```
本資料のうち,枠囲みの内容
は商業機密の観点から公開で
きません。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－3－1－1 無停電交流電源用静止形無停電電源装置 の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
5．機能維持評価 8
5.1 電気的機能維持評価方法 8
6．評価結果 96.1 設計基準対象施設としての評価結果9

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，無停電交流電源用静止形無停電電源装置が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

無停電交流電源用静止形無停電電源装置は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

無停電交流電源用静止形無停電電源装置は，以下の表1－1に示す盤から構成される。

表 1－1 無停電交流電源用静止形無停電電源装置の構成

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

2.1 構造計画

無停電交流電源用静止形無停電電源装置の構造計画を表2－1に示す。

○ 2
（2） $\mathrm{VI}-2-10-1-3-1-1$
R 1

表 2－1 構造計画

3．固有周期
3.1 固有周期の算出方法

無停電交流電源用静止形無停電電源装置の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

固有周期を表3－1に示す。

表 3－1 固有周期（s）

名称	方向	固有周期
無停電交流電源用 静止形無停電電源装置	水平	0.05 以下
	鉛直	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

無停電交流電源用静止形無停電電源装置の構造は直立形であるため，構造強度評価 は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

4． 2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
無停電交流電源用静止形無停電電源装置の荷重の組合せ及び許容応力状態のう ち設計基準対象施設としての評価に用いるものを表4－1に示す。

4．2．2 許容応力
無停電交流電源用静止形無停電電源装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
無停電交流電源用静止形無停電電源装置の使用材料の許容応力のうち設計基準対象施設としての評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| $\begin{array}{c}\text { 施設区分 }\end{array}$ | | 機器名称 | $\begin{array}{c}\text { 耐震設計上の } \\ \text { 重要度分類 }\end{array}$ | 機器等の区分 |
| :---: | :---: | :---: | :---: | :---: | :---: |$]$ 荷重の組合せ

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

O 2 （2） $\mathrm{VI}-2-10-1-3-1-1 \quad \mathrm{R} 1$

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	1.5 － ft^{*}	1.5 － f^{*}＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$		周囲環境温度		235	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

無停電交流電源用静止形無停電電源装置の電気的機能維持評価について，以下に示 す。

電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の評価方法に基づき評価する。

無停電交流電源用静止形無停電電源装置の機能確認済加速度には，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の加速度を適用する。機能確認済加速度を表5－1に示す。

評価部位	方向	機能確認済加速度
無停電交流電源用 静止形無停電電源装置	水平	
	鉛直	

6．評価結果

6.1 設計基準対象施設としての評価結果

無停電交流電源用静止形無停電電源装置の設計基準対象施設としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【無停電交流電源用静止形無停電電源装置の而震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動又は静的震度		基淮地震動S s		$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { 周囲噮境温度 }}$
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方王 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向 設計震度		鉛直方向 設計震度	
	S	$\begin{aligned} & \text { 制御建屋 } \\ & 0 . \text { P. 8. } 00^{*} \end{aligned}$	0.05 以下	0． 05 以下	$\mathrm{C}_{\mathrm{H}}=0.91$	$\mathrm{C}_{\mathrm{v}}=0.55$	$\mathrm{C}_{\mathrm{H}}=1.95$	$\mathrm{C}_{\mathrm{v}}=1.01$	

注記＊：基準床レベルを示す。

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa}}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{i}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{i}{ }^{*}}$	転倒方向	
部 材					弾性設計用地震動 Sd又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	長辺方向	長辺方向

注記＊1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		Q_{bi}	
	弾性設計用地震動 S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \mathrm{S} \end{gathered}$	弾性設計用地震動 Sd又は静的震度	$\stackrel{\text { 基淮地震動 }}{\mathrm{S}}$
取付ボルト （ $\mathrm{i}=2$ ）	7.987×10^{3}	1． 731×10^{4}	7． 139×10^{4}	1． 530×10^{5}

1.4 結論

1．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動S d 又 又 $^{\text {静的震度 }}$		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$		引張り	$\sigma_{\mathrm{b}_{2}}=40$	$f_{\text {ts } 2}=176 *$	$\sigma_{\mathrm{b} 2}=86$	$f_{\text {ts } 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=10$	$f_{\mathrm{sb} 2}=161$

注記 $*: f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\text {toi }}-1.6 \cdot \tau_{\text {bi，}}, f_{\text {toi }}\right]$ より算出
も すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確羿済加速度
無停電交流電源用静止形無停電電源装置	水平方向	1.62	
	鉛直方向	0.84	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

側面
（短辺方向）

$\mathrm{A} \sim \mathrm{A}$ 矢視図

