持とした軸力のみを負担する線形はり要素でモデル化する（図 $4-2 ~$ 図 4－5 参照）。なお，鋼材にとつて保守的な評価となる両端を固定支持とした評価結果を参考資料 6 に示す。

ファイバーモデルは，はり要素の断面を層状に分割し各層に材料の非線形性を考慮する材料非線形モデルであり（図 4－8 参照），図 4－9 に示すコンクリートの応力ーひずみ関係及び図 4－10に示す鉄筋の応力ーひずみ関係を考慮する。
（2）境界条件
原子炉機器冷却海水配管ダクト（鉛直部）は海水ポンプ室に懸架され一体構造となって いることから，二次元構造解析モデルにおける海水ポンプ室との取合部は固定境界として いる。

$\begin{aligned} \mathrm{M}_{\mathrm{x}}, & \mathrm{M}_{\mathrm{y}}: \\ \mathrm{Q}_{\mathrm{x}}, \quad \mathrm{Q}_{\mathrm{y}} & : \text { 曲げモーメ断力 } \\ \mathrm{N}_{\mathrm{x}}, & \mathrm{N}_{\mathrm{y}} \\ & : \text { 軸力 } \\ \mathrm{N}_{\mathrm{x}} \mathrm{y} & : \text { 面内せん断力 }\end{aligned}$

図4－7 シェル要素の各要素における断面力の方向

図 4－8 ファイバーモデルの概念図

$k_{1}=1-0.003 f_{c k}^{\prime} \quad \leq 0.85$
$\varepsilon_{c u}^{\prime}=\frac{155-f_{c k}^{\prime}}{30000} \quad 0.0025 \leq \varepsilon_{c u}^{\prime} \leq 0.0035$
ここで，$\quad f_{c k}^{\prime}$ の単位は $\mathrm{N} / \mathrm{mm}^{2}$
曲線部の応力ひずみ式

$$
\sigma_{c}^{\prime}=k_{1} f_{c d}^{\prime} \times \frac{\varepsilon_{c}^{\prime}}{0.002} \times\left(2-\frac{\varepsilon_{c}^{\prime}}{0.002}\right)
$$

図4－9 コンクリートの応力－ひずみ関係
（コンクリート標準示方書より引用）

図 4－10 鉄筋の応力－ひずみ関係
（コンクリート標準示方書より引用）

4．3．2 使用材料及び材料の物性値

原子炉機器冷却海水配管ダクト（鉛直部）の使用材料及び材料の物性値は，「2．4 使用材料及び材料の物性値」に基づき設定する。

4． 4 入力荷重

二次元構造解析の入力荷重は，地震応答解析に基づく応答値を用いて算定する。入力荷重の一覧を表 4－1に，各入力荷重の算定フローを図 4－11に示す。常時荷重は，表 3－7に示す荷重を考慮する。

表4－1 入力荷重一覧

入力荷重		地震応答解析から抽出 する応答値	載荷位置
慣性力	機器•配管の慣性力	応答加速度	設置位置
	躯体の慣性力	応答加速度	躯体全体
	積載荷重の慣性力	応答加速度	作用位置
地震時土圧＊			
周面せん断力＊		土圧	作用位置

注記＊：各基準地震動 S s による各断面の荷重は，鉛直方向の各断面区間の最大値とする。

図4－11 各入力荷重の算定フロー

4．4．1 常時荷重

（1）躯体自重
躯体の体積に鉄筋コンクリートの密度を乗じて設定する。
（2）機器•配管荷重
機器•配管系の重量に基づいて設定する。機器•配管荷重図を図4－12に示す。

断面（1）

断面（4）

断面（5）

—— ：機器•配管荷重

図 4－12 機器•配管荷重図
（3）常時土圧
地震応答解析の常時応力解析から求まる静止土圧を躯体に作用させる。なお，各断面 の静止土圧は，鉛直方向の各断面区間の最大値とする。常時土圧の載荷概念図を図 4－ 13 に示す。

断面（2）

断面（3）

$<^{\text {南 }} \downarrow \downarrow$

図 4－13（1）常時土圧の載荷概念図
資料 5－79

図 4－13（2）常時土圧の載荷概念図
（4）積載荷重
原子灺機器冷却海水配管ダクト（鉛直部）に作用する積載荷重は，積雪荷重以外は想定 されないが，保守的な配慮として頂版上に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。

4．4．2 慣性力

躯体及び機器•配管系の慣性力は，地震応答解析モデルにおける鉄筋コンクリート部材 の各節点の最大応答加速度から算定する。応答加速度の抽出位置は，鉄筋コンクリート部材の全節点とし，各断面区間の最大値を断面ごとに作用させる。
A－A 断面（南北方向）の応答加速度の抽出位置を図 4－14 に示す。B－B 断面（東西方
向）については，原子炉機器泠却海水配管ダクト（鉛直部）は海水ポンプ室に懸架され一体構造となっていることから，添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」の応答とする。各断面における慣性力の載荷概念図を図 4－15に示す。

断面（1）と断面（6）は水平面部材をモデル化することから，鉛直方向の加速度も評価し，区間の最大加速度を設計用加速度として作用させる。

＊注記 ：各断面の最大値を設計用加速度とする。

図 4－14 応答加速度の抽出位置（A－A 断面：南北）

断面（1）＊
注記＊：頂板については，鉛直方向の慣性力も載荷する。

断面（2）

図 4－15（1）慣性力の載荷概念図
資料 5－83

断面（6）
注記＊：底版については，鉛直方向の慣性力も載荷する。
——：慣性力載荷位置

：慣性力作用方向

図 4－15（2）慣性力の載荷概念図

4．4． 3 地震時土圧及び周面せん断力

躯体に作用する地震時土圧について，A－A 断面（南北方向）は地震応答解析モデルにお いて各部位に接するジョイント要素の要素応力から算定し，B－B 断面（東西方向）の地震時土圧については「（1）慣性力」と同様に，添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」の応答により算定し，各断面区間の最大値を断面ごとに作用させる。

躯体に作用する周面せん断力は，$A-A$ 断面（南北方向）の地震応答解析モデルを用いて，各要素のせん断応力を算定し，各断面区間の最大値を断面ごとに作用させる。

A－A 断面（南北方向）の地震時土圧及び周面せん断力の抽出位置を図 4－16に示す。ま た，各断面における地震時土圧及び周面せん断力の載荷概念図を図4－17に示す。

図 4－16 地震時土圧の抽出位置（A－A 断面：南北）

図 $4-17$（1）土圧及び周面せん断力の載荷概念図（断面（1））
\qquad

NLEEV © $\downarrow \quad \downarrow \quad \downarrow$ ，

図 4－17（2）土圧及び周面せん断力の載荷概念図（断面（2）

図 4－17（3）土圧及び周面せん断力の載荷概念図（断面（3））

図 4－17（5）土圧及び周面せん断力の載荷概念図（断面（5）

図 4－17（6）土圧及び周面せん断力の載荷概念図（断面（6）

5．評価内容

5.1 入力地震動の設定

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 5－1 に入力地震動算定の概念図を，図 5－2～図5－15に A－A 断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを，図5－16～図5－29に B－B 断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver3．10」を使用する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

図 5－1 入力地震動算定の概念図

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分：S S－D 1）

図5－3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）

図5－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{S}-\mathrm{N} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分：S s－N 1）

（b）加速度応答スペクトル

図5－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－D 1）

（b）加速度応答スペクトル

図5－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 1$ ）

（b）加速度応答スペクトル

図5－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）

（b）加速度応答スペクトル

図5－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）

（b）加速度応答スペクトル

図5－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分 ： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（b）加速度応答スペクトル

図5－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（b）加速度応答スペクトル

図5－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－F 1）

（b）加速度応答スペクトル

図5－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（b）加速度応答スペクトル

図5－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－F 2）

（b）加速度応答スペクトル

図5－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図5－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（b）加速度応答スペクトル

図5－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（b）加速度応答スペクトル

図5－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ ）

（b）加速度応答スペクトル

図5－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ ）

5．2 許容限界の設定

5．2．1 鉄筋コンクリート部材の健全性に対する許容限界
（1）曲げ・軸力系の破壊に対する許容限界
a．断面（1）
鉄筋コンクリート部材を線形シェル要素によりモデル化を行う断面（1）の構造強度を有 することの確認，止水機能を損なわないこと及びSクラスの施設を支持する機能を損な わないことの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対す る許容限界は，短期許容応力度とする。コンクリート及び鉄筋の許容応力度を表 5－1及び表5－2に示す。

なお，頂版に止水機能及びSクラスの施設を支持する機能を要求されるが，短期許容応力度により照査を行うため，構造強度を有することの確認と許容限界が同一となるこ とから，全部材に対して構造強度を有することを確認することで，止水機能及びSクラ スの施設を支持する機能を損なわないことの確認も同時に行う。

表 5－1 コンクリートの許容応力度及び短期許容応力度（断面（1））

設計基準強度	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度
$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$			

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。

表 5－2 鉄筋の許容応力度及び短期許容応力度（断面（1）

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	許容引張応力度 $\sigma \mathrm{s} \mathrm{a}$	196	294

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。
b．断面（2）～（5）
鉄筋コンクリート部材を非線形はり要素によりモデル化を行う断面（2）～⑤）の構造強度 を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対 する許容限界は，土木学会マニュアルに基づき，限界ひずみ（圧縮縁コンクリートひず み 1.0% と とす。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリ ートの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ 1． 0% の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認され

ている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたものである。

また，側壁及び隔壁のアンカー定着部に要求されるSクラスの施設を支持する機能を損なわないことの確認においては，コンクリート標準示方書に基づき，コンクリートの圧縮ひずみ及び主筋ひずみについて，部材降伏に相当する限界ひずみ（コンクリート： 2000μ ，主鉄筋： 1725μ ）とする。鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表5－3に示す。
なお，後施工せん断補強工法（セラミックキャップバー工法）（以下「CCb 工法」と いう。）を適用する部材について，CCb 工法はおおむむね弾性範囲となる状況下で使用す ることから，コンクリート及び鉄筋のひずみが，部材降伏に相当する限界ひずみ（コン クリートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ）を下回ることを併せて確認す る。

表5－3 曲げ・軸力系の破壊に対する許容限界（断面（2）～⑤）

碓認項目	許容限界	
構造強度を有すること	限界ひずみ	$\begin{aligned} & \text { 圧縮縁コンクリートひずみ: } 1.0 \% \\ & (10000 \mu) \end{aligned}$
S クラスの施設を支持する機能を損なわないこと		$\begin{aligned} & \text { コンクリート }: ~ 2000 \mu \\ & \text { 主鉄筋 (SD345) : } 1725 \mu \end{aligned}$

（2）せん断破壊に対する許容限界（許容応力度）
鉄筋コンクリート部材を線形シェル要素によりモデル化を行う断面（1）の構造強度を有す ることの確認，止水機能を損なわないこと及びS クラスの施設を支持する機能を損なわな いことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，表5－1に示す短期許容応力度とする。
（3）せん断破壊に対する許容限界（せん断耐力式によるせん断耐力）
鉄筋コンクリート部材を非線形はり要素によりモデル化を行う断面（2）～⑤の構造強度を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認におけるせ ん断破壊に対する許容限界は，土木学会マニュアルに基づくせん断耐力とする。

せん断耐力を，土木学会マニュアルに基づき「a．棒部材式」，「b．ディープビーム式」のせん断耐力式で求まるせん断耐力のらち，いずれか大きい方とする。

せん断耐力式による照査において照査用せん断力が上記のせん断耐力を上回る場合，材料非線形解析により部材のせん断耐力を求め許容限界とする。せん断破壊に対する照査の フローを図5－30に示す。
また，CCb 工法を用いる構造部材については「（4）CCb によりせん断補強された部材の せん断耐力式」によることとする。

注記 $*: ~$ 照査用せん断力 $V_{d}=$ 発生せん断力 $V \times$ 構造解析係数 γ_{a}

図 0－31 せん断破壊に対する照査フロー
a．棒部材式
$V_{y d}=V_{c d}+V_{s d}$
ここで， V_{yd} ：せん断耐力
V_{cd} ：コンクリートが分担するせん断耐力
$V_{s d}$ ：せん断補強鉄筋が分担するせん断耐力
$\mathrm{V}_{\mathrm{cd}}=\beta_{\mathrm{d}} \cdot \beta_{\mathrm{p}} \cdot \beta_{\mathrm{n}} \cdot \beta_{\mathrm{a}} \cdot \mathrm{f}_{\mathrm{vcd}} \cdot \mathrm{b}_{\mathrm{w}} \cdot \mathrm{d} / \gamma_{\mathrm{bc}}$
$f_{v c d}=0.20^{3} \sqrt{f^{\prime}{ }_{c d}}$ ただし，$f_{v c d}>0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ となる場合は $\mathrm{f}_{\mathrm{v} \text { c d }}=0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
$\beta_{d}=\sqrt[4]{1 / \mathrm{d}}$（d $\left.[\mathrm{m}]\right)$ ただし，$\beta_{\mathrm{d}}>1.5$ となる場合は $\beta_{\mathrm{d}}=1.5$
$\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}}$ ただし，$\beta_{\mathrm{p}}>1.5$ となる場合は $\beta_{\mathrm{p}}=1.5$
$\beta_{\mathrm{n}}=1+\mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}} \geq 0\right)$ ただし，$\beta_{\mathrm{n}}>2.0$ となる場合は $\beta_{\mathrm{n}}=2.0$ $=1+2 \mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}}<0\right)$ ただし，$\beta_{\mathrm{n}}<0$ となる場合は $\beta_{\mathrm{n}}=0$
$\beta_{\mathrm{a}}=0.75+\frac{1.4}{\mathrm{a} / \mathrm{d}}$ ただし，$\beta_{\mathrm{a}}<1.0$ となる場合は $\beta_{\mathrm{a}}=1.0$

ここで，f ${ }^{\prime}{ }_{\mathrm{cd}}$ ：コンクリート圧縮強度の設計用値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right.$ ）で設計基準強度 $\mathrm{f}{ }^{\prime}{ }_{\mathrm{ck}}$ を材料係数 γ_{mc} で除したもの
p_{v} ：引張鉄筋比 $\mathrm{p}_{\mathrm{v}}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{b}_{\mathrm{w}} \cdot \mathrm{d}\right)$

As ：引張側鋼材の断面積
b_{w} ：部材の有効幅
d ：部材の有効高さ
$N^{\prime}{ }_{d}$ ：設計軸圧縮力
M_{d} ：設計曲げモーメント
$M_{0}: M_{d}$ に対する引張縁において，軸方向力によって発生する応力を打ち
消すのに必要なモーメント (デコンプレッションモーメント)

$$
\mathrm{M}_{0}=\mathrm{N}^{\prime}{ }_{\mathrm{d}} \cdot \mathrm{D} / 6
$$

D ：断面高さ
a／d ：せん断スパン比
$\gamma_{b c}$ ：部材係数
γ_{mc} ：材料係数
$\mathrm{V}_{\mathrm{sd}}=\left\{\mathrm{A}_{\mathrm{w}} \mathrm{f}_{\mathrm{wy} \mathrm{d}_{\mathrm{d}}}(\sin \alpha+\cos \alpha) / \mathrm{s}\right\} \mathrm{z} / \gamma_{\mathrm{bs}}$

A ：区間 s におけるせん断補強鉄筋の総断面積
f wyd：せん断補強鉄筋の降伏強度を γ_{ms} で除したもので， $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下と する。ただし，コンクリート圧縮強度の特性値 f ，${ }_{\mathrm{ck}}{ }^{\text {d }}$ が $60 \mathrm{~N} / \mathrm{mm}^{2}$ 以上 のときは $800 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。
α ：せん断補強鉄筋と部材軸のなす角度
s ：せん断補強鉄筋の配置間隔
Z ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で $\mathrm{d} / 1.15$ と する。
$\gamma_{\mathrm{b} \text { s }}$ ：部材係数
γ_{ms} ：材料係数
b．ディープビーム式
$\mathrm{V}_{\mathrm{ydd}}=\mathrm{V}_{\mathrm{cdd}}+\mathrm{V}_{\mathrm{sdd}}$

ここで， $\mathrm{V}_{\mathrm{ydd}}$ ：せん断耐力
$\mathrm{V}_{\mathrm{cdd}}$ ：コンクリートが分担するせん断耐力
V_{sdd} ：せん断補強鉄筋が分担するせん断耐力
$\mathrm{V}_{\mathrm{cdd}}=\beta_{\mathrm{d}} \cdot \beta_{\mathrm{p}} \cdot \beta_{\mathrm{n}} \cdot \mathrm{f}_{\mathrm{dd}} \cdot \mathrm{b}_{\mathrm{w}} \cdot \mathrm{d} / \gamma_{\mathrm{bc}}$
$\mathrm{f}_{\mathrm{dd}}=0.19 \sqrt{\mathrm{f}^{\prime}{ }_{\mathrm{cd}}}$
$\beta_{\mathrm{d}}=\sqrt[4]{1 / \mathrm{d}}$ ただし，$\beta_{\mathrm{d}}>1.5$ となる場合は $\beta_{\mathrm{d}}=1.5$
$\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}}$ ただし，$\beta_{\mathrm{p}}>1.5$ となる場合は $\beta_{\mathrm{p}}=1.5$
$\beta_{\mathrm{a}}=\frac{5}{1+(\mathrm{a} / \mathrm{d})^{2}}$
ここで，γ_{bc} ：部材係数
$\mathrm{V}_{\mathrm{sdd}}=\phi \cdot \mathrm{V}_{\mathrm{sd}}$
$\phi=-0.17+0.3 \mathrm{a} / \mathrm{d}+0.33 / \mathrm{p}_{\mathrm{w} \text { b }}$ ただし $0 \leq \phi \leq 1$

ここで， p_{wb} ：せん断補強鉄筋比（\％）

土木学会マニュアルでは，コンクリート標準示方書におけるせん断耐力式のうち棒部材式において等価せん断スパンにより設定可能な係数 β aを考慮している。これは，地中に埋設されたラーメン構造で，分布荷重が卓越，スパン内に曲げモーメントの反曲点が存在す る等の載荷形態にある条件下では，せん断耐力が増大するという実験的知見を踏まえ，よ り合理的なせん断耐力を与えるよう，コンクリート標準示方書のせん断耐力式を精緻化し たものである。

また，土木学会マニュアルにおけるせん断耐力式による評価においては，表 5－4に示す とおり，複数の安全係数が見込まれていることから，せん断破壊に対して安全余裕を見込 んだ評価を実施することが可能である。

表 5－4 せん断耐力式による評価において考慮している安全係数

安全係数			せん断照査		内容
			応答値算定	限界値算定	
材料係数	コンクリート	γ_{mc}	1.0	1.3	コンクリートが負担するせ ん断力を低減
	鉄筋	$\gamma \mathrm{s}$	1.0	1.0	－
部材係数＊	コンクリート	γ_{bc}	－	1.3	コンクリートが負担するせ ん断力を低減
	鉄筋	γ_{bs}	－	1.1	せん断補強筋が負担するせ ん断力を低減
構造解析係数		γ a	1． 05	－	応答値（断面力）の割り増 し

注記＊：土木学会マニュアルでは，部材係数 $\gamma_{\mathrm{b}}=\gamma_{\mathrm{b} 1} \times \gamma_{\mathrm{b} 2}$
$\gamma_{\mathrm{b} 1}= \begin{cases}1.3 & (\text { コンクリート }) \\ 1.1 & \text {（鉄筋）}\end{cases}$
$\gamma_{\mathrm{b} 2}=\left\{\begin{array}{cc}1.0 & (\mathrm{R} \leq 0.01) \\ (100 \mathrm{R}+2) / 3 & (0.01<\mathrm{R} \leq 0.025) \\ 1.5 & (\mathrm{R}>0.025)\end{array}\right.$
ここで，R：応答層間変形角
とされている。
$\gamma_{\mathrm{b} 2}$ は層間変形角の値によらず，部材が降伏していない状態であれば，$\gamma_{\mathrm{b} 2}=1.0$ とし てよいとされている。解析結果から原子炉機器冷却海水配管ダクト（鉛直部）の鉄筋コン クリート部材については降伏が認められなかったため，$\gamma_{\mathrm{b} 2}=1.0$ とする。
（4）CCb によりせん断補強された部材のせん断耐力式
原子炉機器冷却海水配管ダクト（鉛直部）において後施工せん断補強（セラミックキャ ップバー（CCb））を配置した構造部材については，「建設技術審査証明報告書 技術名称後施工セラミック定着型せん断補強鉄筋「セラミックキャップバー（CCb）一般財団法人土木研究センター」」（以下「建設技術証明書」という。）に示されている以下の設計式によ り求める。

$$
\begin{align*}
& \mathrm{V}_{\mathrm{pyd}}=\mathrm{V}_{\mathrm{cd}}+\mathrm{V}_{\mathrm{sd}}+\mathrm{V}_{\mathrm{CCbd}} \tag{1}\\
& \mathrm{~V}_{\mathrm{Ccbd}}=\beta_{\mathrm{aw}} \cdot \mathrm{~V}_{\mathrm{awd}} \\
& \quad=\beta_{\mathrm{aw}} \cdot\left\{\mathrm{~A}_{\mathrm{aw}} \cdot \mathrm{f}_{\mathrm{awyd}}\left(\sin \alpha_{\mathrm{aw}}+\cos \alpha_{\mathrm{aw}}\right) / \mathrm{S}_{\mathrm{aw} w}\right\} \mathrm{z} / \gamma_{\mathrm{b}} \tag{2}\\
& \beta_{\mathrm{aw}}=\eta=1-\frac{\ell_{\mathrm{y}}}{2 \mathrm{~S}_{\mathrm{rb}}} \tag{3}
\end{align*}
$$

ただし，$\ell_{\mathrm{y}}-\mathrm{d}^{\prime} \leq 0$ となる場合は $\ell_{\mathrm{y}}-\mathrm{d}^{\prime}=0$ とする。

ここに， V_{cd} ：せん断補強鋼材を用いない壁部材の単位幅あたりのせん断耐力
$V_{s d}$ ：既存のせん断補強鋼材により受け持たれる壁部材の単位幅あたりの せん断耐力
$V_{\text {CCbd }}$ ：セラミックキャップバー（CCb）により受け持たれる壁部材の単位幅 あたりのせん断耐力
$V_{a w d}$ ：セラミックキャップバー（CCb）を通常のスターラップと見なして求 められる壁部材の単位幅あたりのせん断耐力
β_{aw} ：セラミックキャップバー（CCb）のせん断耐力の向上への有効性を示 す係数
$A_{a \mathrm{w}}$ ：単位長さ当たりの区間 $\mathrm{S}_{\mathrm{a} \text { w }}$ におけるセラミックキャップバー（CCb） の総断面積
fawyd：セラミックキャップバー（CCb）の設計降伏強度で $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下と する。
$\alpha_{\text {aw }}$ ：セラミックキャップバー（CCb）が部材軸となす角度
S_{aw} ：セラミックキャップバー（CCb）の配置間隔
Z ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で一般に d／1．15としてよい。
γ_{b} ：部材係数（一般に 1.10 としてよい）
$\ell_{\mathrm{y}} \quad:$ セラミックキャップバー（CCb）の先端型定着体の定着長（5Dとして よい）
$S_{r b}$ ：補強対象部材の圧縮鉄筋と引張鉄筋の間隔
d ：補強対象部材の有効高さ
d ：差し込み側の部材表面から圧縮鋼材図心までの距離

セラミックキャップバー（CCb）が負担するせん断耐力は，先端型定着体の定着長が 5D であることから，通常のせん断鉄筋に比べ補強効率が低下する。セラミックキャップバー （CCb）が負担するせん断耐力は同定着長と補強対象部材の主筋間隔から算出される有効率 β awを通常のせん断補強鉄筋の負担分に乗じることにより考慮されている。図5－31 に有効率算定における概念図を示す。

（a）斜めひび割れ内に定着不良が生じたせん断補強鉄筋

（b）標準型

図 5－31 セラミックキャップバー（CCb）の有効率算定の概念図

なお，設計上の保守的な配慮として，セラミックキャップバー（CCb）によるせん断補強を配置する場合は，対象とする構造部材の主筋の降伏以下の場合に適用することとし， せん断破壊に対する照査値は 0.80 程度とする。
（5）せん断破壊に対する許容限界（材料非線形解析によるせん断耐力）
a．評価条件
図 5－30 のせん断破壊に対する照査フローに示すとおり，照査用せん断力が，せん断耐力式によるせん断耐力を上回る場合は，材料非線形解析によりせん断耐力を算定し， せん断耐力が照査用せん断力を上回ることを確認する。

「（3）せん断破壊に対する許容限界（せん断耐力式によるせん断耐力）」で示したせん断耐力式は，既往の実験等から一般化されたものであることから，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析を実施することに より，より高い精度でせん断耐力を求め，構造部材のせん断照査を行う。

表5－5及び表5－6に材料非線形解析の概要を示す。
材料非線形解析は，90年代までに，ひび割れの進展モデルや破壊エネルギーの概念等，基本となるモデルが提示され，様々な問題に適用されながら有効性と信頼性を高めてお り，コンクリート標準示方書 2017 や土木学会マニュアル等で取り扱われている。

材料非線形解析にて用いる鉄筋コンクリートの構成則については種々あるが，ここで は，現在までに実務でも使用され，適用性と信頼性が確認されており，コンクリート標準示方書 2017 において標準とされる以下の手法とする。

①鉄筋とコンクリートとの一体性を前提とする分散ひび割れモデルにてモデル化する。
（2）鉄筋との複合作用が支配的な鉄筋周辺のコンクリートについては，平均化構成則を用い る。

③鉄筋との複合作用が及ばない領域では，コンクリートの破壊力学の概念を導入する。

なお，材料非線形解析の適用にあたつては，当該構造物の構造的な特徴や荷重条件が類似する既往の実験等から得られたせん断耐力と，材料非線形解析によるせん断耐力を比較し，その適用性を判断した上で，モデル化や各種パラメータの設定に係る解析者の差を考慮した安全係数を設定する。

材料非線形解析においては，解析コード「WCOMD Studio Ver．1．00．02」を使用する。

表 5－5 材料非線形解析の位置付け（土木学会マニュアル）

表 5－6 部材非線形解析と材料非線形解析の特徴

	部材非線形解析		材料非線形解析	
モデル化	骨組モデル		有限要素	
解析次元	一次元		二次元	三次元
構成則	$\mathrm{M}-\Phi, \mathrm{M}-\theta$ 等	応力ーひずみ関係		
要素	はり要素	ファイバー要素	平面ひずみ要素	立体要素
特徴	（汎 用 性）		狭い $\leftarrow ~-$短い	

（a）適用基準
材料非線形解析については，土木学会マニュアル，コンクリート標準示方書 2017等に基づき実施する。

表 5－7 に参考とする主な基準等を示す。

表 5－7 参考とする主な基準等

項 目	参考とする主な基準等	備 考
材料定数材料特性	- コンクリート標準示方書2017 - 土木学会マニュアル	－
許容限界	－	－せん断カー相対変位関係より設定した許容限界（破壊基準）が，部材係数の設定における材料非線形解析にて，実験結果とおおむ放整合的であることを碓認。

（b）材料定数
耐震評価に用いる材料定数は，文献等を基に設定する。コンクリート及び鉄筋の材料定数を表5－8及び表5－9に示す。

表 5－8 コンクリートの材料定数

	設定値	諸 元
単位体積重量	$0.0 \mathrm{kN} / \mathrm{m}^{3}$	材料非線形解析による荷重に含まれ ることから考慮しない
圧縮強度	$15.8 \mathrm{~N} / \mathrm{mm}^{2}$	設計基準強度（ $20.5 \mathrm{~N} / \mathrm{mm}^{2}$ ） ／材料係数＊
引張強度	$1.33 \mathrm{~N} / \mathrm{mm}^{2}$	引張強度／材料係数＊
压縮ピークひずみ	2000μ	コンクリート標準示書2017
ひび割れ一せん断伝達係数	1.0	コンクリート標準示方2017
破壊エネルギー	$0.0681 \mathrm{~N} / \mathrm{mm}$	コンクリート標準示書2017

注記＊：材料係数を 1.3 として算出

表 5－9 鉄筋の材料定数

		設定值	諸 元
単位体積重量		$0.0 \mathrm{kN} / \mathrm{m}^{3}$	材料非線形解析による荷重に含まれ ることから考慮しない
ヤング係数		$200 \mathrm{kN} / \mathrm{mm}^{2}$	コンクリート標準示方書2017
降伏 強度	主鉄筋	$2000 \mathrm{~N} / \mathrm{mm}^{2}$	せん断破壊先行型の破壊形態となる よう曲げ耐力が増大するように設定
	せん断補強筋	$345 \mathrm{~N} / \mathrm{mm}^{2}$	SD345

（c）解析モデルの要素分割

材料非線形解析の対象とする構造部材を平面ひずみ要素でモデル化する。構造部材 のモデル化にあたっては，図5－32に示すとおり，鉄筋の付着が有効な領域を鉄筋コ ンクリート要素としてモデル化し，付着の影響が及ばない領域を無筋コンクリート要素としてモデル化する。

部材厚方向の要素分割数については，鉄筋を含む要素と無筋要素を明確に指定でき る分割数が望ましいこと，及び 3 層以上の分割数をとる場合，解析結果に大きな差異 が生じないことから 3 層以上に設定することとする。

具体的には，鉄筋を含む要素は，鉄筋を中心としてかぶり厚さの 2 倍とし，無筋領域については，要素形状が極端に扁平とならないように分割する。

なお，対象とする構造部材に接合する部材は，弹性要素でモデル化し，モデル下端 を固定境界とする。

図 5－32 鉄筋付着有効領域と無筋領域の分割の概要
（d）コンクリートの非線形特性
耐震評価に用いる要素は鉄筋コンクリート要素及び無筋コンクリート要素に分類さ れるが，それぞれの非線形特性は同一の考え方で表される。

1．圧縮応力下における応力ーひずみ関係
図 5－33に一軸圧縮応力下における応力ーひずみ関係を示す。
圧縮応力下の応力ーひずみの骨格曲線は，最大応力点までの硬化域と，最大応力点を超えた軟化域で表され，残留塑性ひずみと除荷再載荷時の剛性低下を考慮して いる。

また，ひび割れ発生後のコンクリートの圧縮強度については，図 5－34に示す，低減係数を破壊パラメータに乗じることで，ひび割れ発生後の圧縮強度の低下を考慮する。

$\sigma_{c}^{\prime}=E_{0} K\left(\varepsilon^{\prime}{ }_{c}-\varepsilon^{\prime}{ }_{p}\right) \geq 0$
$\mathrm{E}_{0}=\frac{2 \cdot \mathrm{f}_{\mathrm{cd}}}{\varepsilon_{\mathrm{peak}}^{\prime}}$
$\mathrm{K}=\exp \left\{-0.73 \frac{\varepsilon_{\mathrm{max}}^{\prime}}{\varepsilon_{\mathrm{peak}}^{\prime}}\left(1-\exp \left(-1.25 \frac{\varepsilon_{\mathrm{max}}^{\prime}}{\varepsilon_{\mathrm{paeak}}^{\prime}}\right)\right)\right\}$
$\varepsilon_{\mathrm{p}}^{\prime}=\varepsilon_{\mathrm{max}}^{\prime}-2.86 \cdot \varepsilon_{\mathrm{peak}}^{\prime}\left\{1-\exp \left(-0.35 \frac{\varepsilon_{\mathrm{max}}^{\prime}}{\varepsilon_{\mathrm{peak}}^{\prime}}\right)\right\}$
$\mathrm{f}_{\mathrm{cd}}{ }_{\mathrm{d}}=\mathrm{f}_{\mathrm{ck} \mathrm{k}} / \gamma_{\mathrm{c}}$

ここに，
$\varepsilon_{\text {peak }}^{\prime}$ ：圧縮強度に対応するひずみ（一般に，0．002としてもよい）

を max ：過去に受けた圧縮ひずみの最大値

E（ \quad ：塑性ひずみ
K ：弾性剛性残存率
図 5－33 圧縮応力下におけるコンクリートの非線形特性 （コンクリート標準示方書 2017 より引用）

図 5－34 弾性剛性残存率の低減係数
（コンクリート標準示方書 2017 より引用）

ロ．引張応力下における応力ーひずみ関係
引張応力下における応力ーひずみ関係は，ひび割れ発生までは線形弾性とし， ひび割れ強度以降は，鉄筋とコンクリートの付着の影響等を考慮し，図5－35に示す骨格曲線を用いて，ひび割れ間のコンクリートに引張応力分担を考慮する。

引張力を受ける無筋コンクリート要素では，引張軟化挙動は，破壊エネルギー （Gf）によって定義する。引張軟化挙動の考慮にあたつては，図5－36に示す ひび割れ発生後の軟化曲線とひび割れ発生点からの除荷曲線とで囲まれる面積が
Gf／Le（要素寸法）に一致するように，軟化特性を表す係数Cを用いる。

ここに，
f t ：引張強度
$\varepsilon_{\mathrm{tu}}$ ：引張軟化開始ひずみ
c ：引張軟化特性を表す係数
図 5－35 引張応力下における鉄筋とコンクリートの
付着効果を考慮した応力ーひずみ関係
（コンクリート標準示方書 2017 より引用）

図 5－36 応力—ひずみ曲線と破壊エネルギーGf の関係

八．ひび割れ面でのせん断伝達関係
コンクリートのひび割れ発生後にひび割れ角度を固定する固定ひび割れモデルで は，ひび割れ面のずれによるせん断応力伝達特性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は，斜めひび割れの発生に伴ら剛性低下や破壊を評価するため，図 5－37 に示すとおり，ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみとの比をパラメータとし，コンクリートの剛性低下を考慮するモデ ルを用いる。

ここに，
β ：ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ ε の比 (γ / ε)
τ ：ひび割れ面でのせん断応力
$\tau_{\text {max }}$ ：除荷開始時せん断応力
β_{max} ：除荷開始時せん断ひずみ γ とひび割れ開口ひずみ ε の比

図 5－37 ひび割れ面でのせん断伝達モデル （コンクリート標準示方書 2017 より引用）
（e）鉄筋の非線形特性
ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均応力ー平均ひずみ関係は，単体鉄筋の応力ーひずみ関係と異なり，図5－38に示すひずみ硬化特性を考慮 する。

f y ：鉄筋単体の降伏強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
f_{u} ：鉄筋単体の引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
E_{s} ：鉄筋単体のヤング率 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ϵ_{y} ：鉄筋単体の降伏ひずみ
$\epsilon_{\mathrm{sh}} \quad: ~$ 鉄筋単体のひずみ硬化開始ひずみ
p ：鉄筋比
f_{1} ：コンクリートの引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 5－38 ひずみ硬化域までモデル化した鉄筋の平均応力ー平均ひずみ関係 （コンクリート標準示方書 2017 より引用）
（f）鉄筋コンクリートとしてのモデル化
コンクリートと鉄筋の界面の付着特性をテンションスティフニング効果（引張特性 が硬化する現象）として，鉄筋コンクリート要素の中に取り込むことにより，鉄筋コ ンクリートの構成則を直接与える。
鉄筋コンクリートの引張応力下の平均応力は，以下の式で表される。

$$
\bar{\sigma}_{\mathrm{RC}}=\frac{\mathrm{A}_{\mathrm{S}}}{\mathrm{~A}_{\mathrm{RC}}} \bar{\sigma}_{\mathrm{S}}+\frac{\mathrm{A}_{\mathrm{C}}}{\mathrm{~A}_{\mathrm{RC}}} \bar{\sigma}_{\mathrm{C}}
$$

ここに， $\bar{\sigma}_{\mathrm{S}}, \bar{\sigma}_{\mathrm{C}}$ ：それぞれ鉄筋とコンクリートの平均応力
$\mathrm{A}_{\mathrm{S}}, ~ \mathrm{~A}_{\mathrm{C}}$ ：それぞれ鉄筋とコンクリートの断面積，

$$
\mathrm{A}_{\mathrm{RC}}=\mathrm{A}_{\mathrm{S}}+\mathrm{A}_{\mathrm{C}}
$$

（g）荷重の組合せ
材料非線形解析においては，地震応答解析（二次元時刻歴応答解析（全応力解析）） により得られた荷重を用いることから，荷重の組み合わせは，地震応答解析と同様で ある。
b．評価内容
（a）耐震評価フロー
材料非線形解析を用いたせん断耐力の評価フローを図 5－39に示す。

図 5－39 材料非線形解析の耐震評価フロー
（b）荷重の設定
材料非線形解析にて考慮する荷重は，地震応答解析（二次元時刻歴応答解析（全応力解析））から得られる荷重を考慮する。具体的には，地震応答解析で得られた荷重 より二次元構造解析を行い，評価対象部材のせん断照査結果が厳しくなる時の断面力 （曲げモーメント，軸力，せん断力）を材料非線形解析モデルに図 5－40に示すとお りに作用させる。

材料非線形解析では，二次元構造解析で得られた断面力分布を再現できる荷重分布 を算出し，この荷重比率を維持しながら漸増載荷する。

作用荷重は，常時荷重及び地震時荷重を，図5－41に示すとおり載荷し材料非線形解析を実施する。

図 5－40 材料非線形解析における載荷状況

図5－41 荷重の作用手順
（c）せん断耐力
材料非線形解析を用いたせん断耐力は，材料非線形解析におけるせん断力一相対変位関係から設定する。具体的には，図 5－42に示す例のとおり，せん断力 Q —相対変位 δ 関係においてせん断力の増分に対して相対変位が急増する直前の点を部材のせん断耐力と判断する。

図 5－42 材料非線形解析を用いたせん断耐力の設定例
（d）安全係数の設定
材料非線形解析では，二次元構造解析で得られる断面力（曲げモーメント，軸力， せん断力）を材料非線形解析に作用させた時のせん断力 V と材料非線形解析で得られ るせん断耐力 V_{y} に，以下のとおり部材係数 $\gamma_{\mathrm{b} 1}, ~ \gamma_{\mathrm{b} 2}$ ，構造解析係数 γ_{a} ，構造物係数 γ_{i} を考慮し，照査用せん断力 V_{d} ，設計せん断耐力 V_{yd} を算定する。

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\gamma_{\mathrm{i}} \cdot \gamma_{\mathrm{a}} \cdot \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{yd}}=\mathrm{V}_{\mathrm{y}} /\left(\gamma_{\mathrm{b} 1} \cdot \gamma_{\mathrm{b} 2}\right)
\end{aligned}
$$

考慮する安全係数の設定結果を表5－10に示す。ここで，部材係数 $\gamma_{\mathrm{b}} 1$ については，実験又はせん断耐力式により得られるせん断耐力と材料非線形解析により得られるせ ん断耐力との比率により設定することとし，解析における構成則の相違や，要素の種類，要素分割，材料物性の設定，入力増分等，多岐にわたる解析者間の差を考慮する。

具体的には，土木学会マニュアルに示される 17 ケースの材料非線形解析を実施し，実験又はせん断耐力との差が最も大きい Case No． 7 の部材係数 1.13 を設定する（表 5 －11）。

表 5－10 考慮する安全係数の設定結果

安全係数		値	設定根拠
部材係数	$\gamma_{\mathrm{b} 1}$	1.13	別途実施する材料非線形解析により設定
	$\gamma_{\mathrm{b} ~ 2 ~}$	1.0	地震応答解析による層間変形角等より設定
構造物係数	γ_{i}	1.0	構造物の重要度は，基準地震動Ssにより評 価することで包絡されていると判断
構造解析係数	γ_{a}	1.05	各種文献より保守的に設定 材料係数γ_{m}

表 5－11 部材係数 $\gamma_{\mathrm{b} 1}$ の設定結果

Case No．	試験結果	解析結果	部材係数 （解析結果／実験結果） （2）／（1）	備考
	せん断耐力 （kN） （1）	せん断耐力 （kN） （2）		
1	475	422.8	0.89	
2	1087	1258.2	1.06	
3	324	356.4	1． 10	
4	294	308.7	1． 05	
5	581	510.3	0.88	
6	329	335.6	1． 02	
7	1587	1793.3	1.13	最大値
8	350	392.0	1． 12	
9	855	880.7	1． 03	
10	165	102． 3	0.62	
10	333	316.4	0.95	
12	127	100． 3	0． 79	
13	188	108.4	0.63	
14	163	107.4	0． 72	
15	273	177.5	0.65	
16	356	291.9	0.82	
17	432	246． 2	0.57	

5．2．2 鋼材の健全性に対する許容限界

鋼材を線形はり要素によりモデル化している部材の構造強度を有することの確認は，
「道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成14年3月）」 に基づき，表5－12に示す短期許容応力度とする。

表 5－12 鋼材の許容限界

鋼材	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SM490	局部座屈に対する許容応力度 σ ca 1	185	277

注記 $*: ~$ 道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成 14 年 3
月）により地震時の割り増し係数として 1.5 を考慮する。

鋼材の曲げ・軸力系の破壊に対する照査は，「道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成 14 年 3 月）」に基づき，軸方向力と曲げの組合せに対 して，（5．1）及び（5．2）に示す応力の照査及び座屈に対する安定の照査を行う。

ここに，
σ_{c} ：照査する断面に作用する軸方向力による圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bcy}}, \sigma_{\mathrm{bcz}}$ ：強軸及び弱軸まわりに作用する曲げモーメントによる曲げ圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{c} \text { a z }}$ ：弱軸まわりの許容軸方向圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\text {b a g y }} \quad \begin{aligned} & \text { ：局部座 } \\ & \left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{aligned}$
$\sigma_{\mathrm{b} \text { a o }}$ ：局部座屈を考慮しない許容曲げ圧縮応力度の上限値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
σ cal ：局部座屈に対する許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\text {eay }}, \sigma_{\text {eaz }}$ ：強軸及び弱軸まわりの許容オイラー座屈応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

$$
\begin{aligned}
& \sigma_{\text {eay }}=1,200,000 /\left(1 / \mathrm{r}_{\mathrm{y}}\right)^{2} \\
& \sigma_{\text {eaz }}=1,200,000 /\left(1 / \mathrm{r}_{\mathrm{z}}\right)^{2}
\end{aligned}
$$

L ：有効座屈長（mm）
r_{y}, r_{z} ：強軸及び弱軸まわりの断面二次半径（mm）

5．2．3 基礎地盤の支持性能に対する許容限界

基礎地盤の支持性能に対する耐震評価は，原子炉機器冷却海水配管ダクト（鋁直部）が海水ポンプ室に懸架され一体構造になっていることから，添付資料「VI－2－2－8 海水ポン プ室の耐震性についての計算書」により確認する。そのため，基礎地盤の支持性能に対す る許容限界は，添付資料「VI－2－2－8 海水ポンプ室の耐震性についての計算書」に基づき設定する。

6 評価結果

6．1 地震応答解析結果
地震応答解析結果として，曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査の うち最大照査値となる地震動•解析ケースの「作用荷重分布図」，曲げ・軸力系の破壊に対す る照査及びせん断破壊に対する照査で最大照査値となる地震動•解析ケースの「最大せん断ひ ずみ」を記載する。

6．1．1 解析ケースと照査値

耐震評価においては，「資料1 屋外重要土木構造物の耐震安全性評価について」のうち
「10．屋外重要土木構造物等の耐震評価における追加解析ケースの選定」に基づき，すべ ての基準地震動 S s に対して実施するケース（1）において，曲げ・軸力系の破壊及びせん断破壊の照査において，照査値が 0.5 を超えるすべての照査項目に対して，最も厳しい（許容限界に対する裕度が最も小さい）地震動を用いて，ケース（2）～④を実施する。

また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析を実施する。

断面（6）の評価結果については，別途示す。
（1）断面（1）
以下に断面（1）の曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査結果を示 す。なお，部材の評価位置を図 6－1 に示す。

図 6－1 評価位置図
a．曲げ・軸力系の破壊に対する照査
表 6－1 に曲げ・軸力系の破壊に対する照査の実施ケースと照査値を示す。
曲げ・軸力系の破壊に対する照査は，短期許容応力度を許容限界とする。なお，詳細 については，「6．3．1 曲げ・軸力系の破壊に対する評価結果」のうち「（1）断面①」 に示す。

曲げ・軸力系の破壊に対する照査値は，ばらつきを考慮しても，保守的な許容限界で ある短期許容応力度に対して 0.5 未満であり，要求機能を満足していると評価できる。

表 6－1 曲げ・軸力系の破壊に対する照査の実施ケースと照査値
（断面（1）：頂版）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0． 28			
	－＋	0． 27			
S s－D 2	＋＋	0.31	0.32	0． 27	0.35
	－＋	0． 29			
S s－D 3	＋＋	0． 23			
	－＋	0． 22			
S s－F 1	$++$	0． 24			
	－＋	0． 24			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0． 28			
	－＋	0． 28			
S s－F 3	＋＋	0． 25			
	－＋	0.24			
S s－N 1	$++$	0.26			
	－＋	0.31			

注記＊1：部材位置を図6－1に示す。
＊2：赤枠は，前述図 3－23 のフローに基づき，解析ケース（2）～④を実施する地震動の基本ケース①の照査値を示す。
b．せん断破壊に対する照査
表 6－2 にせん断破壊に対する照査の実施ケースと照査値を示す。
せん断破壊に対する照査は，短期許容応力度を許容限界とする。なお，詳細について は，「6．3．2 せん断破壊に対する評価結果」のうち「（1）断面（1）」に示す。

せん断破壊に対する照査値は，ばらつきを考慮しても，保守的な許容限界である短期許容応力度に対して 0.5 未満であり，要求機能を満足していると評価できる。

表6－2 せん断破壊に対する照査の実施ケースと照査値（断面（1）：頂版）

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0． 18			
	－＋	0． 18			
S s－D 2	＋＋	0.21	0． 23	0.21	0． 20
	－＋	0． 20			
S s－D 3	＋＋	0． 18			
	－＋	0． 20			
S s－F 1	＋＋	0.16			
	－＋	0． 16			
S s－F 2	＋＋	0.15			
	－＋	0． 18			
S s－F 3	＋＋	0.21			
	－＋	0． 18			
S s－N 1	＋＋	0． 20			
	－＋	0． 15			

注記 $* 1$ ：部材位置を図6－1 に示す。
（2）断面（2）～（5）
断面（2）～⑤）の曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査結果を示 す。なお，部材の評価位置を図6－2に示す。

注記＊：赤枠はCCb 工法を適用している部材を示す。断面（2）

断面（3）

断面（4）

断面（5）
注記＊：赤枠は CCb 工法を適用している部材を示す。

図6－2 評価部位
資料 5－148
a．曲げ・軸力系の破壊に対する照査（鉄筋コンクリート部材）
表 6－3 に曲げ・軸力系の破壊に対する照査（鉄筋コンクリート部材）の実施ケース と照査値を示す。曲げ・軸力系の破壊に対する照査（鉄筋コンクリート部材）は，限界 ひずみを許容限界とする。
表 6－4 に曲げ・軸力系の破壊に対する照査（鋼材）の実施ケースと照査値を示す。
曲げ・軸力系の破壊に対する照査（鋼材）は，短期許容応力度を許容限界とする。
なお，これらの詳細については，「6．3．1 曲げ・軸力系の破壊に対する評価結果」の らち「（2）断面（2）～⑤）」に示す。
鉄筋コンクリート部材の照査値は，ばらつきを考慮しても 0.93 であり，要求機能を満足していると評価できる。

鋼材の照査においては，ばらつきの考慮により照査値が基本ケースから最大 0.02 程度増加することを考慮しても，最大照査値が基本ケースの 0.63 であることは，全ての地震動に対して要求機能を満足していると評価できる。

表 6－3（1）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）：側壁（南北））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2，3 （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	$++$	0.76			
	－＋	0.73			
S s－D 2	$++$	0.75	0． 77	0.72	0． 73
	－＋	0.81		0.78	
S s－D 3	＋＋	0.69			
	－＋	0.71			
S s－F 1	$++$	0.62			
	－＋	0.65			
$S \mathrm{~s}-\mathrm{F} 2$	＋＋	0． 72			
	－＋	0.73			
$\mathrm{S} s$－F 3	＋＋	0.68			
	－＋	0.69			
S s－N 1	＋＋	0． 70			
	－＋	0.86	0． 80	0.93	0.81

注記＊1 ：部材位置を図 6－2 に示す。
＊2：照査値は，構造強度を有することに対する評価結果とSクラスの施設を支持 する機能に対する評価結果の厳しい方を記載。
＊3：赤枠は，前述図3－23 のフローに基づき，解析ケース（2）～（4）を実施する地震動の基本ケース（1）の照査値を示す。

表 6－3（2）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）：側壁（東西））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2 （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	$++$	0.63			
	－＋	0． 63			
S s－D 2	＋＋	0． 61	0． 62	0.58	0.55
	－＋	0． 60			
S s－D 3	$++$	0.55			
	－＋	0.54			
S s－F 1	$++$	0． 49			
	－＋	0． 45			
$\mathrm{S} s$－F 2	＋＋	0.54			
	－＋	0． 53			
S s－F 3	＋＋	0.55			
	－＋	0.57			
S s－N 1	$++$	0.50			
	－＋	0.54	0.54	0.57	0.49

注記 $* 1$ ：部材位置を図6－2に示す。
＊2：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持 する機能に対する評価結果の厳しい方を記載。

表 6－3（3）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）隔壁（南北））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2 （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.53			
	－＋	0． 59			
S s－D 2	$++$	0.52	0.51	0.54	0． 49
	－＋	0.58			
S s－D 3	$++$	0． 48			
	－＋	0． 49			
S s－F 1	$++$	0． 42			
	－＋	0． 39			
S s－F 2	$++$	0.51			
	－＋	0.48			
S s－F 3	$++$	0． 49			
	$-+$	0.57			
S s－N 1	＋＋	0.54			
	－＋	0． 45	0． 45	0． 47	0． 45

注記 $* 1$ ：部材位置を図6－2に示す。
＊2：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持 する機能に対する評価結果の厳しい方を記載。

表6－3（4）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）隔壁（東西））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2 （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$++$	0.52			
	－＋	0． 52			
S s－D 2	＋＋	0.53	0.54	0.51	0． 55
	－＋	0.52			
S s－D 3	＋＋	0． 46			
	－＋	0． 45			
S s－F 1	＋＋	0． 43			
	－＋	0． 45			
$\mathrm{S} s$－F 2	＋＋	0.51			
	－＋	0.50			
S s－F 3	＋＋	0.46			
	－＋	0.46			
S s－N 1	＋＋	0.46			
	－＋	0.53	0.52	0． 57	0.54

注記 $* 1$ ：部材位置を図6－2に示す。
＊2：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持 する機能に対する評価結果の厳しい方を記載。

表 6－4 曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鋼材）
（断面（2）～（4））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊2 （鋼材）			
		（1）	（2）	（3）	（4）
$\mathrm{St}-\mathrm{D} 1$	$++$	0.53			
	－＋	0.63			
S s－D 2	＋＋	0.59	0.58	0.61	0.55
	－＋	0.61			
S s－D 3	＋＋	0.57			
	－＋	0.61			
S s－F 1	＋＋	0.53			
	－＋	0． 43			
$\mathrm{S} s$－F 2	＋＋	0.55			
	－＋	0． 48			
Ss－F 3	＋＋	0.61			
	－＋	0.63			
S s－N 1	＋＋	0.61			
	－＋	0.59	0.41	0． 43	0.33

注記 $* 1$ ：部材位置を図6－2に示す。
注記 $* 2$ ：照査値は，応力の照査と座屈に対する安定の照査のらち厳しい方を記載。
b．せん断破壊に対する照査
表6－5にせん断破壊に対する照査の実施ケースと照査値を示す。
せん断破壊に対する照査は，せん断耐力を許容限界とする。せん断破壊に対する照査に用いるせん断耐力は，せん断耐力式により算定しているが，照査値が 1.0 を超え るケースについては，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析を実施することにより，より高い精度でせん断耐力を求め照査 を行っている。 材料非線形解析によりせん断耐力を求めた照査値については，せん断耐力式によるせん断耐力を併記する。
なお，詳細については，「 6．3．2 せん断破壊に対する評価結果」のうち「（2）断面（2）～⑤ 」に示す。

鉄筋コンクリート部材の照査値は，より高い精度でせん断耐力を評価する材料非線形解析による照査を用い，ばらつきを考慮しても 0.90 であり，要求機能を満足している と評価できる。

表6－5（1）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～⑤：側壁（南北＊1））＊2

解析ケース地震動		せん断破壊に対する照査＊＊			
		（1）	（2）	（3）	（4）
S s－D 1	＋+	$\begin{aligned} & 0.43^{* 3} \\ & (1.56) \\ & 【 0.46 】 \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.55^{* 3} \\ & (1.83) \\ & 【 0.42 】 \end{aligned}$			
S s－D 2	＋＋	$\begin{aligned} & 0.59 * 3 \\ & (1.04) \\ & 【 0.42 】 \end{aligned}$	$\begin{aligned} & 0.64^{* 3} \\ & (1.14) \\ & 【 0.48 】 \end{aligned}$	$\begin{aligned} & 0.54^{* 3} \\ & (1.76) \\ & 【 0.38 】 \end{aligned}$	$\begin{aligned} & 0.57 * 3 \\ & (1.66) \\ & 【 0.41 】 \end{aligned}$
	－＋	$\begin{aligned} & 0.53^{* 3} \\ & (1.78) \\ & 【 0.55 】 \end{aligned}$			
$\mathrm{S} s-\mathrm{D} 3$	＋＋	$\begin{aligned} & \hline 0.46^{* 3} \\ & (1.63) \\ & 【 0.46 】 \end{aligned}$			
	－＋	$\begin{aligned} & 0.53^{* 3} \\ & (1.74) \\ & 【 0.44 】 \end{aligned}$			
S s－F 1	＋＋	$\begin{aligned} & 0.44^{* 3} \\ & (1.56) \\ & 【 0.35 】 \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.43^{* 3} \\ & (1.05) \\ & 【 0.41 】 \end{aligned}$			

注記＊1：図 6－16に示す側壁（南北） 512 に CCb 工法を適用する。
＊2：部材位置を図6－2に示す。
＊3：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。
＊ $4: \mathrm{CCb}$ 工法を適用する部材における最大照査値を【】内に示す。
－凡例
（ ）：せん断耐力式による照査値
【】：CCb 工法を適用する部材における最大照査値

表6－5（2）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～（5）：側壁（南北＊1））＊2

解析ケース 地震動		せん断破壊に対する照査＊4			
		（1）	（2）	（3）	（4）
Ss－F 2	＋＋	$\begin{aligned} & 0.45^{* 3} \\ & (1.59) \\ & \text { 【0.36】 } \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.40^{* 3} \\ & (1.45) \\ & \text { [0.38】 } \end{aligned}$			
S s－F 3	＋＋	$\begin{aligned} & \hline 0.39 * 3 \\ & (1.42) \\ & \text { 【0.46】 } \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.51^{* 3} \\ & (1.70) \\ & \text { 【0.44】 } \end{aligned}$			
S s -N 1	＋＋	$\begin{aligned} & 0.57 * 3 \\ & (1.88) \\ & \text { 【0.37】 } \end{aligned}$			
	－＋	$\begin{aligned} & 0.61^{* 3} \\ & (1.24) \\ & \text { 【0.60】 } \end{aligned}$	$\begin{aligned} & 0.62^{* 3} \\ & (1.28) \\ & \lfloor 0.49 】 \end{aligned}$	$\begin{aligned} & 0.65 * 3 \\ & (1.35) \\ & \lfloor 0.63 】 \end{aligned}$	$\begin{aligned} & 0.50^{* 3} \\ & (1.64) \\ & \text { 【0.57】 } \end{aligned}$

注記＊1：図 6－16 に示す側壁（南北）512に にCb 工法を適用する。
＊2：部材位置を図6－2 に示す。
＊3：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。
＊ 4 ：CCb 工法を適用する部材における最大照查値を【】内に示す。
－凡例
（ ）：せん断耐力式による照査値
【】：CCb 工法を適用する部材における最大照査値

表6－5（3）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）：側壁（東西＊1））

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.69			
	－＋	0． 71			
S s－D 2	＋＋	0.70	0.71	0． 70	0． 71
	－＋	0.69			
S s－D 3	＋＋	0． 62			
	－＋	0.65			
S s－F 1	＋＋	0． 60			
	－＋	0.59			
S s－F 2	＋＋	0.69			
	$-+$	0.66			
S s－F 3	＋＋	0.60			
	－＋	0.64			
S s－N 1	＋＋	0.71			
	$-+$	0.67	0.67	0.71	0.67

注：せん断耐力式による照査値を示す。
注記＊1 ：側壁（東西）は，CCb 工法を適用していない。
＊2：部材位置を図6－2に示す。

表6－5（4）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）隔壁（南北＊1））＊2

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	$\begin{gathered} 0.43^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.50^{* 3} \\ (-) \end{gathered}$			
S s－D 2	＋+	$\begin{gathered} 0.47^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.46^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.48^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.42^{* 3} \\ (-) \end{gathered}$
	－＋	$\begin{gathered} 0.44^{* 3} \\ (-) \end{gathered}$			
S s－D 3	＋＋	$\begin{gathered} 0.41^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.43^{* 3} \\ (-) \end{gathered}$			
S s－F1	＋＋	$\begin{gathered} 0.37^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.33^{* 3} \\ (-) \end{gathered}$			
S s－F 2	＋＋	$\begin{gathered} 0.41^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.36^{* 3} \\ (-) \end{gathered}$			
Ss－F 3	＋＋	$\begin{gathered} 0.42^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.48^{* 3} \\ (-) \end{gathered}$			
S s－N1	＋＋	$\begin{gathered} 0.42^{* 3} \\ (-) \end{gathered}$			
	－＋	$\begin{gathered} 0.35^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.34^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.33^{* 3} \\ (-) \end{gathered}$	$\begin{gathered} 0.30^{* 3} \\ (-) \end{gathered}$

注記＊1：隔壁（南北）は，CCb 工法を適用していない。
＊2：部材位置を図6－2に示す。
＊3：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。「一」は，せん断補強筋 が無い部材における引張軸力の発生を示す。
$\left[\begin{array}{c}\text { 凡例 } \\ (\quad)\end{array}\right.$ せん断耐力式による照査値
資料 5－159

表 6－5（5）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材】 （断面（2）～⑤：隔壁（東西＊1））＊2

解析ケース 地震動		せん断破壊に対する照査＊3，5			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	$\begin{aligned} & 0.64^{* 4} \\ & (1.27) \\ & 【 0.54 】 \end{aligned}$			
	－＋	$\begin{aligned} & 0.75^{* 4} \\ & (1.27) \\ & 【 0.50 】 \end{aligned}$			
S s－D 2	＋＋	$\begin{aligned} & 0.77^{* 4} \\ & (1.30) \\ & 【 0.56 】 \end{aligned}$	$\begin{aligned} & 0.80^{* 4} \\ & (1.33) \\ & \lfloor 0.56 】 \end{aligned}$	$\begin{aligned} & 0.74^{* 4} \\ & (1.23) \\ & 【 0.51 】 \end{aligned}$	$\begin{aligned} & 0.90^{* 4} \\ & (1.42) \\ & \lfloor 0.71 】 \end{aligned}$
	－＋	$\begin{aligned} & 0.75^{* 4} \\ & (1.27) \\ & 【 0.52 】 \end{aligned}$			$\begin{gathered} 0.86^{* 4} \\ (1.35) \end{gathered}$
S s－D 3	＋＋	$\begin{aligned} & \hline 0.56 * 4 \\ & (1.23) \\ & 【 0.45 】 \end{aligned}$			
	－＋	$\begin{aligned} & \hline 0.58^{* 4} \\ & (1.24) \\ & 【 0.45 】 \end{aligned}$			
S s－F 1	＋＋	$\begin{aligned} & 0.53^{* 4} \\ & (1.13) \\ & 【 0.46 】 \end{aligned}$			
	－＋	$\begin{aligned} & 0.52^{* 4} \\ & (1.15) \\ & 【 0.45 】 \end{aligned}$			

注記＊1：図6－10示す隔壁（東西） 233 に CCb 工法を適用する。
＊2：部材位置を図6－2に示す。
＊ 3 ：赤枠は，前述図 3－23 のフローに基づき，解析ケース（2）～（4）を実施する地震動の基本ケース（1）の照査値を示す。
＊4：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。
＊5：CCb 工法を適用する部材における最大照査値を【】内に示す。

－凡例

（ ）：せん断耐力式による照査値
【】：CCb 工法を適用する部材における最大照査値

表6－5（6）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材】 （断面（2）～⑤：隔壁（東西＊1））＊2

解析ケース 地震動		せん断破壊に対する照査＊4			
		（1）	（2）	（3）	（4）
S s－F 2	＋＋	$\begin{aligned} & 0.68^{* 3} \\ & (1.10) \\ & 【 0.49 】 \end{aligned}$			
	－＋	$\begin{aligned} & 0.66 * 3 \\ & (1.10) \\ & 【 0.48 】 \end{aligned}$			
Ss－F 3	＋+	$\begin{aligned} & 0.65^{* 3} \\ & (1.15) \\ & 【 0.47 】 \end{aligned}$			
	$-+$	$\begin{aligned} & 0.57 * 3 \\ & (1.28) \\ & 【 0.47 】 \end{aligned}$			
S s－N 1	＋＋	$\begin{aligned} & 0.67 * 3 \\ & (1.35) \\ & 【 0.47 】 \end{aligned}$			
	－＋	$\begin{aligned} & 0.70^{* 3} \\ & (1.19) \\ & 【 0.53 】 \end{aligned}$	$\begin{aligned} & 0.71^{* 3} \\ & (1.21) \\ & 【 0.55 】 \end{aligned}$	$\begin{aligned} & 0.74^{* 3} \\ & (1.24) \\ & 【 0.55 】 \end{aligned}$	$\begin{aligned} & 0.83^{* 3} \\ & (1.33) \\ & \lfloor 0.63 】 \end{aligned}$

注記＊1：図 6－10に示す隔壁（東西）233に CCb 工法を適用する。
＊2：部材位置を図6－2 に示す。
＊3：材料非線形解析によるせん断耐力を用いた照査値を示す。なお，（ ）内に記載の数値は，せん断耐力式による照査値を示す。
＊ $4: \mathrm{CCb}$ 工法を適用する部材における最大照査値を【】内に示す。
－凡例
（ ）：せん断耐力式による照査値
【】：CCb 工法を適用する部材における最大照査値

6．1．2 作用荷重分布図

構造部材の曲げ・軸力系の破壊及びせん断破壊に対する照査のうち，照査値が最大とな る曲げ・軸力系の破壊に対する照査の地震動•解析ケースにおける作用荷重分布図を図 6 －1に示す。

直応力

南

北

せん断応力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

せん断応力

図 6－1（1）作用荷重分布図（直応力及びせん断応力）
（断面（5），解析ケース（3），S s－N $1(-+)$ ）

北

設計震度（NS）

+ 側
設計震度一

一側
設計震度
相

－側	$\begin{array}{l}\text { 設計震度 }\end{array}$
$\begin{array}{l}\text { 設計 } \\ \text { 震度－}\end{array}$	

構造スケール ${ }^{0}{ }^{1}$（m）

設計震度（EW）

$\frac{\substack{+ \text { 側 } \\ \text { 設計震度 } \uparrow}}{\text { 一側 }}$
一側
計震度 \downarrow

図 6－1（2）作用荷重分布図（設計震度分布）
（断面（5），解析ケース（3），S s－N $1(-+))$

6．1．3 最大せん断ひずみ分布

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示す解析 ケースについて地盤に発生した最大せん断ひずみを確認する。最大照査値を示す解析ケー スの一覧を表6－6に，最大せん断ひずみ分布図を図6－2に示す。

表 6－6 最大照査値を示す解析ケースの一覧

評価項目	
曲げ・軸力系の破壊に対する照査	せん断破壊に対する照査
ケース③	ケース（4）
S s－N 1 $\quad(-+)$	$\mathrm{S} \mathrm{s}-\mathrm{D} 2 \quad(++)$

注：耐震評価における解析ケース一覧

解析ケース	ケース①	ケース（2）	ケース③	ケース④
	基本ケース	地盤物性のばらつ き（ $+1 \sigma$ ）を考慮した解析ケース	地盤物性のばらつ き（－1 \quad ）を考慮した解析ケース	材料物性（コンク リート）に実強度 を考慮した解析ケ ース
地盤物性	平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性	設計基準強度	設計基準強度	設計基準強度	実強度に基づく 圧縮強度

（a）全体図

（b）構造物周辺拡大図

図 6－2（1）最大せん断ひずみ分布図（曲げ・軸力系の破壊） （A－A 断面 解析ケース（3），地震動S s－N $1(-+))$

（a）全体図

（b）構造物周辺拡大図

図 6－2（2）最大せん断ひずみ分布図（せん断破壊）
（A－A 断面 解析ケース（4），地震動 S s－D $2(++)$ ）

（a）全体図

（b）構造物周辺拡大図

図 6－2（3）最大せん断ひずみ分布図（曲げ・軸力系の破壊）
（B－B 断面 解析ケース③）地震動 S s－N1 $(-+)$ ）

（a）全体図

（b）構造物周辺拡大図

図 6－2（4）最大せん断ひずみ分布図（せん断破壊）
（B－B 断面 解析ケース（4），地震動 S s－D $2(++))$

6．2 二次元構造解析結果

6．2．1 曲げ・軸力系の破壊に対する照査
（1）断面（1）
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査について，各解析ケースのう ち最も厳しい照査値となる結果を表6－7 及び表6－8に示す。また，最大照査値となる解析ケースの断面力分布図を図6－3～図6－7 に示す。

なお，断面（1）と断面（2）の壁部材は壁厚及び配筋が同一であり，断面（1）は頂版を有するた め断面（2）よりも構造的に有利となることから，断面（1）における壁部材の照査は断面（1）と断面（2）の荷重を包絡して照査を行う断面（2）で代表とし，断面（1）では面部材である頂版の照査 を行う。

表6－7 曲げ・軸力系の破壊に対する最大照査値（コンクリート）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げモーメ } \\ \text { ント } \\ \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 $\sigma^{\prime}{ }^{\text {c }}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma^{\prime} \quad \text { ca }$ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c} \end{gathered}$
頂版	101	（1）	S s－ $11(-+)$	17	－1894	2.5	11.7	0.22

注記＊：評価位置は図6－8に示す。

表6－8 曲げ・軸力系の破壊に対する最大照査値（鉄筋）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げモーメ } \\ \text { ント } \\ \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 σ s $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}} \end{gathered}$
頂版	101	（4）	S s－D $2(++)$	2	664	100	294	0.35

注記＊：評価位置は図6－8に示す。

図 6－3 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－4 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント（kN•m／m）： M_{y} ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－5 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図

$$
\left(\text { 軸力 }(k N / m): N_{x}\right)
$$

（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－6 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （軸力（kN／m）： N_{y} ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－7 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （面内せん断力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{x}}$ y）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図6－8 評価位置図（断面（1）
（2）断面（2）～（5）
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査について，各解析ケースのう ち最も厳しい照査値となる結果を表6－9～表6－26に示す。また，各断面で最大照査値と なる解析ケースの断面力分布図を図6－9，図6－11，図6－13 及び図6－15に示す。

表 6－9 曲げ・軸力系の破壊に対する最大照査値
（断面（2），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	212	（1）	S s－D $2(-+)$	362μ	10000μ	0.04
側壁（東西）	222	（1）	S s－D $2(++)$	261μ	10000μ	0． 03
隔壁（南北）	242	（1）	S s－D $1(-+)$	553μ	10000μ	0． 06
隔壁（東西）	233	（1）	S s－D $2(++)$	683μ	10000μ	0． 07

注記＊1：評価位置は図6－10に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 6－10 曲げ・軸力系の破壊に対する最大照査値
（断面（2），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	212	（1）	S s－D $2(-+)$	362μ	2000μ	0． 19
側壁（東西）	222	（1）	S s－D $2(++)$	261μ	2000μ	0． 14
隔壁（南北）	242	（1）	S s－ $11(-+)$	553μ	2000μ	0． 28
隔壁（東西）	233	（1）	S s－D $2(++)$	683μ	2000μ	0.35

注記＊1：評価位置は図6－10に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－11 曲げ・軸力系の破壊に対する最大照査値（断面（2），主筋ひずみ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	211	（1）	S s - N $1 \quad(++)$	847μ	1725μ	0.50
側壁（東西）	222	（3）	S s - N $1(-+)$	647μ	1725μ	0.38
隔壁（南北）	242	（1）	S s $-\mathrm{D} 1(-+)$	1017 m	1725μ	0.59
隔壁（東西）	238	（4）	S s - N $1(-+)$	577μ	1725μ	0.34

注記 $* 1$ ：評価位置は図 6－10 に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 6－12 曲げ・軸力系の破壊に対する最大照查値（断面（2），鋼材：応力の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 応力度 σ c （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 σ_{cal} （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}} \end{gathered}$
鋼材	251	（1）	Ss－F $3(-+)$	155	277	0.56

注記＊：評価位置は図 6－10に示す。

表 6－13 曲げ・軸力系の破壊に対する最大照査値（断面（2），鋼材：座屈に対する安定の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{b}} \\ { }_{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\sigma_{\mathrm{ca}}, \sigma$ ba （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	251	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (-+) \end{gathered}$	軸力	150	252	0.60	0.63
				強軸曲げ	1	247	0.01	
				弱軸曲げ	3	246	0.02	

注記＊：評価位置は図6－10に示す。

数値：評価位置における断面力
曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

数値：評価位置における断面力
軸力（kN）（＋：引張，- ：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－9 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（2），隔壁（南北），解析ケース（1），S s－D $1(-+)$ ）

注記＊：赤枠はCCb 工法を適用している部材を示す。

図 6－10 評価位置図（断面（2））

表 6－14 曲げ・軸力系の破壊に対する最大照査値
（断面（3），コンクリートの圧縮ひずみ：限界ひずみ 10000 н）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon$ R
側壁（南北）	314	（2）	S s－D $2(++)$	524μ	10000μ	0.06
側壁（東西）	322	（2）	S s－D $2(++)$	313μ	10000μ	0.04
隔壁（南北）	342	（2）	S s－D $2(++)$	441μ	10000μ	0.05
隔壁（東西）	336	（2）	S s－D $2(++)$	712μ	10000μ	0.08

注記＊1：評価位置は図6－12 に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－15 曲げ・軸力系の破壊に対する最大照査値
（断面（3），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	314	（2）	S s－D $2(++)$	524μ	2000μ	0.27
側壁（東西）	322	（2）	S s－D $2(++)$	313μ	2000μ	0.16
隔壁（南北）	342	（2）	S s－D $2(++)$	441μ	2000μ	0.23
隔壁（東西）	336	（2）	Ss－D $2(++)$	712μ	2000μ	0.36

注記 $* 1$ ：評価位置は図 6－12に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－16 曲げ・軸力系の破壊に対する最大照査値（断面（3），主筋ひずみ）

評価位置＊${ }^{*}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 $\begin{gathered} \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	311	（2）	S s－D $2(++)$	873μ	1725μ	0.51
側壁（東西）	322	（1）	S s－D $1 \quad(++)$	834μ	1725μ	0． 49
隔壁（南北）	343	（1）	S s－D $2(++)$	656μ	1725μ	0． 39
隔壁（東西）	338	（1）	S s－D $1 \quad(++)$	632μ	1725μ	0.37

注記 $* 1$ ：評価位置は図6－12に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－17 曲げ・軸力系の破壊に対する最大照査値（断面（3）鋼材：応力の照査）

評価位置＊			解析 ケース	地震動	発生 応力度 σ 。 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{ca} \cdot 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}} \end{gathered}$
断面（3）	鋼材	351	（2）	S s－D $2(++)$	97	277	0． 36

注記＊：評価位置は図6－12に示す。

表 6－18 曲げ・軸力系の破壊に対する最大照査値（断面③，鋼材：座屈に対する安定の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	応力度区分	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma_{c}, \quad \sigma_{b} \\ \quad c \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ с а,$\quad \sigma$ b a （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	351	（2）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	軸力	91	242	0． 38	0． 41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0． 02	

注記＊：評価位置は図 6－12に示す。

数値：評価位置における断面力
曲げモーメント（kN•m）

数値：評価位置における断面力
軸力（kN）（＋：引張，－：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－11 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（3），側壁（南北），解析ケース（2），S s－D $2(++)$ ）

図 6－12 評価位置図（断面（3）

表 6－19 曲げ・軸力系の破壊に対する最大照査値
（断面（4），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\text {R }} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	414	（2）	S s－D $2(++)$	1022μ	10000μ	0.11
側壁（東西）	422	（2）	S s－D $2(++)$	437μ	10000μ	0.05
隔壁（南北）	442	（1）	S s－N $1 \quad(++)$	268μ	10000μ	0.03
隔壁（東西）	437	（2）	S s－D $2(++)$	913μ	10000μ	0.10

注記＊1：評価位置は図6－14に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－20 曲げ・軸力系の破壊に対する最大照査値
（断面（4），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	414	（2）	S s－D $2(++)$	1022μ	2000μ	0.52
側壁（東西）	422	（2）	S s－D $2(++)$	437μ	2000μ	0． 22
隔壁（南北）	442	（1）	S s - N $1(++)$	268 н	2000μ	0． 14
隔壁（東西）	437	（2）	Ss－D $2(++)$	913μ	2000μ	0． 46

注記 $* 1$ ：評価位置は図 6－14に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－21 曲げ・軸力系の破壊に対する最大照査値（断面（4），主筋ひずみ）

評価位置＊${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ＊2 ε d	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	416	（3）	S s－N $1(-+)$	1345 ／	1725 m	0． 78
側壁（東西）	422	（1）	S s－D $1 \quad(++)$	1077 ／	1725μ	0.63
隔壁（南北）	442	（1）	S s－D $1 \quad(-+)$	939μ	1725μ	0.55
隔壁（東西）	437	（1）	S s－D $1 \quad(-+)$	880μ	1725μ	0.52

注記＊1：評価位置は図6－14に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－22 曲げ・軸力系の破壊に対する最大照査値（断面（4），鋼材：応力の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 応力度 σ 。 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{c} \text { a } 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}} \end{gathered}$
鋼材	451	（2）	S s－D $2(++)$	88	277	0． 32

注記＊：評価位置は図6－14に示す。

表6－23曲げ・軸力系の破壊に対する最大照査値（断面（4），鋼材：座屈に対する安定の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	応力度 区分	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma_{c}, \quad \sigma_{b} \\ { }_{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \quad \sigma \\ \mathrm{~b}_{\mathrm{a}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	451	（2）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	軸力	69	190	0． 37	0． 45
				強軸曲げ	1	190	0.01	
				弱軸曲げ	13	210	0.07	

注記＊：評価位置は図6－14に示す。

図 6－13 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（4），側壁（南北），解析ケース（3），S s－N $1 \quad(-+)$ ）

図 6－14 評価位置図（断面（4）

表6－24 曲げ・軸力系の破壊に対する最大照査値
（断面（5），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\text {R }} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	512	（3）	S s－N $1(-+)$	600μ	10000μ	0.06
側壁（東西）	522	（3）	S s－N $1(-+)$	357μ	10000μ	0． 04
隔壁（南北）	542	（2）	S s－D $2(++)$	186μ	10000μ	0． 02
隔壁（東西）	536	（3）	S s - N $1(-+)$	805μ	10000μ	0． 09

注記 $* 1$ ：評価位置は図6－16に示す。
＊2：照查用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－25 曲げ・軸力系の破壊に対する最大照査値
（断面（5），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ }{ }^{* 2} \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	512	（3）	S s - N $1(-+)$	600μ	2000μ	0.30
側壁（東西）	522	（3）	S s - N $1(-+)$	357 ¢	2000μ	0． 18
隔壁（南北）	542	（2）	S s－D $2(++)$	186μ	2000μ	0． 10
隔壁（東西）	536	（3）	S s - N $1(-+)$	805μ	2000μ	0.41

注記 $* 1$ ：評価位置は図 6－16に示す。
＊2：照查用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma_{\text {a }}$

表6－26 曲げ・軸力系の破壊に対する最大照査値（断面（5），主筋ひずみ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon$ R
側壁（南北）	512	（3）	S s - N $1(-+)$	1596μ	1725μ	0.93
側壁（東西）	522	（2）	S s－D $2(++)$	751μ	1725μ	0． 44
隔壁（南北）	542	（1）	S s $-\mathrm{F} 2(-+)$	702μ	1725μ	0． 41
隔壁（東西）	536	（3）	S s - N $1(-+)$	981μ	1725μ	0.57

注記 $* 1$ ：評価位置は図6－16に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

数値：評価位置における断面力

> 曲げモーメント(kN•m)

数値：評価位置における断面力軸力（kN）（＋：引張，- ：圧縮）

数値：評価位置における断面力 せん断力（kN）

図 6－15 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（5），側壁（南北），解析ケース（3），S s－N $1(-+)$ ）

注記＊：赤枠は CCb 工法を適用している部材を示す。

図 6－16 評価位置図（断面（5））

6．2．2 せん断破壊に対する照査

（1）断面（1）
鉄筋コンクリート部材のせん断破壊に対する照査について，各解析ケースのうち最も厳 しい照査値となる結果を表6－27に示す。また，最大照査値となる解析ケースの断面力分布図を図6－17～図6－18に示す。

なお，断面（1）と断面（2）の壁部材は壁厚及び配筋が同一であり，断面（1）は頂版を有するた め断面（2）よりも構造的に有利となることから，断面（1）における壁部材の照査は断面（1）と断面（2）の荷重を包絡して照査を行う断面（2）で代表とし，断面（1）では面部材である頂版の照査 を行う。

表 6－27 せん断破壊に対する照査

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 （kN／m）	発生 応力度 τ d （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \tau_{\mathrm{a} 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{\mathrm{d}} / \tau_{\mathrm{a}}$
頂版	101	（2）	S s－D $2(++)$	－67	0.14	0． 63	0． 23

注記＊：評価位置は図6－8に示す。

図6－17 せん断破壊に対する照査における照査値最大時の断面力分布図 （せん断力 $(\mathrm{kN} / \mathrm{m}): \mathrm{Q}_{\mathrm{x}}$ ）
（頂版，解析ケース（2），S s－D $2(++)$ ）

図 6－18 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（頂版，解析ケース（2），S s－D $2(++)$ ）
（2）断面（2）～（5）
鉄筋コンクリート部材のせん断破壊に対する照査について，各解析ケースのうち最も厳 しい照査値となる結果を表6－28～表6－31に示す。また，各断面で最大照査値となる解析ケースの断面力分布図を図6－19～図6－22 に示す。

表 6－28 せん断破壊に対する最大照査値（断面（2））

評価位置＊${ }^{*}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}$ yd
側壁（南北）	216	（4）	S s－D $2(++)$	660	702	0.95
側壁（東西）	221	（4）	S s－D $2(++)$	5395	7984	0.68
隔壁（南北）	242	（1）	S s D D $1(-+)$	51． 383	103．673＊3	0.50
隔壁（東西）	238	（4）	S s－D $2(++)$	829	$1649 * 3$	0.51

注記＊1：評価位置は図6－10に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

数値：評価位置における断面力

数値：評価位置における断面力
軸力（kN）（＋：引張，- ：圧縮）

数値：評価位置における断面力 せん断力（kN）

図 6－19 せん断破壊に対する照査値最大時の断面力図
（断面（2），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表6－29 せん断破壊に対する最大照査値（断面（3））

評価位置＊${ }^{*}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}$ y d
側壁（南北）	313	（2）	S s－D $2(++)$	249	$436 * 3$	0.58
側壁（東西）	321	（4）	S s－D $2(++)$	6309	8989	0.71
隔壁（南北）	342	（2）	S s－D $2(++)$	2． 154	5． $811^{* 3}$	0.38
隔壁（東西）	333	（4）	S s－D $2(++)$	502	563＊3	0.90

注記＊1：評価位置は図6－12に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊ $3:$ 材料非線形解析によるせん断耐力

数値：評価位置における断面力
曲げモーメント（kN•m）

数値：評価位置における断面力
せん断力（kN）

図 6－20 せん断破壊に対する照査値最大時の断面力図
（断面（3），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表 6－30 せん断破壊に対する最大照査値（断面（4））

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}$ yd
側壁（南北）	416	（3）	S s - N $1(-+)$	969	1507＊3	0.65
側壁（東西）	422	（4）	S s－D $2(++)$	5825	8217	0.71
隔壁（南北）	442	（1）	S s - N $1(++)$	191	695	0． 28
隔壁（東西）	434	（4）	S s－D $2(++)$	622	824＊3	0.76

注記＊1：評価位置は図6－14に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊3：材料非線形解析によるせん断耐力

数値：評価位置における断面力
曲げモーメント（kN•m）

数値：評価位置における断面力
軸力 $(\mathrm{kN})(+$ ：引張，- ：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－21 せん断破壊に対する照査値最大時の断面力図
（断面（4），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表 6－31 せん断破壊に対する最大照査値（断面（5））

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}$ yd
側壁（南北）	513	（4）	S s－N $1(-+)$	1054	1475	0． 72
側壁（東西）	522	（3）	S s - N $1(-+)$	5716	8621	0.67
隔壁（南北）	542	（1）	S s－F $2(-+)$	105	668	0.16
隔壁（東西）	537	（4）	S s－D $2(++)$	1199	2088＊3	0.58

注記＊1：評価位置は図6－16に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊ $3:$ 材料非線形解析によるせん断耐力

図 6－22 せん断破壊に対する照査値最大時の断面力図
（断面（5），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

6．3 構造部材の健全性に対する評価結果

6．3．1 曲げ・軸力系の破壊に対する評価結果
（1）断面（1）
構造強度を有することの確認，止水機能を損なわないこと及びSクラスの施設を支持す る機能を損なわないことの確認における曲げ・軸力系の破壊に対する評価結果を表6－32及び表 6－33に示す。

同表のとおり，全ケースにおいて発生応力度は短期許容応力度を下回ることを確認し た。

表6－32 曲げ・軸力系の破壊に対する評価結果（コンクリート）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生応力度 $\begin{gathered} \sigma^{\prime} \quad \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\sigma^{\prime} \quad \text { ca }$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)_{\mathrm{R}}$	照査値 σ＇ $\sigma^{\prime}{ }_{\mathrm{ca}}$
（1）	S s－D 1	＋＋	頂版	101	2.1	11.7	0.18
		－＋			2.5	11.7	0． 22
	S s－D 2	＋＋	頂版	101	2.4	11.7	0.21
		－＋			2.4	11.7	0.21
	S s－D 3	＋＋	頂版	101	2.0	11.7	0.18
		－＋			2.0	11.7	0.18
	S s－F1	＋＋	頂版	101	1.7	11.7	0． 15
		－＋			1． 6	11.7	0.14
	S s－F 2	$++$	頂版	101	1.9	11.7	0.17
		－＋			1． 7	11.7	0.15
	S s－F 3	＋＋	頂版	101	2． 3	11.7	0.20
		－＋			2.2	11.7	0.19
	S $s-\mathrm{N}^{\prime}$	＋＋	頂版	101	1.9	11.7	0.17
		－＋			1． 8	11.7	0.16
（2）	S s－D 2	＋＋	頂版	101	2.3	11.7	0.20
（3）	S s－D 2	$++$	頂版	101	2.5	11.7	0.22
（4）	S s－D 2	＋＋	頂版	101	2.4	11.7	0.21

注記＊：評価位置は図6－23に示す。

表 6－33 曲げ・軸力系の破壊に対する評価結果（鉄筋）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生 応力度 σ s $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\sigma_{\mathrm{s}} / \sigma$
（1）	S s－D 1	＋＋	頂版	101	81	294	0． 28
		－＋			77	294	0.27
	S s－D 2	＋＋	頂版	101	90	294	0.31
		－＋			85	294	0.29
	S s－D 3	＋＋	頂版	101	66	294	0.23
		－＋			64	294	0.22
	S s－F1	＋＋	頂版	101	68	294	0.24
		－＋			70	294	0.24
	S s－F 2	＋＋	頂版	101	80	294	0.28
		－＋			80	294	0． 28
	S s－F 3	＋＋	頂版	101	71	294	0.25
		－＋			70	294	0． 24
	S s -N 1	＋＋	頂版	101	74	294	0.26
		－＋			89	294	0.31
（2）	S s－D 2	$++$	頂版	101	92	294	0.32
（3）	S s－D 2	＋＋	頂版	101	78	294	0.27
（4）	S s－D 2	＋＋	頂版	101	100	294	0.35

注記＊：評価位置は図 6－23に示す。

図 6－23 評価位置図（断面（1）
（2）断面（2）～（5）
構造強度を有することの確認における曲げ・軸力系の破壊に対する評価結果を表6－34 ～表6－37に示す。また，Sクラスの施設を支持する機能を損なわないことの確認におけ る曲げ・軸力系の破壊に対する評価結果を表6－38～表6－41 に示す。

表6－34～表6－37のとおり，コンクリートの圧縮縁ひずみが，全ケースにおいて許容限界（コンクリートの圧縮縁ひずみ： 10000μ ）を下回ることを確認した。

表 6－38～表6－41 のとおり，S クラスの施設を支持する機能を有する部材におけるコ ンクリートの圧縮ひずみ及び主筋ひずみが，全ケースにおいて許容限界（コンクリートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ）を下回ることを確認した。

また，断面（2）及び断面（5）について，CCb 工法を適用する箇所に発生するひずみは，部材降伏に相当する限界ひずみ（コンクリートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ） に至っておらず，CCb 工法の適用範囲内であることを確認した。

表6－34（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	$++$	側壁（南北）	212	317μ	10000μ	0.04
			側壁（東西）	222	260μ	10000μ	0.03
			隔壁（南北）	242	494μ	10000μ	0.05
			隔壁（東西）	233	641μ	10000μ	0.07
			側壁（南北）	212	338μ	10000μ	0.04
			側壁（東西）	222	246μ	10000μ	0.03
			隔壁（南北）	242	553μ	10000μ	0.06
			隔壁（東西）	233	647μ	10000μ	0.07
			側壁（南北）	212	335μ	10000μ	0.04
			側壁（東西）	222	261μ	10000μ	0.03
			隔壁（南北）	242	544μ	10000μ	0.06
	S		隔壁（東西）	233	683μ	10000μ	0.07
	S 5 D 2		側壁（南北）	212	362 н	10000μ	0.04
			側壁（東西）	222	250μ	10000μ	0.03
		－	隔壁（南北）	242	512μ	10000μ	0.06
			隔壁（東西）	233	656μ	10000μ	0.07
	S s－D 3	＋＋	側壁（南北）	212	306μ	10000μ	0.04
			側壁（東西）	222	226μ	10000μ	0.03
			隔壁（南北）	242	471μ	10000μ	0.05
			隔壁（東西）	233	583μ	10000μ	0.06
		$-+$	側壁（南北）	212	329 н	10000μ	0.04
			側壁（東西）	222	238μ	10000μ	0.03
			隔壁（南北）	242	469μ	10000μ	0.05
			隔壁（東西）	233	594μ	10000μ	0.06

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－34（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

注記 $~$ 1：評価位置は図 6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－34（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	212	339 н	10000μ	0.04
			側壁（東西）	221	238μ	10000μ	0.03
			隔壁（南北）	242	463μ	10000μ	0.05
			隔壁（東西）	233	616μ	10000μ	0.07
		$-+$	側壁（南北）	212	293μ	10000μ	0.03
			側壁（東西）	222	239μ	10000μ	0.03
			隔壁（南北）	242	433μ	10000μ	0.05
			隔壁（東西）	233	609μ	10000μ	0.07
（2）	S s－D 2	＋＋	側壁（南北）	212	335μ	10000μ	0.04
			側壁（東西）	222	259μ	10000μ	0.03
			隔壁（南北）	242	527μ	10000μ	0.06
			隔壁（東西）	233	680μ	10000μ	0.07
（3）	S s－D 2	＋＋	側壁（南北）	212	334μ	10000μ	0.04
			側壁（東西）	222	244μ	10000μ	0.03
			隔壁（南北）	242	535μ	10000μ	0.06
			隔壁（東西）	233	652μ	10000μ	0.07
（4）	S s－D 2	$++$	側壁（南北）	212	251μ	10000μ	0.03
			側壁（東西）	222	206μ	10000μ	0.03
			隔壁（南北）	242	403μ	10000μ	0.05
			隔壁（東西）	233	478μ	10000μ	0.05

注記 $~$ 1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－34（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（2），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 ひずみ＊2 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（2）	S s -N 1	－＋	側壁（南北）	212	287μ	10000μ	0． 03
			側壁（東西）	222	240μ	10000μ	0． 03
			隔壁（南北）	242	431μ	10000μ	0.05
			隔壁（東西）	233	602μ	10000μ	0． 07
（3）	S s -N 1	－＋	側壁（南北）	212	293μ	10000μ	0.03
			側壁（東西）	222	244μ	10000μ	0.03
			隔壁（南北）	242	408μ	10000μ	0.05
			隔壁（東西）	233	604μ	10000μ	0.07
（4）	S s－N 1	－＋	側壁（南北）	212	178μ	10000μ	0.02
			側壁（東西）	221	216μ	10000μ	0.03
			隔壁（南北）	242	327μ	10000μ	0.04
			隔壁（東西）	233	420μ	10000μ	0.05

注記＊1：評価位置は図6－24に示す。
$* 2:$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－34（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：応力の照査）

解析 ケース	地震動		評価位置＊	発生応力度 σ $\begin{gathered} { }^{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \text { call } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{c}} \mathrm{a} 1.1\right)$
（1）	S s－D 1	$++$	251	130	277	0． 47
		$-+$	251	154	277	0． 56
	S s－D 2	＋＋	251	145	277	0.53
		－＋	251	149	277	0． 54
	S s－D 3	$++$	251	141	277	0.51
		－＋	251	150	277	0.55
	$\mathrm{S} s-\mathrm{F} 1$	$++$	251	129	277	0． 47
		$-+$	251	105	277	0.38
	S s－F 2	$++$	251	134	277	0． 49
		－＋	251	118	277	0． 43
	Ss－F 3	$++$	251	150	277	0.55
		－＋	251	155	277	0.56
	S s－N 1	＋＋	251	149	277	0.54
		－＋	251	144	277	0.52
（2）	S s－D 2	＋＋	251	144	277	0.52
（3）	S s－D 2	$++$	251	152	277	0.55
（4）	S s－D 2	$++$	251	136	277	0.50
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	－＋	251	100	277	0.37
（3）	S s－N 1	－＋	251	105	277	0.38
（4）	S s－N 1	$-+$	251	81	277	0.30

注記＊：評価位置は図6－24に示す。

表6－34（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：座屈に対する安定の照査）

注記＊：評価位置は図6－24に示す。

表6－34（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：座屈に対する安定の照査）

解析 ケース	地震動		評価位置＊	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期 許容応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	Ss－F 3	＋＋	251	軸力	145	252	0.58	0.61
				強軸曲げ	1	248	0.01	
				弱軸曲げ	3	247	0． 02	
				軸力	150	252	0． 60	
		$-+$	251	強軸曲げ	1	247	0.01	0． 63
				弱軸曲げ	3	246	0.02	
				軸力	144	252	0.58	
		＋＋	251	強軸曲げ	1	248	0.01	0.61
				弱軸曲げ	3	247	0.02	
				軸力	139	252	0． 56	
		$-+$	251	強軸曲げ	1	248	0.01	0.59
				弱軸曲げ	3	248	0.02	
				軸力	138	252	0.55	
（2）	S s－D 2	$++$	251	強軸曲げ	1	248	0.01	0.58
				弱軸曲げ	4	248	0.02	
				軸力	146	252	0.58	
（3）	Ss－D 2	$++$	251	強軸曲げ	1	248	0.01	0.61
				弱軸曲げ	4	247	0.02	
				軸力	131	252	0.52	
（4）	S s－D 2	＋＋	251	強軸曲げ	1	249	0.01	0.55
				弱軸曲げ	3	250	0.02	
				軸力	96	252	0.39	
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	251	強軸曲げ	1	251	0.01	0． 41
				弱軸曲げ	2	257	0.01	
				軸力	100	252	0． 40	
（3）	S s－N 1	$-+$	251	強軸曲げ	1	251	0.01	0． 43
				弱軸曲げ	3	256	0.02	
				軸力	77	252	0.31	
（4）	S s－N 1	$-+$	251	強軸曲げ	1	252	0.01	0.33
				弱軸曲げ	2	261	0.01	

注記 $*: ~$ 評価位置は図 6－24に示す。

図6－24 評価位置図（断面（2）

表6－35（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面③）コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	313	422μ	10000μ	0.05
			側壁（東西）	322	302μ	10000μ	0.04
			隔壁（南北）	342	404μ	10000μ	0.05
			隔壁（東西）	336	628μ	10000μ	0.07
			側壁（南北）	314	500μ	10000μ	0.05
			側壁（東西）	322	297μ	10000μ	0.03
		－	隔壁（南北）	342	413μ	10000μ	0.05
			隔壁（東西）	336	697μ	10000μ	0.07
			側壁（南北）	314	468 m	10000μ	0.05
			側壁（東西）	322	305μ	10000μ	0.04
		$+$	隔壁（南北）	342	426μ	10000μ	0.05
	S		隔壁（東西）	336	673μ	10000μ	0.07
	S s－D 2		側壁（南北）	314	484μ	10000μ	0.05
			側壁（東西）	322	298μ	10000μ	0． 03
		－	隔壁（南北）	342	415μ	10000μ	0.05
			隔壁（東西）	336	678μ	10000μ	0.07
	S s D D 3	＋＋	側壁（南北）	314	443μ	10000μ	0.05
			側壁（東西）	322	266μ	10000μ	0.03
			隔壁（南北）	342	370μ	10000μ	0.04
			隔壁（東西）	336	610μ	10000μ	0． 07
		－＋	側壁（南北）	314	474μ	10000μ	0.05
			側壁（東西）	322	260μ	10000μ	0． 03
			隔壁（南北）	342	379μ	10000μ	0.04
			隔壁（東西）	336	653μ	10000μ	0.07

注記 $* 1$ ：評価位置は図 6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－35（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	$S \mathrm{~s}-\mathrm{F} 1$	$++$	側壁（南北）	314	421μ	10000μ	0.05
			側壁（東西）	322	239μ	10000μ	0.03
			隔壁（南北）	342	354μ	10000μ	0． 04
			隔壁（東西）	336	587μ	10000μ	0.06
			側壁（南北）	313	343μ	10000μ	0.04
			側壁（東西）	322	235μ	10000μ	0． 03
			隔壁（南北）	342	333μ	10000μ	0.04
			隔壁（東西）	336	535μ	10000μ	0.06
			側壁（南北）	314	427μ	10000μ	0.05
			側壁（東西）	322	250μ	10000μ	0.03
			隔壁（南北）	342	374μ	10000μ	0． 04
	S		隔壁（東西）	336	619μ	10000μ	0.07
	S 5		側壁（南北）	314	387μ	10000μ	0.04
			側壁（東西）	322	255μ	10000μ	0.03
		－	隔壁（南北）	342	359 н	10000μ	0． 04
			隔壁（東西）	336	581μ	10000μ	0.06
	Ss－F 3	＋＋	側壁（南北）	313	380μ	10000μ	0.04
			側壁（東西）	322	272μ	10000μ	0.03
			隔壁（南北）	342	359μ	10000μ	0． 04
			隔壁（東西）	336	572μ	10000μ	0.06
		$-+$	側壁（南北）	314	462μ	10000μ	0.05
			側壁（東西）	322	277μ	10000μ	0.03
			隔壁（南北）	342	378μ	10000μ	0.04
			隔壁（東西）	336	624μ	10000μ	0.07

注記 $* 1$ ：評価位置は図 6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－35（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（3），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ }{ }^{2} 2 \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	314	515μ	10000μ	0.06
			側壁（東西）	321	260μ	10000μ	0.03
			隔壁（南北）	342	387μ	10000μ	0.04
			隔壁（東西）	336	694μ	10000μ	0.07
		－＋	側壁（南北）	313	386μ	10000μ	0.04
			側壁（東西）	322	279μ	10000μ	0.03
			隔壁（南北）	342	387μ	10000μ	0． 04
			隔壁（東西）	333	592μ	10000μ	0.06
（2）	S s－D 2	＋＋	側壁（南北）	314	524μ	10000μ	0.06
			側壁（東西）	322	313μ	10000μ	0.04
			隔壁（南北）	342	441μ	10000μ	0.05
			隔壁（東西）	336	712μ	10000μ	0.08
（3）	Ss－D 2	＋＋	側壁（南北）	314	477 н	10000μ	0.05
			側壁（東西）	322	283μ	10000μ	0． 03
			隔壁（南北）	342	408μ	10000μ	0.05
			隔壁（東西）	336	676μ	10000μ	0.07
（4）	Ss－D 2	＋＋	側壁（南北）	314	312μ	10000μ	0.04
			側壁（東西）	321	250μ	10000μ	0.03
			隔壁（南北）	342	268μ	10000μ	0.03
			隔壁（東西）	336	459μ	10000μ	0.05

注記 $~ 1 ~: ~$ 評価位置は図 6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－35（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（3），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 ひずみ＊2 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（2）	S s -N 1	－＋	側壁（南北）	313	415μ	10000μ	0.05
			側壁（東西）	322	283μ	10000μ	0.03
			隔壁（南北）	342	396μ	10000μ	0.04
			隔壁（東西）	336	608μ	10000μ	0.07
（3）	S s -N 1	－＋	側壁（南北）	314	467μ	10000μ	0.05
			側壁（東西）	322	289μ	10000μ	0.03
			隔壁（南北）	342	412μ	10000μ	0.05
			隔壁（東西）	336	653μ	10000μ	0.07
（4）	S s－N 1	－＋	側壁（南北）	314	309μ	10000μ	0.04
			側壁（東西）	321	232μ	10000μ	0.03
			隔壁（南北）	342	252μ	10000μ	0． 03
			隔壁（東西）	336	438μ	10000μ	0.05

注記＊1：評価位置は図6－25に示す。
$* 2:$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－35（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：応力の照査）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊	発生応力度 σ $\begin{gathered} { }_{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{ca} ~}^{1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}\right) \end{gathered}$
（1）	S s－D 1	＋＋	351	79	277	0.29
		－＋	351	93	277	0.34
	S s－D 2	＋＋	351	88	277	0.32
		－＋	351	91	277	0.33
	S s－D 3	＋＋	351	84	277	0.31
		－＋	351	89	277	0． 33
	S s－F 1	＋＋	351	79	277	0． 29
		$-+$	351	66	277	0． 24
	S s－F 2	＋＋	351	81	277	0． 30
		－＋	351	75	277	0． 28
	S s－F 3	＋＋	351	73	277	0． 27
		－＋	351	88	277	0． 32
	S s－N 1	＋＋	351	97	277	0． 36
		－＋	351	71	277	0.26
（2）	S s－D 2	＋＋	351	97	277	0.36
（3）	S s－D 2	$++$	351	89	277	0.33
（4）	$\mathrm{Ss}-\mathrm{D} 2$	$++$	351	67	277	0． 25
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	351	77	277	0.28
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	351	86	277	0.32
（4）	S s－N 1	－＋	351	66	277	0.24

注記＊：評価位置は図6－25に示す。

表6－35（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：座屈に対する安定の照査）

注記＊：評価位置は図6－25に示す。

表6－35（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：座屈に対する安定の照査）

解析 ケース	地震		評価位置＊	応力度区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}},\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	S s－F 3	＋＋	351	軸力	67	242	0． 28	0.31
				強軸曲げ	1	243	0.01	
				弱軸曲げ	4	257	0． 02	
		$-+$	351	軸力	82	242	0.34	0.37
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	253	0.02	
	S s－N 1	$++$	351	軸力	91	242	0.38	0.41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0.02	
		$-+$	351	軸力	66	242	0． 28	0.31
				強軸曲げ	1	243	0.01	
				弱軸曲げ	3	257	0.02	
（2）	Ss－D 2	$++$	351	軸力	91	242	0.38	0． 41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0.02	
（3）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	351	軸力	83	242	0.35	0.38
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	252	0.02	
（4）	Ss－D 2	＋＋	351	軸力	61	242	0.26	0． 29
				強軸曲げ	1	244	0.01	
				弱軸曲げ	4	259	0.02	
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	351	軸力	72	242	0.30	0.33
				強軸曲げ	1	242	0.01	
				弱軸曲げ	3	256	0.02	
（3）	S s－N 1	$-+$	351	軸力	81	242	0.34	0.37
				強軸曲げ	1	242	0.01	
				弱軸曲げ	3	253	0.02	
（4）	$\mathrm{Ss}-\mathrm{N} 1$	$-+$	351	軸力	61	242	0.26	0． 29
				強軸曲げ	1	244	0.01	
				弱軸曲げ	3	259	0.02	

注記＊：評価位置は図6－25に示す。

図 6－25 評価位置図（断面（3）

表6－36（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
（1）	S s－D 1	＋＋	側壁（南北）	414	899μ	10000μ	0.09
			側壁（東西）	422	416μ	10000μ	0.05
			隔壁（南北）	442	241μ	10000μ	0.03
			隔壁（東西）	437	853μ	10000μ	0.09
			側壁（南北）	414	842μ	10000μ	0.09
			側壁（東西）	422	405μ	10000μ	0.05
			隔壁（南北）	442	257μ	10000μ	0.03
			隔壁（東西）	437	828μ	10000μ	0.09
			側壁（南北）	414	957μ	10000μ	0.10
			側壁（東西）	422	421μ	10000μ	0.05
			隔壁（南北）	442	235μ	10000μ	0.03
	S		隔壁（東西）	437	880μ	10000μ	0.09
	S S－D 2		側壁（南北）	414	893μ	10000μ	0.09
			側壁（東西）	422	408μ	10000μ	0.05
		－	隔壁（南北）	442	231μ	10000μ	0.03
			隔壁（東西）	437	843μ	10000μ	0.09
	S s－D 3	$++$	側壁（南北）	414	763μ	10000μ	0.08
			側壁（東西）	422	358μ	10000μ	0.04
			隔壁（南北）	442	224μ	10000μ	0.03
			隔壁（東西）	437	731μ	10000μ	0.08
		$-+$	側壁（南北）	414	791μ	10000μ	0.08
			側壁（東西）	422	358μ	10000μ	0.04
			隔壁（南北）	442	232μ	10000μ	0.03
			隔壁（東西）	437	738μ	10000μ	0.08

注記 $~$ 1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－36（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	414	722μ	10000μ	0.08
			側壁（東西）	422	324μ	10000μ	0.04
			隔壁（南北）	442	211μ	10000μ	0.03
			隔壁（東西）	437	671μ	10000μ	0.07
		－＋	側壁（南北）	414	799μ	10000μ	0.08
			側壁（東西）	422	327μ	10000μ	0.04
			隔壁（南北）	442	192μ	10000μ	0.02
			隔壁（東西）	437	685μ	10000μ	0.07
	S s－F 2	＋＋	側壁（南北）	413	801μ	10000μ	0.09
			側壁（東西）	422	355μ	10000μ	0.04
			隔壁（南北）	442	255μ	10000μ	0.03
			隔壁（東西）	437	748μ	10000μ	0.08
		－＋	側壁（南北）	414	769μ	10000μ	0.08
			側壁（東西）	422	353μ	10000μ	0.04
			隔壁（南北）	442	235μ	10000μ	0.03
			隔壁（東西）	437	735μ	10000μ	0.08
	Ss－F 3	＋＋	側壁（南北）	414	763μ	10000μ	0.08
			側壁（東西）	422	364μ	10000μ	0.04
			隔壁（南北）	442	203μ	10000μ	0.03
			隔壁（東西）	437	737μ	10000μ	0.08
		－＋	側壁（南北）	414	795μ	10000μ	0.08
			側壁（東西）	422	375μ	10000μ	0.04
			隔壁（南北）	442	221μ	10000μ	0.03
			隔壁（東西）	437	769μ	10000μ	0.08

注記 $* 1$ ：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－36（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（4），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$			$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	$\mathrm{S} s-\mathrm{N} 1$	＋＋	側壁（南北）	413	781μ	10000μ	0.08
			側壁（東西）	422	332μ	10000μ	0.04
			隔壁（南北）	442	268μ	10000μ	0.03
			隔壁（東西）	437	704μ	10000μ	0.08
		－＋	側壁（南北）	414	945μ	10000μ	0.10
			側壁（東西）	422	387μ	10000μ	0.04
			隔壁（南北）	442	224μ	10000μ	0.03
			隔壁（東西）	437	820μ	10000μ	0.09
（2）	Ss－D 2	＋＋	側壁（南北）	414	1022μ	10000μ	0.11
			側壁（東西）	422	437μ	10000μ	0.05
			隔壁（南北）	442	228μ	10000μ	0.03
			隔壁（東西）	437	913μ	10000μ	0.10
（3）	S s－D 2	＋＋	側壁（南北）	414	852μ	10000μ	0.09
			側壁（東西）	422	387μ	10000μ	0.04
			隔壁（南北）	442	253μ	10000μ	0.03
			隔壁（東西）	437	805μ	10000μ	0.09
（4）	Ss－D 2	＋＋	側壁（南北）	413	633μ	10000μ	0． 07
			側壁（東西）	422	334μ	10000μ	0.04
			隔壁（南北）	442	174μ	10000μ	0.02
			隔壁（東西）	437	594μ	10000μ	0.06

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－36（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（2）	S s－N 1	$-+$	側壁（南北）	414	956μ	10000μ	0.10
			側壁（東西）	422	389μ	10000μ	0.04
			隔壁（南北）	442	221μ	10000μ	0.03
			隔壁（東西）	437	825μ	10000μ	0.09
（3）	S s－N 1	$-+$	側壁（南北）	414	1016μ	10000μ	0.11
			側壁（東西）	422	408μ	10000μ	0.05
			隔壁（南北）	442	238μ	10000μ	0.03
			隔壁（東西）	437	866μ	10000μ	0.09
（4）	S s－N 1	－＋	側壁（南北）	413	597μ	10000μ	0.06
			側壁（東西）	422	301μ	10000μ	0.04
			隔壁（南北）	442	165μ	10000μ	0.02
			隔壁（東西）	437	541μ	10000μ	0.06

注記 $* 1$ ：評価位置は図6－26に示す。
$* 2$ ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－36（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：応力の照査）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊	発生応力度 σ $\begin{gathered} { }_{(\mathrm{c}}^{\left.\mathrm{N} / \mathrm{mm}^{2}\right)} \text {) } \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{c} a \mathrm{l}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \left.\left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}\right)_{1}\right) \end{gathered}$
（1）	S s－D 1	＋＋	451	71	277	0． 26
		－＋	451	65	277	0.24
	S s－D 2	＋＋	451	79	277	0． 29
		－＋	451	72	277	0． 26
	S s－D 3	＋＋	451	62	277	0． 23
		－＋	451	65	277	0． 24
	S s－F 1	＋＋	451	59	277	0． 22
		－＋	451	70	277	0． 26
	S s－F 2	＋＋	451	59	277	0.22
		－＋	451	61	277	0.23
	S s－F 3	＋＋	451	67	277	0.25
		－＋	451	65	277	0.24
	S s－N 1	＋＋	451	59	277	0． 22
		－＋	451	76	277	0.28
（2）	S s－D 2	＋＋	451	88	277	0.32
（3）	S s－D 2	＋＋	451	67	277	0． 25
（4）	S s－D 2	＋＋	451	68	277	0． 25
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	451	78	277	0． 29
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	－＋	451	81	277	0． 30
（4）	S s－N 1	－＋	451	61	277	0． 23

注記＊：評価位置は図6－26に示す。

表6－36（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：座屈に対する安定の照査）

注記 $*: ~$ 評価位置は図 6－26に示す。

表6－36（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：座屈に対する安定の照査）

解析 ケース	地震動		評価位置＊	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \text { c a }, \quad \sigma \text { ba } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}},\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	Ss－F 3	$++$	451	軸力	50	190	0.27	0.34
				強軸曲げ	1	195	0.01	
				弱軸曲げ	12	229	0.06	
				軸力	49	190	0.26	
		$-+$	451	強軸曲げ	1	195	0.01	0.32
				弱軸曲げ	11	230	0.05	
				軸力	42	190	0.23	
		＋＋	451	強軸曲げ	1	197	0.01	0.30
	S			弱軸曲げ	12	236	0.06	
	S s－N 1			軸力	63	190	0.34	
		$-+$	451	強軸曲げ	1	191	0.01	0.39
				弱軸曲げ	8	216	0.04	
（2）	S s－D 2	＋＋	451	軸力	69	190	0.37	0． 45
				強軸曲げ	1	190	0.01	
				弱軸曲げ	13	210	0.07	
（3）	S s－D 2	＋＋	451	軸力	51	190	0.27	0.34
				強軸曲げ	1	195	0.01	
				弱軸曲げ	12	228	0.06	
（4）	S s－D 2	＋＋	451	軸力	52	190	0.28	0.34
				強軸曲げ	1	194	0.01	
				弱軸曲げ	11	227	0.05	
（2）	S s－N 1	$-+$	451	軸力	65	190	0.35	0． 40
				強軸曲げ	1	191	0.01	
				弱軸曲げ	8	214	0.04	
（3）	S s－N 1	$-+$	451	軸力	67	190	0.36	0.42
				強軸曲げ	1	190	0.01	
				弱軸曲げ	9	212	0.05	
（4）	S s－N 1	$-+$	451	軸力	49	190	0.26	0.31
				強軸曲げ	1	195	0.01	
				弱軸曲げ	8	230	0.04	

注記 $*: ~$ 評価位置は図 6－26に示す。

図 6－26 評価位置図（断面（4））

表6－37（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表 6－37（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	$S \mathrm{~s}-\mathrm{F} 1$	$++$	側壁（南北）	512	365μ	10000μ	0.04
			側壁（東西）	522	274μ	10000μ	0.03
			隔壁（南北）	542	147μ	10000μ	0.02
			隔壁（東西）	536	545μ	10000μ	0.06
			側壁（南北）	512	402μ	10000μ	0.05
			側壁（東西）	522	272μ	10000μ	0． 03
			隔壁（南北）	542	142μ	10000μ	0.02
			隔壁（東西）	536	572μ	10000μ	0.06
			側壁（南北）	512	398μ	10000μ	0.04
			側壁（東西）	522	318μ	10000μ	0.04
		＋	隔壁（南北）	542	176μ	10000μ	0.02
	S		隔壁（東西）	537	637μ	10000μ	0.07
	S 5		側壁（南北）	512	415μ	10000μ	0.05
			側壁（東西）	522	325μ	10000μ	0.04
		－	隔壁（南北）	542	181μ	10000μ	0.02
			隔壁（東西）	537	651μ	10000μ	0.07
	Ss－F 3	＋＋	側壁（南北）	512	435μ	10000μ	0.05
			側壁（東西）	522	272μ	10000μ	0.03
			隔壁（南北）	542	142μ	10000μ	0.02
			隔壁（東西）	536	602μ	10000μ	0.07
		$-+$	側壁（南北）	512	428μ	10000μ	0.05
			側壁（東西）	522	301μ	10000μ	0.04
			隔壁（南北）	542	164μ	10000μ	0.02
			隔壁（東西）	536	628μ	10000μ	0.07

注記 $* 1$ ：評価位置は図 6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－37（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s -N 1	＋＋	側壁（南北）	512	393μ	10000μ	0.04
			側壁（東西）	522	278μ	10000μ	0． 03
			隔壁（南北）	542	156μ	10000μ	0.02
			隔壁（東西）	536	582μ	10000μ	0.06
		－＋	側壁（南北）	512	559μ	10000μ	0.06
			側壁（東西）	522	328μ	10000μ	0.04
			隔壁（南北）	542	163μ	10000μ	0.02
			隔壁（東西）	536	747μ	10000μ	0.08
（2）	S s－D 2	＋+	側壁（南北）	512	475μ	10000μ	0.05
			側壁（東西）	522	343μ	10000μ	0.04
			隔壁（南北）	542	186μ	10000μ	0.02
			隔壁（東西）	536	712μ	10000μ	0.08
（3）	S s－D 2	＋＋	側壁（南北）	512	413μ	10000μ	0.05
			側壁（東西）	522	323μ	10000μ	0.04
			隔壁（南北）	542	178μ	10000μ	0． 02
			隔壁（東西）	537	647μ	10000μ	0.07
		${ }^{-+}$	側壁（南北）	512	486μ	10000μ	0.05
（4）	Ss－D 2	＋+	側壁（南北）	512	311μ	10000μ	0.04
			側壁（東西）	522	274μ	10000μ	0． 03
			隔壁（南北）	542	130μ	10000μ	0.02
			隔壁（東西）	537	488μ	10000μ	0.05

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－37（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊${ }^{*}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（2）	S s - N 1	－＋	側壁（南北）	512	484μ	10000μ	0.05
			側壁（東西）	522	317μ	10000μ	0.04
			隔壁（南北）	542	166μ	10000μ	0.02
			隔壁（東西）	536	689 н	10000μ	0.07
（3）	S s - N 1	－＋	側壁（南北）	512	600μ	10000μ	0.06
			側壁（東西）	522	357 н	10000μ	0.04
			隔壁（南北）	542	176μ	10000μ	0.02
			隔壁（東西）	536	805μ	10000μ	0.09
（4）	S s -N 1	－＋	側壁（南北）	512	368 н	10000μ	0.04
			側壁（東西）	522	266μ	10000μ	0.03
			隔壁（南北）	542	113μ	10000μ	0.02
			隔壁（東西）	536	531μ	10000μ	0.06

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

図 6－27 評価位置図（断面（5）

表6－38（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	212	317μ	2000μ	0． 16
			側壁（東西）	222	260μ	2000μ	0． 13
			隔壁（南北）	242	494μ	2000μ	0． 25
			隔壁（東西）	233	641μ	2000μ	0． 33
			側壁（南北）	212	338μ	2000μ	0.17
			側壁（東西）	222	246μ	2000μ	0． 13
		－	隔壁（南北）	242	553μ	2000μ	0． 28
			隔壁（東西）	233	647μ	2000μ	0.33
			側壁（南北）	212	335μ	2000μ	0.17
			側壁（東西）	222	261μ	2000μ	0． 14
		＋	隔壁（南北）	242	544μ	2000μ	0． 28
			隔壁（東西）	233	683μ	2000μ	0.35
	－ 2		側壁（南北）	212	362μ	2000μ	0． 19
			側壁（東西）	222	250μ	2000μ	0.13
		－	隔壁（南北）	242	512μ	2000μ	0． 26
			隔壁（東西）	233	656μ	2000μ	0.33
	S s－D 3	＋＋	側壁（南北）	212	306μ	2000μ	0.16
			側壁（東西）	222	226μ	2000μ	0． 12
			隔壁（南北）	242	471μ	2000μ	0． 24
			隔壁（東西）	233	583μ	2000μ	0.30
		－＋	側壁（南北）	212	329 н	2000μ	0.17
			側壁（東西）	222	238μ	2000μ	0． 12
			隔壁（南北）	242	469μ	2000μ	0． 24
			隔壁（東西）	233	594μ	2000μ	0． 30

注記＊1：評価位置は図6－24に示す。
$* 2: ~$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－38（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S $s-F 1$	＋＋	側壁（南北）	212	293μ	2000μ	0． 15
			側壁（東西）	222	215μ	2000μ	0． 11
			隔壁（南北）	242	430μ	2000μ	0． 22
			隔壁（東西）	233	566μ	2000μ	0． 29
			側壁（南北）	216	258μ	2000μ	0． 13
			側壁（東西）	221	206μ	2000μ	0.11
		$-+$	隔壁（南北）	242	390μ	2000μ	0． 20
			隔壁（東西）	233	522μ	2000μ	0.27
			側壁（南北）	212	306μ	2000μ	0． 16
			側壁（東西）	221	220μ	2000μ	0.11
		＋	隔壁（南北）	242	463μ	2000μ	0． 24
			隔壁（東西）	233	597μ	2000μ	0.30
	－F 2		側壁（南北）	212	282μ	2000μ	0.15
		－	側壁（東西）	222	218μ	2000μ	0.11
		－	隔壁（南北）	242	419μ	2000μ	0.21
			隔壁（東西）	233	566μ	2000μ	0． 29
	Ss - F 3	＋＋	側壁（南北）	212	327 н	2000μ	0． 17
			側壁（東西）	222	246μ	2000μ	0． 13
			隔壁（南北）	242	487μ	2000μ	0.25
			隔壁（東西）	233	615μ	2000μ	0.31
		－＋	側壁（南北）	212	328 н	2000μ	0． 17
			側壁（東西）	222	247μ	2000μ	0.13
			隔壁（南北）	242	531μ	2000μ	0． 27
			隔壁（東西）	233	626μ	2000μ	0． 32

注記 $~ 1 ~: ~$ 評価位置は図 6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－38（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	212	339 ر	2000μ	0.17
			側壁（東西）	221	238μ	2000μ	0.12
			隔壁（南北）	242	463μ	2000μ	0.24
			隔壁（東西）	233	616μ	2000μ	0.31
		$-+$	側壁（南北）	212	293μ	2000μ	0.15
			側壁（東西）	222	239μ	2000μ	0． 12
			隔壁（南北）	242	433μ	2000μ	0． 22
			隔壁（東西）	233	609μ	2000μ	0.31
（2）	S s－D 2	$++$	側壁（南北）	212	335μ	2000μ	0.17
			側壁（東西）	222	259μ	2000μ	0.13
			隔壁（南北）	242	527μ	2000μ	0． 27
			隔壁（東西）	233	680μ	2000μ	0． 34
（3）	S s－D 2	$++$	側壁（南北）	212	334μ	2000μ	0.17
			側壁（東西）	222	244μ	2000μ	0.13
			隔壁（南北）	242	535μ	2000μ	0． 27
			隔壁（東西）	233	652μ	2000μ	0.33
（4）	Ss－D 2	$++$	側壁（南北）	212	251μ	2000μ	0.13
			側壁（東西）	222	206μ	2000μ	0.11
			隔壁（南北）	242	403μ	2000μ	0.21
			隔壁（東西）	233	478μ	2000μ	0． 24
（2）	$\mathrm{S} s-\mathrm{N} 1$	$-+$	側壁（南北）	212	287μ	2000μ	0． 15
			側壁（東西）	222	240μ	2000μ	0． 12
			隔壁（南北）	242	431μ	2000μ	0． 22
			隔壁（東西）	233	602μ	2000μ	0.31
（3）	S s－N 1	$-+$	側壁（南北）	212	293μ	2000μ	0.15
			側壁（東西）	222	244μ	2000μ	0.13
			隔壁（南北）	242	408μ	2000μ	0． 21
			隔壁（東西）	233	604μ	2000μ	0.31
（4）	S s－N 1	－＋	側壁（南北）	212	178μ	2000μ	0.09
			側壁（東西）	221	216μ	2000μ	0.11
			隔壁（南北）	242	327μ	2000μ	0.17
			隔壁（東西）	233	420μ	2000μ	0.21

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－38（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	211	781μ	1725μ	0． 46
			側壁（東西）	222	624μ	1725μ	0.37
			隔壁（南北）	242	770μ	1725μ	0． 45
			隔壁（東西）	233	508μ	1725μ	0． 30
			側壁（南北）	211	826μ	1725μ	0． 48
			側壁（東西）	222	507μ	1725μ	0． 30
		$-+$	隔壁（南北）	242	1017μ	1725μ	0． 59
			隔壁（東西）	233	534μ	1725μ	0.31
			側壁（南北）	211	818μ	1725μ	0． 48
			側壁（東西）	222	589μ	1725μ	0.35
		$++$	隔壁（南北）	242	893μ	1725μ	0． 52
			隔壁（東西）	233	548μ	1725μ	0． 32
	S 5 － 2		側壁（南北）	211	826μ	1725μ	0． 48
		－	側壁（東西）	222	542μ	1725μ	0． 32
		－	隔壁（南北）	242	995μ	1725μ	0.58
			隔壁（東西）	233	535μ	1725μ	0． 32
	S s－D 3	＋＋	側壁（南北）	211	732μ	1725μ	0． 43
			側壁（東西）	222	473μ	1725μ	0． 28
			隔壁（南北）	242	813μ	1725μ	0． 48
			隔壁（東西）	233	481μ	1725μ	0． 28
		$-+$	側壁（南北）	211	789μ	1725μ	0． 46
			側壁（東西）	222	522μ	1725μ	0.31
			隔壁（南北）	242	836μ	1725μ	0． 49
			隔壁（東西）	233	487μ	1725μ	0． 29

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－38（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	$++$	側壁（南北）	211	729μ	1725μ	0． 43
			側壁（東西）	222	463μ	1725μ	0． 27
			隔壁（南北）	242	682μ	1725μ	0． 40
			隔壁（東西）	233	461μ	1725μ	0． 27
			側壁（南北）	211	694μ	1725μ	0． 41
			側壁（東西）	221	500μ	1725μ	0． 29
			隔壁（南北）	242	606μ	1725μ	0.36
			隔壁（東西）	233	408μ	1725μ	0． 24
			側壁（南北）	211	775μ	1725μ	0． 45
			側壁（東西）	221	474μ	1725μ	0． 28
			隔壁（南北）	242	757μ	1725μ	0． 44
			隔壁（東西）	233	485μ	1725μ	0． 29
	S S－F 2		側壁（南北）	211	739μ	1725μ	0． 43
			側壁（東西）	222	510μ	1725μ	0.30
			隔壁（南北）	242	655μ	1725μ	0.38
			隔壁（東西）	233	449μ	1725μ	0． 27
	Ss－F 3	＋＋	側壁（南北）	211	787μ	1725μ	0． 46
			側壁（東西）	222	526μ	1725μ	0.31
			隔壁（南北）	242	832μ	1725μ	0． 49
			隔壁（東西）	233	510μ	1725μ	0.30
		－＋	側壁（南北）	211	771μ	1725μ	0． 45
			側壁（東西）	222	512μ	1725μ	0． 30
			隔壁（南北）	242	968μ	1725μ	0． 57
			隔壁（東西）	233	521μ	1725μ	0.31

注記 $~ 1 ~: ~$ 評価位置は図 6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－38（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	$++$	側壁（南北）	211	847μ	1725μ	0.50
			側壁（東西）	221	505μ	1725μ	0.30
			隔壁（南北）	242	764μ	1725μ	0． 45
			隔壁（東西）	233	509μ	1725μ	0.30
		$-+$	側壁（南北）	211	744μ	1725μ	0． 44
			側壁（東西）	222	614μ	1725μ	0． 36
			隔壁（南北）	242	616μ	1725μ	0． 36
			隔壁（東西）	238	480μ	1725μ	0． 28
（2）	S s－D 2	＋＋	側壁（南北）	211	819μ	1725μ	0． 48
			側壁（東西）	222	590μ	1725μ	0.35
			隔壁（南北）	242	848μ	1725μ	0． 50
			隔壁（東西）	233	545μ	1725μ	0.32
（3）	S s－D 2	$++$	側壁（南北）	211	812μ	1725μ	0． 48
			側壁（東西）	222	508μ	1725μ	0.30
			隔壁（南北）	242	929μ	1725μ	0． 54
			隔壁（東西）	233	535μ	1725μ	0．32
（4）	S s－D 2	＋＋	側壁（南北）	211	753μ	1725μ	0． 44
			側壁（東西）	222	502μ	1725μ	0.30
			隔壁（南北）	242	842μ	1725μ	0． 49
			隔壁（東西）	238	396μ	1725μ	0． 23
（2）	S s－N 1	$-+$	側壁（南北）	211	724μ	1725μ	0． 42
			側壁（東西）	222	638μ	1725μ	0． 37
			隔壁（南北）	242	610μ	1725μ	0． 36
			隔壁（東西）	238	513μ	1725μ	0.30
（3）	S s－N 1	$-+$	側壁（南北）	211	750μ	1725μ	0． 44
			側壁（東西）	222	647μ	1725μ	0.38
			隔壁（南北）	244	539μ	1725μ	0.32
			隔壁（東西）	238	513μ	1725μ	0． 30
（4）	S s－N 1	$-+$	側壁（南北）	211	629μ	1725μ	0． 37
			側壁（東西）	221	631μ	1725μ	0． 37
			隔壁（南北）	244	537μ	1725μ	0.32
			隔壁（東西）	238	577μ	1725μ	0.34

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－39（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	313	422μ	2000μ	0． 22
			側壁（東西）	322	302μ	2000μ	0． 16
			隔壁（南北）	342	404μ	2000μ	0.21
			隔壁（東西）	336	628μ	2000μ	0． 32
			側壁（南北）	314	500μ	2000μ	0． 25
			側壁（東西）	322	297μ	2000μ	0． 15
		－	隔壁（南北）	342	413μ	2000μ	0． 21
			隔壁（東西）	336	697μ	2000μ	0.35
			側壁（南北）	314	468μ	2000μ	0． 24
			側壁（東西）	322	305μ	2000μ	0． 16
		＋	隔壁（南北）	342	426μ	2000μ	0． 22
			隔壁（東西）	336	673μ	2000μ	0． 34
	－ 2		側壁（南北）	314	484μ	2000μ	0.25
		－	側壁（東西）	322	298μ	2000μ	0.15
		－	隔壁（南北）	342	415μ	2000μ	0.21
			隔壁（東西）	336	678μ	2000μ	0.34
	S s D D 3	＋＋	側壁（南北）	314	443μ	2000μ	0． 23
			側壁（東西）	322	266μ	2000μ	0． 14
			隔壁（南北）	342	370μ	2000μ	0． 19
			隔壁（東西）	336	610μ	2000μ	0.31
		－＋	側壁（南北）	314	474μ	2000μ	0． 24
			側壁（東西）	322	260μ	2000μ	0.13
			隔壁（南北）	342	379μ	2000μ	0． 19
			隔壁（東西）	336	653μ	2000μ	0． 33

注記 $~ 1 ~: ~$ 評価位置は図 6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－39（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	$++$	側壁（南北）	314	421μ	2000μ	0． 22
			側壁（東西）	322	239 н	2000μ	0． 12
			隔壁（南北）	342	354μ	2000μ	0． 18
			隔壁（東西）	336	587μ	2000μ	0． 30
			側壁（南北）	313	343μ	2000μ	0． 18
			側壁（東西）	322	235μ	2000μ	0． 12
			隔壁（南北）	342	333μ	2000μ	0.17
			隔壁（東西）	336	535μ	2000μ	0． 27
			側壁（南北）	314	427μ	2000μ	0． 22
			側壁（東西）	322	250μ	2000μ	0.13
			隔壁（南北）	342	374μ	2000μ	0． 19
			隔壁（東西）	336	619μ	2000μ	0.31
	So F 2		側壁（南北）	314	387μ	2000μ	0． 20
			側壁（東西）	322	255μ	2000μ	0． 13
			隔壁（南北）	342	359μ	2000μ	0． 18
			隔壁（東西）	336	581μ	2000μ	0.30
	$\mathrm{S} s-\mathrm{F} 3$	＋＋	側壁（南北）	313	380μ	2000μ	0． 19
			側壁（東西）	322	272μ	2000μ	0． 14
			隔壁（南北）	342	359 н	2000μ	0.18
			隔壁（東西）	336	572μ	2000μ	0． 29
		$-+$	側壁（南北）	314	462μ	2000μ	0． 24
			側壁（東西）	322	277μ	2000μ	0． 14
			隔壁（南北）	342	378μ	2000μ	0． 19
			隔壁（東西）	336	624μ	2000μ	0． 32

注記 $~ 1 ~: ~$ 評価位置は図 6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－39（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	314	515μ	2000μ	0.26
			側壁（東西）	321	260μ	2000μ	0． 13
			隔壁（南北）	342	387μ	2000μ	0.20
			隔壁（東西）	336	694μ	2000μ	0.35
		$-+$	側壁（南北）	313	386μ	2000μ	0.20
			側壁（東西）	322	279μ	2000μ	0． 14
			隔壁（南北）	342	387μ	2000μ	0． 20
			隔壁（東西）	333	592μ	2000μ	0.30
（2）	S s－D 2	$++$	側壁（南北）	314	524μ	2000μ	0． 27
			側壁（東西）	322	313μ	2000μ	0.16
			隔壁（南北）	342	441μ	2000μ	0.23
			隔壁（東西）	336	712μ	2000μ	0． 36
（3）	S s－D 2	$++$	側壁（南北）	314	477μ	2000μ	0． 24
			側壁（東西）	322	283μ	2000μ	0.15
			隔壁（南北）	342	408μ	2000μ	0.21
			隔壁（東西）	336	676μ	2000μ	0.34
（4）	Ss－D 2	$++$	側壁（南北）	314	312μ	2000μ	0.16
			側壁（東西）	321	250μ	2000μ	0． 13
			隔壁（南北）	342	268μ	2000μ	0． 14
			隔壁（東西）	336	459μ	2000μ	0.23
（2）	$\mathrm{S} s-\mathrm{N} 1$	$-+$	側壁（南北）	313	415μ	2000μ	0． 21
			側壁（東西）	322	283μ	2000μ	0.15
			隔壁（南北）	342	396μ	2000μ	0． 20
			隔壁（東西）	336	608μ	2000μ	0.31
（3）	S s -N 1	$-+$	側壁（南北）	314	467μ	2000μ	0． 24
			側壁（東西）	322	289μ	2000μ	0.15
			隔壁（南北）	342	412μ	2000μ	0.21
			隔壁（東西）	336	653μ	2000μ	0.33
（4）	S s－N 1	$-+$	側壁（南北）	314	309μ	2000μ	0.16
			側壁（東西）	321	232μ	2000μ	0． 12
			隔壁（南北）	342	252μ	2000μ	0． 13
			隔壁（東西）	336	438μ	2000μ	0． 22

注記 $~$ 1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－39（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	311	825μ	1725μ	0． 48
			側壁（東西）	322	834μ	1725μ	0． 49
			隔壁（南北）	343	646μ	1725μ	0.38
			隔壁（東西）	338	632μ	1725μ	0.37
			側壁（南北）	311	870μ	1725μ	0.51
			側壁（東西）	322	750μ	1725μ	0． 44
			隔壁（南北）	343	593μ	1725μ	0.35
			隔壁（東西）	336	567μ	1725μ	0.33
			側壁（南北）	311	852μ	1725μ	0． 50
			側壁（東西）	322	803μ	1725μ	0． 47
			隔壁（南北）	343	656μ	1725μ	0.39
			隔壁（東西）	338	599μ	1725μ	0.35
	S 5 D 2		側壁（南北）	311	849μ	1725μ	0． 50
			側壁（東西）	322	767μ	1725μ	0． 45
			隔壁（南北）	343	608μ	1725μ	0.36
			隔壁（東西）	336	550μ	1725μ	0.32
	S s－D 3	＋＋	側壁（南北）	311	758μ	1725μ	0． 44
			側壁（東西）	322	674μ	1725μ	0． 40
			隔壁（南北）	343	543μ	1725μ	0． 32
			隔壁（東西）	336	496μ	1725μ	0.29
		$-+$	側壁（南北）	311	807μ	1725μ	0． 47
			側壁（東西）	322	625μ	1725μ	0． 37
			隔壁（南北）	343	530μ	1725μ	0.31
			隔壁（東西）	336	532μ	1725μ	0.31

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－39（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S $s-F 1$	＋＋	側壁（南北）	311	743μ	1725 仡	0． 44
			側壁（東西）	322	593μ	1725μ	0． 35
			隔壁（南北）	343	471μ	1725μ	0． 28
			隔壁（東西）	336	476μ	1725 m	0． 28
			側壁（南北）	311	728μ	1725 н	0． 43
			側壁（東西）	321	633μ	1725μ	0.37
		$-$	隔壁（南北）	343	511μ	1725μ	0.30
			隔壁（東西）	338	489μ	1725μ	0． 29
			側壁（南北）	311	797μ	1725 兄	0． 47
			側壁（東西）	321	626μ	1725μ	0.37
		＋	隔壁（南北）	343	511μ	1725μ	0.30
			隔壁（東西）	336	499μ	1725μ	0． 29
	－F 2		側壁（南北）	311	768μ	1725μ	0． 45
		－	側壁（東西）	322	675μ	1725μ	0． 40
		－	隔壁（南北）	343	539μ	1725μ	0． 32
			隔壁（東西）	338	508μ	1725μ	0． 30
	S s－F 3	＋＋	側壁（南北）	311	755μ	1725μ	0． 44
			側壁（東西）	322	748μ	1725μ	0． 44
			隔壁（南北）	343	592μ	1725μ	0.35
			隔壁（東西）	338	561μ	1725μ	0． 33
		－＋	側壁（南北）	311	767μ	1725μ	0． 45
			側壁（東西）	322	707μ	1725μ	0． 41
			隔壁（南北）	343	544μ	1725μ	0． 32
			隔壁（東西）	336	510μ	1725μ	0.30

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－39（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	311	847μ	1725μ	0． 50
			側壁（東西）	321	605μ	1725μ	0.36
			隔壁（南北）	342	565μ	1725μ	0． 33
			隔壁（東西）	336	568μ	1725μ	0.33
		－＋	側壁（南北）	311	788μ	1725μ	0． 46
			側壁（東西）	322	775μ	1725μ	0． 45
			隔壁（南北）	343	628μ	1725μ	0． 37
			隔壁（東西）	338	625μ	1725μ	0.37
（2）	S s－D 2	＋＋	側壁（南北）	311	873μ	1725μ	0.51
			側壁（東西）	322	800μ	1725μ	0． 47
			隔壁（南北）	343	619μ	1725μ	0． 36
			隔壁（東西）	336	582μ	1725μ	0． 34
（3）	S s－D 2	$++$	側壁（南北）	311	848μ	1725μ	0． 50
			側壁（東西）	322	710μ	1725μ	0． 42
			隔壁（南北）	343	598μ	1725μ	0.35
			隔壁（東西）	336	547μ	1725μ	0.32
（4）	Ss－D 2	$++$	側壁（南北）	311	761μ	1725μ	0． 45
			側壁（東西）	322	717μ	1725μ	0． 42
			隔壁（南北）	343	543μ	1725μ	0． 32
			隔壁（東西）	338	628μ	1725μ	0． 37
（2）	$\mathrm{S} s-\mathrm{N} 1$	$-+$	側壁（南北）	317	796μ	1725μ	0． 47
			側壁（東西）	322	765μ	1725μ	0． 45
			隔壁（南北）	343	615μ	1725μ	0． 36
			隔壁（東西）	338	591μ	1725μ	0.35
（3）	S s -N 1	$-+$	側壁（南北）	311	826μ	1725μ	0． 48
			側壁（東西）	322	753μ	1725μ	0． 44
			隔壁（南北）	343	559μ	1725μ	0.33
			隔壁（東西）	338	547μ	1725μ	0.32
（4）	S s－N 1	$-+$	側壁（南北）	311	720μ	1725μ	0． 42
			側壁（東西）	322	645μ	1725μ	0． 38
			隔壁（南北）	343	492μ	1725μ	0． 29
			隔壁（東西）	338	553μ	1725μ	0.33

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－40（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	414	899μ	2000μ	0． 45
			側壁（東西）	422	416μ	2000μ	0． 21
			隔壁（南北）	442	241μ	2000μ	0． 13
			隔壁（東西）	437	853μ	2000μ	0． 43
			側壁（南北）	414	842μ	2000μ	0． 43
			側壁（東西）	422	405μ	2000μ	0.21
			隔壁（南北）	442	257μ	2000μ	0.13
			隔壁（東西）	437	828μ	2000μ	0． 42
			側壁（南北）	414	957μ	2000μ	0． 48
			側壁（東西）	422	421μ	2000μ	0.22
			隔壁（南北）	442	235μ	2000μ	0． 12
			隔壁（東西）	437	880μ	2000μ	0． 44
	S 5 D 2		側壁（南北）	414	893μ	2000μ	0． 45
			側壁（東西）	422	408μ	2000μ	0.21
			隔壁（南北）	442	231μ	2000μ	0.12
			隔壁（東西）	437	843μ	2000μ	0． 43
	Ss－D 3	$++$	側壁（南北）	414	763μ	2000μ	0． 39
			側壁（東西）	422	358μ	2000μ	0.18
			隔壁（南北）	442	224μ	2000μ	0． 12
			隔壁（東西）	437	731μ	2000μ	0． 37
		$-+$	側壁（南北）	414	791μ	2000μ	0． 40
			側壁（東西）	422	358μ	2000μ	0． 18
			隔壁（南北）	442	232μ	2000μ	0． 12
			隔壁（東西）	437	738μ	2000μ	0． 37

注記 $~ 1 ~: ~$ 評価位置は図 6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－40（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S $s-F 1$	＋＋	側壁（南北）	414	722μ	2000μ	0． 37
			側壁（東西）	422	324μ	2000μ	0． 17
			隔壁（南北）	442	211μ	2000μ	0.11
			隔壁（東西）	437	671μ	2000μ	0． 34
			側壁（南北）	414	799μ	2000μ	0． 40
			側壁（東西）	422	327μ	2000μ	0． 17
		$-+$	隔壁（南北）	442	192μ	2000μ	0． 10
			隔壁（東西）	437	685μ	2000μ	0.35
			側壁（南北）	413	801μ	2000μ	0． 41
			側壁（東西）	422	355μ	2000μ	0． 18
		＋	隔壁（南北）	442	255μ	2000μ	0． 13
			隔壁（東西）	437	748μ	2000μ	0.38
	S S－ 2		側壁（南北）	414	769μ	2000μ	0． 39
		－	側壁（東西）	422	353μ	2000μ	0． 18
		－	隔壁（南北）	442	235μ	2000μ	0.12
			隔壁（東西）	437	735μ	2000μ	0.37
	Ss - F 3	＋＋	側壁（南北）	414	763μ	2000μ	0.39
			側壁（東西）	422	364μ	2000μ	0． 19
			隔壁（南北）	442	203μ	2000μ	0.11
			隔壁（東西）	437	737μ	2000μ	0． 37
		－＋	側壁（南北）	414	795μ	2000μ	0． 40
			側壁（東西）	422	375μ	2000μ	0． 19
			隔壁（南北）	442	221μ	2000μ	0． 12
			隔壁（東西）	437	769μ	2000μ	0． 39

注記 $~ 1 ~: ~$ 評価位置は図 6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－40（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	413	781μ	2000μ	0． 40
			側壁（東西）	422	332μ	2000μ	0.17
			隔壁（南北）	442	268 н	2000μ	0.14
			隔壁（東西）	437	704μ	2000μ	0.36
		$-+$	側壁（南北）	414	945μ	2000μ	0． 48
			側壁（東西）	422	387μ	2000μ	0． 20
			隔壁（南北）	442	224μ	2000μ	0.12
			隔壁（東西）	437	820μ	2000μ	0.41
（2）	S s－D 2	$++$	側壁（南北）	414	1022 н	2000μ	0． 52
			側壁（東西）	422	437μ	2000μ	0． 22
			隔壁（南北）	442	228μ	2000μ	0． 12
			隔壁（東西）	437	913μ	2000μ	0． 46
（3）	S s－D 2	$++$	側壁（南北）	414	852μ	2000μ	0． 43
			側壁（東西）	422	387μ	2000μ	0． 20
			隔壁（南北）	442	253μ	2000μ	0.13
			隔壁（東西）	437	805μ	2000μ	0． 41
（4）	Ss－D 2	$++$	側壁（南北）	413	633μ	2000μ	0.32
			側壁（東西）	422	334μ	2000μ	0． 17
			隔壁（南北）	442	174μ	2000μ	0． 09
			隔壁（東西）	437	594μ	2000μ	0.30
（2）	$\mathrm{S} s-\mathrm{N} 1$	$-+$	側壁（南北）	414	956μ	2000μ	0． 48
			側壁（東西）	422	389μ	2000μ	0． 20
			隔壁（南北）	442	221μ	2000μ	0． 12
			隔壁（東西）	437	825μ	2000μ	0． 42
（3）	S s -N 1	$-+$	側壁（南北）	414	1016μ	2000μ	0.51
			側壁（東西）	422	408μ	2000μ	0.21
			隔壁（南北）	442	238μ	2000μ	0． 12
			隔壁（東西）	437	866μ	2000μ	0． 44
（4）	S s－N 1	$-+$	側壁（南北）	413	597μ	2000μ	0.30
			側壁（東西）	422	301μ	2000μ	0． 16
			隔壁（南北）	442	165μ	2000μ	0.09
			隔壁（東西）	437	541μ	2000μ	0．28

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－40（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	412	1164μ	1725μ	0． 68
			側壁（東西）	422	1077 m	1725μ	0.63
			隔壁（南北）	442	903μ	1725μ	0． 53
			隔壁（東西）	437	847μ	1725μ	0.50
			側壁（南北）	412	1142μ	1725μ	0． 67
			側壁（東西）	422	1076μ	1725μ	0． 63
		－	隔壁（南北）	442	939μ	1725μ	0.55
			隔壁（東西）	437	880μ	1725μ	0.52
			側壁（南北）	412	1220μ	1725μ	0． 71
			側壁（東西）	422	1051μ	1725μ	0． 61
		$+$	隔壁（南北）	442	885μ	1725μ	0． 52
			隔壁（東西）	437	805μ	1725μ	0． 47
	S 5 － 2		側壁（南北）	412	1117μ	1725μ	0.65
			側壁（東西）	422	1034μ	1725μ	0． 60
		－	隔壁（南北）	442	892μ	1725μ	0.52
			隔壁（東西）	437	800μ	1725μ	0． 47
	S s－D 3	＋＋	側壁（南北）	412	1033μ	1725μ	0． 60
			側壁（東西）	422	942μ	1725μ	0.55
			隔壁（南北）	442	805μ	1725μ	0． 47
			隔壁（東西）	437	761μ	1725μ	0． 45
		$-+$	側壁（南北）	412	1068 m	1725μ	0.62
			側壁（東西）	422	915μ	1725μ	0.54
			隔壁（南北）	442	810μ	1725μ	0． 47
			隔壁（東西）	437	725μ	1725μ	0． 43

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－40（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	412	995μ	1725μ	0.58
			側壁（東西）	422	830μ	1725μ	0． 49
			隔壁（南北）	442	721μ	1725μ	0． 42
			隔壁（東西）	437	667μ	1725μ	0． 39
			側壁（南北）	416	1081μ	1725μ	0． 63
			側壁（東西）	422	773μ	1725μ	0． 45
		－	隔壁（南北）	442	664μ	1725μ	0． 39
			隔壁（東西）	437	586μ	1725μ	0． 34
			側壁（南北）	412	1130μ	1725μ	0.66
			側壁（東西）	422	918μ	1725μ	0． 54
		＋	隔壁（南北）	442	873μ	1725μ	0.51
			隔壁（東西）	437	772μ	1725μ	0． 45
	S S F 2		側壁（南北）	412	1089μ	1725μ	0.64
		－	側壁（東西）	422	913μ	1725μ	0.53
		－	隔壁（南北）	442	819μ	1725μ	0． 48
			隔壁（東西）	437	748μ	1725μ	0． 44
	S s－F 3	＋＋	側壁（南北）	412	955μ	1725μ	0.56
			側壁（東西）	422	942μ	1725μ	0.55
			隔壁（南北）	442	798μ	1725μ	0． 47
			隔壁（東西）	437	729μ	1725μ	0． 43
		$-+$	側壁（南北）	412	1054μ	1725μ	0． 62
			側壁（東西）	422	973μ	1725μ	0.57
			隔壁（南北）	442	852μ	1725μ	0.50
			隔壁（東西）	437	771μ	1725μ	0． 45

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－40（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	$++$	側壁（南北）	412	1137μ	1725μ	0． 66
			側壁（東西）	422	857μ	1725μ	0.50
			隔壁（南北）	442	920μ	1725μ	0． 54
			隔壁（東西）	437	786μ	1725μ	0． 46
		$-+$	側壁（南北）	416	1252μ	1725μ	0． 73
			側壁（東西）	422	929μ	1725μ	0． 54
			隔壁（南北）	442	775μ	1725μ	0． 45
			隔壁（東西）	437	699μ	1725μ	0.41
（2）	S s－D 2	$++$	側壁（南北）	416	1284μ	1725μ	0． 75
			側壁（東西）	422	1060μ	1725μ	0.62
			隔壁（南北）	442	874μ	1725μ	0.51
			隔壁（東西）	437	779μ	1725μ	0． 46
（3）	S s－D 2	$++$	側壁（南北）	412	1148μ	1725μ	0． 67
			側壁（東西）	422	998μ	1725μ	0.58
			隔壁（南北）	442	879μ	1725μ	0.51
			隔壁（東西）	437	811μ	1725μ	0． 48
（4）	S s－D 2	$++$	側壁（南北）	412	955μ	1725μ	0． 56
			側壁（東西）	422	937μ	1725μ	0.55
			隔壁（南北）	442	814μ	1725μ	0． 48
			隔壁（東西）	437	866μ	1725μ	0.51
（2）	S s－N 1	$-+$	側壁（南北）	416	1269 н	1725μ	0． 74
			側壁（東西）	422	925μ	1725μ	0.54
			隔壁（南北）	442	776μ	1725μ	0． 45
			隔壁（東西）	437	705μ	1725μ	0． 41
（3）	S s－N 1	$-+$	側壁（南北）	416	1345μ	1725μ	0.78
			側壁（東西）	422	974μ	1725μ	0． 57
			隔壁（南北）	442	808μ	1725μ	0． 47
			隔壁（東西）	437	739μ	1725μ	0． 43
（4）	S s－N 1	$-+$	側壁（南北）	416	909μ	1725μ	0.53
			側壁（東西）	422	829μ	1725μ	0． 49
			隔壁（南北）	442	760μ	1725μ	0． 45
			隔壁（東西）	437	770μ	1725μ	0． 45

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－41（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	512	467μ	2000μ	0． 24
			側壁（東西）	522	336μ	2000μ	0． 17
			隔壁（南北）	542	177μ	2000μ	0.09
			隔壁（東西）	536	687μ	2000μ	0． 35
			側壁（南北）	512	437μ	2000μ	0． 22
			側壁（東西）	522	334μ	2000μ	0． 17
		－	隔壁（南北）	542	181μ	2000μ	0． 10
			隔壁（東西）	537	667μ	2000μ	0． 34
			側壁（南北）	512	439μ	2000μ	0． 22
			側壁（東西）	522	332μ	2000μ	0． 17
		＋	隔壁（南北）	542	184μ	2000μ	0． 10
			隔壁（東西）	536	677μ	2000μ	0.34
	－D 2		側壁（南北）	512	523μ	2000μ	0． 27
		－	側壁（東西）	522	330μ	2000μ	0． 17
		－	隔壁（南北）	542	174μ	2000μ	0.09
			隔壁（東西）	536	731μ	2000μ	0.37
	S s D D 3	＋＋	側壁（南北）	512	442 н	2000μ	0． 23
			側壁（東西）	522	291μ	2000μ	0.15
			隔壁（南北）	542	149μ	2000μ	0.08
			隔壁（東西）	536	617μ	2000μ	0.31
		－＋	側壁（南北）	512	438μ	2000μ	0． 22
			側壁（東西）	522	297μ	2000μ	0.15
			隔壁（南北）	542	155μ	2000μ	0.08
			隔壁（東西）	536	620μ	2000μ	0.31

注記 $~ 1 ~: ~$ 評価位置は図 6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－41（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	512	365μ	2000μ	0． 19
			側壁（東西）	522	274μ	2000μ	0． 14
			隔壁（南北）	542	147μ	2000μ	0.08
			隔壁（東西）	536	545μ	2000μ	0． 28
			側壁（南北）	512	402μ	2000μ	0． 21
			側壁（東西）	522	272μ	2000μ	0.14
			隔壁（南北）	542	142μ	2000μ	0.08
			隔壁（東西）	536	572μ	2000μ	0． 29
			側壁（南北）	512	398μ	2000μ	0． 20
			側壁（東西）	522	318μ	2000μ	0.16
			隔壁（南北）	542	176μ	2000μ	0.09
			隔壁（東西）	537	637μ	2000μ	0． 32
	So F 2		側壁（南北）	512	415μ	2000μ	0.21
			側壁（東西）	522	325 ر	2000μ	0． 17
			隔壁（南北）	542	181μ	2000μ	0.10
			隔壁（東西）	537	651μ	2000μ	0.33
	$\mathrm{S} s-\mathrm{F} 3$	$++$	側壁（南北）	512	435μ	2000μ	0． 22
			側壁（東西）	522	272μ	2000μ	0． 14
			隔壁（南北）	542	142μ	2000μ	0.08
			隔壁（東西）	536	602μ	2000μ	0.31
		$-+$	側壁（南北）	512	428μ	2000μ	0． 22
			側壁（東西）	522	301μ	2000μ	0． 16
			隔壁（南北）	542	164μ	2000μ	0.09
			隔壁（東西）	536	628 н	2000μ	0． 32

注記 $~ 1 ~: ~$ 評価位置は図 6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表6－41（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon{ }_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	$++$	側壁（南北）	512	393μ	2000μ	0． 20
			側壁（東西）	522	278μ	2000μ	0． 14
			隔壁（南北）	542	156μ	2000μ	0.08
			隔壁（東西）	536	582μ	2000μ	0． 30
		$-+$	側壁（南北）	512	559μ	2000μ	0． 28
			側壁（東西）	522	328μ	2000μ	0． 17
			隔壁（南北）	542	163μ	2000μ	0． 09
			隔壁（東西）	536	747μ	2000μ	0.38
（2）	S s－D 2	$++$	側壁（南北）	512	475μ	2000μ	0． 24
			側壁（東西）	522	343μ	2000μ	0.18
			隔壁（南北）	542	186μ	2000μ	0． 10
			隔壁（東西）	536	712μ	2000μ	0.36
（3）	S s－D 2	$++$	側壁（南北）	512	413μ	2000μ	0.21
			側壁（東西）	522	323μ	2000μ	0.17
			隔壁（南北）	542	178μ	2000μ	0． 09
			隔壁（東西）	537	647μ	2000μ	0.33
		－＋	側壁（南北）	512	486μ	2000μ	0.25
（4）	S s－D 2	$++$	側壁（南北）	512	311μ	2000μ	0.16
			側壁（東西）	522	274μ	2000μ	0.14
			隔壁（南北）	542	130μ	2000μ	0.07
			隔壁（東西）	537	488μ	2000μ	0.25
（2）	S s－N 1	$-+$	側壁（南北）	512	484μ	2000μ	0． 25
			側壁（東西）	522	317μ	2000μ	0.16
			隔壁（南北）	542	166μ	2000μ	0.09
			隔壁（東西）	536	689μ	2000μ	0.35

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－41（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（3）	S s－N 1	－＋	側壁（南北）	512	600μ	2000μ	0． 30
			側壁（東西）	522	357μ	2000μ	0.18
			隔壁（南北）	542	176μ	2000μ	0.09
			隔壁（東西）	536	805μ	2000μ	0． 41
（4）	S s－N 1	$-+$	側壁（南北）	512	368μ	2000μ	0． 19
			側壁（東西）	522	266μ	2000μ	0.14
			隔壁（南北）	542	113μ	2000μ	0.06
			隔壁（東西）	536	531μ	2000μ	0.27

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－41（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	512	1299 н	1725μ	0． 76
			側壁（東西）	522	733μ	1725μ	0． 43
			隔壁（南北）	542	683μ	1725μ	0． 40
			隔壁（東西）	532	893μ	1725μ	0.52
			側壁（南北）	512	1249μ	1725μ	0． 73
			側壁（東西）	522	740μ	1725μ	0． 43
		－	隔壁（南北）	542	702μ	1725μ	0． 41
			隔壁（東西）	536	873μ	1725μ	0.51
			側壁（南北）	512	1292 н	1725μ	0． 75
			側壁（東西）	522	732μ	1725μ	0． 43
		$+$	隔壁（南北）	542	688μ	1725μ	0． 40
			隔壁（東西）	536	907μ	1725μ	0． 53
	S 5 － 2		側壁（南北）	512	1384μ	1725μ	0.81
			側壁（東西）	522	686μ	1725μ	0． 40
		－	隔壁（南北）	542	659μ	1725μ	0.39
			隔壁（東西）	532	892μ	1725μ	0.52
	S s－D 3	＋＋	側壁（南北）	512	1190μ	1725μ	0.69
			側壁（東西）	522	620μ	1725μ	0． 36
			隔壁（南北）	542	581μ	1725μ	0.34
			隔壁（東西）	532	783μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1214μ	1725μ	0.71
			側壁（東西）	522	633μ	1725μ	0.37
			隔壁（南北）	542	614μ	1725μ	0.36
			隔壁（東西）	536	775μ	1725μ	0． 45

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－41（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	512	1055μ	1725μ	0． 62
			側壁（東西）	522	606μ	1725 兄	0． 36
			隔壁（南北）	542	571μ	1725 兄	0.34
			隔壁（東西）	536	725μ	1725μ	0． 43
			側壁（南北）	512	1116μ	1725μ	0.65
			側壁（東西）	522	585μ	1725μ	0． 34
			隔壁（南北）	542	550μ	1725μ	0． 32
			隔壁（東西）	532	766μ	1725μ	0． 45
			側壁（南北）	512	1225 m	1725μ	0． 72
			側壁（東西）	522	711μ	1725μ	0． 42
			隔壁（南北）	542	678μ	1725μ	0． 40
			隔壁（東西）	536	863μ	1725μ	0.51
	S 5 F 2		側壁（南北）	512	1245μ	1725μ	0． 73
			側壁（東西）	522	717μ	1725μ	0． 42
			隔壁（南北）	542	702μ	1725μ	0． 41
			隔壁（東西）	536	861μ	1725μ	0． 50
	S s－F 3	$++$	側壁（南北）	512	1170μ	1725μ	0． 68
			側壁（東西）	522	565μ	1725μ	0.33
			隔壁（南北）	542	541μ	1725μ	0.32
			隔壁（東西）	532	777μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1174μ	1725μ	0． 69
			側壁（東西）	522	647μ	1725μ	0.38
			隔壁（南北）	542	631μ	1725μ	0． 37
			隔壁（東西）	536	781μ	1725μ	0． 46

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－41（7）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon{ }_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	$++$	側壁（南北）	512	1200μ	1725μ	0． 70
			側壁（東西）	522	590μ	1725μ	0.35
			隔壁（南北）	542	612μ	1725 н	0． 36
			隔壁（東西）	532	792μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1467μ	1725 仡	0.86
			側壁（東西）	522	676μ	1725μ	0． 40
			隔壁（南北）	542	611μ	1725μ	0.36
			隔壁（東西）	536	900μ	1725μ	0． 53
（2）	S s－D 2	$++$	側壁（南北）	512	1325 н	1725μ	0． 77
			側壁（東西）	522	751μ	1725μ	0． 44
			隔壁（南北）	542	693μ	1725μ	0． 41
			隔壁（東西）	536	923μ	1725μ	0． 54
（3）	S s－D 2	$++$	側壁（南北）	512	1235μ	1725μ	0． 72
			側壁（東西）	522	716μ	1725μ	0． 42
			隔壁（南北）	542	689μ	1725μ	0． 40
			隔壁（東西）	532	871μ	1725μ	0.51
		－＋	側壁（南北）	512	1337μ	1725μ	0.78
（4）	S s－D 2	$++$	側壁（南北）	512	1257 m	1725μ	0． 73
			側壁（東西）	522	693μ	1725μ	0.41
			隔壁（南北）	542	667μ	1725μ	0.39
			隔壁（東西）	536	939μ	1725μ	0.55
（2）	S s－N 1	$-+$	側壁（南北）	512	1380μ	1725μ	0． 80
			側壁（東西）	522	673μ	1725μ	0． 40
			隔壁（南北）	542	625μ	1725μ	0.37
			隔壁（東西）	536	885μ	1725μ	0． 52

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－41（8）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（3）	S s－N 1	－＋	側壁（南北）	512	1596μ	1725μ	0.93
			側壁（東西）	522	740μ	1725μ	0． 43
			隔壁（南北）	542	668μ	1725μ	0.39
			隔壁（東西）	536	981μ	1725μ	0． 57
（4）	$\mathrm{S} s-\mathrm{N} 1$	$-+$	側壁（南北）	512	1396μ	1725μ	0.81
			側壁（東西）	522	627μ	1725μ	0． 37
			隔壁（南北）	542	577μ	1725μ	0.34
			隔壁（東西）	536	926μ	1725μ	0． 54

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

6．3．2 せん断破壊に対する評価結果

（1）断面（1）
せん断破壊に対する評価結果を表6－42に示す。
同表のとおり，全ケースにおいて発生応力度が短期許容応力度を下回ることを確認し た。

表 6－42 せん断破壊に対する評価結果

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生 応力度 τ d （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \tau_{\mathrm{a} 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 τ_{d} / τ a 1
（1）	S s－D 1	＋＋	頂版	101	0.11	0.63	0.18
		－＋			0.11	0.63	0． 18
	S s－D 2	＋＋	頂版	101	0． 13	0.63	0.21
		－＋			0． 12	0.63	0． 20
	S s－D 3	＋＋	頂版	101	0.11	0.63	0.18
		－＋			0． 12	0.63	0.20
	S s－F 1	＋＋	頂版	101	0.10	0.63	0.16
		$-+$			0.10	0.63	0.16
	S $s-F 2$	＋＋	頂版	101	0． 09	0.63	0.15
		－＋			0.11	0.63	0.18
	S s－F 3	＋＋	頂版	101	0． 13	0． 63	0.21
		－＋			0.11	0.63	0.18
	S s -N 1	＋＋	頂版	101	0.12	0.63	0.20
		－＋			0． 09	0.63	0.15
（2）	S s－D 2	＋＋	頂版	101	0． 14	0． 63	0． 23
（3）	Ss －D 2	＋＋	頂版	101	0.13	0.63	0.21
（4）	S s－D 2	＋＋	頂版	101	0.12	0.63	0.20

注記＊：評価位置は図6－23に示す。
（2）断面（2）～（5）
a．せん断耐力式による評価結果
せん断破壊に対する評価結果のうち，せん断耐力式による評価結果を表 6－43～表6 －46に示す。

同表中には，照査値が 1.0 を上回る解析ケース，部材があることから，次項「b．材料非線形解析による評価結果」にて照査値が 1.0 を下回ることを確認する。

表 6－43（1）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊3 $\mathrm{V}_{\mathrm{y} \text { d }}$ （ kN / m ）	$\begin{gathered} \text { 照査値*4 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	216	562	702	0.81
			側壁（東西）	221	5140	7984	0.65
			隔壁（南北）	244	31	0	－
			隔壁（東西）	238	792	693	1.15
		－＋	側壁（南北）	212	785	904	0.87
			側壁（東西）	222	5191	7984	0.66
			隔壁（南北）	242	34	0	－
			隔壁（東西）	238	772	693	1.12
	S s－D 2	＋+	側壁（南北）	216	587	702	0.84
			側壁（東西）	221	5360	7984	0.68
			隔壁（南北）	242	28	0	－
			隔壁（東西）	238	808	693	1.17
		－＋	側壁（南北）	212	780	904	0.87
			側壁（東西）	222	5106	7984	0.64
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	779	693	1.13
	S s－D 3	＋＋	側壁（南北）	212	716	904	0.80
			側壁（東西）	222	4511	7984	0.57
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	708	693	1.03
		－＋	側壁（南北）	212	772	904	0.86
			側壁（東西）	222	4806	7984	0.61
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	697	693	1． 01

注記＊1：評価位置は図 6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－43（2）せん断破壊に対する評価結果（断面（2），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊3 V_{yd} （kN／m）	照査値＊4 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－F 1	＋＋	側壁（南北）	212	680	904	0． 76
			側壁（東西）	222	4563	7984	0.58
			隔壁（南北）	242	18	0	－
			隔壁（東西）	238	679	693	0.98
			側壁（南北）	212	586	904	0.65
			側壁（東西）	222	4479	7984	0.57
			隔壁（南北）	242	19	0	－
			隔壁（東西）	238	633	693	0． 92
			側壁（南北）	212	712	904	0． 79
			側壁（東西）	222	4857	7984	0.61
			隔壁（南北）	242	21	0	－
	S		隔壁（東西）	238	691	693	1.00
	S 5		側壁（南北）	212	641	904	0.71
			側壁（東西）	222	4785	7984	0.60
			隔壁（南北）	242	20	0	－
			隔壁（東西）	238	680	693	0.99
	Ss－F 3	＋＋	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4722	7984	0.60
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	755	693	1.09
		$-+$	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4661	7984	0． 59
			隔壁（南北）	242	33	0	－
			隔壁（東西）	238	763	693	1.11

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照查用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊4：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－43（3）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 }{ }^{* 4} \\ \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（1）	S s - N 1	＋＋	側壁（南北）	212	795	904	0． 88
			側壁（東西）	222	5214	7984	0.66
			隔壁（南北）	242	20	0	－
			隔壁（東西）	238	718	693	1． 04
		－＋	側壁（南北）	216	487	702	0.70
			側壁（東西）	221	5115	7984	0.65
			隔壁（南北）	244	31	0	－
			隔壁（東西）	239	27	0	－
（2）	S s－D 2	＋+	側壁（南北）	216	585	702	0.84
			側壁（東西）	221	5343	7984	0.67
			隔壁（南北）	242	25	0	－
			隔壁（東西）	238	803	693	1． 16
（3）	S s－D 2	＋＋	側壁（南北）	212	774	904	0.86
			側壁（東西）	222	5087	7984	0． 64
			隔壁（南北）	242	30	0	－
			隔壁（東西）	238	769	693	1.11
（4）	S s－D 2	＋＋	側壁（南北）	216	660	702	0.95
			側壁（東西）	221	5395	7984	0.68
			隔壁（南北）	242	27	0	－
			隔壁（東西）	238	871	693	1． 26

注記 $* 1$ ：評価位置は図 6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－43（4）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力＊3 V_{yd} （ kN / m ）	$\begin{aligned} & \text { 照查値*4 } \\ & \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（2）	S s -N 1	－＋	側壁（南北）	216	473	804	0.59
			側壁（東西）	221	5122	13227	0． 39
			隔壁（南北）	244	32	0	－
			隔壁（東西）	239	28	0	－
（3）	S s -N 1	－＋	側壁（南北）	216	489	804	0.61
			側壁（東西）	221	5108	13227	0.39
			隔壁（南北）	242	14	0	－
			隔壁（東西）	239	27	0	－
（4）	$\mathrm{S} s-\mathrm{N} 1$	－＋	側壁（南北）	216	469	804	0.59
			側壁（東西）	221	5246	13227	0． 40
			隔壁（南北）	242	17	0	－
			隔壁（東西）	238	731	793	0． 93

注記＊1：評価位置は図 6－24に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（1）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊1		$\begin{gathered} \text { 照查用 } \\ \text { せん断力*2 } \\ V_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊${ }^{2}$ $V_{y d}$ （kN／m）	$\begin{aligned} & \text { 照查值 }{ }^{* 4} \\ & \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（1）	Ss－D 1	＋＋	側壁（南北）	314	1078	693	1.56
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	877	693	1.27
		－＋	側壁（南北）	314	1268	693	1.83
			側壁（東西）	322	5838	8989	0.65
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	878	693	1.27
	S s－D 2	＋＋	側壁（南北）	314	1191	693	1． 72
			側壁（東西）	321	6204	8989	0． 70
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	899	693	1.30
		－＋	側壁（南北）	314	1230	693	1.78
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	879	693	1.27
	Ss－D 3	＋＋	側壁（南北）	314	1125	693	1.63
			側壁（東西）	321	5250	8989	0.59
			隔壁（南北）	342	12	0	－
			隔壁（東西）	338	793	693	1． 15
		－＋	側壁（南北）	314	1205	693	1． 74
			側壁（東西）	322	5400	8989	0.61
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	790	693	1． 14

注記 $* 1$ ：評価位置は図6－25に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（2）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊3 $\begin{aligned} & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 }{ }^{* 4} \\ \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	314	1076	693	1． 56
			側壁（東西）	321	5029	8989	0.56
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	729	693	1． 06
			側壁（南北）	314	884	693	1． 28
			側壁（東西）	322	5015	8989	0.56
			隔壁（南北）	342	9	0	－
			隔壁（東西）	338	700	693	1． 02
			側壁（南北）	314	1099	693	1． 59
			側壁（東西）	321	5392	8989	0.60
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	762	693	1． 10
	S ${ }^{\text {S }}$		側壁（南北）	314	1001	693	1． 45
			側壁（東西）	322	5265	8989	0.59
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	760	693	1． 10
	S s－F 3	＋+	側壁（南北）	314	979	693	1． 42
			側壁（東西）	321	5263	8989	0.59
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	791	693	1． 15
		－＋	側壁（南北）	314	1173	693	1． 70
			側壁（東西）	321	5273	8989	0.59
			隔壁（南北）	342	12	0	－
			隔壁（東西）	338	814	693	1． 18

注記＊1：評価位置は図6－25に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊4：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（3）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊3 $\mathrm{V}_{\mathrm{y} \text { d }}$ （ kN / m ）	$\begin{gathered} \text { 照査値 }{ }^{* 4} \\ \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s -N 1	＋＋	側壁（南北）	314	1297	693	1． 88
			側壁（東西）	322	5637	8989	0.63
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	763	693	1． 11
		－＋	側壁（南北）	314	975	693	1.41
			側壁（東西）	321	5830	8989	0.65
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	821	693	1． 19
（2）	S s－D 2	＋＋	側壁（南北）	314	1316	693	1． 90
			側壁（東西）	321	6205	8989	0.70
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	921	693	1． 33
（3）	S s－D 2	＋＋	側壁（南北）	314	1215	693	1． 76
			側壁（東西）	321	5837	8989	0.65
			隔壁（南北）	342	14	0	－
			隔壁（東西）	338	852	693	1． 23
（4）	S s－D 2	＋＋	側壁（南北）	314	1312	794	1． 66
			側壁（東西）	321	6309	8989	0． 71
			隔壁（南北）	342	9	0	－
			隔壁（東西）	333	498	351	1． 42
		－＋	隔壁（東西）	333	476	355	1． 35

注記 $* 1$ ：評価位置は図6－25 に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（4）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値＊4 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（2）	S s -N 1	－＋	側壁（南北）	314	1061	693	1． 54
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	838	693	1． 21
（3）	S s -N 1	－＋	側壁（南北）	314	1190	693	1． 72
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	9	0	－
			隔壁（東西）	338	857	693	1． 24
（4）	$\mathrm{S} s-\mathrm{N} 1$	－＋	側壁（南北）	314	1295	794	1． 64
			側壁（東西）	321	5926	8989	0.66
			隔壁（南北）	342	9	0	－
			隔壁（東西）	333	472	355	1． 33

注記 $* 1$ ：評価位置は図6－25に示す。
$* 2$ ：照査用せん断力二発生せん断力×構造解析係数 γ_{a}
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－45（1）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	416	633	673	0.95
			側壁（東西）	422	5663	8217	0.69
			隔壁（南北）	442	177	708	0.25
			隔壁（東西）	437	1287	920	1． 40
		－＋	側壁（南北）	416	561	665	0.85
			側壁（東西）	422	5816	8217	0.71
			隔壁（南北）	442	184	694	0． 27
			隔壁（東西）	437	1253	920	1． 37
	Ss－D 2	＋＋	側壁（南北）	416	691	670	1.04
			側壁（東西）	422	5742	8217	0.70
			隔壁（南北）	442	171	695	0． 25
			隔壁（東西）	437	1309	920	1． 43
		－＋	側壁（南北）	416	638	672	0.95
			側壁（東西）	422	5596	8217	0.69
			隔壁（南北）	442	171	707	0.25
			隔壁（東西）	437	1267	920	1． 38
	Ss－D 3	＋+	側壁（南北）	416	527	664	0． 80
			側壁（東西）	422	5090	8217	0． 62
			隔壁（南北）	442	161	697	0.24
			隔壁（東西）	437	1123	920	1． 23
		－＋	側壁（南北）	416	296	349	0． 85
			側壁（東西）	422	5322	8217	0.65
			隔壁（南北）	442	170	709	0． 24
			隔壁（東西）	437	1139	920	1． 24

注記＊1：評価位置は図6－26に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a

表 6－45（2）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊ V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	416	276	349	0.80
			側壁（東西）	422	4851	8217	0.60
			隔壁（南北）	442	153	697	0． 22
			隔壁（東西）	437	1034	920	1． 13
			側壁（南北）	416	384	367	1． 05
			側壁（東西）	422	4797	8217	0.59
		－	隔壁（南北）	442	140	695	0.21
			隔壁（東西）	437	1057	920	1.15
			側壁（南北）	416	523	640	0.82
			側壁（東西）	422	5653	8217	0.69
			隔壁（南北）	442	185	707	0． 27
	Ss－F 2		隔壁（東西）	434	614	472	1． 31
	S $\mathrm{S}^{\text {－}}$－ 2		側壁（南北）	416	520	651	0． 80
		－＋	側壁（東西）	422	5376	8217	0.66
		－＋	隔壁（南北）	442	172	706	0． 25
			隔壁（東西）	434	594	478	1． 25
	S s－F 3	＋＋	側壁（南北）	416	555	683	0.82
			側壁（東西）	422	4854	8217	0.60
			隔壁（南北）	442	145	694	0.21
			隔壁（東西）	437	1128	920	1． 23
		－＋	側壁（南北）	416	556	670	0.83
			側壁（東西）	422	5183	8217	0.64
			隔壁（南北）	442	162	710	0． 23
			隔壁（東西）	437	1171	920	1． 28

注記＊1：評価位置は図6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：材料非線形解析によるせん断耐力

表 6－45（3）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { せん断 } \\ & \text { 耐力 } \\ & \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	416	476	628	0.76
			側壁（東西）	422	5796	8217	0.71
			隔壁（南北）	442	191	695	0． 28
			隔壁（東西）	434	622	463	1． 35
		－＋	側壁（南北）	416	430	349	1． 24
			側壁（東西）	422	5494	8217	0． 67
			隔壁（南北）	442	163	698	0.24
			隔壁（東西）	437	1230	920	1． 34
（2）	S s－D 2	＋＋	側壁（南北）	416	771	680	1． 14
			側壁（東西）	422	5760	8217	0.71
			隔壁（南北）	442	164	694	0.24
			隔壁（東西）	437	1356	920	1． 48
（3）	S s－D 2	＋＋	側壁（南北）	416	576	654	0． 89
			側壁（東西）	422	5741	8217	0． 70
			隔壁（南北）	442	184	708	0.26
			隔壁（東西）	437	1217	920	1． 33
（4）	Ss－D 2	＋＋	側壁（南北）	416	702	722	0.98
			側壁（東西）	422	5825	8217	0.71
			隔壁（南北）	442	183	698	0． 27
			隔壁（東西）	437	1376	920	1． 50

注記 $~$ 1：評価位置は図 6－26に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表6－45（4）せん断破壊に対する評価結果（断面（4），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\mathrm{V}_{\mathrm{y} \text { d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	416	444	349	1． 28
			側壁（東西）	422	5465	8217	0.67
			隔壁（南北）	442	161	698	0.24
			隔壁（東西）	437	1238	920	1.35
（3）	S s－N 1	－＋	側壁（南北）	416	468	349	1． 35
			側壁（東西）	422	5809	8217	0.71
			隔壁（南北）	442	174	698	0． 25
			隔壁（東西）	437	1295	920	1． 41
（4）	S s－N 1	$-+$	側壁（南北）	416	661	711	0.93
			側壁（東西）	422	5454	8217	0.67
			隔壁（南北）	442	174	700	0． 25
			隔壁（東西）	437	1266	920	1.38

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 6－46（1）せん断破壊に対する評価結果（断面（5），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－D 1	$++$	側壁（南北）	513	917	1475	0.63
			側壁（東西）	522	5571	8621	0.65
			隔壁（南北）	542	101	669	0.16
			隔壁（東西）	537	1096	851	1． 29
			側壁（南北）	513	891	1475	0.61
			側壁（東西）	522	5601	8621	0.65
			隔壁（南北）	542	104	668	0.16
			隔壁（東西）	537	1090	851	1． 29
			側壁（南北）	513	886	1475	0.61
			側壁（東西）	522	5544	8621	0.65
			隔壁（南北）	542	104	672	0.16
			隔壁（東西）	537	1079	851	1． 27
			側壁（南北）	513	950	1475	0.65
		－	側壁（東西）	522	5339	8621	0.62
		－	隔壁（南北）	542	101	671	0.16
			隔壁（東西）	537	1082	851	1． 28
	Ss－D 3	＋＋	側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	4771	8621	0.56
			隔壁（南北）	542	86	668	0． 13
			隔壁（東西）	537	965	851	1． 14
		$-+$	側壁（南北）	513	836	1475	0.57
			側壁（東西）	522	4874	8621	0.57
			隔壁（南北）	542	91	668	0.14
			隔壁（東西）	537	991	851	1． 17

注記＊1：評価位置は図6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 6－46（2）せん断破壊に対する評価結果（断面（5），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	$S \mathrm{~s}-\mathrm{F} 1$	$++$	側壁（南北）	513	742	1475	0.51
			側壁（東西）	522	4594	8621	0.54
			隔壁（南北）	542	84	668	0.13
			隔壁（東西）	537	906	851	1． 07
			側壁（南北）	513	770	1475	0.53
			側壁（東西）	522	4489	8621	0.53
			隔壁（南北）	542	81	668	0.13
			隔壁（東西）	537	906	851	1． 07
			側壁（南北）	513	830	1475	0． 57
			側壁（東西）	522	5352	8621	0． 63
			隔壁（南北）	542	100	669	0.15
	S		隔壁（東西）	537	1043	851	1． 23
			側壁（南北）	513	855	1475	0.58
		－	側壁（東西）	522	5443	8621	0.64
		－	隔壁（南北）	542	105	668	0.16
			隔壁（東西）	537	1067	851	1． 26
	$\mathrm{S} s-\mathrm{F} 3$	＋＋	側壁（南北）	513	793	1475	0.54
			側壁（東西）	522	4405	8621	0.52
			隔壁（南北）	542	82	671	0． 13
			隔壁（東西）	537	903	851	1． 07
		－＋	側壁（南北）	513	834	1475	0.57
			側壁（東西）	522	4984	8621	0.58
			隔壁（南北）	542	97	668	0.15
			隔壁（東西）	537	992	851	1． 17

注記＊1：評価位置は図6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 6－46（3）せん断破壊に対する評価結果（断面（5），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 $\begin{gathered} \mathrm{V}_{\mathrm{yd} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s -N 1	＋＋	側壁（南北）	513	767	1475	0.52
			側壁（東西）	522	4570	8621	0.54
			隔壁（南北）	542	94	668	0.15
			隔壁（東西）	537	942	851	1． 11
		－＋	側壁（南北）	513	973	1475	0.66
			側壁（東西）	522	5245	8621	0.61
			隔壁（南北）	542	91	672	0． 14
			隔壁（東西）	537	1079	851	1． 27
（2）	S s－D 2	＋＋	側壁（南北）	513	933	1475	0． 64
			側壁（東西）	522	5699	8621	0.67
			隔壁（南北）	542	104	673	0． 16
			隔壁（東西）	537	1108	851	1． 31
（3）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	側壁（南北）	513	851	1475	0.58
			側壁（東西）	522	5417	8621	0.63
			隔壁（南北）	542	103	668	0.16
			隔壁（東西）	537	1059	851	1． 25
（4）	S s－D 2	＋＋	側壁（南北）	513	965	1475	0.66
			側壁（東西）	522	5413	8621	0． 63
			隔壁（南北）	542	103	673	0． 16
			隔壁（東西）	537	1231	851	1． 45

注記＊1：評価位置は図6－27に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 6－46（4）せん断破壊に対する評価結果（断面（5），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\begin{gathered} \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	$\mathrm{Ss}-\mathrm{N} 1$	$-+$	側壁（南北）	513	899	1475	0.61
			側壁（東西）	522	5165	8621	0.60
			隔壁（南北）	542	93	672	0． 14
			隔壁（東西）	537	1048	851	1． 24
（3）	S s－N 1	－+	側壁（南北）	513	1048	1475	0.72
			側壁（東西）	522	5716	8621	0． 67
			隔壁（南北）	542	97	670	0． 15
			隔壁（東西）	537	1175	851	1． 39
（4）	$\mathrm{Ss}-\mathrm{N} 1$	－+	側壁（南北）	513	1054	1475	0． 72
			側壁（東西）	522	5051	8621	0.59
			隔壁（南北）	542	88	673	0． 14
			隔壁（東西）	537	1234	851	1． 46

注記＊1：評価位置は図 6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
b．材料非線形解析による評価結果
（a）評価条件
前項「a．せん断耐力式による評価結果」では，原子炉機器冷却海水配管ダクト（鉛直部）の隔壁及び側壁において，照査用せん断力がせん断耐力式によるせん断耐力を上回 る結果となつた。

せん断耐力式は，既往の実験等から一般化されたものであることから，ここでは，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析 を実施することにより，より高い精度でせん断耐力を求め，構造部材のせん断破壊に対 する健全性を確認する 。

図 6－28に材料非線形解析によりせん断破壊に対する評価を実施する対象部材を示す。 また，評価対象部材の要素分割図を図6－29に，要素プロパティ番号図を図6－30，要素プロパティ条件を表6－47に示す。

図6－28（1）材料非線形解析における評価対象部材（断面（3）

図6－28（2）材料非線形解析における評価対象部材（断面（4））

図6－29（1）要素分割図（隔壁）

図6－29（2）要素分割図（側壁）

図6－30（1）要素プロパティ番号図（隔壁）

表6－47（1）要素プロパティ条件（隔壁）

番号	材料	引張硬化軟化係数	
		C x	C y
1	RC	1.9	0.4
2	無筋	1.5	2.9
3	無筋	1.5	2.2
4	無筋	1.5	1.7
5	無筋	1.5	1.5

図6－30（2）要素プロパティ番号図（側壁）

表6－47（2）要素プロパティ条件（側壁）

番号	元要素			オーバーラッピング要素		
	材料	引張硬化軟化係数		材料	引張硬化軟化係数	
		C x	C y		C x	C y
1	RC	0.4	0． 4	RC	0.4	1.9
2	RC	1． 7	0.4	無筋	1.7	1． 3
3	RC	2． 2	0． 4	無筋	2.2	1． 3
4	RC	2.5	0． 4	無筋	2.5	1.3
5	無筋	1.5	1.5	－	－	－

材料非線形解析によるせん断耐力の算定において考慮する荷重は，地震応答解析から得られる荷重を考慮する。具体的には地震応答解析で評価対象部材のせん断照査が厳し くなる断面力（曲げモーメント，軸力，せん断力）を材料非線形解析モデルに図 6－31 のように作用させる。材料非線形解析では，二次元構造解析から得られた断面力分布を再現できる荷重分布を算出し，この荷重を 100 分割したものを $\Delta M, \Delta Q, \Delta N$ とし， これらの比率を維持しながら漸増載荷する。

なお，作用荷重は，常時荷重（ $\Delta \mathrm{M}_{\mathrm{s}}, \Delta \mathrm{Q}_{\mathrm{s}}, \Delta \mathrm{N}_{\mathrm{s}}$ ）及び地震時荷重（ $\Delta \mathrm{M}_{\mathrm{d}}, \Delta \mathrm{Q}$ d ，$\Delta \mathrm{N}_{\mathrm{d}}$ ）とし，図6－32に作用手順を示す。表6－48に代表例として，材料非線形解析による評価において隔壁及び側壁の最も照査値が厳しい解析ケースにおける $\Delta \mathrm{M}, ~ \Delta$ Q，$\Delta \mathrm{N}$ を示す。

図6－31（1）材料非線形解析における載荷状況（隔壁）

図 6－31（2）材料非線形解析における載荷状況（側壁）

図6－32 荷重の作用手順

6－48 材料非線形解析における作用荷重

部材			側壁	隔壁
地震動			S s－N1（－＋）	Ss－D 2 （＋＋）
解析ケース			解析ケース（3）	解析ケース（4）
$\begin{aligned} & \text { 常 } \\ & \text { 時 } \\ & \text { 荷 } \\ & \text { 重 } \end{aligned}$	曲げモーメント（kN•m）	$\Delta \mathrm{M}$	51.304	12.837
	せん断力（kN）	ΔQ_{1}	－26．118	－15．301
		ΔQ_{2}	－33． 953	0.000
		ΔQ_{3}	－36．565	0.000
		ΔQ_{4}	－36．565	0.000
		ΔQ_{5}	－36．565	0.000
		ΔQ_{6}	－33．953	0.000
		ΔQ_{7}	－26．117	0.000
		ΔQ_{8}	111.948	
	軸力（kN）	ΔN_{1}	0.000	－387． 558
		$\Delta \mathrm{N}_{2}$	0.000	0.000
		ΔN_{3}	0.000	0.000
		ΔN_{4}	0.000	0.000
		ΔN_{5}	0.000	0.000
		ΔN_{6}	0.000	0.000
		ΔN_{7}	0.000	0.000
		ΔN_{8}	－170．652	
地震時荷重	曲げモーメント（kN•m）	$\Delta \mathrm{M}$	287． 459	329．931
	せん断力（kN）	ΔQ_{1}	－190． 894	－474．578
		ΔQ_{2}	－248． 162	－3． 886
		ΔQ_{3}	－267． 253	－4．859
		ΔQ_{4}	－267． 251	－5． 829
		ΔQ_{5}	－267． 252	－6．801
		ΔQ_{6}	－248． 162	-7.773
		ΔQ_{7}	－190． 894	－7．773
		ΔQ_{8}	692.738	
	軸力（kN）	ΔN_{1}	－82． 822	－2640． 843
		$\Delta \mathrm{N}_{2}$	－107．670	－3．780
		ΔN_{3}	－115．952	－4．722
		ΔN_{4}	－115．952	－5．664
		ΔN_{5}	－115．952	－6．606
		ΔN_{6}	－107． 670	－7． 559
		$\Delta \mathrm{N}_{7}$	－82． 822	－7．548
		ΔN_{8}	250.653	

（b）評価結果

イ．隔壁の照査結果

評価対象部材における荷重一変位曲線を図 6－33に示す。同図は，評価対象部材 において最も厳しい照査値となる地震動と解析ケースの組合せ（解析ケース（4），地震動S s－D $2(++))$ の結果を示している。

図中の赤丸で示した 100 ステップは，二次元構造解析において得られた断面力を再現した状態である。127 ステップ以降，水平変位の急増が認められる。

図6－34に，各ステップにおけるひび割れ図を示す。
ひび割れ図に着目すると， 127 ステップまでは，荷重の増加に伴い軸方向の圧縮力による部材軸方向のひび割れとせん断力による部材直角方向のひび割れの両方の ひび割れが徐々に進展し， 127 ステップ以降は，圧縮力及びせん断力により，それ ぞれのひび割れが進展する様相を示している。したがって， 127 ステップ以降の水平変位の発生は，圧縮力によるひび割れとせん断力によるひび割れの進展に伴らも のであると判断される。

以上のとおり，評価対象部材に対する材料非線形解析では，せん断ひび割れの進展によりせん断破壊に至ることを考慮し，127 ステップ（図中の青丸）をせん断耐力発生時の状態として設定する。

また，図6－35に，各ステップにおける変形図を示す。

図6－33 荷重一変位曲線
（隔壁，解析ケース（4）地震動 S s－D $2(++)$ ）

図6－34 各ステップにおけるひび割れ図
（隔壁，解析ケース（4）地震動 S s－D $2(++)$ ）

変形倍率 $(\times 20)$
図6－35 各ステップにおける変形図
（隔壁，解析ケース（4）地震動 S s－D 2（＋＋））

ロ．側壁の照査結果

評価対象部材における荷重一変位曲線を図 6－36に示す。同図は，評価対象部材 において最も厳しい照査値となる地震動と解析ケースの組み合わせ（解析ケース③）地震動 S s－N 1（ -+ ））の結果を示している。

図中の赤丸で示した 100 ステップは，二次元構造解析において得られた断面力を再現した状態である。176 ステップ以降，水平変位の急増が認められる。なお， 179 ステップにおいて，せん断補強筋の降伏が発生している。せん断補強筋の初期降伏箇所を図6－37に示す。

図6－38に，各ステップにおけるひび割れ図を示す。
ひび割れ図に着目すると， 176 ステップまでは，荷重の増加に伴って中央及び両端で徐々にひび割れが進展していくが，176ステップ以降は，斜めひび割れが圧縮縁側に進展する様相を示している。したがって， 176 ステップ以降の水平変位の発生 は，斜めひび割れの進展に伴うものであると判断される。

以上のとおり，評価対象部材に対する材料非線形解析では，斜めひび割れの進展 によりせん断破壊に至ることを考慮し，176 ステップ（図中の青丸）をせん断耐力発生時の状態として設定する。

また，図6－39に，各ステップにおける変形図を示す。

図6－36 荷重一変位曲線
（側壁，解析ケース③ 地震動 S s－N 1 （ -+ ））

図 6－37 せん断補強筋の初期降伏箇所
（側壁，解析ケース③ 地震動 S s－N 1（－＋）179STEP）

179STEP
せん断筋初期降伏時

207STEP

213STEP

図6－38 各ステップにおけるひび割れ図
（側壁，解析ケース（3）地震動 S s－N 1（ -+ ））

100STEP
断面力再現時

179STEP
せん断筋初期降伏時

207STEP

176STEP
せん断耐力

201STEP

213STEP

変形倍率 $(\times 20)$
図6－39 各ステップにおける変形図 （側壁，解析ケース（3）地震動S s－N $1(-+)$ ）

八．せん断力に対する評価結果
せん断耐力式及び材料非線形解析によるせん断破壊に対する照査結果を，表6－ 49～表6－52に示す。

同表より，全部材で照査用せん断力がせん断耐力を下回ることを確認した。

表 6－49（1）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	216	562	702	0.81
			側壁（東西）	221	5140	7984	0.65
			隔壁（南北）	242	32.987	77．648＊3	0． 43
			隔壁（東西）	238	760	1639＊3	0.47
		－＋	側壁（南北）	212	785	904	0.87
			側壁（東西）	222	5191	7984	0.66
			隔壁（南北）	242	51． 383	103．673＊3	0.50
			隔壁（東西）	238	740	1623＊3	0． 46
	Ss－D 2	＋＋	側壁（南北）	216	587	702	0.84
			側壁（東西）	221	5360	7984	0.68
			隔壁（南北）	242	42． 403	91． $183 * 3$	0． 47
			隔壁（東西）	238	766	1638＊3	0.47
		－＋	側壁（南北）	212	780	904	0.87
			側壁（東西）	222	5106	7984	0.64
			隔壁（南北）	242	38.275	88．064＊3	0.44
			隔壁（東西）	238	740	$1610 * 3$	0.46
	Ss－D 3	＋＋	側壁（南北）	212	716	904	0． 80
			側壁（東西）	222	4511	7984	0.57
			隔壁（南北）	242	37.870	93．501＊3	0.41
			隔壁（東西）	238	683	$1625^{* 3}$	0.43
		－＋	側壁（南北）	212	772	904	0.86
			側壁（東西）	222	4806	7984	0.61
			隔壁（南北）	242	37.886	88． $510 * 3$	0． 43
			隔壁（東西）	238	674	$1567 * 3$	0． 44

注記 $* 1$ ：評価位置は図 6－24 に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

表6－49（2）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\begin{aligned} & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	212	680	904	0． 76
			側壁（東西）	222	4563	7984	0.58
			隔壁（南北）	242	28． 308	78．159＊3	0.37
			隔壁（東西）	238	679	693	0.98
			側壁（南北）	212	586	904	0.65
			側壁（東西）	222	4479	7984	0.57
			隔壁（南北）	242	22． 706	68． $919 * 3$	0.33
			隔壁（東西）	238	633	693	0.92
			側壁（南北）	212	712	904	0． 79
			側壁（東西）	222	4857	7984	0.61
			隔壁（南北）	242	33.377	81．815＊3	0.41
			隔壁（東西）	238	714	2006＊3	0.36
			側壁（南北）	212	641	904	0.71
			側壁（東西）	222	4785	7984	0.60
			隔壁（南北）	242	24.505	69． $177 * 3$	0.36
			隔壁（東西）	238	680	693	0.99
	S s－F 3	＋＋	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4722	7984	0.60
			隔壁（南北）	242	37.789	90．624＊3	0． 42
			隔壁（東西）	238	725	$1602 * 3$	0． 46
		－＋	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4661	7984	0.59
			隔壁（南北）	242	48． 889	103． $834 * 3$	0． 48
			隔壁（東西）	238	732	1598＊3	0． 46

注記 $* 1$ ：評価位置は図 6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

表 6－49（3）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	212	795	904	0.88
			側壁（東西）	222	5214	7984	0.66
			隔壁（南北）	242	30． 488	74．195＊3	0． 42
			隔壁（東西）	238	692	1567＊3	0． 45
		－＋	側壁（南北）	216	487	702	0.70
			側壁（東西）	221	5115	7984	0.65
			隔壁（南北）	242	20.718	59．401＊3	0.35
			隔壁（東西）	238	690	1575＊3	0． 44
（2）	S s－D 2	＋＋	側壁（南北）	216	585	702	0.84
			側壁（東西）	221	5343	7984	0.67
			隔壁（南北）	242	38.380	84． $911{ }^{* 3}$	0． 46
			隔壁（東西）	238	759	$1643 * 3$	0． 47
（3）	Ss－D 2	＋＋	側壁（南北）	212	774	904	0． 86
			側壁（東西）	222	5087	7984	0.64
			隔壁（南北）	242	45.000	95． $574 * 3$	0． 48
			隔壁（東西）	238	737	1609＊3	0.46
（4）	S s－D 2	＋＋	側壁（南北）	216	660	702	0.95
			側壁（東西）	221	5395	7984	0.68
			隔壁（南北）	242	37.942	92．000＊3	0． 42
			隔壁（東西）	238	829	1649＊3	0.51

注記＊1：評価位置は図 6－24に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊3：材料非線形解析によるせん断耐力

表 6－49（4）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s -N 1	－＋	側壁（南北）	216	473	804	0.59
			側壁（東西）	221	5122	13227	0． 39
			隔壁（南北）	242	20.358	$60.533 * 3$	0.34
			隔壁（東西）	239	23	469＊3	0.05
（3）	S s -N 1	－＋	側壁（南北）	216	489	804	0.61
			側壁（東西）	221	5108	13227	0.39
			隔壁（南北）	242	15． 437	$50.543 * 3$	0． 31
			隔壁（東西）	239	23	490＊3	0.05
（4）	S s－N 1	－＋	側壁（南北）	216	469	804	0.59
			側壁（東西）	221	5246	13227	0． 40
			隔壁（南北）	242	19．706	67． $313{ }^{* 3}$	0． 30
			隔壁（東西）	238	731	793	0.93

注記＊1：評価位置は図6－24に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：材料非線形解析によるせん断耐力

表6－50（1）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\begin{aligned} & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	314	559	1309＊3	0． 43
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	2． 729	8． $329 * 3$	0.33
			隔壁（東西）	333	404	639＊3	0.64
			側壁（南北）	313	239	436＊3	0.55
			側壁（東西）	322	5838	8989	0.65
			隔壁（南北）	342	3.969	11．062＊3	0.36
			隔壁（東西）	333	410	$550 * 3$	0.75
			側壁（南北）	313	218	$431 * 3$	0.51
			側壁（東西）	321	6204	8989	0． 70
			隔壁（南北）	342	3.913	11．528＊3	0.34
			隔壁（東西）	333	436	$567 * 3$	0． 77
			側壁（南北）	313	230	$438 * 3$	0.53
		－	側壁（東西）	321	5889	8989	0.66
		－	隔壁（南北）	342	3.023	8． 801 ＊ 3	0.35
			隔壁（東西）	333	420	$560 * 3$	0.75
	Ss－D 3	＋＋	側壁（南北）	313	389	855＊3	0． 46
			側壁（東西）	321	5250	8989	0.59
			隔壁（南北）	342	2． 894	9． $345 * 3$	0． 31
			隔壁（東西）	338	768	$1622^{* 3}$	0． 48
		－＋	側壁（南北）	313	229	$440 * 3$	0.53
			側壁（東西）	322	5400	8989	0.61
			隔壁（南北）	342	3.624	11．029＊3	0.33
			隔壁（東西）	338	767	1519＊3	0.51

注記 $* 1$ ：評価位置は図 6－25に示す。
$* 2$ ：照査用せん断力二発生せん断力×構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（2）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\mathrm{V}_{\mathrm{y} \text { d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	313	364	$840 * 3$	0． 44
			側壁（東西）	321	5029	8989	0.56
			隔壁（南北）	342	1． 024	3． $414 * 3$	0． 30
			隔壁（東西）	338	704	1599＊3	0． 45
		－＋	側壁（南北）	314	1189	2955＊3	0.41
			側壁（東西）	322	5015	8989	0.56
			隔壁（南北）	342	2． 037	7．173＊3	0.29
			隔壁（東西）	338	674	1560＊3	0.44
	S s－F 2	＋＋	側壁（南北）	313	376	$853 * 3$	0． 45
			側壁（東西）	321	5392	8989	0.60
			隔壁（南北）	342	2． 617	8． 1733^{3}	0.33
			隔壁（東西）	333	380	$560 * 3$	0.68
		－＋	側壁（南北）	314	518	1305＊3	0． 40
			側壁（東西）	322	5265	8989	0.59
			隔壁（南北）	342	2． 629	8． $326{ }^{* 3}$	0.32
			隔壁（東西）	333	366	$563 * 3$	0.66
	S s－F 3	＋＋	側壁（南北）	314	513	$1327 * 3$	0.39
			側壁（東西）	321	5263	8989	0.59
			隔壁（南北）	342	3． 631	12． $079 * 3$	0.31
			隔壁（東西）	333	365	$564 * 3$	0.65
		－＋	側壁（南北）	313	224	$442^{* 3}$	0.51
			側壁（東西）	321	5273	8989	0.59
			隔壁（南北）	342	2． 366	7． $388 * 3$	0.33
			隔壁（東西）	338	783	$1482 * 3$	0． 53

注記＊1：評価位置は図6－25 に示す。
$* 2$ ：照査用せん断力二発生せん断力×構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（3）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\mathrm{V}_{\mathrm{y} \text { d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	＋＋	側壁（南北）	313	253	449＊3	0.57
			側壁（東西）	322	5637	8989	0.63
			隔壁（南北）	342	2． 911	8． 166 ＊3	0.36
			隔壁（東西）	338	738	1455＊3	0.51
		－＋	側壁（南北）	314	1311	2934＊3	0． 45
			側壁（東西）	321	5830	8989	0． 65
			隔壁（南北）	342	2． 851	9． $407 * 3$	0.31
			隔壁（東西）	333	395	$572 * 3$	0.70
（2）	S s－D 2	＋＋	側壁（南北）	313	249	$436 * 3$	0.58
			側壁（東西）	321	6205	8989	0． 70
			隔壁（南北）	342	2． 154	5．811＊3	0.38
			隔壁（東西）	333	447	$561 * 3$	0． 80
（3）	S s－D 2	＋＋	側壁（南北）	313	226	425＊3	0.54
			側壁（東西）	321	5837	8989	0.65
			隔壁（南北）	342	4． 011	11．783＊3	0.35
			隔壁（東西）	333	408	$555 * 3$	0． 74
（4）	S s－D 2	＋＋	側壁（南北）	314	1665	2930＊3	0.57
			側壁（東西）	321	6309	8989	0.71
			隔壁（南北）	342	3． 950	12． $898 * 3$	0.31
			隔壁（東西）	333	502	$563 * 3$	0． 90
		－＋	隔壁（東西）	333	479	559＊3	0． 86

注記＊1 ：評価位置は図 6－25に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：材料非線形解析によるせん断耐力

表 6－50（4）せん断破壊に対する評価結果（断面③）せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	314	551	1306＊3	0． 43
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	3． 202	$10.512^{* 3}$	0.31
			隔壁（東西）	333	404	$570 * 3$	0.71
（3）	S s－N 1	－＋	側壁（南北）	313	200	$394 * 3$	0.51
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	0． 430	1． $304 * 3$	0.33
			隔壁（東西）	333	413	$562 * 3$	0.74
（4）	S s－N 1	－＋	側壁（南北）	314	673	$1351 * 3$	0.50
			側壁（東西）	321	5926	8989	0.66
			隔壁（南北）	342	2． 979	10．358＊3	0． 29
			隔壁（東西）	333	475	$575 * 3$	0． 83

注記 $* 1$ ：評価位置は図 6－25に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：材料非線形解析によるせん断耐力

表6－51（1）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	416	633	673	0.95
			側壁（東西）	422	5663	8217	0.69
			隔壁（南北）	442	177	708	0． 25
			隔壁（東西）	437	1261	$2042 * 3$	0． 62
			側壁（南北）	416	561	665	0.85
			側壁（東西）	422	5816	8217	0.71
			隔壁（南北）	442	184	694	0.27
			隔壁（東西）	434	655	1013＊3	0.65
			側壁（南北）	416	880	1502＊3	0.59
			側壁（東西）	422	5742	8217	0.70
			隔壁（南北）	442	171	695	0． 25
	S $s-{ }^{\text {d }}$		隔壁（東西）	437	1276	2043＊3	0.63
	S s－D 2		側壁（南北）	416	638	672	0.95
		$+$	側壁（東西）	422	5596	8217	0.69
		－	隔壁（南北）	442	171	707	0.25
			隔壁（東西）	437	1238	2048＊3	0.61
	S s－D 3	＋＋	側壁（南北）	416	527	664	0.80
			側壁（東西）	422	5090	8217	0.62
			隔壁（南北）	442	161	697	0． 24
			隔壁（東西）	434	566	1025＊3	0． 56
		－＋	側壁（南北）	416	296	349	0.85
			側壁（東西）	422	5322	8217	0.65
			隔壁（南北）	442	170	709	0.24
			隔壁（東西）	434	595	1037＊3	0． 58

注記 $* 1$ ：評価位置は図 6－26に示す。
$* 2$ ：照査用せん断力二発生せん断力×構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－51（2）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	416	276	349	0． 80
			側壁（東西）	422	4851	8217	0.60
			隔壁（南北）	442	153	697	0． 22
			隔壁（東西）	434	542	1030＊3	0.53
			側壁（南北）	416	557	1304＊3	0.43
			側壁（東西）	422	4797	8217	0.59
			隔壁（南北）	442	140	695	0.21
			隔壁（東西）	437	1037	2017＊3	0.52
			側壁（南北）	416	523	640	0.82
			側壁（東西）	422	5653	8217	0.69
			隔壁（南北）	442	185	707	0.27
			隔壁（東西）	434	624	981＊3	0.64
			側壁（南北）	416	520	651	0． 80
			側壁（東西）	422	5376	8217	0.66
			隔壁（南北）	442	172	706	0． 25
			隔壁（東西）	434	604	1015＊3	0.60
	S s－F 3	＋＋	側壁（南北）	416	555	683	0.82
			側壁（東西）	422	4854	8217	0.60
			隔壁（南北）	442	145	694	0． 21
			隔壁（東西）	437	1105	2051＊3	0.54
		－＋	側壁（南北）	416	556	670	0.83
			側壁（東西）	422	5183	8217	0.64
			隔壁（南北）	442	162	710	0.23
			隔壁（東西）	437	1148	2041＊3	0.57

注記＊1：評価位置は図6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

表 6－51（3）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	416	476	628	0.76
			側壁（東西）	422	5796	8217	0.71
			隔壁（南北）	442	191	695	0． 28
			隔壁（東西）	434	633	951＊3	0.67
		－＋	側壁（南北）	416	900	1496＊3	0.61
			側壁（東西）	422	5494	8217	0.67
			隔壁（南北）	442	163	698	0.24
			隔壁（東西）	434	612	1022＊3	0． 60
（2）	S s－D 2	＋＋	側壁（南北）	416	986	1552＊3	0.64
			側壁（東西）	422	5760	8217	0． 71
			隔壁（南北）	442	164	694	0.24
			隔壁（東西）	434	654	1017＊3	0.65
（3）	S s－D 2	＋＋	側壁（南北）	416	576	654	0． 89
			側壁（東西）	422	5741	8217	0． 70
			隔壁（南北）	442	184	708	0． 26
			隔壁（東西）	434	640	1024＊3	0.63
（4）	S s－D 2	＋＋	側壁（南北）	416	702	722	0.98
			側壁（東西）	422	5825	8217	0.71
			隔壁（南北）	442	183	698	0.27
			隔壁（東西）	434	622	$824 * 3$	0． 76

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：材料非線形解析によるせん断耐力

表 6－51（4）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	416	920	1505＊3	0.62
			側壁（東西）	422	5465	8217	0.67
			隔壁（南北）	442	161	698	0.24
			隔壁（東西）	434	613	1023＊3	0.60
（3）	S s－N 1	－＋	側壁（南北）	416	969	1507＊3	0.65
			側壁（東西）	422	5809	8217	0.71
			隔壁（南北）	442	174	698	0． 25
			隔壁（東西）	434	640	1012＊3	0.64
（4）	S s－N 1	－＋	側壁（南北）	416	661	711	0． 93
			側壁（東西）	422	5454	8217	0.67
			隔壁（南北）	442	174	700	0． 25
			隔壁（東西）	434	665	1093＊3	0.61

注記＊1：評価位置は図6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：材料非線形解析によるせん断耐力

表6－52（1）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	513	917	1475	0.63
			側壁（東西）	522	5571	8621	0.65
			隔壁（南北）	542	101	669	0.16
			隔壁（東西）	537	1115	2189＊3	0.51
			側壁（南北）	513	891	1475	0.61
			側壁（東西）	522	5601	8621	0.65
			隔壁（南北）	542	104	668	0.16
			隔壁（東西）	537	1066	2093＊3	0.51
			側壁（南北）	513	886	1475	0.61
			側壁（東西）	522	5544	8621	0.65
			隔壁（南北）	542	104	672	0． 16
			隔壁（東西）	537	1103	2205＊3	0.51
			側壁（南北）	513	950	1475	0.65
			側壁（東西）	522	5339	8621	0.62
			隔壁（南北）	542	101	671	0.16
			隔壁（東西）	537	1054	2106＊3	0.51
	S s－D 3	＋＋	側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	4771	8621	0.56
			隔壁（南北）	542	86	668	0.13
			隔壁（東西）	537	980	$2184 * 3$	0． 45
		－＋	側壁（南北）	513	836	1475	0.57
			側壁（東西）	522	4874	8621	0.57
			隔壁（南北）	542	91	668	0.14
			隔壁（東西）	537	973	$2108 * 3$	0． 47

注記＊1：評価位置は図6－27に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－52（2）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} $(\mathrm{kN} / \mathrm{m})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	513	742	1475	0.51
			側壁（東西）	522	4594	8621	0.54
			隔壁（南北）	542	84	668	0． 13
			隔壁（東西）	537	886	2085＊3	0． 43
		－＋	側壁（南北）	513	770	1475	0.53
			側壁（東西）	522	4489	8621	0.53
			隔壁（南北）	542	81	668	0． 13
			隔壁（東西）	537	886	2083＊3	0． 43
	S s－F 2	＋＋	側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	5352	8621	0.63
			隔壁（南北）	542	100	669	0． 15
			隔壁（東西）	537	1018	2079＊3	0． 49
		－＋	側壁（南北）	513	855	1475	0.58
			側壁（東西）	522	5443	8621	0.64
			隔壁（南北）	542	105	668	0． 16
			隔壁（東西）	537	1044	2095＊3	0.50
	S s－F 3	＋＋	側壁（南北）	513	793	1475	0.54
			側壁（東西）	522	4405	8621	0.52
			隔壁（南北）	542	82	671	0.13
			隔壁（東西）	537	922	$2200 * 3$	0． 42
		－＋	側壁（南北）	513	834	1475	0． 57
			側壁（東西）	522	4984	8621	0.58
			隔壁（南北）	542	97	668	0.15
			隔壁（東西）	537	1010	$2197 * 3$	0． 46

注記＊1：評価位置は図 6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊3：材料非線形解析によるせん断耐力

表6－52（3）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 V_{d} $(\mathrm{kN} / \mathrm{m})$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S $s-N 1$	＋＋	側壁（南北）	513	767	1475	0． 52
			側壁（東西）	522	4570	8621	0.54
			隔壁（南北）	542	94	668	0.15
			隔壁（東西）	537	924	2107＊3	0． 44
		－＋	側壁（南北）	513	973	1475	0.66
			側壁（東西）	522	5245	8621	0.61
			隔壁（南北）	542	91	672	0.14
			隔壁（東西）	537	1100	2091＊3	0.53
（2）	Ss－D 2	＋＋	側壁（南北）	513	933	1475	0.64
			側壁（東西）	522	5699	8621	0． 67
			隔壁（南北）	542	104	673	0.16
			隔壁（東西）	537	1075	$1997 * 3$	0.54
（3）	Ss－D 2	＋＋	側壁（南北）	513	851	1475	0.58
			側壁（東西）	522	5417	8621	0.63
			隔壁（南北）	542	103	668	0． 16
			隔壁（東西）	537	1034	$2095 * 3$	0.50
（4）	S s－D 2	＋＋	側壁（南北）	513	965	1475	0.66
			側壁（東西）	522	5413	8621	0． 63
			隔壁（南北）	542	103	673	0． 16
			隔壁（東西）	537	1199	2088＊3	0.58

注記＊1：評価位置は図6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：材料非線形解析によるせん断耐力

表 6－52（4）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s -N 1	－＋	側壁（南北）	513	899	1475	0.61
			側壁（東西）	522	5165	8621	0.60
			隔壁（南北）	542	93	672	0． 14
			隔壁（東西）	537	1020	1949＊3	0.53
（3）	$\mathrm{S} s-\mathrm{N} 1$	－＋	側壁（南北）	513	1048	1475	0.72
			側壁（東西）	522	5716	8621	0.67
			隔壁（南北）	542	97	670	0.15
			隔壁（東西）	537	1196	$2115 * 3$	0． 57
（4）	S s－N 1	－＋	側壁（南北）	513	1054	1475	0． 72
			側壁（東西）	522	5051	8621	0.59
			隔壁（南北）	542	88	673	0． 14
			隔壁（東西）	537	1206	$2112^{* 3}$	0.58

注記 $* 1$ ：評価位置は図 6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ $3: ~$ 材料非線形解析によるせん断耐力

6.4 基礎地盤の支持性能に対する評価結果

原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポンプ室に懸架され一体構造になってい ることから，添付資料「VI－2－2－8 海水ポンプ室の耐震性についての計算書」により，基礎地盤に発生する応力（接地圧）が極限支持力に基づく許容限界を下回ること，MMR に発生する応力（接地圧）が支圧強度を下回ること，及び MMR の健全性を確認した。

7．まとめ

原子炉機器冷却海水配管ダクト（鉛直部）については，基準地震動 S s による耐震評価とし て，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持性能に対する評価を実施した。

構造部材の健全性評価について，断面（1）においては鉄筋コンクリート部材の応力度が要求機能 に応じた許容限界を下回ることを確認した。断面（2）～（5）においては，鉄筋コンクリート部材のひ ずみ，せん断力が要求機能に応じた許容限界を下回ること，鋼材の応力度が許容限界を下回るこ と，及び鋼材の座屈に対する安定性を確認した。

基礎地盤の支持性能評価については，原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポン プ室に懸架され一体構造になっていることから，添付資料「VI－2－2－8 海水ポンプ室の耐震性に ついての計算書」により，基礎地盤に発生する応力（接地圧）が極限支持力に基づく許容限界を下回ること，MMR に発生する応力（接地圧）が支圧強度を下回ること，及び MMR の健全性を確認 した。
以上から，原子炉機器冷却海水配管ダクト（鉛直部）は，基準地震動 S s による地震力に対し て，構造強度を有すること，Sクラスの施設を支持する機能及び止水機能を損なわないことを確認した。

参考資料1 津波に対する止水機能を有する施設の評価について

1．概要

原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポンプ室と懸架され一体構造となつ ており，防潮壁（第 2 号機海水ポンプ室）内側の津波の浸水が想定される範囲に位置する。当該位置に設置される津波防護に関する施設として，原子炉機器冷却海水配管ダクト（鉛直部）頂版に設置される浸水防止蓋は，地震時•津波時においても止水機能が要求される設備 であり，頂版についても浸水防止蓋と同様に止水機能を維持する必要があることから，津波時の強度評価を行う。

2．配置概要及び評価方針

2.1 配置概要

海水ポンプ室スクリーンエリア周囲の津波の浸水想定範囲を図2－1及び図2－2に示 す。

図 2－1 海水ポンプ室スクリーンエリア周囲の津波の浸水想定範囲（平面図）

枠囲みの内容は防護上の観点から公開できません。

＊注記：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことにより，入力津波高さは 0．P．＋18．1m であるが，本評価においては沈下を考慮せずに， 0．P．＋19．1mと表記

図 2－2 海水ポンプ室スクリーンエリア周囲の津波の浸水想定範囲（A－A 断面）

2． 2 評価方針

原子炉機器冷却海水配管ダクト（鉛直部）の強度評価は，添付資料「VI－3－別添3－1津波への配慮が必要な施設の強度計算の方針」にて設定した原子炉機器冷却海水配管ダク ト（鉛直部）位置における設計津波水位に基づき，「3．評価対象部材」にて設定する部材において，「6．評価方法」で算出した応力が許容限界内に収まることを，「7．強度評価」にて確認する。強度評価フローを図2－3に示す。

図2－3 強度評価フロー

3．評価対象部材
評価対象部材は，止水機能を要する原子炉機器冷却海水配管ダクト（鉛直部）の頂版と する。原子炉機器泠却海水配管ダクト（鉛直部）の平面図，正面図及び縦断図を図 3－1～図 3－3に，評価対象部材（頂版）を図 3－4に示す。

図 3－1 原子炉機器冷却海水配管ダクト（鉛直部）平面図

図 3－2 原子炉機器冷却海水配管ダクト（鉛直部）正面図（ $\mathrm{A}-\mathrm{A}$ 断面）

図 3－3 原子炉機器冷却海水配管ダクト（鉛直部）縦断図（B－B 断面）

図 3－4 評価対象部材（頂版：断面（1）

4．荷重及び荷重の組合せ
原子炉機器冷却海水配管ダクト（鉛直部）頂版の強度評価に用いる荷重を以下に示す。 また，荷重の組合せを表4－1 に示す。

表 4－1 荷重の組合せ

評価対象部材	荷重の組合せ＊
頂版	$\mathrm{G}+\mathrm{P}+\mathrm{P} \mathrm{h}+\mathrm{S} \mathrm{d}$

注記 $*:$G P	：固定荷重
	積載荷重

（積雪荷重P s を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
Ph ：浸水津波荷重
S d ：余震荷重（弾性設計用地震動 S d－D 2 に伴う地震力及び動水圧を考慮する。）
（1）固定荷重（G）
固定荷重として，原子炉機器冷却海水配管ダクト（鉛直部）頂版の自重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測さ れた月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごと に $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）浸水津波荷重（ P h ）
浸水津波荷重は，原子炉機器冷却海水配管ダクト（鉛直部）の頂版のうち，津波の浸水が想定される範囲に作用するものとする。浸水津波荷重は，添付資料「VI－3－別添3－ 1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，原子炉機器冷却海水配管ダクト（鉛直部）位置における設計津波水位に基づき，地表面から浸水深さ 4.8 m の静水圧を考慮する。静水圧は以下の式により算出する。また荷重設定の概略図を図 4－ 1 に示す。

図 4－1 荷重設定の概略図（浸水津波荷重）
（5）余震荷重（S d）
余震荷重は，弾性設計用地震動 S d－D 2 に伴う地震力及び動水圧を考慮する。地震力は，「資料5原子炉機器冷却海水配管ダクト（鉛直部）の耐震安全性評価」の「3．地震応答解析」に示す方法とし，地震応答解析により頂版での地震時荷重を算出す る。なお，地震時荷重の算定にあたつては，地盤物性及び材料物性のばらつきを考慮す る。ばらつきを考慮した解析ケースを表4－1に示す。

また，動水圧は，地震応答解析による頂版における鉛直方向の最大応答加速度から設定する震度を用いて評価するものとし，以下の式により算出する。

$$
\mathrm{P} \mathrm{v}=\rho_{\mathrm{w}} \times \alpha \mathrm{v} \times \mathrm{g} \times \mathrm{h} \times 10^{-3}
$$

ここで， P_{v} ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う鉛直方向の動水圧荷重 （ $\mathrm{kN} / \mathrm{m}^{2}$ ）
$\rho \mathrm{w}$ ：海水の単位体積重量（ $10.10 \mathrm{kN} / \mathrm{m}^{3}$ ）
$\alpha \mathrm{V} \quad$ ：鉛直方向の余震震度
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{h} \quad$ ：水頭（m）

表 4－1 余震荷重を算定するための解析ケース

解析ケース	材料物性$\begin{gathered} \text { (コンクリート) } \\ \left(\mathrm{E}_{0}:\right. \text { : ヤング係数) } \end{gathered}$	地盤物性	
		盛土，旧表土 D級岩盤，改良地盤 （ G 0 ：初期せん断弾性 係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma^{\circ}$	平均値
ケース（3）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記 $*: ~$ 既設構造物のコア採取による圧縮強度試験の結果を使用する。

5．許容限界
許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。
（1）曲げ・軸力系の破壊に対する許容限界
止水機能を損なわないことの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，短期許容応力度とする。コンクリート及び鉄筋の許容応力度を表5－1及び表5－2に示す。

表 5－1 コンクリートの許容応力度及び短期許容応力度（頂版）

設計基準強度	許容応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）		短期許容応力度＊ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{f}^{\prime} \mathrm{ck}=20.5\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	許容曲げ圧縮応力度 $\sigma^{\prime}{ }^{\text {ca }}$	7.8	11.7
	許容せん断応力度 $\tau_{\text {a } 1}$	0． 42	0.63

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定） により地震時の割り増し係数として 1.5 を考慮する。

表 5－2 鉄筋の許容応力度及び短期許容応力度（頂版）

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	許容引張応力度 σ_{sa}	196	294

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定） により地震時の割り増し係数として 1.5 を考慮する。
（2）せん断破壊に対する許容限界
止水機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，表5－1に示す短期許容応力度とする。

6．評価方法

二次元構造解析は，「資料 5 原子炉機器冷却海水配管ダクト（鉛直部）の耐震安全性評価」の「3．地震応答解析」に示す方法にて頂版における余震荷重（地震力）を算出した上 で，頂版に対する浸水深さを考慮した静水圧及び余震時の動水圧を同時に作用させ，頂版に ついて，曲げ・軸力系の破壊及びせん断破壊に対する照査を行う。

なお，地震時は許容応力度法により設計を行うことから，本検討の初期状態においては地震後の残留応力の影響は考慮しない。

6． 1 解析モデル

面部材と壁部材から構成される頂版は，面部材を線形シェル要素，壁部材をファイバ ーモデルによる非線形はり要素でモデル化する（図6－1参照）。シェル要素における各要素の断面力の方向を図6－2 に示す。

なお，ファイバーモデルは，はり要素の断面を層状に分割し各層に材料の非線形性を考慮する材料非線形モデルであり（図6－3 参照），図 6－4 に示すコンクリートの応力 ーひずみ関係，及び図6－5に示す鉄筋の応力ーひずみ関係を考慮する。

図 6－1 構造解析モデル図（頂版）

M_{x} ， M_{y} ：曲げモーメント
Q_{x} ， Q_{y} ：せん断力
N_{x} ， N_{y} ：軸力
$\mathrm{N}_{\mathrm{x}}^{\mathrm{y}}$ ：面内せん断力

図6－2 シェル要素の各要素における断面力の方向

図 6－3 ファイバーモデルの概念図

$k_{1}=1-0.003 f_{c k}^{\prime} \quad \leq 0.85$
$\varepsilon_{c u}^{\prime}=\frac{155-f_{c k}^{\prime}}{30000} \quad 0.0025 \leq \varepsilon_{c u}^{\prime} \leq 0.0035$
ここで, $\quad f_{c k}^{\prime}$ の単位は $\mathrm{N} / \mathrm{mm}^{2}$

曲線部の応力ひずみ式
$\sigma_{c}^{\prime}=k_{1} f_{c d}^{\prime} \times \frac{\varepsilon_{c}^{\prime}}{0.002} \times\left(2-\frac{\varepsilon_{c}^{\prime}}{0.002}\right)$
図 6－4 構造部材の非線形特性（コンクリートの応力ーひずみ関係） （コンクリート標準示方書より引用）

図 6－5 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
(コンクリート標準示方書より引用)

6．2 使用材料及び材料の物性値
構造物（頂版）の使用材料を表6－1 に，材料の物性値を表6－2に示す。

表 6－1 使用材料

材料		仕様	
コンクリート	側壁，隔壁，頂版	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$	
	側壁（新設部）	設計基準強度 $50.0 \mathrm{~N} / \mathrm{mm}^{2}$	
	鉄筋		SD345

表6－2 材料の物性値

材料	項目			材料諸元	備考
鉄筋コンクリート	単位体積重量（kN／m ${ }^{3}$ ）			24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	設計	$20.5 \mathrm{~N} / \mathrm{mm}^{2}$	2.33×10^{4}	解析ケース
		強度	$50.0 \mathrm{~N} / \mathrm{mm}^{2}$	3.30×10^{4}	（1），（2），（3）
		実強 度	37． $2 \mathrm{~N} / \mathrm{mm}^{2} * 1$	3． 02×10^{4}	解析ケース（4）
			70．0N／mm ${ }^{*}{ }^{* 2}$	3.70×10^{4}	
	ポアソン比			0.2	

注記＊1：既設構造物のコア採取による圧縮強度試験の結果を使用する。
＊2：「資料1 屋外重要土木構造物の耐震安全性評価について」の「参考資料 5 新設 する構造物のコンクリートの圧縮強度の設定」に基づき設定した圧縮強度とする。

7．強度評価

津波と余震の重畳時において，曲げ・軸力系の破壊に対して最大照査値となる解析ケー スの断面力分布図を図 7－1～図7－5 に，せん断破壊に対して最大照查値となる解析ケー スの断面力分布図を図7－6及び図7－7に示す。

また，曲げ・軸力系の破壊に対する各評価位置での最大照査值を表 7－1 及び表 7－2に， せん断破壊に対する各評価位置での最大照査値を表 7－3 に示す。

すべての構造部材の発生応力度が許容限界を下回ることから，原子炉機器泠却海水配管 ダクト（鉛直部）の頂版は，津波と余震との重畳に対して，止水機能を損なわないことを確認した。

図 7－1 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント（kN•m／m）： M_{x} ）
（頂版，解析ケース（3），S d－D $2(++)$ ）

図 7－2 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント（kN•m／m）： M_{y} ）
（頂版，解析ケース（3），S d－D $2(++)$ ）
 （軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{x}}$ ）
（頂版，解析ケース（3），S d－D $2(++)$ ）

図 7－4 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（頂版，解析ケース（3），S d－D $2(++)$ ）

図 $7-5$ 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（面内せん断力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{xy}}$ ）
（頂版，解析ケース（3），S d－D $2(++)$ ）

図 7－6 せん断破壊に対する照査における照査値最大時の断面力分布図 （せん断力（kN／m）： Q_{x} ）
（頂版，解析ケース（3），S d－D $2(++)$ ）

図 7－7 せん断破壊に対する照査における照査値最大時の断面力分布図 （せん断力 $\left.(k N / m): Q_{y}\right)$
（頂版，解析ケース（3），S d－D $2(++)$ ）

表 7－1 曲げ・軸力系の破壊に対する最大照查値（コンクリート）

| 評価位置 | 解析
 ケース | 地震動 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

表 7－2 曲げ・軸力系の破壊に対する最大照査値（鉄筋）

| 評価位置 | 解析
 ケース | 地震動 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

表 7－3 せん断破壊に対する照査

評価位置	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 $\begin{gathered} \tau_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 τ a1 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\tau_{\mathrm{d}} / \tau_{\mathrm{a} 1}$
頂版	（3）	$\begin{gathered} \mathrm{S} d-\mathrm{D} 2 \\ (++) \end{gathered}$	－184	0． 37	0.63	0.59

1．はじめに
海水配管ダクト（鉛直部）の地震時荷重算定用の二次元地震応答解析モデルを図 $1-1$ （南北断面）及び図 $1-2$（東西断面）に示す。南北断面においては，海水ポンプ室との一体的な挙動を考慮したらえで海水配管ダクト（鉛直部）の側壁に作用する土圧等の地震時荷重の評価を目的にしていること，東西断面においては，海水ポンプ室の解析モデルを用 いており海水配管ダクト（水平部）を改良地盤としてモデル化していることから，各断面 について，解析モデルの妥当性について確認する。具体的な確認項目を以下に示す。
－南北断面（A－A 断面）において，海水ポンプ室の質量や剛性を考慮した等価剛性 モデルとしてモデル化しているが，海水ポンプ室（縦断方向）と一体となった挙動が再現され，かつ保守的に地震時土圧が算定されていること
－東西断面（B－B 断面）において，実際には海水配管ダクト（水平部）部には改良地盤は無く，門型の形状の改良地盤に対して，一律改良地盤があるものとして モデル化しているが，海水配管ダクト（鉛直部）に作用する地震時土圧が保守的に算定されていること

側方粘性境界

図 1－1 海水配管ダクト（鉛直部）南北断面（A－A 断面）

図 $1-2$ 海水配管ダクト（鉛直部）東西断面（B－B 断面）

2．南北断面（ $\mathrm{A}-\mathrm{A}$ 断面）における確認
2.1 南北断面（ $\mathrm{A}-\mathrm{A}$ 断面）における確認方針

南北加震時に海水配管ダクト（鉛直部）の南北の側面に作用する地震時土圧を適切に評価するため，海水配管ダクト（鉛直部）が海水ポンプ室（縦断面）と同一の挙動とな るようにモデル化している。

モデル化方法は，図 2．1－1 に示す海水ポンプ室（縦断面）の二次元地震応答解析モ デルに単位荷重を作用させた時の，海水配管ダクト（鉛直部）が設置される部位の変位 と，図2．1－2に示す海水配管ダクト（鉛直部）のモデルに単位荷重を作用させた時の変位が等しくなるよう剛性を設定している。また，質量についても，海水配管ダクト（鉛直部）の幅に該当する海水ポンプ室の質量を見込んでいる。

図 2．1－2に MPC と示している節点は，海水ポンプ室（縦断面）は延長 77 m の横長の構造であり，回転変形しないことを考慮するため，両節点の X 方向変位とY方向変位が同一としている。

当モデル化の妥当性の確認は，以下の 2 点に着目して実施する。
－海水ポンプ室（縦断面）と海水配管ダクト（鉛直部）の地震時挙動が同等となって いること
－海水配管ダクト（鉛直部）の地震時土圧が保守的となっていること

図 2．1－1 海水ポンプ室（縦断面）への単位荷重載荷イメージ

図 2．1－2 海水配管ダクトの剛性設定イメージ

2．2 南北断面（ $\mathrm{A}-\mathrm{A}$ 断面）における確認条件
海水ポンプ室（縦断面）と海水配管ダクト（鉛直部）で地震時の挙動が同等となって いることの検証は，位相の反転を考慮した基準地震動 14 波の地震応答解析において，水平変位が最大となるS s－F 2（ -+ ）を代表波として，時刻歴の節点変位を比較す ることで，確認を行う。

海水配管ダクト（鉛直部）の地震時土圧が保守的となっていることの検証は，海水ポ ンプ室を考慮しない海水配管ダクト（鉛直部）が独立した比較検証モデル（以下，「独立 モデル」と言う。）を作成し，両者の最大土圧を比較する。用いる地震動は，位相の反転 を考慮した基準地震動 14 波の地震応答解析において，地震時土圧が最大となる S s－ D $1(++)$ を代表波とする。地震時土圧検証用の独立モデルを図2．2－1に示す。

海水配管ダクト（鉛直部）は，海水ポンプ室の側壁に懸架されているが，独立モデル では，下部の盛土に支持される構造となっており，実際の設置状況と相違が生じるため，比較する範囲は，地表面付近の盛土の土圧や，基礎地盤の盛土の影響が小さい範囲の改良地盤の土圧について比較する。

図 2．2－1 地震時土圧検証用の海水配管ダクト（鉛直部）単独モデル
2.3 南北断面（ $\mathrm{A}-\mathrm{A}$ 断面）における確認結果

海水ポンプ室（縦断面）と海水配管ダクト（鉛直部）の地震時挙動の比較結果につい て，図 2．1－1 及び図 2．1－2 に示した節点A 及び節点 B の時刻歴の水平変位波形を図 2．3－1 と図2．3－2にそれぞれ示す。両者の挙動は良く整合しており，海水配管ダクト （鉛直部）が海水ポンプ室に懸架されている挙動を再現できている。なお，最大変位が，海水配管ダクト（鉛直部）の方が 10% 弱小さい理由としては，躯体に対する改良地盤の幅 の割合が海水配管ダクト（鉛直部）の方が大きく，改良地盤の拘束効果を比較的受ける
資料 5- (参考) 4-4

ためと考えられる。
海水配管ダクト（鉛直部）の設計用土圧と，単独モデルより得られた土圧の最大土圧 の比較を図2．3－3に示す。断面（5）を除き，設計用土圧は大きく，保守的に評価されて いることが検証された。なお，断面（5）は，前述の通り，単独モデルでは底版下のモデル化が実際と異なり盛土としていることにより，盛土の変位の影響を受けたことによると考えられる。

設計用土圧は，海水配管ダクト（鉛直部）の剛性を海水ポンプ室と等価としており， かつ海水ポンプ室に変形を拘束される効果を見込んでいるため，土圧が保守的に評価で きている。

図 2．3－1 節点 A の時刻歴水平変位波形の比較 $(\mathrm{S}$ s $-\mathrm{F} 2(-+))$

時刻歴水平変位波形 ケース（1）Ss－F2（－＋）節点No． 5

図2．3－2 節点Bの時刻歴水平変位波形の比較（S s－F $2(-+)$ ）

図 2．3－3 等価剛性モデルと単独モデルの地震時土圧の比較（S s－D $1(++)$ ）

3．東西断面（ $\mathrm{B}-\mathrm{B}$ 断面）における確認
3.1 東西断面（ $\mathrm{B}-\mathrm{B}$ 断面）における確認方針

海水ポンプ室と原子炉建屋の間の地盤は，図 3．1－1（平面図）に示す通り地盤改良さ れており，直交する断面図である図3．1－2（1）－（1）断面）及び図3．1－3（（2）－（2）断面） に示す通り，改良地盤の一部には，海水配管ダクト（水平部）が存在する。地震応答解析モデル（B－B 断面）において，海水配管ダクト（水平部）が重複する部分は全て改良地盤としてモデル化している。海水配管ダクト（水平部）はMMRを介して岩着しており，海水配管ダクト（鉛直部）との接続部は耐震ジョイントで縁切りされていることから，海水配管ダクト（鉛直部）へ荷重は作用しない構造となっている。従つて，実現象とし ては，海水配管ダクト（鉛直部）へ作用する改良地盤の土圧は，海水配管ダクト（水平部）を除いた門型の改良地盤からの土圧となる。

海水配管ダクト（鉛直部）への土圧の保守性の確認を目的に，B－B 断面において海水配管ダクト（水平部）が重なる改良地盤の剛性を，海水配管ダクト（水平部）分を空洞 と仮定し，剛性を低下させたモデル（以下，「剛性低下モデル」という。）を用いて土圧 を算定し，設計用土圧と比較する。

図 3．1－1 地盤改良範囲（平面図）

図 3．1－2 地盤改良範囲（横断図，（1）－（1）断面）

図 3．1－3 地盤改良範囲（縦断図，（2）－（2）断面）

3．2 東西断面（B－B 断面）における確認条件

南北方向の地盤改良幅 77 m に対し，空洞として扱う範囲を図3．2－1 に示す。また，空洞化を考慮した改良地盤のせん断弾性係数及び単位体積重量を表 3．2－1 に，設計用物性値と合わせて示す。

地震応答解析に用いる地震動は，海水配管ダクト（鉛直部）の設計断面毎の設計用土圧の総和が最大となるS s－D $2(-+)$ とする。

南北方向の地盤改良土幅 $=77.0$

図 3．2－1 改良地盤のらち空洞として考慮する範囲

表3．2－1 空洞を考慮した改良地盤のモデル化諸元

物性値	改良地盤	設計用モデル G, γ	剛性低下モデル G,
せん断弾性係数 G $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	不飽和	1840	1363
	飽和	1940	1437
	不飽和	19.600	14.522

3.3 東西断面（B－B 断面）における確認結果

改良地盤の諸元について，剛性低下モデルのせん断弾性係数 G＇は，地盤物性のばら つきとして，平均値一 σ で考慮している初期せん断弾性係数（不飽和： $1150 \mathrm{~N} / \mathrm{mm}^{2}$ ，飽和： $\left.1210 \mathrm{~N} / \mathrm{mm}^{2}\right)$ を上回っており，モデル化の影響はばらつきの範囲内と言える。

単位体積重量も設計用モデルより小さくなるため，設計用モデルの慣性力も保守的に評価できていると言える。
設計用モデル（基本ケース）の土圧分布と剛性低下モデルの土圧分布を比較して，表 3．3－1 及び図3．3－1に示す。
海水配管ダクト（鉛直部）に作用する地震時土圧の合計は，設計用モデルと剛性低下 モデルでほぼ同じであった。また，各断面の設計用土圧は，断面（4）において，剛性低下 モデルの方が 5.6% 大きくなっているものの，地盤剛性のばらつきの範囲内である。

以上の確認により，海水配管ダクト（水平部）を改良地盤としてモデル化した地震時土圧の評価方法に問題はないことを確認した。

表 3．3－1 設計用モデルの土圧と剛性低下モデルの土圧の比較

断面番号	0．P．（m）	分担高さ （m）	設計用モデルの 土圧（A）	剛性低下モデルの 土圧（B）	比率 （B／A）
（1）	$14.328 \sim 14.800$	0.4720	427.426	433.352	1． 014
（1）	$13.384 \sim 14.328$	0．9440	369.180	356． 721	0.966
（2）	$13.384 \sim 14.328$	0．9440	369． 180	356． 721	0.966
（2）	12．440～ 13.384	0． 9440	325.686	337.770	1． 037
（2）	$11.497 \sim 12.440$	0.9435	360.533	351.446	0.975
（2）	$10.554 \sim 11.497$	0.9430	251.477	275． 269	1． 095
（2）	$9.610 \sim 10.554$	0.9435	298.527	318.942	1． 068
（2）	$8.666 \sim 9.610$	0.9440	455． 448	484.887	1． 065
（2）	$7.722 \sim 8.666$	0.9440	475． 120	498.872	1． 050
（3）	$7.722 \sim 8.666$	0.9440	475． 120	498.872	1． 050
（3）	$6.750 \sim 7.722$	0.9720	376． 659	373.275	0.991
（3）	$5.750 \sim 6.750$	1． 0000	334.439	315.081	0.942
（4）	$5.750 \sim 6.750$	1． 0000	334.439	315.081	0.942
（4）	$4.750 \sim 5.750$	1． 0000	388.237	404.399	1． 042
（4）	$3.750 \sim 4.750$	1． 0000	465.180	474.438	1． 020
（4）	$2.750 \sim 3.750$	1． 0000	557.898	589.411	1． 056
（4）	$2.250 \sim 2.750$	0.5000	557.682	531.891	0.954
（4）	$1.800 \sim 2.250$	0.4500	557.682	531.891	0.954
（4）	$0.900 \sim 1.800$	0.9000	557.682	531.891	0.954
（4）	$-0.050 \sim 0.900$	0.9500	516.525	494.653	0.958
（4）	$-1.025 \sim-0.050$	0． 9750	475.314	455.645	0.959
（4）	$-1.950 \sim-1.025$	0.9250	456.322	440.798	0.966
（5）	$-1.950 \sim-1.025$	0．9250	456.322	440.798	0.966
（5）	$-2.863 \sim-1.950$	0.9125	414.740	406.373	0.980
（5）	$-3.788 \sim-2.863$	0.9250	390.169	389.431	0.998
（5）	$-4.713 \sim-3.788$	0.9250	352.921	365.603	1．036
（5）	$-5.638 \sim-4.713$	0.9250	339.613	350.394	1． 032
（5）	$-6.563 \sim-5.638$	0.9250	325.919	337.303	1． 035
（5）	$-7.438 \sim-6.563$	0.8750	310.482	324.139	1． 044
（5）	$-8.175 \sim-7.438$	0.7375	301.616	305.776	1． 014
$\begin{gathered} \hline \hline \text { 合計 (断面(1)~断面(4) (kN) } \\ \text { 地震時土圧 } \times \text { 分担高さ } \times \text { 単位奥行 } \end{gathered}$			7114.928	7132.963	1． 003

図 3．3－1 設計用モデルの土圧と剛性低下モデルの土圧の比較

4．まとめ
海水配管ダクト（鉛直部）の地震応答解析モデルについて，南北断面，東西断面それぞ れについて，以下のとおり検証を行い，問題ないことを確認した。

南北断面（A－A 断面）
－地震時の挙動が海水ポンプ室（縦断）と同様の挙動となっており，海水ポンプ室と

- 体的に震動していることを確認した。
- 海水ポンプ室との一体化を考慮しない独立モデルを作成し，設計モデルとの土圧を比較し，設計用モデルの方が，土圧を保守的に評価できていることを確認した。東西断面（ $\mathrm{B}-\mathrm{B}$ 断面）
－改良地盤中の海水配管ダクト（水平部）部分を空洞として改良地盤をモデル化した場合と設計用の物性値を比較した結果，海水配管ダクト（水平部）を空洞とした改良地盤のせん断弾性係数は，地盤物性のばらつきの範囲内におさまることを確認し た。
－設計用のモデル（基本ケース）と空洞として考慮し剛性を低下させたモデルで，海水配管ダクト（鉛直部）に作用する地震時土圧を比較した結果，地震時土圧は同等 であることを確認した。
以上により，海水配管ダクト（鉛直部）の地震時荷重は適切に評価されていることを確認した。

1．はじめに
海水配管ダクト（鉛直部）の頂版及び底版の構造解析は，水平輪切り断面を模擬した二次元のシェル要素及び梁要素によりモデル化し，海水ポンプ室との接続部を固定端として地震時荷重を作用させて照査を行っている。従つて側壁に作用する荷重により側壁と頂版及び底版との境界に発生する曲げモーメントのモーメント分配が考慮されていない。

側壁と接合部を有する頂版及び底版の部位を図 $1-1$ 及び図 $1-2$ に示す。なお，底版は海水配管ダクト（水平部）と接続するため，側壁と接合部を有する部位は，アクセス用の カルバート部のみである。

頂版及び底版の評価で考慮している端部モーメントより大きなモーメントが側壁に生 じると，モーメント分配の影響により，より大きな端部モーメントが頂版及び底版に作用 することから，別途，側壁に生じる端部モーメントを評価し，影響について確認する。

図 1－1 頂版（断面（1））の側壁と接合部を有する部分

図 1－2 底版（断面（6））の側壁と接合部を有する部分

2．側壁に生じる端部モーメントの評価方法
頂版及び底版と境界を有する区間から代表断面を選定して，側壁を模擬したシェルモデ ルに土圧及び慣性力を作用させて頂版及び底版との境界に発生する曲げモーメントを評価する。代表断面は，側壁の受圧面積が大きく，頂版との接合長さの長い，図1－1 及び図 2－1 の検討箇所 4 とする。

図 2－1 に示す，検討箇所 4 をシェル要素でモデル化する。境界条件は，海水配管ダク トの隔壁及び頂版との接続部を固定境界とする， 3 辺固定 1 辺自由とする。頂版との接合部から自由境界までの延長は，作用荷重が大きく見込め，かつ 2 方向スラブと見なせる最大面積とすることとし，具体的には，短辺／長辺＝0． 4 とする。検討箇所 4 のシェルモデ ルを図2－2に示す。

検討に用いる地震動は，海水配管ダクト（鉛直部）の東西加震動解モデルを用いて基準地震動の水平位相反転を考慮した全 14 波のうち，躯体に作用する土圧と慣性力の総和が最大となるS s－D 2（＋＋）とする。作用させる土圧及び加速度の深度分布を図 $2-3$ と図2－4にそれぞれ示す。

図 2－1 側壁（正面図）のモーメント算定区間の候補箇所

図 2－2 検討箇所 4 のシェルモデル図

図 2－3 シェルモデルに作用させる土圧の深度分布（S s－D 2（＋＋））

図 2－4 シェルモデルに作用させる加速度の深度分布（S s－D $2(++)$ ）

3．側壁端部に生じるモーメントの評価結果
検討箇所 4 のシェルモデルに土圧及び慣性力を作用させた結果として発生する曲げモ ーメント分布図を図 3－1 に示す。また，頂版の面外荷重による曲げモーメント分布図を図 3－2に示す。結果として，曲げモーメントが最大となる検討箇所 4 のスパン中央部に おいて，頂版 My1 より側壁My2の曲げモーメントが大きな値を示すことから，次項におい て側壁から頂版への廻り込みモーメントの影響を検討する。

図 3－1 側壁の曲げモーメント分布図：My2
 （解析ケース（1），S s－D $2(++)$ ）

4．廻り込みモーメントに対する影響検討

4． 1 側壁から頂版への廻り込みモーメントの評価方法

隅角部の曲げモーメントは，頂版の面外荷重による曲げモーメント（My1）及び側壁の曲げモーメント（My2）を超えることはない。側壁の曲げモーメント（My2）が頂版で発生 した曲げモーメント（My1）より小さい場合は，My2 の廻り込み曲げモーメントをMy1に加算する必要がなくMy1 が設計曲げモーメントとなる。一方で，側壁の曲げモーメン ト（My2）が頂版で発生した曲げモーメント（My1）より大きい場合は，保守的に My2 を設計曲げモーメントとする。端部における廻り込み曲げモーメントの概念図を図4－1 に示す。

側壁端部に生じるモーメントの評価結果のとおり，側壁の曲げモーメント（My2）は，頂版の曲げモーメント（My1）より大きいことから，保守的にMy2を設計曲げモーメント とし，側壁から頂版への曲げモーメントの廻り込みを考慮する。

図 4－1 端部における廻り込み曲げモーメント概念図

4．2 廻り込みモーメントの評価方法

曲げモーメントの廻り込みによる影響を単純に評価するため，東西方向に着目した廻り込みモーメント Myについて，加算の有無による頂版端部における東西方向の曲 げ・軸力系の破壊に対する照査値の比較を行う。ここで，照査において廻り込みモーメ ントを加算する範囲は，図4－2に示すとおり，側壁と頂版がつながっている範囲のう ち最も廻り込みモーメントの影響を受けると考えられる側壁との接合部とし，検討箇所 4 で得られた曲げモーメントMy2を全ての接合部に作用させることとし，照査を実施する。

図 4－2 廻り込みモーメントを加算する範囲

5．廻り込みモーメントに対する影響評価結果
廻り込みモーメントに対する影響評価結果として，表5－1及び表5－2に東西方向の曲 げ・軸力系の破壊に対する最大照査値を，図 5－1 に評価位置図を示す。廻り込みモーメ ントを考慮した場合でも，照査値には十分裕度があることを確認した。

表 5－1 東西方向の曲げ・軸力系の破壊に対する最大照査値（コンクリート）

廻 り 込 み 考慮	評価位置		解析 ケース	地震動	曲げ$\begin{aligned} & \text { モーメント } \\ & (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{aligned}$	軸力	発生 応力度	短期許容		
			応力度					照査値		
			$\sigma^{\text {，}}$				$\sigma^{\prime}{ }^{\text {ca }}$	$\sigma^{\prime}{ }_{\text {c／} / \sigma^{\prime}}{ }_{\text {ca }}$		
			$(\mathrm{kN} / \mathrm{m})$			$\left(\mathrm{kN} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$			
無	頂版	101		（1）	Ss－D2 $(++)$	20	－1816	2． 4	11.7	0． 21
有	頂版	101		（1）	Ss－D2 $(++)$	302	－456	5.1	11.7	0． 44

表 5－2 東西方向の曲げ・軸力系の破壊に対する最大照査値（鉄筋）

廻 り 込み 考慮	評価位置		解析 ケース	地震動	曲げ $\begin{aligned} & \text { モーメント } \\ & (k N \cdot m / m) \end{aligned}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 σ^{\prime} s $\left(\mathrm{kN} / \mathrm{mm}^{2}\right)$	短期許容応力度 σ^{\prime} sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\sigma^{\prime} \mathrm{s} / \sigma^{\prime} \text { sa }$
無	頂版	101	（1）	Ss－D2 $(++)$	20	70	18	294	0.07
有	頂版	101	（1）	Ss－D2 $(++)$	302	－199	118	294	0． 41

図 5－1 評価位置図（断面（1）

6．まとめ
海水配管ダクト（鉛直部）について，側壁に作用する荷重により側壁と頂版及び底版の境界に発生する曲げモーメントの影響を以下のとおり確認した。
－側壁に生じる端部曲げモーメントについて，側壁を模擬したモデルに土圧及び慣性力を作用させて，曲げモーメントを評価した。評価の結果，側壁端部に発生する曲げモーメントが頂版端部に発生する曲げモーメントよりも大きいこと から，廻り込みモーメントによる影響検討を実施した。
－曲げモーメントの廻り込みによる影響検討として，東西方向に着目した廻り込 みモーメント My について，加算の有無による東西方向の曲げ・軸力系の破壊に対する照査を実施した。照査の結果，廻り込みモーメントを考慮した場合でも，照査値には十分裕度があることを確認した。
今後，側壁と接合部を有する全ての頂版と底版の接合部について照査を行い，添付書類 に記載する。

[^0]: $\mathrm{G}_{0}=\mathrm{E}_{\mathrm{s}} / 2\left(1+\nu_{\mathrm{s}}\right), \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}=1 /\left(1+\gamma / \gamma_{\mathrm{m}}\right), \quad \gamma_{\mathrm{m}}=\tau_{\mathrm{f}} / \mathrm{G}_{0}$
 $* 2$ ：断層及びシームの狭在物は，「粘土状」，「砂状」，「鱗片上」等の性状が確認されているが，そのうち最も強度の小さい粘土状物質にて試験を行い解析用物性値を設定している

[^1]: $\mathrm{G}_{0}=\mathrm{E}_{\mathrm{s}} / 2\left(1+\nu_{\mathrm{s}}\right), \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}=1 /\left(1+\gamma / \gamma_{\mathrm{m}}\right), \quad \gamma_{\mathrm{m}}=\tau_{\mathrm{f}} / \mathrm{G}_{0}$
 $* 2$ ：断層及びシームの狭在物は，「粘土状」，「砂状」，「鱗片上」等の性状が確認されているが，そのうち最も強度の小さい粘土状物質にて試験を行い解析用物性値を設定している

