| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－4－1 メタルクラッドスイッチギア（非常用） の耐震性についての計算書
1．概要1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 4
4． 1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
5．機能維持評価 8
5.1 電気的機能維持評価方法 8
6．評価結果 9
6.1 設計基準対象施設としての評価結果 9
6.2 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，メタルクラッドスイッチギア（非常用）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

メタルクラッドスイッチギア（非常用）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

メタルクラッドスイッチギア（非常用）は，以下の表1－1に示す盤から構成される。本計算書においては，その各々の盤に対して耐震計算を行う。

なお，メタルクラッドスイッチギア（非常用）は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性に ついての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

2.1 構造計画

メタルクラッドスイッチギア（非常用）の構造計画を表2－1に示す。

表 2－1 構造計画

3．固有周期
3.1 固有周期の算出方法

メタルクラッドスイッチギア（非常用）のうち 6.9 kV メタクラ $6-2 \mathrm{C}$ 及び 6.9 kV メ タクラ 6－2Dの固有周期は以下の通りとする。

水平方向の固有周期は，プラスチックハンマ等により当該装置に振動を与え，固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により固有振動数（共振周波数）を測定する。測定の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。鉛直方向の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛とする。

固有周期を表3－1に示す。

表 3－1 固有周期（s）

名称	方向	固有周期
6.9 kV メタクラ 6－2C	水平	
	鉛直	0.05 以下
6.9 kV メタクラ 6－2D	水平	
	鉛直	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

メタルクラッドスイッチギア（非常用）の構造は直立形であるため，構造強度評価 は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
メタルクラッドスイッチギア（非常用）の荷重の組合せ及び許容応力状態のらち設計基準対象施設としての評価に用いるものを表 4－1 に，重大事故等対処設備と しての評価に用いるものを表4－2に示す。

4．2．2 許容応力

4．2．3 使用材料の許容応力評価条件
メタルクラッドスイッチギア（非常用）の使用材料の許容応力のうち設計基準対象施設としての評価に用いるものを表 4－4 に，重大事故等対処設備としての評価 に用いるものを表4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震設計上の 重要度分類	機器等の区分	荷重の組合せ

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
©

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} * 3$	IV ${ }_{\text {A }} \mathrm{S}$
その他発電用原子炉の附属施設	非常用電源設備	メタルクラッドスイッ チギア（非常用）	常設耐震／防止常設／緩和	－＊2		$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-10-1-4-1$
R 0

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

メタルクラッドスイッチギア（非常用）の電気的機能維持評価について，以下に示 す。

電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の評価方法に基づき評価する。
6.9 kV メタクラ 6－2C 及び 6.9 kV メタクラ 6－2Dの機能確認済加速度には，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の加速度を適用 する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

6．評価結果

6.1 設計基準対象施設としての評価結果

メタルクラッドスイッチギア（非常用）の設計基準対象施設としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果

メタルクラッドスイッチギア（非常用）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【6．9kV メタクラ 6－2Cの而震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的愿度		基漼地震動S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向 設計震度	鉛直方向設計震度	水平方向 設計震度	鉛直方向設計震度	
$\begin{aligned} & \hline 6.9 \mathrm{kV} \text { メタクラ } \\ & 6-2 \mathrm{C} \end{aligned}$	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 6. } 00^{*} \end{aligned}$		0．05以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{V}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記 $*$ ：基準床レベルを示す。

注記＊1 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。

> 枠囲みの内容は商業機密の観点から公開できません。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		Q_{bi}	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \mathrm{S} \text { 俍 } \end{aligned}$	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \mathrm{S} \text { 俍 } \end{gathered}$
取付ボルト （ $\mathrm{i}=2$ ）	9． 607×10^{3}	2． 448×10^{4}	1． 938×10^{5}	4． 226×10^{5}

1.4 結論

1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾生設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\underset{(\mathrm{i}=2)}{\substack{\text { 取付ボルト }}}$	SS400	引張り	$\sigma_{\mathrm{b} 2}=31$	$f_{\text {t } 22}=176$＊	$\sigma_{\mathrm{b} 2}=78$	$f_{\text {ts } 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=6$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=13$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\text {toi }}-1.6 \cdot \tau_{\text {bi }}, f_{\text {toi }}\right]$ より算出
も すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
6．9kV メタクラ 6－2C	水平方向	1.31	
	鉛直方向	0.91	

注記 $* ~: ~$ 基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

> 枠囲みの内容は商業機密の観点から公開できません。

【6．9kV メタクラ 6－2C の而震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向 設計震度	水平方向設計震度	$\begin{aligned} & \text { 鈖直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	
6．9kV メタクラ 6－2C	$\begin{array}{\|c\|} \hline \text { 常設貒設震/防止 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0.P.6. } 00^{*} \end{aligned}$		0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	40

注記＊：基準床レベルを示す。
2.2 機器要目

部 材	$\begin{gathered} \left.\mathrm{m}_{\mathrm{i}}\right) \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{i}, \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1_{1}{ }^{* 1}}\left(\begin{array}{c} (\mathrm{mm}) \end{array}\right. \\ \hline \end{gathered}$	$\begin{gathered} \ell_{2_{i}{ }^{* 1}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\left(\mathrm{m}^{2}\right)}{\mathrm{A}_{\mathrm{b}}{ }^{2}}$	n_{i}	$\mathrm{n}_{\mathrm{fi}}{ }^{\text {＊1 }}$
取付ボルト$(\mathrm{i}=2)$					$\begin{gathered} 20 \\ \text { (M20) } \end{gathered}$	314.2	110	20
								5

$\stackrel{\rightharpoonup}{\omega}$

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{\mathrm{F}_{\mathrm{i}}}{\left(\mathrm{MPa}^{*}\right.}$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基準地震動 } \\ & \text { 俍 } \end{aligned}$
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	235	400	－	280	－	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。

枠囲みの内容は商業機密の観点から公開できません。
O 2
（3）
VI－2－10－1－4－1
R 1

2．3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \end{aligned}$	弾性設計用地震動S d又は静的震度	
取付ボルト $(\mathrm{i}=2)$	－	2． 448×10^{4}	－	4． 226×10^{5}

2． 4 結論
2．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト （ $\mathrm{i}=2$ ）	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=78$	$f_{\text {ts } 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=13$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\text {tsi }}=\operatorname{Min}\left[1.4 \cdot f_{\text {toi }}-1.6 \cdot \tau_{\text {bi }}, f_{\text {toi }}\right]$ より算出
ゅ すべて許容応力以下である。

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

正面
（長辺方向）
転倒方向

【6．9kV メタクラ 6－2D の耐震性についての計算結果】
1．設計基漼対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動又は又静的麎度		基漼地震動S s		$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { 用圜境温度 }}$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向設計震度	水平方向設計震度	鉛直方向設忛震度	
$\begin{gathered} 6.9 \mathrm{kV} \text { メタクラ } \\ 6-2 \mathrm{D} \end{gathered}$	S	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0.P.6.00* } \end{aligned}$		0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{v}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	40

注記＊：基淮床レベルを示す。

ふ

	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{P P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{M P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathbb{P P a})}{\mathrm{F}_{i}{ }^{*}}$	転倒方向	
部 材					弾生設計用地震動 Sd又は静的震度	基準地震動 S s
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	短辺方向	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		Q_{bi}	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \mathrm{S} \text { 俍 } \end{aligned}$	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \mathrm{S} \text { 俍 } \end{gathered}$
取付ボルト （ $\mathrm{i}=2$ ）	9． 625×10^{3}	2． 499×10^{4}	2． 136×10^{5}	4． 657×10^{5}

1.4 結論

1．4．1 ボルトの応力

部 材		応力	弾生設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=31$	$f_{\mathrm{ts} 2}=176$＊	$\sigma_{\mathrm{b} 2}=80$	$f_{\text {ts } 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=6$	$f_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=13$	$f_{\mathrm{sb} 2}=161$

注記 $*: ~ f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
च すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
6．9kV メタクラ 6－2D	水平方向	1.31	
	鉛直方向	0.91	

注記 $* ~: ~$ 基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

【6．9kV メタクラ 6－2D の而震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		又は静的震度		基淮地震動S s		$\underset{(\mathrm{C})}{\text { 周囲環境温度 }}$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \end{aligned}$	
6．9kV メタクラ 6－2D	$\begin{array}{\|c\|} \hline \text { 常設耑設震 / 防止 } \\ \hline \end{array}$	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P.6.00* } \end{aligned}$		0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	40

注記＊：基準床レベルを示す。
2.2 機器要目

\succcurlyeq

部 材	$\underset{(\mathbb{P a},}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa}}{\mathbf{u}} \underset{\left(\mathrm{S}_{1}\right)}{ }$	$\underset{(\mathbb{M P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{\left(\underset{i}{\mathrm{NPa}_{i}}\right.}{\substack{*}}$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \\ & \text { 信 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	235	400	－	280	－	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 俍 s } \end{aligned}$	弾性設計用地震動 S d又は静的震度	$\begin{gathered} \text { 基準地震動 } \\ \text { 俍 } \end{gathered}$
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	－	2． 499×10^{4}	－	4． 657×10^{5}

2． 4 結論
2．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト （ $\mathrm{i}=2$ ）	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=80$	$f_{\text {ts } 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=13$	$f_{\mathrm{sb} 2}=161$

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}\right.$ ，f_{toi} ］より算出
き すべて許容応力以下である。

注記 $*$ ：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2

転倒方向

