本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－03－0005＿改 1
提出年月日	2021 年 7 月 13 日

工事計画に係る説明資料

核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（2．4．3 燃料プールスプレイ系）

（添付書類）

2021年7月

東北電力株式会社

女川原子力発電所第 2 号機
工事計画認可申請書本文及び添付書類

目 録

VI 添付書類

VI－1 説明書

VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書（核燃料物質の取扱施設及び貯蔵施設）

VI－1－1－4－2－2 使用済燃料貯蔵槽冷却浄化設備に係る設定根拠に関する説明書
$\mathrm{VI}-1-1-4-2-2-3$ 燃料プールスプレイ系
VI－1－1－4－2－2－3－1 燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（常設）

VI－1－1－4－2－2－3－2 燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（可搬型）

VI－1－1－4－2－2－3－3 可搬型ストレーナ

3．核燃料物質の取扱施設及び貯蔵施設

3.2 使用済燃料貯蔵槽冷却浄化設備

3．2．3 燃料プールスプレイ系
第 3－2－3－1－1 図【設計基準対象施設】燃料プールスプレイ系系統図（1／2）
第 3－2－3－1－2 図【設計基準対象施設】燃料プールスプレイ系系統図（2／2）可搬
第 3－2－3－1－3 図【重大事故等対処設備】燃料プールスプレイ系系統図（1／2）
第 3－2－3－1－4 図【重大事故等対処設備】燃料プールスプレイ系系統図（2／2）可搬
第 3－2－3－2－1 図 可搬型ストレーナ構造図
第 3－2－3－3－1 図 燃料プールスプレイ系 機器の配置を明示した図面（その1）
第3－2－3－3－2 図 燃料プールスプレイ系 機器の配置を明示した図面（その 2 ）
第3－2－3－3－3 図 燃料プールスプレイ系 機器の配置を明示した図面（その 3 ）
第3－2－3－3－4 図 燃料プールスプレイ系 機器の配置を明示した図面（その4）
第 3－2－3－4－1 図 燃料プールスプレイ系 主配管の配置を明示した図面（その1）
第 3－2－3－4－2 図 燃料プールスプレイ系 主配管の配置を明示した図面（その 2）
第3－2－3－4－3 図 燃料プールスプレイ系 主配管の配置を明示した図面（その3）
第 3－2－3－4－4 図 燃料プールスプレイ系 主配管の配置を明示した図面（その4）

第3－2－3－4－5 図 燃料プールスプレイ系 主配管の配置を明示した図面（その5）第3－2－3－4－6 図 燃料プールスプレイ系 主配管の配置を明示した図面（その6）第3－2－3－4－7 図 燃料プールスプレイ系 主配管の配置を明示した図面（その7）第3－2－3－4－8 図 燃料プールスプレイ系 主配管の配置を明示した図面（その8）第3－2－3－4－9 図 燃料プールスプレイ系 主配管の配置を明示した図面（その9）第3－2－3－4－10 図 燃料プールスプレイ系 主配管の配置を明示した図面（その10）

VI－1－1－4－2－2－3－1 設定根拠に関する説明書
（燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（常設））

名	称	燃料プールスプレイ接続口（北），（東） スプレイノズル
最高使用圧力	MPa	1． 37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	76．3，114．3，165．2
－		
【設定根拠】 （概要） 本配管は，燃料プールスプレイ接続口（北），（東）からスプレイノズルを接続する配管であり，重大事故等対処設備として，大容量送水ポンプ（タイプI）により，代替淡水源の水を使用済燃料プールヘスプレイするために設置する。		

1．最高使用圧力の設定根拠
重大事故等対処設備として使用する本配管の使用圧力は，重大事故等時における大容量送水 ポンプ（タイプ I ）の使用圧力が 1.2 MPa であることから，それを上回る 1.37 MPa とする。

2．最高使用温度の設定根拠
重大事故等対処設備として使用する本配管の使用温度は，重大事故等時における大容量送水 ポンプ（タイプ I ）の使用温度が $50{ }^{\circ} \mathrm{C}$ であることから，それを上回る $66{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，水源から淡水又は海水を供給するた め，エロージョン，圧力損失•施工性等を考慮し，先行プラントの配管実績に基づいた標準流速を目安に選定し， $76.3 \mathrm{~mm}, 114.3 \mathrm{~mm}, 165.2 \mathrm{~mm}$ とする。

外径 A (mm)	厚さ B (mm)	（A）呼び径	流路面積 （ $\left(\mathrm{m}^{2}\right)$	流量 $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	流速＊ E $(\mathrm{m} / \mathrm{s})$	標準流速 $(\mathrm{m} / \mathrm{s})$
76.3	5.2	65	0.00341	42	3.4	
114.3	6.0	100	0.00822	126	4.3	
165.2	7.1	150	0.01791	126	2.0	

注記＊：流速及びその他のパラメータとの関係は以下のとおりとする。

$$
\begin{aligned}
& \mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2} \\
& \mathrm{E}=\frac{\mathrm{D}}{3600 \cdot \mathrm{C}}
\end{aligned}
$$

VI－1－1－4－2－2－3－2 設定根拠に関する説明書
（燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（可搬型））

名	称	スプレイ用ホース（65A：1m）
最高使用圧力	MPa	1.6
最高使用温度	${ }^{\circ} \mathrm{C}$	50
外 径	－	65A
個 数	－	6 （予備 1）
		－
【設定根拠】 （概要） 本ホースは，重大事故等対処設備として，大容量送水ポンプ（タイプ I ）から送水される淡水又は海水をスプレイノズルに送水するために設置する。		

1．最高使用圧力の設定根拠
本ホースを重大事故等時において使用する場合の圧力は，重大事故当時における大容量送水 ポンプ（タイプ I ）の使用圧力 1.2 MPa を上回る 1.6 MPa とする。

2．最高使用温度の設定根拠
本ホースを重大事故等時において使用する場合の温度は，重大事故等時における大容量送水 ポンプ（タイプ I ）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本ホースを重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性及び取合うスプレイノズルの口径に合わせて65Aとする。

4．個数の設定根拠
本ホースは，重大事故等対処設備として，クロスデバイザー管からスプレイノズルへ淡水又 は海水を送水する場合に必要な 6 本に，本ホースは保守点検中にも使用可能であるため，保守点検による待機除外時のバックアップ用は考慮せずに，故障時のバックアップ用として予備 1本を分散して保管する。

名	称	スプレイノズル
最高使用圧力	MPa	1.6
最高使用温度	${ }^{\circ} \mathrm{C}$	50
外 径	－	65 A
個 数	－	12 （予備 1）
		－
【設定根拠】 （概要） 本配管は，重大事故等対処設備として，大容量送水ポンプ（タイプI）から送水される淡水又は海水を使用済燃料プールに送水するために設置する。		

1．最高使用圧力の設定根拠
本配管を重大事故等時において使用する場合の圧力は，噴霧量及び飛散性を考慮し 0.4 MPa以上に調整して使用することから，それを上回る 1.6 MPa とする。

2．最高使用温度の設定根拠
本配管を重大事故等時において使用する場合の温度は，重大事故等時における大容量送水ポ ンプ（タイプ I ）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，圧力損失上許容できる外径，可搬設備としての作業性を考慮して65Aとする。

4．個数の設定根拠
本配管は，重大事故等対処設備として，スプレイノズルから使用済燃料プールへ淡水又は海水を送水する場合に必要な 12 本に，本配管は保守点検中にも使用可能であるため，保守点検 による待機除外時のバックアップ用は考慮せずに，故障時のバックアップ用として予備 1 本を分散して保管する。

VI－1－1－4－2－2－3－3 設定根拠に関する説明書
（可搬型ストレーナ）

名	称	可搬型ストレーナ	
容 量	$\mathrm{m}^{3} / \mathrm{h} /$ 個	126以上 88以上 （126）	
最高使用圧力	MPa	1.4	
最高使用温度	${ }^{\circ} \mathrm{C}$	50	
個 数	－	4 （予備 1）	

注記＊：原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイン冷却系）と兼用。
【設定根拠】
（概要）
重大事故等時に核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備 （燃料プールスプレイ系）として使用する可搬型ストレーナは，以下の機能を有する。

可搬型ストレーナは，使用済燃料貯蔵槽の冷却機能又は注水機能が喪失し，又は使用済燃料貯蔵槽からの水の漏えいその他の要因により当該使用済燃料貯蔵槽の水位が低下した場合に おいて貯蔵槽内燃料体等を冷却し，放射線を遮蔽し，及び臨界を防止するために設置する。

系統構成は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を燃料プール泠却浄化系配管，可搬型ストレーナ等を経由してスプレイノズルから使用済燃料プール内の燃料体等に直接スプレイすることにより，燃料損傷を緩和するとともに，環境への放射性物質の放出をでき る限り低減できるよう，使用済燃料プール内に貯蔵している燃料体等からの崩壊熱による蒸散量を上回る量をスプレイできる設計とする。

重大事故等時に原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として使用する可搬型ストレーナは以下の機能 を有する。

可搬型ストレーナは，設計基準事故対処設備が有する原子炉格納容器内の冷却機能が喪失し た場合において炉心の著しい損傷を防止するため，原子炉格納容器内の圧力及び温度を低下さ せるために設置する。

また，炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるために設置する。

系統構成は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を可搬型ストレーナ，残留熱除去系等を経由して原子炉格納容器内のドライウェルスプレイ管からドライウェル内に スプレイすることで，原子炉格納容器内の圧力及び温度を低下させることができる設計とす る。

1．容量の設定根拠
1.1 燃料プールスプレイ系として使用する場合の容量 $126 \mathrm{~m}^{3} / \mathrm{h} /$ 個 以上

使用済燃料プール内燃料体の崩壊熱を除去するために必要な容量が約 $9.7 \mathrm{~m}^{3} / \mathrm{h}$ であり，ま た，NEI O 6－12における使用済燃料プールへのスプレイ要求容量が 200gpm（約 45． $4 \mathrm{~m}^{3} / \mathrm{h}$ ）である。さらに，スプレイノズル 1 個当たりの必要流量が $42 \mathrm{~m}^{3} / \mathrm{h}$ であり，スプレ イノズル 3 個を使用して全ての使用済燃料プール内燃料体等に対してスプレイするため $126 \mathrm{~m}^{3} / \mathrm{h}$ が必要であることから， $126 \mathrm{~m}^{3} / \mathrm{h}$ 以上をスプレイ可能な設計とする。
1.2 原子炉格納容器代替スプレイ冷却系として使用する場合の容量 $88 \mathrm{~m}^{3} / \mathrm{h} /$ 個 以上炉心損傷防止対策の有効性評価の事故シーケンスグループ及び格納容器破損防止対策の有効性評価の格納容器破損モードのうち，「高圧•低圧注水機能喪失」，「崩壊熱除去機能喪失（残留熱除去系が故障した場合）」，「LOCA 時注水機能喪失」及び「雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）」及び「高圧溶融物放出／格納容器雰囲気直接加熱」に係 る有効性評価解析において有効性が確認されている，原子炉格納容器内へのスプレイ流量と して， $88 \mathrm{~m}^{3} / \mathrm{h}$ 以上をスプレイ可能な設計とする。

2．最高使用圧力の設定根拠
可搬型ストレーナを重大事故等時において使用する場合の圧力は，重大事故等時における大容量送水ポンプ（タイプ I ）の使用圧力 1.2 MPa を上回る 1.4 MPa とする。

3．最高使用温度の設定根拠
可搬型ストレーナを重大事故等時において使用する場合の温度は，重大事故等時における大容量送水ポンプ（タイプ I ）の使用温度と同じ $50^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
可搬型ストレーナは，重大事故等対処設備として淡水又は海水中に含まれる異物を除去する ために必要な個数が 1 基あたり 2 個であり，「 $2 n+\alpha 」$ の対象施設となることから， 4 個が必要個数となる。また， 2 個以上同時に保守点検することのないよう運用することとした上で，故障時のバックアップ及び保守点検による待機除外時のバックアップとして， 1 個を確保する。

以上より，合計で5個確保する。

送水用木ース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）
送水用ホース（150A． $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$

，
注水用ヘッダ

フィルタ装置
！設計基兴対多施設】

送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）
$\underset{y}{\square}$

3	フランジ	2	SCS13A	
2	ふた板	1	SCS13A	
1	本 体	1	SCS13A	
番 号	品 名	個 数	材 料	
部 品 表				

第 3－2－3－2－1 図 可搬型ストレーナ構造図別紙

工事計画記載の公称値の許容範囲
［可搬型ストレーナ］

主要寸法 （mm）		許容範囲	根 拠
内 径	150	$\pm 7 \mathrm{~mm}$	JIS B 0403 による鋳放し鋳造品の基準寸法による公差等級 CS12に順ずる。
本 体 厚 さ	8.1	$\pm 2.1 \mathrm{~mm}$	同上
ふ た 板 厚 さ	12	$\begin{array}{r} +2 \mathrm{~mm} \\ 0 \mathrm{~mm} \end{array}$	JIS B 2220 による製造公差
長 さ	440	$\pm 5 \%$	製造能力，製造実績を考慮した， メーカ基準
入 口 管 台 口 径	150A	－	メーカ仕様によるものとし，完成品として一般産業品の規格及 び基準に適合するものであっ て，使用材料の特性を踏まえた上で，重大事故等時における使用圧力及び使用温度が負荷され た状態において強度が確保でき るものを使用するため許容範囲 を定めない。
出口 管 台 口 径	150A	－	同上
フラン ジ厚さ	22	$\begin{array}{r} +2 \mathrm{~mm} \\ 0 \mathrm{~mm} \end{array}$	JIS B 2220 による製造公差

注：主要寸法は，工事計画記載の公称値を示す。

θ en
$\theta p n$

$$
\begin{array}{|l|l|}
\hline \text { 名 } \quad \text { 称 } & \text { スプレイノズル } \\
\hline \text { 保管場所 } & \text { 原子炉建屋原子炉棟O.P.31.40mに3台保管する。 } \\
\hline \text { 取付箇所 } & \text { 原子炉建屋原子炉棟O.P. } 33.20 \mathrm{~m} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline & \\
\hline \text { 名 } & \text { 称 }
\end{array} \text { スプレイ用ホース(65A:1m) }
$$

$$
\begin{array}{|l|l|}
\hline \text { 保管場所 } & \text { 原子炉建屋原子炉棟O.P.31.40mに3本保管する。 } \\
\hline \text { 取付箇所 } & \text { クロスデバイザ一管~スプレイノズル } \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline-R J \\
\hline \text { RK } \\
\hline \text { 名 称 } & \text { スプレイノズル } \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { 保管場所 } & \text { 原子炉建屋原子炉棟O.P. } 27.80 \mathrm{~m} \text { に4台保管する。 } \\
\hline \text { 取付箇所 } & \text { 原子炉建屋原子炉棟0.P. } 33.20 \mathrm{~m} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { 名 } & \text { 称 }
\end{array} \text { スプレイ用ホース(65A: 1m) }
$$

$$
\begin{array}{|l|l|}
\hline \text { 名 } & \text { 称 }
\end{array} \text { スプレイ用ホース(65A: 1m) }
$$

$$
\begin{array}{|l|l|}
\hline \text { 取付箇所 } & \text { クロスデバイザー管~スプレイノズル } \\
\hline
\end{array}
$$

工事計画認可申請	第3－2－3－3－3図

女川原子力発電所 第 2 号機
名 燃料プールスプレイ系 2

東 北 電 力 株 式 会 \begin{tabular}{c}
社

\hline 1514

1514

\hline
\end{tabular}

名 \quad 称	スプレイノズル
保管場所	6台を（1）に1台，（2）に1台，（3）に1台及び （4） 取保管する。

－t91					
耿	洔 扛 半	4	星	标	
 栄とへよとへーよ枓䋛					
图七－¢－¢－て－を算					

$0 て ヤ 0$	0df
耿 言 7I 伴	畳非单

No．	名称	部品	外径＊	厚さ＊	材質
（9）		管	76.3	5.2	STS410
（10）		ェルホ	76.3	5.2	STS410

第3－2－3－4－1～9 図 燃料プールスプレイ系 主配管の配置を明示した図面（その $1 \sim 9$ ）別紙

工事計画記載の公称値の許容範囲

［主配管］

管NO．1＊

主要寸法 （mm）		許容範囲	根拠
外径	165.2	$\pm 1.6 \mathrm{~mm}$	J I S G 3 4 5 5 ，－
厚さ	7.1	$\pm 12.5 \%$	同上

管NO．2＊管継手（エルボ）

主要寸法 （mm）		許容範囲	根拠
外径	165． 2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { J I S B 2 3 1 2 による材料公差 } \\ & \text { 【マイナス側公差】 } \\ & \text { J I S B 2 3 1 2 による材料公差 } \end{aligned}$
厚さ	7.1	$\begin{aligned} & \text { +規定しない } \\ & \text {-12.5\% } \end{aligned}$	同上

管N O．3＊管継手（レジューサ）

主要寸法(mm)		許容範囲	根拠
外径	165.2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { J I S B 2 3 1 2 による材料公差 } \\ & \text { 【マイナス側公差】 } \\ & \text { J I S B } ~+~ 3 ~ 1 ~ 2 ~ に よ る ~ \end{aligned} \text { 料公差 }$
	114.3	$\pm 1.6 \mathrm{~mm}$	同上
厚さ	7． 1	$\begin{aligned} & \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上
	6.0	$\begin{aligned} & \text { +規定しない } \\ & \text {-12.5\% } \end{aligned}$	同上

［主配管（続き）］
管NO．4＊

管NO．5＊管継手（エルボ）

主要寸法 （mm）		許容範囲	根拠
外径	114.3	$\pm 1.6 \mathrm{~mm}$	
厚さ	6.0	$\begin{aligned} & \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上

管NO．6＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	114.3	$\pm 1.6 \mathrm{~mm}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { JIS B 2 3 1 2 による材料公差 } \\ & \text { Iマイナス側公差】 } \\ & \text { J I S B } ~ 2 ~ 3 ~ 1 ~ 2 ~ に よ る ~ \end{aligned} \text { 料公差 }$
厚さ	6.0	$\begin{aligned} & \hline \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上

［主配管（続き）］
管NO．7＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	165.2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	```【プラス側公差】 J I S B 2 3 1 2 による材料公差 【マイナス側公差】 J I S B 2 3 1 2 による材料公差```
	76.3	$\begin{aligned} & +1.6 \mathrm{~mm} \\ & -0.8 \mathrm{~mm} \end{aligned}$	同上
厚さ	7.1	$\begin{aligned} & \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上
	5.2	$\begin{aligned} & \hline+ \text { 規定しない } \\ & -12.5 \% \end{aligned}$	同上

管NO．8＊管継手（レジューサ）

主要寸法 （mm）		許容範囲	根拠
外径	165.2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { J I S B } ~ 2 ~ 3 ~ 1 ~ 2 ~ に よ る ~ \end{aligned} \text { 材料公差 }$
	76.3	$\begin{aligned} & +1.6 \mathrm{~mm} \\ & -0.8 \mathrm{~mm} \end{aligned}$	同上
厚さ	7． 1	$\begin{aligned} & \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上
	5.2	$\begin{aligned} & \text { +規定しない } \\ & -12.5 \% \end{aligned}$	同上

管NO．9＊

［主配管（続き）］
管NO．10＊管継手（エルボ）

主要寸法 （mm）		許容範囲	根拠
外径	76.3	$\begin{aligned} & +1.6 \mathrm{~mm} \\ & -0.8 \mathrm{~mm} \end{aligned}$	【プラス側公差】 J I S B 2 3 1 2 による材料公差【マイナス側公差】 J I S B 2 3 1 2 による材料公差
厚さ	5.2	$\begin{aligned} & \text { +規定しない } \\ & \text {-12.5\% } \end{aligned}$	同上

注：主要寸法は，工事計画記載の公称値。
注記＊：主配管の配置を明示した図面の管NO．を示す。

第3－2－3－4－10 図 燃料プールスプレイ系主配管の配置を明示した図面（その10）別紙

工事計画記載の公称値の許容範囲

主要寸法		許容範囲	根 拠
外 径	65 A	規定しない	完成品として一般産業品の規格及び基準 に適合するものであって，使用材料の特性 を踏まえた上で，重大事故等時における使用圧力及び使用温度が負荷された状態に おいて強度が確保できるものを使用する ため許容範囲を定めない。

注：主要寸法は，工事計画記載の公称値を示す。

