```
本資料のうち, 枠囲みの内容
は商業機密の観点から公開で
きません。
```

| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－4－31 125 V 直流電源切替盤 2 A 及び 2 B の耐震性についての計算書
1．概 要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4．2 荷重の組合せ及び許容応力 4
5．機能維持評価 8
5.1 電気的機能維持評価方法 8
6．評価結果 9
6.1 設計基準対象施設としての評価結果 9
6.2 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき， 125 V 直流電源切替盤 2 A 及び 2 B が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

125 V 直流電源切替盤 2 A 及び 2 B は，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備 に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

125 V 直流電源切替盤 2 A 及び 2 B は，以下の表1－1に示す盤から構成される。本計算書 においては，その各々の盤に対して耐震計算を行う。

なお，125V 直流電源切替盤 2 A 及び 2 B は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性について の計算書作成の基本方針」に基づき評価を実施する。

表1－1 125 V 直流電源切替盤 2 A 及び 2 B

系統	盤名称	個数
125 V 直流電源切替盤 2 A	125 V 直流電源切替盤 2 A	2
125 V 直流電源切替盤 2 B	125 V 直流電源切替盤 2 B	1

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

2.1 構造計画

125 V 直流電源切替盤 2 A 及び 2 B の構造計画を表2－1に示す。
O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

表 2－1 構造計画

3．固有周期
3.1 固有周期の算出方法

125 V 直流電源切替盤 2 A の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

125 V 直流電源切替盤 2 B の固有周期は，プラスチックハンマ等により当該装置に振動を与え，固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）によ り固有振動数（共振周波数）を測定する。測定の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。鉛直方向の固有周期は，構造が同様な盤に対する打振試験 の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

固有周期を表3－1に示す。

表 3－1 固有周期（s）

名称	方向	固有周期
125 V 直流電源切替盤 2 A	水平	0.05 以下
	鉛直	0.05 以下
125 V 直流電源切替盤 2 B	水平	
	鉛直	0.05 以下

枠囲みの内容は商業機密の観点から公開できません。

4．構造強度評価

4.1 構造強度評価方法

125 V 直流電源切替盤 2 A 及び 2 B の構造は直立形であるため，構造強度評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
125 V 直流電源切替盤 2 A 及び 2 B の荷重の組合せ及び許容応力状態のうち設計基準対象施設としての評価に用いるものを表 4－1 に，重大事故等対処設備としての評価に用いるものを表4－2 に示す。

4．2．2 許容応力
125 V 直流電源切替盤 2 A 及び 2 B の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
125 V 直流電源切替盤 2 A 及び 2 B の使用材料の許容応力のうち設計基準対象施設 としての評価に用いるものを表 4－4 に，重大事故等対処設備としての評価に用い るものを表4－5に示す。
○ 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震設計上の 重要度分類	機器等の区分	荷重の組合せ

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} *^{3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
その他発電用原子炉の附属施設	非常用電源設備	$125 V$ 直流電源切替盤 2 A 及び 2 B	常設耐震／防止 常設／緩和	—＊2		$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{A} \mathrm{~S}\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \text { i }}$ (MPa)	$\mathrm{S}_{\mathrm{u} i}$ (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(40 \mathrm{~mm}<$ 径 $)$	周囲環境温度	40	215	400
(MPa)					

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	周囲環境温度	40	215	400	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

125 V 直流電源切替盤 2 A 及び 2 B の電気的機能維持評価について，以下に示す。電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の評価方法に基づき評価する。

125 V 直流電源切替盤 2 A 及び 2 B の電気的機能維持を確認した機能確認済加速度と設置場所の最大応答加速度を比較し，設置場所の最大応答加速度が機能確認済加速度以下であることを確認することで実施する。

機能確認済加速度を表 5－1 に示す。

| 評価部位 | 方向 | 機能確認済加速度 | |
| :---: | :---: | :---: | :--- | :--- |
| 125 V 直流電源切替盤 2A | 水平 | | |
| | 鉛直 | | |
| | 水平 | | |
| | 鉛直 | | |

6．評価結果

6． 1 設計基準対象施設としての評価結果
125 V 直流電源切替盤 2 A 及び 2 B の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果
$125 V$ 直流電源切替盤 2 A 及び 2 B の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤 2 A （第 1 盤～第 6 盤）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方而 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鉛直方向設計震度	水平方向 設計震度	鉛直方向設計震度	
125 V 直流電源切替盤2A	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. 15. } 00^{*} \end{aligned}$	0． 05 以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{v}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	40

注記＊：基準床レベルを示す。

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材					弾性設計用地震動 S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \text { S } \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$	215	400	215	258	短辺方向	長辺方向
取付ボルト $(\mathrm{i}=2)$	235	400	235	280	長辺方向	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力

1.4 結論

	1 ボル		応力			（単位： MPa ）	
	部 材	材 料		弾性設計用地震動S d 又は静的震度		基漼地震動S s	
				算出応力	許容応力	算出応力	許容応力
	基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	$\sigma_{\mathrm{b} 1}=52$	$f_{\text {ts } 1}=161^{*}$	$\sigma_{\mathrm{b}_{1}}=133$	$f_{\text {t s } 1}=193^{*}$
־			せん断	$\tau_{\mathrm{b}_{1}}=7$	$f_{\text {sb } 1}=124$	$\tau_{\mathrm{b} 1}=14$	$f_{\text {s b } 1}=148$
	$\underset{(\text { 取付ボルト }}{\substack{\text { i }=2)}}$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=29$	$f_{\text {t }{ }_{2}=176 * * * ~}^{\text {c }}$	$\sigma_{\mathrm{b} 2}=79$	$f_{\text {t }{ }_{2}=210^{*}}$
			せん断	$\tau_{\mathrm{b} 2}=2$	$f_{\text {s b } 2}=135$	$\tau_{\mathrm{b} 2}=4$	$f_{\text {s b } 2}=161$

注記＊：$f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
125 V 直流電源切替盤2A	水平方向	1． 65	
	鉛直方向	1． 15	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤2A（第1盤～第6盤）の耐震性についての評価結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基準地震動S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	$\begin{aligned} & \hline \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	
125 V 直流電源切替盤2A	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 15.00^{*} \end{aligned}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \text { * } \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材					弾性設計用地震動 S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \mathrm{S} \text { 俍 } \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$	215	400	－	258	－	長辺方向
取付ボルト $(\mathrm{i}=2)$	235	400	－	280	－	長辺方向

注記＊1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
○ 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1
2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	
基礎ボルト $(\mathrm{i}=1)$	－	2． 676×10^{4}	－	6． 607×10^{4}
取付ボルト （ $\mathrm{i}=2$ ）	－	2． 460×10^{4}	－	6． 375×10^{4}

2.4 結論						
2．4．1 ボルトの応力					（単位： MPa ）	
部材			弾性設計用地震動S d 又は静的震度		基淮地震動S s	
部 材	材 料	心	算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=133$	$f_{\text {t s } 1}=193^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=14$	$f_{\text {s b } 1}=148$
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=79$	$f_{\mathrm{ts} 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
125 V 直流電源切替盤2A	水平方向	1． 65	
	鋁直方向	1． 15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤 2 A （第 7 盤～第8盤）の耐震性についての計算結果】
3．設計基準対象施設
3.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基漼地震動S s		周囲環境温度(C)
			水平方向	鈖直方向	水平方向 設計震度	鋁直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
125 V 直流電源切替盤 2 A	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .15 .00^{*} \end{aligned}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{v}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	40

注記 $*$ ：基準床レベルを示す。

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{\substack{\mathrm{F}_{\mathrm{i}} \\(\mathrm{MPa})}}{ }$	転倒方向	
					弾性設計用地震動 S d又は静的震度	$\underset{\mathrm{S}}{\text { 基淮地震動 }}$ S s
基礎ボルト $(\mathrm{i}=1)$	215	400	215	258	長辺方向	長辺方向
取付ボルト $(i=2)$	235	400	235	280	長辺方向	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
3.3 計算数値

3．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		Q_{bi}	
	弾性設計用地震動 Sd又は静的震度		弾性設計用地震動 Sd又は静的震度	
基礎ボルト $(\mathrm{i}=1)$	1． 166×10^{4}	2． 598×10^{4}	1． 073×10^{4}	2． 202×10^{4}
取付ボルト （ $\mathrm{i}=2$ ）	9． 486×10^{3}	2． 146×10^{4}	1． 036×10^{4}	2.125×10^{4}

3.4 結論

3．4．1 ボルトの応力
（単位：MPa）
ϖ

部 材		応力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
基䃠ボルト （ $\mathrm{i}=1$ ）	SS400	引張り	$\sigma_{\text {b } 1}=58$	$f_{\text {t }{ }^{1} 1}=161 *$	$\sigma_{\mathrm{b} 1}=130$	$f_{\text {t } 1}=193^{*}$
		せん断	$\tau_{\text {b } 1}=6$	$f_{\text {s b } 1}=124$	$\tau_{\mathrm{b} 1}=11$	$f_{\text {sb } 1}=148$
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	SS400	引張り	$\sigma_{\mathrm{b} 2}=31$	$f_{\text {ts } 2}=176^{*}$	$\sigma_{\mathrm{b}_{2}}=69$	$f_{\text {t } 22}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=2$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{sb} 2}=161$

注記＊$: f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤 2 A （第 7 盤～第8盤）の而震性についての計算結果】
4．重大事故等対処設備
4.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動又は又静的震度		基漼地震動S s		$\underset{\left({ }^{\circ} \text { 领囲環境温度 }\right.}{ }$
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{gathered} \text { 鈖直方向场 } \\ \text { 設計震度 } \end{gathered}$		鉛直方向設計震度	
125V直流電源切替盤2A		$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } 15.00^{*} \\ & \hline \end{aligned}$	0． 05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。

N

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{i}}$	$\begin{gathered} \mathrm{h}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1 \text { i }}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 i}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \\ & \left(\mathrm{~mm}^{2}\right. \end{aligned}$	n_{i}	$\mathrm{n}_{\mathrm{fi}}{ }^{\text {＊1 }}$
基礎ボルト$(\mathrm{i}=1)$					$\begin{gathered} 16 \\ \text { (M16) } \end{gathered}$	201.1	10	4
					2			
取付ボルト$(\mathrm{i}=2)$					$\begin{gathered} 20 \\ (\mathrm{M} 20) \end{gathered}$	314.2	20	6
					2			

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \\ & { }^{2} \text {. } \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$	215	400	－	258	－	長辺方向
取付ボルト $(\mathrm{i}=2)$	235	400	－	280	－	長辺方向

注記 $~$ 1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。

> 枠囲みの内容は商業機密の観点から公開できません。

4．3 計算数値
4．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		Q_{bi}	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$
基礎ボルト $(\mathrm{i}=1)$	－	2． 598×10^{4}	－	2． 202×10^{4}
取付ボルト （ $\mathrm{i}=2$ ）	－	2． 146×10^{4}	－	2． 125×10^{4}

4． 4 結論

部 材	材 料	応 力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{b_{1}}=130$	$f_{\text {t s } 1}=193 *$
		せん断	－	－	$\tau_{\mathrm{b}_{1}}=11$	$f_{\text {s b } 1}=148$
$\underset{(\mathrm{i}=2)}{\text { 取付ボルト }}$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}=69}$	$f_{\text {ts } 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤 2B の耐震性についての計算結果】
5．設計基準対象施設
5.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）				基淮地震動S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鈖直方向	水平方向 設計震度	$\substack{\text { 鉛直方向 } \\ \text { 設計震度 }}$	$\begin{aligned} & \text { 水平方向設誏計震 } \end{aligned}$	鈖直方向 設計震度	
125V 直流電源切替盤 2 B	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 15.00^{*} \end{aligned}$		0．05以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{v}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	40

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{i}}{ }^{*}$	転倒方向	
部 材					弾性設計用地震動 S d又は静的震度	$\underset{\mathrm{S}}{\text { 基淮地震動 }}$ S s
基礎ボルト $(\mathrm{i}=1)$	215	400	215	258	短辺方向	長辺方向
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	長辺方向	長辺方向

注記＊1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
5.3 計算数値

5．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\underset{\mathrm{S} \text { s }}{\substack{\text { 基蕉地震動 }}}$	弾性設計用地震動 Sd又は静的震度	
基礎ボルト $(\mathrm{i}=1)$	1． 044×10^{4}	2． 650×10^{4}	2． 683×10^{4}	5． 506×10^{4}
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	9． 111×10^{3}	2． 369×10^{4}	2． 589×10^{4}	5． 313×10^{4}

5．4 結論
5．4．1 ボルトの応力
（単位：MPa）

N

部 材		応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\begin{gathered} \text { 基礯ボルト } \\ (\mathrm{i}=1) \end{gathered}$	SS400	引張り	$\sigma_{\mathrm{b}_{1}}=52$	$f_{\text {ts } 1}=161 *$	$\sigma_{b_{1}}=132$	$f_{\text {ts } 1}=193 *$
		せん断	$\tau_{\mathrm{b} 1}=7$	$f_{\text {sb } 1}=124$	$\tau_{\mathrm{b} 1}=14$	$f_{\text {sb } 1}=148$
$\underset{\left(\begin{array}{c}\text { 取付ボルト } \\ \mathrm{i}=2)\end{array}\right.}{\text { ．}}$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=29$	$f_{\text {ts } 2}=176^{*}$	$\sigma_{\mathrm{b}_{2}}=76$	$f_{\text {t s } 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=2$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。
5．4．2 電気的機能維持の評価結果 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確忍済加速度	
125 V 直流電源切替盤 2 B	水平方向	1.65		
	鈖直方向	1.15		

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1

【125V 直流電源切替盤 2 B の耐震性についての計算結果】
6．重大事故等対処設備
6.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）				基淮地震動S s		周囲睘境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方畕 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鉛直方向 計震度	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鉛直方向 計震度	
125 V 直流電源切替盤2B	$\begin{array}{\|c\|} \hline \text { 常設常設震/防止 } \\ \hline \end{array}$	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .15 .00^{*} \end{aligned}$		0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	40

注記＊：基準床レベルを示す。
\＆

部 材	$\underset{\left(1 \mathrm{SP}_{1}\right)}{ }$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{PPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	215	400	－	258	－	長辺方向
取付ボルト （ $\mathrm{i}=2$ ）	235	400	－	280	－	長辺方向

注記＊1：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-10-1-4-31$
R 1
6.3 計算数値

6．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	基漼地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	－	2． 650×10^{4}	－	5． 506×10^{4}
取付ボルト （ $\mathrm{i}=2$ ）	－	2． 369×10^{4}	－	5． 313×10^{4}

6． 4 結論
6．4．1 ボルトの応力（単位：MPa）

$\stackrel{\omega}{\square}$	部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
				算出応力	許容応力	算出応力	許容応力
	基礎ボルト （ $\mathrm{i}=1$ ）	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{1}}=132$	$f_{\text {ts } 1}=193 *$
			せん断	－	－	$\tau_{\mathrm{b}_{1}}=14$	$f_{\mathrm{sb} 1}=148$
	取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=76$	$f_{\text {t }{ }_{2} 2}=210^{*}$
			せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

6．4．2 電気的機能維持の評価結果

，		機能維持評価用加速度＊	機能確愍済加速度
125 V 直流電源切替盤2B	水平方向	1． 65	
	鋁直方向	1． 15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3） $\mathrm{VI}-2-10-1-4-31 \mathrm{R} 1 \mathrm{E}$

