女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0389＿改 0
提出年月日	2021 年 7 月 16 日

VI－2－6－7－8 統合原子力防災ネットワーク用通信機器収容架 の耐震性についての計算書

2021 年7月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4．1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．2．1 荷重の組合せ及び許容応力状態 7
4．2．2 許容応力 7
4．2．3 使用材料の許容応力評価条件 7
4.3 解析モデル及び諸元 10
4． 4 固有周期 11
4.5 設計用地震力 12
4．6 計算方法 13
4．7 計算条件 14
4．7．1 基礎ボルトの応力計算条件 14
4．8 応力の評価 14
4．8．1 基礎ボルトの応力評価 14
5．機能維持評価 15
5.1 電気的機能維持評価方法 15
6．評価結果 16
6.1 重大事故等対処設備としての評価結果 16

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，統合原子力防災ネットワーク用通信機器収容架が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

統合原子力防災ネットワーク用通信機器収容架は，設計基準対象施設においてはCク ラス施設に，重大事故等対処設備においては常設重大事故等対処設備（防止でも緩和で もない設備）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

統合原子力防災ネットワーク用通信機器収容架の構造計画を表 2－1 に示す。

2.2 評価方針

統合原子力防災ネットワーク用通信機器収容架の応力評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，
「2．1 構造計画」にて示す統合原子力防災ネットワーク用通信機器収容架の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及 び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認す ることで実施する。また，統合原子力防災ネットワーク用通信機器収容架の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

統合原子力防災ネットワーク用通信機器収容架の耐震評価フローを図2－1 に示す。

図 2－1 統合原子力防災ネットワーク用通信機器収容架の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 • 補－ 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
A	収容架構成部材の断面積	mm^{2}
A_{b}	基礎ボルトの断面積	mm^{2}
A_{y}	収容架構成部材の有効せん断断面積（Y 軸）	mm^{2}
A_{z}	収容架構成部材の有効せん断断面積（ Z 軸）	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
E	縦弾性係数	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力	N
$f_{\text {s b }}$	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ o	せん断力のみを受ける基礎ボルトの許容せん断応力 （f s＊を 1.5 倍した値）	MPa
$f_{\text {t s }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
I_{y}	収容架構成部材の断面二次モーメント（Y軸）	mm^{4}
I_{z}	収容架構成部材の断面二次モーメント（ Z 軸）	mm^{4}
J	収容架構成部材のねじり定数	mm^{4}
m	質量	kg
N	基礎ボルトの本数	－
Q_{b}	基礎ボルトに作用するせん断力	N
Q \times	基礎ボルトに作用する X 軸方向のせん断力	N
Q y	基礎ボルトに作用する Y 軸方向のせん断力	N
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{1}$
長	下記以外の長さ	mm	－	整数位＊${ }^{1}$	整数位＊${ }^{\text {P }}$
さ	部材断面寸法	mm	小数点以下第 2 位＊3	四捨五入	小数点以下第 1 位 ${ }^{* 2,3}$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁＊4
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位＊5

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊ 2 ：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。 ＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位

統合原子力防災ネットワーク用通信機器収容架の耐震評価は，「4．1 地震応答解析及 び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，統合原子力防災ネットワーク用通信機器収容架は，構造物として十分 な剛性を有しており，基礎ボルトが健全であれば統合原子力防災ネットワーク用通信機器収容架の機能を維持できるため，基礎ボルトを評価対象とする。

統合原子力防災ネットワーク用通信機器収容架の耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，統合原子力防災ネットワーク用通信機器収容架を はり要素としてモデル化した3次元 F E Mモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛であることを確認した上で， 1.2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）統合原子力防災ネットワーク用通信機器収容架は，床面に設置し，基礎ボルトによ り固定されるものとする。
（3）解析モデルの質量には，統合原子力防災ネットワーク用通信機器収容架と収容機器及びトレイの質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
統合原子力防災ネットワーク用通信機器収容架の重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力

統合原子力防災ネットワーク用通信機器収容架の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表4－2に示す。

4．2．3 使用材料の許容応力評価条件
統合原子力防災ネットワーク用通信機器収容架の使用材料の許容応力評価条件 のうち重大事故等対処設備の評価に用いるものを表 4－3 に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	荷重の組合せ	許容応力状態
御	その他	統合原子力防災 ネットワーク用通信機器収容架	常設／その他	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{\mathrm{A}} \mathrm{S}$ として， $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

[^0]＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\underline{I V}{ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$		

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボル卜	SS400	周囲環境温度	40	235	400	-

4．3 解析モデル及び諸元
統合原子力防災ネットワーク用通信機器収容架の解析モデルを図4－1 に，解析モデ ルの概要を以下に示す。また機器の諸元を本計算書の【統合原子力防災ネットワーク用通信機器収容架の耐震性についての計算結果】に示す。
（1）図4－1 の \triangle は拘束節点を示し，■は質量付加位置を表す。
（2）図4－1 の赤線は溝形鋼を，青線は山形鋼を示す。破線は荷重振分用の剛体を示す。
（3）収容機器及びトレイの質量は，耐震評価上厳しくなるトレイ下端位置に質量要素と して設定した。扉及び側面鋼板は安全側の評価としてモデル化を行わず，主部材の材料特性に質量密度を設定することでモデル化した。
（4）拘束条件として，図4－1の \triangle の節点について，基礎ボルトにて床面に固定されるた め，XYZ 並進方向を拘束する。
（5）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

4．4 固有周期

固有値解析の結果を表4－4に示す。
一次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－4 固有値解析結果

モード	卓越方向	固有周期 （ s ）	水平方向刺激係数		鉛直方向
			X方向	Y方向	刺激係数
1 次	水平方向	0．05以下	－	－	－

図 4－2 振動モード（1次モード 水平方向 0.05 s 以下）
4.5 設計用地震力

評価に用いる設計用地震力を表4－5に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－5 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
緊急時 対策建屋 O．P．51．50＊ （0．P．51．85）	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=0.88$	$\mathrm{C}_{\mathrm{v}}=0.75$

注記＊：基準床レベルを示す。

4．6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－6の式によ り最大応力を算出する。

最大応力発生部位を図4－3に示す。

表 4－6 応力計算式

応力の種類	単位	応力計算式
引張応力 $\sigma_{\mathrm{b} \mathrm{t}}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 τ_{b}	MPa	$\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$

ここで，
基礎ボルトに作用するせん断力 $\mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{y}}{ }^{2}}$

図 4－3 最大応力発生部位

4．7 計算条件

4．7．1 基礎ボルトの応力計算条件
解析に用いる自重及び荷重（地震荷重）は，本計算書の【統合原子力防災ネッ トワーク用通信機器収容架の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4． 6 項で求めた基礎ボルトの引張応力は次式より求めた許容引張応力 f_{t} 以下 であること。

ただし，$f_{\mathrm{t} \text { 。は下表による。 }}$

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{too}}\right] \tag{4.8.1.1}
\end{equation*}
$$

せん断応力 τ_{b} は，せん断力のみを受けるボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下 であること。

ただし，$f_{\text {sb }}$ は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価

5.1 電気的機能維持評価方法

統合原子力防災ネットワーク用通信機器収容架の電気的機能維持評価について，以下に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき基準地震動S s により定まる応答加速度を設定する。

統合原子力防災ネットワーク用通信機器収容架の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，統合原子力防災ネット ワーク用通信機器収容架に収容する機器の正弦波加振試験において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1 に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
L2SW（衛星用）	水平方向	1． 64
	鉛直方向	1． 18
IDU	水平方向	1． 45
	鉛直方向	0.99
ODU－INTFC－B0X	水平方向	1． 45
	鉛直方向	0.99
L2SW	水平方向	1． 64
	鉛直方向	1． 18
L3SW	水平方向	1． 64
	鉛直方向	1． 18
衛星ルータ	水平方向	1． 64
	鉛直方向	1． 18
0NU	水平方向	1． 64
	鉛直方向	1． 18
VoIP－GW	水平方向	1． 64
	鉛直方向	1.18

6．評価結果

6． 1 重大事故等対処設備としての評価結果
統合原子力防災ネットワーク用通信機器収容架の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

機器名称	設備分類	据付場所及び床面高さ （m）	$\begin{gathered} \text { 固有周期 } \\ (\mathrm{s}) \end{gathered}$		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
統合原子力防災 ネットワーク用通信機器収容架	その他	$\begin{aligned} & \text { 緊急時対策建屋 } \\ & \text { 0.P. } 51.50^{*} \\ & \text { (0. P. } 51.85 \text {) } \end{aligned}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.88$	$\mathrm{C}_{\mathrm{v}}=0.75$	40

[^1]

I y 8－L－9－6－IA（8）\quad O

1.2 機器要目
m (kg) E (MPa) v $(-)$ 763 2.02×10^{5} 0.3
d (mm)
A_{b} (mm)
N $(\mathrm{M} 16)$
201.1

	$\stackrel{\circ}{\sim}$
山	｜
	앙
$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \stackrel{\llcorner }{\sim} \\ & \stackrel{y}{n} \end{aligned}$
	\circ $\stackrel{+}{4}$ \sim
	$\begin{aligned} & \frac{\perp}{\lambda} \\ & \text { 公 } \\ & \text { 笑 } \\ & \text { 筑 } \end{aligned}$

（単位：N）
1．3．1 基礎ボルトに作用する力

F_{b}			（単位：N）	
弾性設計用地震動 S d 又は静的震度	基準地震動 S s			
-	弾性設計用地震動 S d 又は静的震度	基準地震動 S s		
-967×10^{3}	-	3.613×10^{3}		

1．3 計算数値
1．3．1 基礎ボルトに作用する力

1．4．1 ボルトの応力（単位：MPa）				
部材	材料	応力	基準地震動 S s	
			算出応力	許容応力
基礎ボルト	SS400	引張り	$\sigma_{\mathrm{b}}=25$	$\mathrm{f}_{\mathrm{ts}}=210^{*}$
		せん断	$\tau_{\mathrm{b}}=18$	$\mathrm{f}_{\mathrm{s} \text { b }}=161$

1．4．2 電気的機能維持の評価結果

－		機能維持評価用加速度＊	機能確認済加速度
L2SW（衛星用）	水平方向	0.74	1.64
	鉛直方向	0.63	1． 18
IDU	水平方向	0． 74	1． 45
	鉛直方向	0.63	0.99
ODU－INTFC－B0X	水平方向	0． 74	1． 45
	鉛直方向	0.63	0.99
L2SW	水平方向	0． 74	1． 64
	鉛直方向	0.63	1． 18
L3SW	水平方向	0． 74	1． 64
	鉛直方向	0.63	1． 18
衛星ルータ	水平方向	0． 74	1． 64
	鉛直方向	0.63	1． 18
ONU	水平方向	0． 74	1． 64
	鉛直方向	0.63	1． 18
VoIP－GW	水平方向	0． 74	1． 64
	鉛直方向	0.63	1． 18

[^2]機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

[^0]: 注記＊1：「常設／その他」は常設重大事故等対処設備（防止でも緩和でもない設備）を示す。

[^1]: 注記 $~$ ：基準床レベルを示す。

[^2]: 注記＊：基準地震動 S s により定まる応答加速度とする。

