

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		1．概要 本方針は，添付書類「VI－2－1－1耐震設計の基本方針」及び添付書類「VI－2－1－11機器•配管の耐震支持設計方針」に基づき，配管系及び その支持構造物について，而震設計上十分安全であるように考慮すべ き事項を定めたものである。 2．配管系及び支持構造物の設計手順 配管経路は建屋形状，機器配置計画ととも纪系統の運転条件，機器等への接近性，保守点検性の碓保を考慮した上，配管系の熱による変位の吸収，耐震設計上の重要度分類に応じた耐震性の碓保に関し最適設計となるよう配置を決定する。また，この際，配管内にドレンが溜 まったり，エアポケットが生じたりしないようにするとともに，水撃現象の生じる可能性のあるものについては十分に配慮するものとす る。地震による建屋間等相対変位を考慮する必要のある場所に配置さ れるものについては，その変位による変形に対して十分耐えられるよ らにし，また，ポンプ，容器等のノズルに対する配管反力が過大とな らないよう併せて考慮する。 以上を考慮の上決定された配管経路について，多質点系モデル（3次元はりモデル）による解析又は標準支持間隔法により配管系及び支持構造物の設計を行ら。	表現の相違

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第 2 号機							備考
		3．配管系の設計 3.1 基本方針 3．1．1 重要度別による設計方針 配管系は耐震重要度分類，呼び径及び通常運転温度により，表3－1 のように分類して設計を行う。ただし，表3－1以外の碓認方法につい ても，その妥当性が確認できる範囲において採用するものとする。 表3－1配管の耐震重要度分類別による解析法							
		$\left\lvert\, \begin{gathered} \text { 耐票重要 } \\ \text { 度分類 } \end{gathered}\right.$		類	3次元ばりモデルによる解析＊1			䅺潼支持 間㼨法 ＊	
			呼び徍	通常遇転	地震	自重	熱		
		$\mathrm{s}^{* *}$	859以上	1210．6 以上	\bigcirc	\bigcirc	\bigcirc	－	
				$121^{\circ} \mathrm{C}$ 未满	\bigcirc	\bigcirc	\bigcirc	－	
			50\％以下	1210．6上	0＊＊	－${ }^{\text {\％}}$	$0^{* 2}$	－	
				$121{ }^{\text {c }}$ 里满	－	－	－	－	
		${ }^{8 * 5}$	659以上		\bigcirc	\bigcirc			
			50a 以下	$121^{\circ} \mathrm{C}$ 以上	0＊：	$0^{* 2}$	0＊2	－	
				121 C 未满	－	－	－	\bigcirc	
		c	${ }^{654}$ 以上	1210 以 以	\bigcirc	－	\bigcirc	－	
					${ }^{-}$	－	－	\bigcirc	
			50A 以下		$0^{* 2}$	$0^{* 2}$	0^{*}	$-$	
		注記＊1：耐震重要度分類がS及びBクラスの配管で 3 次元はりモデ ルによる解析を行い，配管系の 1 次固有周期が 0.05 秒を超 えた場合は，動的解析及び静的解析を実施する。 ＊2 ：複数の配管が近接して配置され，配管の仕様条件が同等の場合には，代表計算にて確認を行うことができる。 ＊ 3 ：標準支持間隔法は， 3 次元はりモデルによる解析にて代行 することができる。 ＊ 4 ：常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）を含む。 ＊5 ：重大事故等時に耐震重要度分類が B クラスの設備の機能を代替する常設耐震重要重大事故防止設備以外の常設重大事							

柏崎刈羽原子力発電所第7号機（2020．9．25 版）	東海第二発電所	女川原子力発電所第2号機	備考
		3．1．2 配管系の設計において考慮すべき事項 （1）配管の分岐部 大口径配管からの分岐管については，なるべく大口径配管の近傍を支持するようにする。ただし，大口径配管の熱及び地震による変位が大きい場合には，分岐部及び分岐管に過大な応力を発生させないよう フレキシビリティを持たせた支持をする。 （2）配管と機器の接続部 機器管台に加わる配管からの反力が許容反力以内となるように配管経路及び支持方法を決定する。 （3）異なる建屋，構築物間を結ぶ配管系 異なる建屋，構築物間を結ぶ配管系については，建屋，構築物間の相対変位を吸収できるように，配管にフレキシビリティを持たせた構造とするか又はフレキシブルジョイントを設けるなどの配慮を行い，過大な応力を発生させないようにする。 （4）弁 配管の途中に弁等の集中質量がかかる部分については，この集中質量部にできる限り近い部分を支持し，特に駆動装置付きの弁は偏心質量を考慮して，必要に応じて弁本体を支持することにより過大な応力 が生じないようにする。弁は，配管よりも厚肉構造であり，発生応力 は配管より小さくなる。 （5）屋外配管 主要な配管は岩盤で支持したダクト構造内に配置され，建屋内配管 と同様の耐震設計をする。 （6）振動 配管系の支持方法及び支持点は，回転機器等の振動又は内部流体の乱れによる配管振動を生じないように考慮して決定する。 3.23 次元はりモデルによる解析 3 次元はりモデルによる解析では，原則として固定点から固定点ま でを独立した 1 つのブロックとして，地震荷重，自重，熱荷重等によ り配管に生じる応力が許容応力以下となるように配管経路及び支持方法を定める。 その具体例を示すと以下のようになる。 まず，仮のアンカ，レストレイント位置を定めて熱応力解析を行い，必要に応じてアンカ，レストレイント位置，個数等の変更又は配管経路の見直しを行い，配管に生じる応力が許容応力以下となるようにす	表現の相違 表現の相違

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		る。加えて，自重応力解析を行い，ハンガを追加することにより配管 に生じる応力が許容応力以下となるようにする。次に，地震応力解析 を行い，必要に応じてレストレイント位置，個数等の変更又はスナッ バの追加により，配管に生じる応力が許容応力以下となるようにす る。 3.3 標準支持間隔法 標準支持間隔法では，配管系を直管部，曲がり部，集中質量部及び分岐部に分け，それぞれに定められた支持間隔内に支持点を設定す る。 3．3．1 応力を基準とした標準支持間隔法 直管部の最大支持間隔については，自重によるたわみを制限する目的として基本的に自重による応力が 39．2 MPa 以下になるよう支持間隔を設定する。更に直管部をモデル化し，地震荷重，自重及び内圧を考慮した応力解析を行い，配管に生じる応力が許容応力を超える場合 は支持間隔を調整し，許容応力以内に収まるような最大支持間隔を求 める。直管部以外の配管要素は，各要素の地震荷重による曲げモーメ ントが，最大支持間隔とした直管部の曲げモーメントを超えないよう な最大支持間隔を求める。	表現の相違

2021年7月15日

柏崎刘羽原子力発電所第 7 号機（2020．9．25版）

2021年7月15日

相峰刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第 2 号機	備考

2021年7月15日

2021年7月15日

柏崎刘羽原子力発電所第 7 号機（2020．9．25版）

2021年7月15日

2021年7月15日

女川原子力発電所第2号機	備考
本資料のらち枠囲みの内容は，他社の機室事項を含き可能性があるため公開できません。	

2021年7月15日

2021年7月15日

女川原子力発電所第2号機	備考
本資料のらち枠囲みの内容は，他社の機室事項を含き可能性があるため公開できません。	

2021年7月15日

女川原子力発電所第2号機	備考
本資料のらち枠囲みの内容は，他社の機室事項を含き可能性があるため公開できません。	

2021年7月15日

女川原子力発電所第2号機	備考
本資料のらち枠囲みの内容は，他社の機室事項を含き可能性があるため公開できません。	

2021年7月15日

2021年7月15日

相峰刈羽原子力発電所第7号機（2020．9．25版）	東海第二溌電所	女川原子力発電所第 2 号機	備考
			＊世ん。

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		3．3．2 振動数を基準とした標準支持間隔法 配管系を剛（ 20 Hz 以上）にし，地震による過度の振動がないように するために，配管系の各支持区間について，あらかじめ基準振動数を ベースに定められた基準区間長以下となるように支持する。 （1）直管部分 a．配管軸直角方向の支持 両端単純支持と仮定した場合の配管径と長さの関係を 1 次固有振動数が基準振動数となるように定めておく。 b．配管軸方向の支持 直管部分が長く，配管軸方向の動きが拘束されていない場合は軸方向の支持を行う。 （2）曲り部分 曲り部分は曲り面と直角な方向（面外方向：曲り部分前後の直管部分により構成される平面に垂直な方向）の振動数が低下する。このた め曲り部分の近くで面外振動を抑えるよう支持を行い，支持区間の長 さを直管部分の基準長さより縮小した値とし，曲げ部分についても 1次固有振動数が基準振動数を下回ることがないようにする。 （3）集中質量部 配管に弁等の集中質量がかかる場合，直管部と比較して 1 次固有振動数が低下する。このため，原則として集中質量部自体又は近傍を支持するものとする。 （4）分岐部 配管の分岐部の主管側は主管に分岐管の質量が加わるため，直管部 と比較して 1 次固有振動数が低下する。このため，分岐管側の質量の影響を受けないよう支持を行う。	表現の相違 表現の相違

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		4．支持構造物の設計 4.1 概要 支持構造物は，配管系の施設区分及び耐震重要度分類に応じた地震荷重（以下，「地震荷重」という。），自重，熱荷重等に対して十分な強度を持たせる必要がある。 支持構造物の設計に当たっては，支持構造物の型式ごとの定格荷重，使用荷重と配管系の支持点荷重を比較する荷重評価，又は配管系 の支持点荷重から求まる支持構造物に生じる応力と使用材料により定まる許容応力を比較する応力評価を行う。 本章では，支持装置，支持架構及び付属部品から構成される支持構造物並びに埋込金物の設計の基本原則，選定方針，強度及び而震評価 の方法等を示す。 4.2 基本原則 4．2．1支持構造物の設計において考慮すべき事項支持構造物は，以下の点を考慮して設計する。 （1）支持装置及び付属部品は，配管系の地震荷重，自重，熱荷重等に よる支持点荷重が，使用される支持装置の定格荷重又は付属部品 の使用荷重以下となるよう選定する。 （2）支持架構は，配管系の地震荷重，自重，熱荷重等による支持点荷重から求まる支持架構に生じる応力が，許容応力以下となるよう構造を決定する。 （3）アンカ及びレストレイントとなる支持構造物は，建屋と共振しな いように十分な剛性を持たせるものとする。 （4）支持構造物は点検の容易な構造とする。 （5）原則として，支持構造物は，埋込金物より建屋側へ荷重を伝える構造とする。 （6）支持構造物の設計に当たっては，J S M E S N C 1－ 2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）に従い熱荷重，自重等に対して十分な強度を持たせるとともに，原子力発電所耐震設計技術指針（重要度分類•許容応力編JEAG4601•補一1984，JEAG460 1－1987及びJ E A G 4 6 0 1－1991追補版）（以下「J E A G 4601 」という。）に従い，地震荷重に対して十分な強度を持 たせるものとする。	表現の相違 表現の相違 表現の相違 表現の相違

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羾原子力発電所第7号機（2020．9．25 版）	東海第二発電所	女川原子力発電所第2号機	備考
		4． 2.2 支持構造物の設計荷重 支持構造物の設計に用いる支持点荷重は，耐震設計上の重要度分類 に基づく設計用地震力を条件とした配管系の 3 次元はりモデルによ る解析又は標準支持間隔法により得られる支持点荷重を支持構造物 の種別に応じて適切に組み合わせて求める。 支持構造物の設計に当たり荷重評価を行ら場合は，配管系の支持点荷重と定格荷重又は使用荷重との比較を行う。 4.3 支持装置の設計 4．3．1 概要 支持装置は，型式ごとに基本形状が決まっており，配管系の地震荷重，自重，熱荷重等による支持点荷重と型式ごとに設定される定格荷重の比較による荷重評価によって選定できる。 4． 3.2 支持装置の選定 支持装置は，以下の条件により選定する。 （1）ロッドレストレイント 支持点荷重に基づき，定格荷重で選定する。 （2）オイルスナッバ及びメカニカルスナッバ 支持点荷重及び熱膨張変位に基づき，定格荷重で選定する。 なお，メカニカルスナッバについて，許容応力状態III A_{S} における 支持点荷重が定格荷重を超過する場合，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ にお ける支持点荷重が定格荷重 $\times 1.5$ を超過する場合は，メカニカルス ナッバの詳細評価を行う。詳細評価の許容荷重については，別紙1 に示す。 （3）スプリングハンガ及びコンスタントハンガ 支持点荷重及び熱膨張変位に基づき，定格荷重で選定する。 各支持装置の定格荷重及び主要寸法を表 4－1～表4－5 に示す。 なお，本表に示す型式及び定格荷重は代表的な支持装置を示したも のであり，記載のない型式であっても，同様に設定されている定格荷重により選定を行う。	表現の相違 設計の差異による。（女 川 2 号において適用す るメカニカルスナッバ の詳細評価を記載） 設備構成の差異によ る。（女川 2 号機の工認配管にはリジットハン がを適用しない。以下同様。）

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

2021年7月15日

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

2021年7月15日

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（木）イーヤ（5）	
		i 穴部	
		（i）引張応力評価	
		引張応力が，許容引張応力以下であることを碓認する。	
		（ii）せん断応力評価	
		せん断応力が，許容せん断応力以下であることを確認する。	
		（iii）支圧応力評価	
		支圧応力が，許容支圧応力以下であることを確認する。	
		ii 溶接部	
		せん断応力が，許容せん断応力以下であることを確認する。	
		\square	
		\square	

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第 2 号機	備考	
		（チ）アダプタ（8） i 本体 （i）引張応力評価 引張応力が，許容引張応力以下であることを確認する。 \square ii 溶接部 （i）せん断応力評価 せん断応力が，許容せん断応力以下であることを確認する。 \square \square	代表的な型式	
			め公開できません。	－ 65

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		（c）メカニカルスナッバ 応力評価は，次の強度部村の最弱部に発生するせん断応力，引張応力（又は圧縮応力）及び支圧応力を次の計算式により算出し，許容応力以下であることを確認する。 ィ．強度部材 （1）ダイレクトアタッチブラケット， （2）ジャンクションコラムアダプタ，（3）ロードコラム，④クランプ， （5）ピン，（6）コネクティングチューブ， （7）ケース，ベアリング押え及び六角ボルト，（8）イーヤ， （9）ユニバーサルボックス，（10コネクティングチューブイーヤ部， （11）ユニバーサルブラケット Aタイプ Bタイプ	代表的な形状に対する強度部材の名称の相違

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		（d）スプリングハンガ 応力評価は，次の強度部材の最弱部に発生するせん断応力，引張応力（又は圧縮応力）及び支圧応力を次の計算式により算出し，許容応力以下であることを確認する。 イ．強度部材 （1）イーヤ，（2）上部カバー，（3）ばね座（吊り型），（4）ハンガロッド， （5）スプリングケース，（6）下部カバー，⑦ターンバックル， （8）クレビス，（9）ピン，（11ロッド，（11ロードコラム， （12ばね座（置き型） 吊り型 置き型	代表的な形状に対する強度部材の名称の相違

柏崎刈羽原子力発電所第7号機（2020．9．25 版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（チ）クレビス（8） i 本体 （i）引張応力評価 引張応力が，許容引張応力以下であることを確認する。 \square （ii）せん断応力評価 せん断応力が，許容せん断応力以下であることを確認する。 \square （iii）支圧応力評価 支圧応力が，許容支圧応力以下であることを確認する。 \square \square ii 溶接部 （i）せん断応力評価 せん断応力が，許容せん断応力以下であることを確認する。 \square \square	

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		規格 付録材料図表 Part5 表8に定める値又は表9に定 める値の 0.7 倍のいずれか小さい方の値とする。ただし，使用温度が 40 度を超えるオーステナイト系ステンレス鋼及び高ニッケル合金にあっては，設計•建設規格 付録材料図表Part5表8に定める値の 1.35 倍の値，表 9 に定め る 0.7 倍の値又は室温における表 8 に定める値のいずれ か小さい値とする。 ＊8： $\mathrm{f}_{\mathrm{t}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{s}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{c}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{b}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{p}}{ }^{*}$ は， f_{t} ， $\mathrm{f}_{\mathrm{s}}, \mathrm{f}_{\mathrm{c}}$ ， f_{b} ，f_{p} の値を算出する際に設計•建設規格 SSB－ 3121．1（1）本文中「付録材料図表 Part5表8に定める値」 とあるのを「付録材料図表 Part5 表 8 に定める値の 1.2倍の値」と読み替えて計算した値とする。 記号の説明 f_{t} ：許容引張応力 支持構造物（ボルト等を除く）に対して設計•建設規格 SSB－3121．1（1）により規定される値 ボルト等に対しては設計••建設規格SSB－3131（1） により規定される値 f_{s} ：許容せん断応力 支持構造物（ボルト等を除く）に対して設計•建設規格 SSB－3121．1（2）により規定される値 ボルト等に対しては設計•建設規格 SSB－ 3131 （2）により規定される値 f_{c} ：許容圧縮応力 支持構造物（ボルト等を除く）に対して設計•建設規格 SSB－3121．1（3）により規定される値 f_{b} ：許容曲げ応力建設規格 SSB－3121．1（4）により規定される値 f_{p} ：許容支圧応力支持構造物（ボルト等を除く）に対して設計•建設規格 SSB－3121．1（5）により規定される値	

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		4.5 埋込金物の設計 4．5．1 概要 埋込金物は，支持装置又は支持架構を建屋側に取り付けるためのも ので，コンクリート打設前に埋め込まれるものとコンクリート打設後 に設置されるものがある。 埋込金物の概略図，埋込金物の代表形状を図 4－2 及び図 4－3 に示 す。 図 4－2 埋込金物の概略図	表現の相違

柏崎䊶羽原子力発電所第 7 号機（2020．9．25版）

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羽原子力発電所第 7 号機（2020．9．25 版）
柏崎刈羽原子力発電所第 7 号機（2020．9．25 版）

[^0]

2021年7月15日

2021年7月15日

2021年7月15日

柏崎生羽原子力発電所第 7 号機（2020．9．25版）東海第二発電所

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考

柏崎刈羽原子力発電所第 7 号機（2020．9．25 版）

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

2021年7月15日

先行審査プラントの記載との比較表（VI－2－1－12－1 配管及び支持構造物の耐震計算について）

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		5.2 代表的な支持構造物の耐震計算例 5．2．1支持構造物の耐震計算例 代表的な支持構造物を表5－11に，耐震計算例を表5－12－1～表5 － $12-10$ に示す。 なお，本項における耐震計算結果は，代表的な支持構造物の例を示 したものであり，本項に記載のない支持構造物についても同様な評価 を行ら。 5．2．2 個別の処置方法 支持構造物の評価において，支持点荷重が定格荷重又は使用荷重を超えた場合には，標準支持間隔法であれば支持間隔の短縮化等による支持点荷重低減， 3 次元はりモデル解析であれば使用鋼材又は構造の見直し等により強度向上を図るものとする。	表現の相違

柏崎刏羽原子力発電所第 7 号機（2020．9．25版）

柏崎刈羽原子力発電所第 7 号機（2020．9．25版）

柏崎对羽原子力発電所第 7 号機（2020．9．25版）

柏崎刏羽原子力発電所第 7 号機（2020．9．25版）

柏崎刈羽原子力発電所第 7 号機（2020．9．25版）

[^0]: 本資料のらち体囲みの内容は，当社の商業機密を含むため，又は他社の機密事項を含む可能性があるため公開できません。

