女川原子力	工事計画審査資料
資料番号	02－工－B－19－0306＿改 0
提出年月日	2021年7月16日

VI－2－10－1－4－37 250V 充電器の耐震性についての計算書

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 4
4． 1 構造強度評価方法 4
4．2 荷重の組合せ及び許容応力 4
5．機能維持評価 8
5.1 電気的機能維持評価方法 8
6．評価結果 9
6.1 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，250V 充電器が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

250V 充電器は，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類 される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示 す。

250V 充電器は，以下の表1－1に示す盤から構成される。
なお，250V 充電器は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2.1 構造計画

250V 充電器の構造計画を表2－1に示す。

3．固有周期

3.1 固有周期の算出方法
$250 V$ 充電器の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

固有周期を表3－1 に示す。

表 3－1 固有周期（s）

名称	方向	固有周期
250 V 充電器盤	水平	0.05 以下
	鉛直	0.05 以下

\bigcirc
\sim
$\mathrm{VI}-2-10-1-4-37$
（a）
N

4．構造強度評価

4． 1 構造強度評価方法
250 V 充電器の構造は直立形であるため，構造強度評価は，添付書類「VI－2－1－13－7盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価す る。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
250V 充電器の荷重の組合せ及び許容応力状態のうち重大事故等対処設備として の評価に用いるものを表4－1に示す。

4．2．2 許容応力
250V 充電器の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
250 V 充電器の使用材料の許容応力のうち重大事故等対処設備としての評価に用 いるものを表4－3に示す。

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原子炉の附属施設	非常用電源設備	250V 充電器	常設耐震／防止		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} * 3$	$I V_{A} \mathrm{~S}$
				－＊2		$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \\ \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \text { の許容限 } \\ \text { 界を用いる。) } \\ \hline \end{gathered}$

[^0]表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1}$ ，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{4} \mathrm{~S}$		
$\begin{gathered} \mathrm{V}_{A} S \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{f}$＊

$* 2$ 当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
O 2 （3） $\mathrm{VI}-2-10-1-4-37$ R 0

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y} \text { i }}(\mathrm{R} T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

250 V 充電器の電気的機能維持評価について，以下に示す。
電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の評価方法に基づき評価する。

250V 充電器の機能確認済加速度には，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の加速度を適用する。

機能確認済加速度を表5－1に示す。

評価部位	方向	機能確認済加速度	
250 V 充電器盤	水平		
	鉛直		

6．評価結果

6． 1 重大事故等対処設備としての評価結果
250 V 充電器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【250V 充電器の耐震性についての評価結果】
1．重大事故等対処設備
1.1 設計条件
1．1 設計条件

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{aligned} & \underset{\mathrm{F}_{i}}{ }{ }^{(\mathrm{MPa})} \end{aligned}$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \\ & \text { S S } \end{aligned}$
取付ボルト $(\mathrm{i}=2)$	235	400	－	280	－	長辺方向

注記＊1：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F		Q_{b}	
部 材	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \text { 信 s } \end{gathered}$	弾性設計用地震動 S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 動 s } \end{aligned}$
取付ボルト $(\mathrm{i}=2)$	－	1． 291×10^{4}	－	4． 356×10^{4}

1.4 結論
1．4．1 ボノ

1．4．1 ボルトの応力					（単位： MPa ）	
部 材			弾性設計用地震動S d 又は静的震度		基漼地震動S s	
部 材			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=65$	$f_{\mathrm{ts} 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=12$	$f_{\text {s b } 2}=161$

注記 $*: f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\text {toi }}-1.6 \cdot \tau_{\text {bi }}, f_{\mathrm{toi}}\right]$ より算出

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

[^0]: 注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
 ＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

