| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－4－7 動力変圧器（高圧炉心スプレイ系用） の耐震性についての計算書

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4．1 構造強度評価方法 3
4.2 荷重の組合せ及び許容応力 3
5．機能維持評価 7
5.1 電気的機能維持評価方法 7
6．評価結果 8
6．1 設計基準対象施設としての評価結果 86．2 重大事故等対処設備としての評価結果8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，動力変圧器（高圧炉心スプレイ系用）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

動力変圧器（高圧炉心スプレイ系用）は，設計基準対象施設においてはSクラス施設 に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類され る。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

動力変圧器（高圧炉心スプレイ系用）は，以下の表1－1 に示す盤から構成される。
なお，動力変圧器（高圧炉心スプレイ系用）は，添付書類「VI－2－1－13 機器•配管系 の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性につ いての計算書作成の基本方針」に基づき評価を実施する。

表 1－1 動力変圧器（高圧炉心スプレイ系用）の構成

系統	盤名称	個数
メタルクラッドスイッチギア （高圧炉心スプレイ系用）	MCC 動力変圧器（6－2PH）	1

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

2.1 構造計画

動力変圧器（高圧炉心スプレイ系用）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
動力変圧器（高圧炉心 スプレイ系用）のうち MCC 動力変圧器（6－ 2PH）は，基礎に埋め込 まれたチャンネルベ ースに取付ボルトで設置する。	直立形 （変圧器）	【動力変圧器（高圧炉心スプレイ系用）】

3．固有周期
動力変圧器（高圧炉心スプレイ系用）の固有周期については，変圧器はJEAG46 0 1－1987において「装置」に分類される。装置は一般に剛構造とされていることから，振動試験を省略する。

4．構造強度評価

4． 1 構造強度評価方法
動力変圧器（高圧炉心スプレイ系用）の構造は直立形であるため，構造強度評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

動力変圧器（高圧炬心スプレイ系用）の荷重の組合せ及び許容応力状態のらち設計基準対象施設としての評価に用いるものを表 4－1 に，重大事故等対処設備とし ての評価に用いるものを表4－2 に示す。

4．2．2 許容応力
動力変圧器（高圧炉心スプレイ系用）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
動力変圧器（高圧炬心スプレイ系用）の使用材料の許容応力のらち設計基準対象施設としての評価に用いるものを表 4－4 に，重大事故等対処設備としての評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震設計上の 重要度分類	機器等の区分	荷重の組合せ

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
\perp

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原子炉の附属施設	非常用 電源設備	動力変圧器（高圧炉心 スプレイ系用）	常設／防止 （DB 拡張）		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} *^{3}$	IV ${ }_{\text {A }} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-10-1-4-7$
R 0

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{A} \mathrm{~S}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{A} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{f}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{\text {y i }}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

5．機能維持評価
5.1 電気的機能維持評価方法

動力変圧器（高圧炉心スプレイ系用）の電気的機能維持評価について，以下に示す。変圧器はJ E A G 4 6 0 1－1987において「装置」に分類され，機能維持評価は構造健全性を確認することとされている。したがって，動力変圧器（高圧炉心スプレイ系用）の機能維持評価は，支持構造物が健全であることの確認により行う。

6．評価結果

6.1 設計基準対象施設としての評価結果

動力変圧器（高圧炉心スプレイ系用）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価は支持構造物が健全であることの確認により行うため，評価結果は（1）構造強度評価結果による。

6．2 重大事故等対処設備としての評価結果
動力変圧器（高圧炉心スプレイ系用）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価は支持構造物が健全であることの確認により行うため，評価結果は（1）構造強度評価結果による。

【動力変圧器（高圧炉心スプレイ系用）の而震性についての計算結果】
1．設計基漼対象施設
1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { 周囲睘境温度 }}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向 設計震度	鉛直方向設計震度	
$\begin{aligned} & \text { 動力変圧器 }(\text { (高圧炉 } \\ & \text { 心スプレ系用) } \end{aligned}$	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P.6. } 00^{*} \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{v}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記＊：基淮床レベルを示す。

\bullet

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathbb{P P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathbb{P P a})}{\mathrm{F}_{i}{ }^{*}}$	転倒方向	
部 材					弾生設計用地震動 Sd又は静的震度	基準地震動 S s
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	短刀方向	短辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。

$$
\text { O } 2 \text { (3) } \mathrm{VI}-2-10-1-4-7 \quad \mathrm{R} 1
$$

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		Q_{bi}	
	弾性設計用地震動 S d又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基漼地震動 }}$	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基淮地震動 } \\ \mathrm{S} \end{gathered}$
取付ボルト （ $\mathrm{i}=2$ ）	5． 851×10^{3}	1． 336×10^{4}	2． 401×10^{4}	5． 235×10^{4}

1.4 結論

1．4．1 ボルトの応力
（単位：MPa）

部 材		応 力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト （ $\mathrm{i}=2$ ）	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=29$	$f_{\mathrm{ts} 2}=176$＊	$\sigma_{\mathrm{b}_{2}}=67$	$f_{\text {ts } 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=10$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\text {toi }}-1.6 \cdot \tau_{\text {bi }}, f_{\text {toi }}\right]$ より算出
$\stackrel{\rightharpoonup}{\circ}$
すべて許容応力以下である。

【動力変圧器（高圧灲心スプレイ系用）の耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		$\underset{\left({ }^{\text {舟囲環境温度 }}\right.}{ }$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鑵真向 } \\ & \text { 䂻度 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鈖直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	
動力変圧器（高圧炬心ス	$\begin{gathered} \text { 常設/防止 } \\ (\text { (DB 拡張) } \end{gathered}$	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. 6. } 00^{*} \end{aligned}$	－	－	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	40

注記＊：基準床レベルを示す。
2.2 機器要目

ヘ

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{i},}$	転倒方向	
					弾性設計用地震動S d又は静的震度	基蕉地震動 S s
取付ボルト （ $\mathrm{i}=2$ ）	235	400	－	280	－	短辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-10-1-4-7 \quad \mathrm{R} 1
$$

2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		Q_{bi}	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \mathrm{S} \end{aligned}$	弾性設計用地震動 Sd又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 俍 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	－	1． 336×10^{4}	－	5． 235×10^{4}

2．4 結論

2．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応 力	弾性設計用地震動S d 又 静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\underset{(\mathrm{i}=2)}{\text { 取付ボルト }}$$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=67$	$f_{\text {ts } 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=10$	$f_{\text {s b } 2}=161$

注記 $*: ~ f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
$\stackrel{\omega}{\omega}$
すべて許容応力以下である。

O 2 (3) VI-2-10-1-4-7 R 0 E

