```
本資料のうち,枠囲みの内容
は商業機密の観点から公開で
きません。
```

女川原子力発電所第2号機	
工事計画審査資料	
資料番号	02－工－B－19－0281＿改 0
提出年月日	2021 年 7 月 16 日

VI－2－10－1－4－12 動力変圧器（緊急用）の耐震性についての計算書

2021 年7月
東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 4
3.1 固有周期の算出方法 4
4．構造強度評価 5
4． 1 構造強度評価方法 5
4．2 荷重の組合せ及び許容応力 5
5．機能維持評価 9
5.1 電気的機能維持評価方法 9
6．評価結果 10
6．1 重大事故等対処設備としての評価結果 10

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，動力変圧器（緊急用）が設計用地震力に対して十分 な構造強度及び電気的機能を有していることを説明するものである。

動力変圧器（緊急用）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

動力変圧器（緊急用）は，以下の表1－1 に示す盤から構成される。本計算書において は，その各々の盤に対して耐震計算を行う。

なお，動力変圧器（緊急用）は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

表 1－1 動力変圧器（緊急用）の構成

系統	盤名称	個数
動力変圧器（緊急用）	パワーセンタ動力変圧器 6－2PG	1
動力変圧器（緊急用）	MCC 動力変圧器 6－2PF－1	1
動力変圧器（緊急用）	MCC 動力変圧器 6－2PF－2	1

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

2.1 構造計画

動力変圧器（緊急用）のうちパワーセンタ動力変圧器6－2PGの構造計画を表2－1に， MCC 動力変圧器 6－2PF－1 及び MCC 動力変圧器 6－2PF－2 の構造計画を表 $2-2$ にそれぞれ示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
動力変圧器（緊急用） のうちパワーセンタ動力変圧器 $6-2 P G$ は，基礎に埋め込まれた チャンネルベースに取付ボルトで設置す る。 チャンネルベースは基礎ボルトにて基礎 に固定する。	直立形 （鋼材及び鋼板を組 み合わせた自立閉鎖型の盤）	【パワーセンタ動力変圧器 6－2PG】
		パワーセンタ動力変圧器 6－2PG たて mm 横 mm 高さ mm

（3） $\mathrm{VI}-2-10-1-4-12$
R 0

表 2－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
動力変圧器（緊急用） のうち MCC 動力変圧器 6－2PF－1 及び MCC 動力変圧器 $6-2 \mathrm{PF}-2$ は，基礎に埋め込まれたチ ャンネルベースに取付ボルトで設置する。	直立形 （鋼材及び鋼板を組 み合わせた自立閉鎖型の盤）	【 MCC 動力変圧器 6－2PF－1及び MCC 動力変圧器 6－2PF－2】

3．固有周期
3.1 固有周期の算出方法

動力変圧器（緊急用）のうちパワーセンタ動力変圧器6－2PGの固有周期は以下の通 りとする。

水平方向の固有周期は，プラスチックハンマ等により当該装置に振動を与え，固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により固有振動数（共振周波数）を測定する。測定の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。鉛直方向の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

MCC 動力変圧器 6－2PF－1 及び MCC 動力変圧器6－2PF－2 は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

固有周期を表3－1 に示す。

表 3－1 固有周期（s）

名称	方向	固有周期
パワーセンタ動力変圧器 6－2PG	水平	\square
	鉛直	0.05 以下
MCC 動力変圧器 $6-2 \mathrm{PF}-1$	水平	0.05 以下
	鉛直	0.05 以下
MCC 動力変圧器 $6-2 \mathrm{PF}-2$	水平	0.05 以下
	鉛直	0.05 以下

4．構造強度評価
4． 1 構造強度評価方法
動力変圧器（緊急用）の構造は直立形であるため，構造強度評価は，添付書類「VI －2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
動力変圧器（緊急用）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備としての評価に用いるものを表4－1 に示す。

4．2．2 許容応力
動力変圧器（緊急用）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
動力変圧器（緊急用）の使用材料の許容応力のらち重大事故等対処設備としての評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} *^{3}$	$I V_{A} \mathrm{~S}$
その他発電用原子炉の附属施設	非常用電源設備	動力変圧器（緊急用）	常設耐震／防止常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

○ 2
（3） $\mathrm{VI}-2-10-1-4-12$
R 0

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \text { i }}$ (MPa)	S_{ui} (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $($ 径 $\leqq 16 \mathrm{~mm})$	周囲環境温度	40	245	400
(MPa)					

5．機能維持評価
5.1 電気的機能維持評価方法

動力変圧器（緊急用）の電気的機能維持評価について，以下に示す。
変圧器はJ E A G 4 6 0 1－1987において「装置」に分類され，機能維持評価は構造健全性を確認することとされている。したがって，動力変圧器（緊急用）の機能維持評価は，支持構造物が健全であることの確認により行う。

6．評価結果

6． 1 重大事故等対処設備としての評価結果
動力変圧器（緊急用）の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
O 2
（3） $\mathrm{VI}-2-10-1-4-12$
R 0

【動力変圧器（緊急用）の而震性についての評価結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的蒝度		基淮地震動S s		$\underset{\left({ }^{\circ} \text { 骨囲環境温度 }\right.}{ }$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	水平方向設計震度	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \\ & \hline \end{aligned}$	
$\begin{gathered} \text { パワーセンタ動圧器 } \\ 6 \text { - } 2 \mathrm{PG} \end{gathered}$	常設而震／防止常設／緩和	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0.P.24. } 0^{*} \\ & \text { (0.P. 33. } 20 \text {) } \end{aligned}$		0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	40

注記＊：基淮床レベルを示す。

	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
部 材					弾性設計用地震動S d又は静的震度	基淮地震動 S s
$\begin{gathered} \text { 基礎ボルト } \\ \quad(\mathrm{i}=1) \end{gathered}$	245	400	－	280	－	長辺方向
取付ボルト $(\mathrm{i}=2)$	235	400	－	280	－	長辺方向

注記＊1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-10-1-4-12$
R 1

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基漼地震動 S s
基礎ボルト （ $\mathrm{i}=1$ ）	－	3.383×10^{4}	－	1． 297×10^{5}
取付ボルト （ $\mathrm{i}=2$ ）	－	3.047×10^{4}	－	1． 247×10^{5}

1．4 結論
1．4．1 ボルトの応力
（単位： MPa ）

N	部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
				算出応力	許容応力	算出応力	許容応力
	基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{b_{1}}=169$	$f_{\text {ts } 1}=210^{*}$
			せん断	－	－	$\tau_{\mathrm{b} 1}=16$	$f_{\text {s b } 1}=161$
	$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	SS400	引張り	－	－	$\sigma_{b_{2}}=152$	$f_{\text {t s } 2}=210^{*}$
			せん断	－	－	$\tau_{\mathrm{b} 2}=31$	$f_{\mathrm{sb} 2}=161$

O 2
(3) $\mathrm{VI}-2-10-1-4-12$
R 0

○ 2
(3) $\mathrm{VI}-2-10-1-4-12$
R 0

$\left(\ell_{12} \leqq \ell_{22}\right)$

$\mathrm{A} \sim \mathrm{A}$ 知畨
○ 2
（3） $\mathrm{VI}-2-10-1-4-12$
R 0

【動力変鄙器（緊急用）の而震性についての評価結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）				基淮地震動S s		周囲環境温度(C)
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鍦直方向 計計震度	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鈖直方向 設計震度	
MCC 動力変圧器 6－2PF－1 MCC 動力変圧器 $6-2 \mathrm{PF}-2$	常設耎震／防止 常緩和	緊急用電気品建屋 0. P． 56.40^{*}	0． 05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=0.84$	$\mathrm{C}_{\mathrm{v}}=0.68$	40

注記＊：基準床レベルを示す。

2.2 機器要目

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{\left(\underset{\mathrm{MPa}}{\mathrm{i}}{ }_{\mathrm{i}}{ }^{*}\right.}{ }$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{gathered} \hline \text { 基淮地震動 } \\ \text { 俍 s } \end{gathered}$
取付ボルト （ $\mathrm{i}=2$ ）	235	400	－	280	－	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
○ 2
（3） $\mathrm{VI}-2-10-1-4-12$
R 1

2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 隹 } \end{aligned}$	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \text { 俍 } \end{gathered}$
取付ボルト （ $\mathrm{i}=2$ ）	－	1． 093×10^{4}	－	3． 625×10^{4}

2． 4 結論

2．4．1 ボルトの応力
（単位：MPa）

部 材		応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\underset{(\mathrm{i}=2)}{\substack{\text { 取付ボルト } \\ \hline}}$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=55$	$f_{\text {ts } 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=7$	$f_{\mathrm{sb} 2}=161$

注記 $*: ~ f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
た
すべて許容応力以下である。

