本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－20－0710－1＿改 7
提出年月日	2021 年 7 月 13 日

補足－710－1 竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料

目 次

I．はじめに

1．強度計算の方針に関する補足説明資料
1.1 風力係数について
1.2 強度計算時の施設の代表性について
1.3 構造強度評価における評価対象部位の選定について

2．竜巻より防護すべき施設を内包する施設の強度計算に関する補足説明資料
2.1 設計飛来物の衝突による衝撃荷重の算定について
2.2 鉄筋コンクリートの衝突解析モデルにおける破断限界の設定について
2.3 原子炉建屋屋根スラブ変形評価の許容値の設定について
2.4 原子炉建屋 CR 階外壁及び屋根スラブの貫通及び裏面剥離評価について
2.5 鉄筋コンクリート部材の貫通評価及び裏面剥離評価について
2.6 ブローアウトパネル開口部から侵入する風に対する対応方針について

3．屋外の重大事故等対処設備の固縛装置の強度計算に関する補足説明資料
3.1 固縛装置の設計における保守性について
3.2 固縛装置の設計における設備の代表性について
3.3 資機材保管用コンテナ及び小型船舶について
3.4 固縛装置の評価対象部位について

4．防護対策施設の強度計算に関する補足説明資料
4.1 竜巻防護ネットの衝突解析について

4．2 飛来物のオフセット衝突の影響について
4.3 金網の設計裕度の考え方

4． 4 ワイヤロープの変形を考慮したネットシステムのたわみについて
4.5 ワイヤロープの初期張力について

4． 6 補助金網の影響について
4．7防護板の貫通評価について

4.8 ストッパーの評価について

4.9 竜巻防護鋼板からの荷重に対する原子炉建屋外壁の強度評価について

5．排気筒の強度計算に関する補足説明資料
5.1 設計飛来物による構造欠損の想定箇所について
5.2 腐食代の考慮について

6．衝突評価に関する補足説明資料
6.1 衝突解析の解析手法の保守性について

4．防護対策施設の強度計算に関する補足説明資料

4． 1 竜巻防護ネットの衝突解析について

1．はじめに
2．構造概要
3．設置許可段階における主な説明事項
4．詳細設計段階における設計方針
5．衝突解析に係るゴム支承の剛性の設定
5.1 ゴム支承剛性の設定方針
5.2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値
5.3 鉛直剛性に係る特性試験

5．3．1 試験項目整理及び試験方法
5．3．2 試験装置
5．3．3 試験結果
5．4 せん断及び鉛直剛性に係る各種試験結果を踏まえた剛性の設定
6．衝突解析における解析モデルの設定
6．1 解析モデル
6．2 評価ケース（基本ケース）の設定
6.3 構造成立性の確認及び不確かさケースの設定

7．評価結果
7.1 基本ケースに対する評価結果
7.2 不確かさケース（1）（ゴム支承の剛性のばらつきに対する影響）に対する評価結果

7．3 不確かさケース（2）（飛来物の衝突姿勢に対する影響）に対する評価結果
7．4 飛来物衝突時の上向き反力に対する損傷モードの確認結果
8．まとめ

別紙1 先行プラントとの設計方針の比較（EPまとめ資料抜粑）
別紙2 ゴム支承のせん断剛性の衝突解析への適用性（EP まとめ資料抜粋）
別紙 3 支持部材の構造成立性について（EP まとめ資料抜粋）
別紙4 詳細設計段階における説明事項（EP まとめ資料抜粋）
別紙5 詳細設計段階における対応状況（竜巻防護ネット）
別紙6 詳細設計段階での説明事項及び申送り事項への対応方針

1．はじめに
竜巻防護ネットはネット，防護板及び支持部材で構成され，各構成要素の設計方針及 び評価方針について「VI－3－別添1－2 防護対策施設の強度計算の方針」に示している。 このうち，支持部材については，フレーム，大梁，ゴム支承，可動支承等により構成さ れており，フレームや大梁等の支持部材の主要部材は，認可実績プラントの竜巻防護対策施設における架構等と同様に鋼製であるが，フレームの支持に支承構造を採用し，ま た，支持部材の一部材料にゴム（ゴム支承）を採用している点で，認可実績プラントの竜巻防護対策施設と異なる設計•構造を採用している。

ゴム支承を採用した目的は，ゴム支承のアイソレート機能＊により竜巻防護ネットの固有値をやや長周期化することにより，地震時の海水ポンプ室への反力を低減すること である。一方，竜巻防護ネットの強度計算に関して，設計飛来物である鋼製材の衝突解析においても，飛来物衝突時のゴム支承の影響について適切に考慮する必要がある。

また，フレームと大梁の接続部には，温度変化によるフレームの伸縮を吸収し，変形 による荷重発生を防ぐため，水平変位に追従する可動支承を設置する構造としている。竜巻防護ネットの構成要素のらち，支持部材の強度評価フロー図を図 1－1 に示す。
本資料は，竜巻防護ネットの構造強度評価（衝突解析）の評価方針について，解析モ デルの設定の考え方及び評価に資するゴム支承の鉛直剛性に係る特性試験で得られた知見を踏まえた方針の妥当性について説明し，構造成立性の見通し及びゴム支承剛性のば らつきや飛来物衝突姿勢による影響を確認した結果について示すものである。

図 1－1 支持部材の強度評価フロー図
＊アイソレート機能：ゴム支承のせん断変形により地震時の水平力を効果的に分散する機能

2．構造概要

竜巻防護ネット全体及び各構成要素の構造概要について以下に示す。
（1）竜巻防護ネット全体
竜巻防護ネットは，ネット，防護板及び支持部材で構成し，海水ポンプ室補機ポン プエリア上面に設置することで，飛来物が外部事象防護対象施設へ衝突することを防止し，外部事象防護対象施設とネットの離隔を確保することなどにより，ネットにた わみが生じたとしても，外部事象防護対象施設に飛来物を衝突させない構造とする。 また，竜巻防護ネットは，海水ポンプ室躯体に支持される構造とする。

ネットは金網，ワイヤロープ及び接続冶具（支持部及び固定部）により構成され， ネットに作用する荷重をワイヤロープ及び接続治具を介してフレームに伝達し，フレ ームから海水ポンプ室躯体に伝達する構造とする。

金網は，らせん状の硬鋼線を 3 次元的に編み込み，編み込みの方向によって荷重を受け持つ展開方向と展開直角方向の異方性を持ち，支持部材の配置，金網に作用する荷重，金網の有する限界吸収エネルギ及び飛来物衝突時のたわみ量を考慮し，金網の展開方向と展開直角方向の長さの比を考慮して，フレーム内に主金網 2 枚及び補助金網1枚を重ねて設置する構造とする。また，金網に飛来物が衝突した際，ワイヤロー プに瞬間的な大荷重が作用するのを防ぐため，金網の外側の四隅には緩衝材を設置す る構造とする。接続冶具（支持部）はターンバックル及びシャックルにより構成され， ワイヤロープを支持する構造とする。接続治具（固定部）は緩衝材の隅角部固定ボル ト及び取付プレートにより構成され，ワイヤロープを支持部材のフレームに固定する構造とする。

防護板は，鋼板により構成され，防護板に作用する荷重は支持部材に伝達する構造 とする。

ネット及び防護板の支持部材は，フレーム，大梁，可動支承，ゴム支承により構成 され，上載するネット及び防護板を支持する構造とし，支持部材に作用する荷重は，基礎ボルトを介して，海水ポンプ室躯体に伝達する構造とする。また，外部事象防護対象施設に波及的影響を与えないために，支持部材を構成する部材自体の転倒及び脱落を生じない構造とする。竜巻防護ネットの構造計画を表2－1に示す。また，竜巻防護ネットの概要図を図2－1に，配置図を図2－2にそれぞれ示す。竜巻防護ネットの西側には原子炉建屋が，北側には防潮壁が，東側には防潮堤がそれぞれ配置されている。

表 2－1 竜巻防護ネットの構造計画（ $1 / 3$ ）

構成	計画	の概要	説明図
要素	主体構造	支持構造	
【位置】 ネット，防護板及び支持部材は，飛来物が侵入した場合に，外部事象防護対象施設に衝突す る可能性のある海水ポンプ室補機ポンプエリア上面に設置する設計としている。			
ネット	ネットは，金網，ワイヤロ ープ及び接続治具により構成する。	ネットに作用す る荷重は，ワイ ヤロープ及び接続治具を介して支持部材に伝達	
防護板	防護板は鋼製 の鋼板により構成する。	し，支持部材か ら鉄筋コンクリ ート造の海水ポ ンプ室躯体に伝達する構造とす る。 また，防護板に作用する荷重	（平面図）
支持 部材	支持部材は， フレーム，大梁，ゴム支承，可動支承によ り構成する。	は，支持部材に伝達し，支持部材から海水ポン プ室躯体に伝達 する構造とす る。	$(A \sim A$ 矢視）

表 2－1 竜巻防護ネットの構造計画（2／3）

表 2－1 竜巻防護ネットの構造計画（3／3）

防護板

（ $\mathrm{F} \sim \mathrm{F}$ 矢視）

（ $\mathrm{G} \sim \mathrm{G}$ 矢視）

竜巻防護ネット取付け状態

図 2－1 竜巻防護ネットの概要図

原子炉

建屋

図2－2 竜巻防護ネットの配置図（平面図•俯瞰図）
（2）ネットの構造概要
飛来物が衝突した際に局部的に生じる衝撃荷重に耐え，変形することにより飛来物 の持つ運動エネルギを吸収し，外部事象防護対象施設への衝突を防止する設計とする。 ネットは，金網，ワイヤロープ及び接続冶具により構成され，金網の 4 辺をワイヤロ ープにより支持し，ワイヤロープはフレームに設置した接続治具にて支持する構造と する。ワイヤロープの端部はターンバックル又はシャックルを設置し，ターンバック ル又はシャックルをフレームに設置した取付プレートに接続する構造とする。ネット の概要図を図2－3に示す。

金網は， 50 mm 目合いの主金網 2 枚及び 40 mm 目合いの補助金網 1 枚で構成する。
金網は，電力中央研究所報告書「竜巻飛来物に対する防護ネットの評価手法と対策工法の提案」（研究報告：N13014）及び電力中央研究所報告書「高強度金網を用いた竜巻飛来物対策工の合理的な衝撃応答評価手法」（総合報告：O 01）（以下「電中研報告書」という。）にて適用性が確認されている評価式及び金網の物性値を用いた設計とす る。ネットを構成する金網，ワイヤロープ及び接続冶具についての構造設計を以下に示す。
a．金網
金網は，らせん状の硬鋼線を山形に折り曲げて列線とし， 3 次元的に交差させて編 み込んだものであり，編み込みの向きにより，展開方向とその直角方向の異方性を有 する。展開方向が主に荷重を受け持ち，展開方向と展開直角方向で剛性や伸び量が異 なるため，これらの異方性を考慮した設計とする。金網は，電中研報告書において， その剛性，最大たわみ時のたわみ角， 1 目合いの破断変位等が確認されている。

金網の寸法は，フレームの主桁及び横補強材の間隔並びに金網の展開方向と展開直角方向の剛性や伸び量の異方性を考慮して，展開方向と展開直角方向の寸法の比（以下「アスペクト比」という。）について，原則として電中研報告書にて適用性が確認さ れている範囲（ $1: 1 \sim 2: 1$ ）に入るように設計する。
b．ワイヤロープ
ワイヤロープの取付部は，展開方向のワイヤロープと展開直角方向のワイヤロープ で荷重の伝達分布が異なり，さらにワイヤロープの巻き方によりワイヤロープ間の荷重伝達に影響を及ぼす可能性があるため，金網に対して 2 本を L 字に設置することに より，ワイヤロープに作用する荷重が均一となるような設計とする。
c．接続冶具（支持部及び固定部）
電中研報告書の評価式を適用するため，衝突試験における試験体と同じ構造を採用 しており，飛来物衝突時に急激な大荷重が作用するのを抑制するために，緩衝材を四隅に設置する設計とする。

接続治具は，金網への飛来物の衝突により金網からワイヤロープを介して直接作用 する荷重若しくは発生する応力に対して，破断することのない強度を有する設計とす

る。接続治具（支持部）はワイヤロープを支持するターンバックル及びシャックルで あり，接続治具（固定部）は隅角部固定ボルト及びターンバックル又はシャックルを フレームに接続する取付プレートである。

図 2－3 ネットのフレーム取り付け概要図
（3）防護板の構造概要
竜巻防護ネットを構成する防護板は，地震時に発生する変位を踏まえて確保してい るフレーム間のクリアランス並びにフレーム及び海水ポンプ室補機ポンプエリア側壁間のクリアランスから設計飛来物である鋼製材が海水ポンプ室補機ポンプエリア内に侵入しない構造とし，飛来物による衝突に対し，貫通しない部材厚さを確保する設計 とする。防護板の配置概要図を図2－4に示す。

図 2－4 防護板の配置概要図

竜巻防護ネットの支持部材は，フレーム，大梁，可動支承，ゴム支承等により構成 する。このうち，フレームは主桁，横補強材，ブレース等により構成し，上載するネ ット及び防護板を支持する構造とする。また，大梁は海水ポンプ室補機ポンプエリア の南側隔壁上に設置し，海水ポンプ室補機ポンプエリアの北側隔壁と大梁にて，フレ ームを支持する構造とする。フレーム及び大梁は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及びその他考慮すべき荷重に対し，飛来物が外部事象防護対象施設に衝突することを防止し，また，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有する設計とする。

また，ゴム支承及び可動支承に支持されているフレーム並びにゴム支承に支持され ている大梁は，地震力等によって水平方向の変位が生じることから，他の設備との干渉について考慮する必要がある。そのため，フレーム間及びフレームや大梁と海水ポ ンプ室補機ポンプエリア壁面との間に地震時に発生する変位を踏まえてクリアランス を確保する設計とする。

なお，フレームにはストッパーを取り付け，フレームを支持するゴム支承に期待し ない場合でも，フレームの水平方向移動を拘束し，竜巻防護ネットが落下せず，外部事象防護対象施設に波及的影響を与えない構造とする。フレーム及び大梁の配置概要図を図2－5に示す。

図 2－5 フレーム及び大梁の配置概要図
（5）ゴム支承及び可動支承の構造概要
支持部材のうちゴム支承及び可動支承については，地震によるフレーム及び大梁の発生応力並びに海水ポンプ室補機ポンプエリア壁面への支点反力を低減•分散させる ことを目的として設置する。支持部材に作用する荷重は，基礎ボルトを介して，海水 ポンプ室躯体に伝達する構造とする。

ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。 フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個の ゴム支承を取り付け，フレームを支持する構造とする。大梁と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフレーム及び大梁を支持する構造とする。

可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によ るフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。

ゴム支承及び可動支承は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及 びその他考慮すべき荷重に対し，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有 する設計とする。竜巻防護ネットの支持構造模式図を図 2－6に示す。

また，竜巻防護ネットに使用するゴム支承は道路橋用ゴム支承であり，地震時水平力分散型ゴム支承に分類される。ゴム支承は，「道路橋示方書•同解説 V 耐震設計編 （平成 14 年 3 月）」（以下「道路橋示方書」という。）に従い，「道路橋支承便覧（平成 16年4月）」（以下「道路橋支承便覧」という。）に則り，設計•製作するものであり， ゴム支承の特性，評価式及び許容値は同規格•基準に従う。ゴム支承の構造図を図2－ 7 に，可動支承の構造図を図2－8に示す。

図 2－6 竜巻防護ネットの支持構造模式図

図2－7 ゴム支承の構造図

図2－8 可動支承の構造図

3．設置許可段階における主な説明事項
（1）構造概要
竜巻防護ネットの構造概要について，設置許可段階では以下のとおり説明している。
＞竜巻防護ネットは海水ポンプ室補機ポンプエリア開口部に対し，フレームに取 り付けたネット（金網）を配置することで，飛来物の侵入を阻止し，非常用海水ポンプ等を防護する構造とする。
＞海水ポンプ室補機ポンプエリアの隔壁（南側）は壁厚が薄くフレームを支持で きないため，フレーム支持用の大梁を設置し，この大梁と隔壁（北側）天面に てネット及び防護板を取り付けたフレームを支持する。
＞大梁とフレームとの接続部には可動支承を設置し，ブラケットと大梁の接続部及び隔壁（北側）とフレームとの接続部にはゴム支承を設置する。
＞ゴム支承は，地震により生ずる応力及び反力を低減•分散させることを目的と しており，水平方向の固有周期を長周期側に移動させ応答を下げるとともに，壁面へ伝達させる荷重を分散させる効果を期待する。なお，フレームゴム支承 は， 2 つのうち 1 つ以上の支承が構造強度上の評価方針を満足する設計とする。
＞可動支承は，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐため，水平変位に追従する機能を有する。
＞また，フレームにはストッパーを取り付けており，フレームを支持するゴム支承に期待しない場合でも，竜巻防護ネットが落下せず，非常用海水ポンプ等に波及的影響を与えない設計とする。
（2）竜巻防護ネットの各部位の設計方針
竜巻防護ネット各部位に対する設計方針については，表3－1 のとおり説明している。 また，別紙1に示すとおり，先行プラントとの設計方針についても比較し，支持構造 に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方針」，「支持部材の設計方針」及び「評価項目」に対して，先行プラントとの相違はないことを確認している。

表 3－1 竜巻防護ネット各部位に対する設計方針＊

	部位の名称	設計方針	評価項目	
ネット （金網部）		ネットは，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，主要な部材が破断せず，たわみが生じても，非常用海水ポンプ等の機能喪失に至る可能性がある飛来物が非常用海水ポンプ等と衝突しないよう捕捉できる設計とする。	吸収エネル ギ評価	
		破断評価		
		たわみ評価		
防護板			防護板は，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，飛来物が防護板を貫通せず，非常用海水ポンプ等に波及的影響を与えない設計とする。	貫通評価
$\begin{aligned} & \text { 支 } \\ & \text { 持 } \\ & \text { 部 } \\ & \text { 材 } \end{aligned}$	フレーム		支持部材は設計竜巻の風圧力による荷重，飛来物に よる衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するため に，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えないために，支持部材を構成 する部材自体の転倒及び脱落を生じない設計とす る。	貫通評価
	大梁	支持機能評価		
	ブラケット			
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			
	大梁ゴム 支承			
	可動支承			
	ストッパー			

注記＊：本表はEPまとめ資料 6 条（竜巻）－別添1－添付 3.7 －10 表6抜粋
（3）衝撃荷重に対するゴム支承•可動支承の影響
設置許可段階では，構造成立性の見通しを確認するため，竜巻防護ネットを構成す る支持部材に対し，代表的な飛来物衝突の解析評価を以下の 2 ステップで実施した。各ステップの評価フロー図を図3－1に示す。

【STEP1】

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴ ム支承の剛性を考慮した衝突解析を実施した。衝突解析は，フレームゴム支承によ る影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で

実施し，ゴム支承の影響を考慮した場合において，フレームゴム支承，可動支承が フレームを支持する機能を維持可能な構造強度を有することを確認した。

【STEP2】

衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下 の評価を実施した。

STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）とゴム剛性の結合条件を3方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行った。

STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－ 1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価 としてゴム支承の実剛性を考慮した解析条件にて評価を実施した。

STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施した。ストッパーの評価はゴム剛性の結合条件を自由（ゴム支承によ る荷重の負担は期待せずストッパーに全ての荷重を伝達する条件）とし て衝突解析を行い，構造成立性の確認を行った。

STEP1

＊1：耐震評価で用いるせん断剛性

＊2：LS－DYNAによる衝突解析により支承部のピーク反力を算出し評価を実施

図 3－1 各ステップの評価フロー図＊
（注記＊：本図はEPまとめ資料 6 条（竜巻）一別添1－添付 3．7－28 図14抜粋）

また，衝突解析における耐震評価時に用いるせん断剛性の適用性（別紙 2 参照）や，構造成立性の見通し（別紙 3 参照）を踏まえ，詳細設計段階における設計方針（説明事項）について，設置許可段階で以下のとおり整理している（別紙 4 参照）。

①詳細設計段階では現実に即した解析モデルとして，ゴム支承の特性を考慮し た解析モデルを適用し，評価を実施する方針とする。
（2）設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フローを設定する。

③可動支承について，設置許可段階における構造成立性の見通し確認において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。
（4）基本ケースによる各部材の設計を実施した後に，不確かさケースの確認とし て，ゴム支承の剛性のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針 とする。

図 3－2 詳細設計段階における評価フロー＊
（注記＊：本図はEPまとめ資料 6 条（竜巻）－別添1－添付 3.7 －別紙6－1 図1抜粋）

4．詳細設計段階における設計方針
（1）詳細設計段階における検討の経緯及び概要
「3．設置許可段階における主な説明事項」及び海水ポンプ室の耐震補強計画を踏 まえ，竜巻防護ネットの詳細設計を実施している。検討の経緯及び概要について以下 に示す。
＞海水ポンプ室の詳細設計における構造を，竜巻防護ネットの設計を反映した。具体的には，東西側壁上部への補強梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなったことから，フレーム幅及びフレーム基数の見直しを実施するこ ととした。また，南側隔壁補強を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造から，補強する南側隔壁にて大梁を支持する構造とした。
＞設置許可段階では保守的にゴム支承の拘束条件を 3 方向固定として支持部材の構造成立性を確認していたが，詳細設計段階では，ゴム支承剛性に係る特性試験を実施した上で，ゴム支承の拘束条件を 3 方向弾性とし，試験を踏まえた剛性のばらつきを不確かさケースとして影響確認することとした。このとき，竜巻防護ネットの機能維持の考え方として，設置許可段階では 2 つのフレームゴ ム支承のらち 1 つ以上の支承が構造強度上の評価方針を満足することを確認す るとしていたが，詳細設計段階においては，いずれのゴム支承も許容値を超え ず構造強度上の評価方針を満足させる方針とした。
＞可動支承についても，詳細設計段階においてはサイズアップやボルトの仕様変更等の対応を行い，許容値を満足させる方針とした。
＞いずれの支承部も許容値を満足させる方針としたことに伴い，構造強度評価に おいて，ストッパーに対して竜巻防護ネットの支持機能を期待しない方針とし た。
＞飛来物の衝突姿勢（長辺衝突）による影響について，不確かさケースとして確認する方針とした。
（2）竜巻防護ネットの構造について
（1）を踏まえた，設置許可段階における構造概要との比較を図 4－1 及び表4－1 にそ れぞれ示す。また，表 4－1を踏まえ詳細設計を反映した仕様比較について表 4－2 に示 す。なお，これらの構造変更によって，設置許可段階で説明している竜巻防護ネット の設計方針を変更するものではない。なお，海水ポンプ室補強計画（海水ポンプ室構造物諸元）については，「補足－600－20 屋外重要土木構造物の耐震安全性評価につい て」に示す。

図 4－1 竜巻防護ネット構造概要比較

表 4－1 竜巻防護ネットの構造比較

	設置許可段階	詳細設計段階	備考
a．フレーム基数変更	フレーム基数 : 5 基	$\begin{aligned} & \text { フレーム基数 } \\ & : 4 \text { 基 } \end{aligned}$	東西側壁補強に伴い東西方向開口幅が狭 くなったことを詳細設計に反映（フレー ム幅を調整）した。
b．大梁の支持位置の変更	既設東西隔壁に ブラケットを設置し大梁を支持	海水ポンプ室補強計画に合わせ，補強する南側隔壁にて大梁を支持	東西側壁補強に伴い東西方向開口幅が狭 くなったこと及び南側隔壁の補強計画を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造か ら，補強する南側隔壁にて大梁を支持す る構造とした。

表 4－2 竜巻防護ネット主要仕様比較

項目		設置許可段階	詳細設計段階
総質量		約 500ton	約 358ton
全体形状		約 29 m （東西方向）\times 約 24 m （南北方向）高さ 約 1 m	約 26 m （東西方向）\times 約 23 m （南北方向）高さ 約 1 m
ネット （金網部）	構成	主金網 $\times 2$ 枚 + 補助金網 $\times 1$ 枚 なお，金網はワイヤロープにて 4 辺支持する	同左
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネッ ト 40 mm	同左
	$\begin{aligned} & \hline \text { 主要 } \\ & \text { 材料 } \\ & \hline \end{aligned}$	硬鋼線材，亜鉛めつき鋼線	同左
フレーム	数量	5 組	4 組
	寸法	長さ×幅×高さ：約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$	長さ \times 幅 \times 高さ 主桁： 約 $23 \mathrm{~m} \times 0.6 \mathrm{~m} \times 1.0 \mathrm{~m}$ 横補強材：約 $5.4 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.4 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ ブレース： 約 $5.9 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.9 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$
	$\begin{aligned} & \hline \text { 主要 } \\ & \text { 材料 } \\ & \hline \end{aligned}$	SM490A，SM400A，SS400	同左
大梁	寸法	長さ×幅×高さ：約 $26 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$	長さ×幅×高さ：約 $25 \mathrm{~m} \times 1.6 \mathrm{~m} \times 1.3 \mathrm{~m}$
	主要材料	SM520B，SM490A	SM490A
ゴム支承	仕様	水平力分散型	同左
	数量	$\begin{aligned} & \text { 大梁用: } 4 \text { 個 (} 2 \text { 組 (2 個/組)) } \\ & \text { 隔壁用: } 10 \text { 個 }(5 \text { 組 }(2 \text { 個/組 })) \end{aligned}$	$\begin{aligned} & \text { 大梁用: } 4 \text { 個 }(2 \text { 組 }(2 \text { 個 } / \text { 組 })) \\ & \text { フレーム用: } 8 \text { 個 }(4 \text { 組 }(2 \text { 個 } / \text { 組 })) \end{aligned}$
可動支承	数量	10 個（5 組（2個／組））	8 個（4 組（2 個／組））
防護板	材料	SM400A，SS400	SM400A
$\begin{aligned} & \text { 耐震 } \\ & \text { クラス } \end{aligned}$	－	C（ S s ）	同左

（3）設置許可段階の設計方針との比較
設置許可段階で説明している設計方針に対する，詳細設計段階での設計方針との相違について，支持部材の一部変更はあるものの，設計方針に変更がないことを確認し た。確認した結果について表 4－3 に示す。なお，詳細について別紙5に示す。

表 4－3 設置許可段階の設計方針に対する比較

注記 $~$ 1：「4．（2）竜巻防護ネットの構造について」に示す構造により，ブラケットは設置しない。
＊2：いずれの支承部も構造強度上の評価方針を満足する方針とすることから，竜巻防護ネットの支持機能を担う部材としてストッパーに期待しないこととした。ただし，ポンプ点検等によ る竜巻防護ネットのフレームの取り付け・取り外しに起因するゴム支承の損傷の可能性を想定し，道路橋示方書における落橋防止構造の考え方を参考に，自主的にストッパーを設置す ることとし，ストッパー設置により外部事象防護対象施設に波及的影響を与えないことにつ いて確認する。
（4）詳細設計段階における設計フロー
図 3－2 及び（1）を踏まえ，竜巻防護ネットの衝突解析において基本ケース及び不確 かさケースを設定し評価を実施する。詳細設計段階における竜巻防護ネットの支持部材の評価フロー図を図 4－2 及び表 4－4に示す。また，詳細設計段階における説明事項 に対する対応方針について，別紙 6 に示す。

支持部材の評価に当たり，解析モデルの設定においては，現実に即したゴム支承の特性を踏まえたゴム支承の剛性を設定することとし，特性試験の実施及び試験により得られた知見を踏まえた剛性の設定の考え方について5章に，飛来物の衝突姿勢の考 え方について 6 章にそれぞれ示す。

注記＊：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	基本ケース における設定	不確かさケース におる設定	
解析モデルにおける ゴム支承の剛性	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定
衝突解析における 衝突姿勢	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を 確認

図 4－2 詳細設計における竜巻防護ネット支持部材の評価フロー図
表 4－4 詳細設計段階における支持部材に対する構造強度上の性能目標と評価方針（1／2）

			些胥
			$\stackrel{\text { 橘 }}{\gtrless}$
6 ＋玄㦰楽遇搞區㴜热	 	 	
6 4憋非缐眇扣苗抽		湅挥爮 6 が杀黄入 	
		 	人和安血杪一

表 4－4 詳細設計段階における支持部材に対する構造強度上の性能目標と評価方針（2／2）

[^0]5．衝突解析に係るゴム支承の剛性の設定
5.1 ゴム支承剛性の設定方針

衝突解析におけるゴム支承の剛性は，道路橋支承便覧より算出する設計値を基に設定することとする。ここで，支持部材のモデル化については，ゴム支承をばね要素と してモデル化し，ゴム支承の荷重一変位の関係である剛性をばね定数として設定して いる。また，竜巻防護ネット周囲の構造物の設置状況や防護板の設置の考慮により，飛来物はゴム支承には直接衝突せず，フレームに衝突し，ゴム支承に荷重が伝達する。竜巻防護ネットへの飛来物衝突のイメージを図5－1に示す。

ゴム支承のせん断剛性については，各種依存性試験を実施し，衝突解析への適用性 について設置許可段階にて説明している（別紙 2 参照）。詳細設計段階においても，構造変更による影響は軽微であることから，設置許可段階で適用した条件と同様の設定方針とする。

なお，せん断剛性に係る各種依存性試験については「補足－600－12 竜巻防護ネット の耐震構造設計（支承構造）についての補足説明資料」に示す。

一方，鉛直剛性については，竜巻影響評価の特徴を踏まえ，道路橋支承便覧に基づ く設計値の適用性及び支承の不確かさとして考慮すべきばらつきについて検討する必要がある。そのため，鉛直剛性に係る特性試験を実施し，設計値を適用することの妥当性及びばらつき範囲を確認する。衝突解析における鉛直剛性の設定フロー図につい て図 5－2に示す。特性試験の実施及びゴム支承の鉛直剛性の設定に当たっては，飛来物の衝突による影響が大きいと想定する衝突位置•方向を考慮する観点から，図 5－1 に示すゴム支承直上のフレームに飛来物が鉛直衝突するケースについて検討する。

図 5－1 竜巻防護ネットへの飛来物衝突のイメージ

図 5－2 衝突解析における鉛直剛性の設定フロー図
5.2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値

竜巻防護ネットに採用しているゴム支承の構造諸元を表5－1に示す。ここで，表5－ 1 に示しているせん断剛性及び鉛直剛性は，道路橋支承便覧に基づき，以下の式によ り算出する設計値である。

表 5－1 ゴム支承の構造諸元

項目	諸元
支承種類	地震時水平力分散型ゴム支承
ゴム本体種類	天然ゴム (NR)
ゴム本体有効平面寸法	$800 \mathrm{~mm} \times 800 \mathrm{~mm}$
総ゴム厚	
（ゴム厚 \times 層数）	192 mm
せん断弾性係数	$1.04 \mathrm{~mm} \times 8$ 層）

$$
\begin{equation*}
\mathrm{K}_{\mathrm{s}}=\frac{\mathrm{G}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \tag{5.1}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{v}}=\frac{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \\
& \mathrm{E}=\alpha \cdot \beta \cdot \mathrm{S}_{1} \cdot \mathrm{G}_{\mathrm{e}}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{S}_{1}=\frac{\mathrm{A}_{\mathrm{e}}}{2 \cdot(\mathrm{a}+\mathrm{b}) \cdot \mathrm{t}_{\mathrm{e}}} \quad\left(0.5 \leqq \frac{\mathrm{~b}}{\mathrm{a}} \leqq 2.0 \text { のとき }\right) \tag{5.4}
\end{equation*}
$$

ここで，
K ：ゴム支承のせん断剛性（ N / mm ）
K_{v} ：ゴム支承の鉛直剛性（圧縮ばね定数）（ N / mm ）
G_{e} ：ゴムのせん断弾性係数 $\left(=1.0 \mathrm{~N} / \mathrm{mm}^{2}\right)$
A_{e} ：ゴム支承本体の側面被覆ゴムを除く面積 $\left(\mathrm{mm}^{2}\right)$
$\Sigma \mathrm{t}$ e ：総ゴム厚（ mm ）
E：ゴム支承の縦弾性係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\alpha \quad:$ ゴム支承の種類による係数 $\quad(=35)$
β ：ゴム支承の平面形状による係数（ $=1.0$ ）
S_{1} ：一次形状係数
a ：橋軸方向の有効寸法（mm）
b ：橋軸直角方向の有効寸法（mm）
$t \mathrm{e}$ ：ゴム一層の厚さ（mm）

上記のとおり，剛性値はゴム支承の形状によって定まる値であるが，鉛直剛性につ いては，ゴム支承の圧縮性を考慮して定められたものであることが道路橋支承便覧か ら読み取れる。また，ゴム支承の性能の検証として，道路橋支承便覧では圧縮ばね定数が設計値に対して $\pm 30 \%$ 以内であることの確認を要求しており，竜巻防護ネットで用 いるゴム支承においても，製品検査時に圧縮ばね定数の初期ばらつきが設計値の $\pm 30 \%$以内であることを確認することから，この製品初期ばらつきの $\pm 30 \%$ について，鉛直剛性のばらつき範囲設定条件の 1 つとして考慮することとする。

5.3 鉛直剛性に係る特性試験

5．3．1 試験項目整理及び試験方法
「5．1 ゴム支承剛性の設定方針」及び「5．2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値」を踏まえ，ゴム支承の鉛直剛性に係る特性試験を実施す る。試験内容の検討に関して，「道路橋免震用ゴム支承に用いる積層ゴム一試験方法 （ J I S K 6 4 1 1 ：2 0 1 2 ）」（以下「 J I S K 6 4 1 1 」 という。）に おいては，ゴム支承に期待するアイソレート機能の観点より，主として積層ゴムに対するせん断剛性の各種依存性試験について規定されていることから，試験は，J I S K 6 4 1 1 及び設置許可段階で実施したせん断剛性の各種依存性試験を参考に，これらの水平（せん断）剛性に係る試験に対して，鉛直剛性に係る試験への適用性を検討し，また，設計における適用条件を踏まえて試験項目及び試験条件を設定する。試験項目の比較整理を表 5－2 に，鉛直剛性に係る特性試験項目を表 5－3 にそれぞれ示す。また，各試験の実施フロー図について図 5－3に示す。

試験体は，J I S K 6 4 1 1 に従い，各試験項目に対応した標準試験体を用 いる。ゴム材料の種別は，実機に適用するG10に対して実施する。試験体諸元を表 5－4に示す。
表 5－2 試験項目の比較

J I S K 64.11			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
圧縮及びせ ん断特性	圧縮特性	試験体に一定の圧縮力を載荷し た状態での圧縮力ー鉛直変位特性から圧縮剛性を求める。	- -	せん断剛性に関する試験で ないため対象外	試験体に一定の圧縮力又は引張力を載荷した状態で荷重－変位曲線から圧縮又は引張剛性 を算出する。また，基準値に対 する測定値の変化率（初期ばら つき）を求める。	$-$
	せん断特性	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，せん断特性を求める。	－	道路橋支承便覧の基準値を適用するため省略	－	鉛直剛性に関 する試験でな いため対象外
せん断特性 の各種依存性	せん断ひず み依存性	試験体に一定圧縮力を載荷した状態で複数水準のせん断変位を与え，せん断特性のせん断ひずみ依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で複数水準の せん断ひずみにおける正負繰返し加振を行い，せん断剛性を算出する。せん断ひずみ 175\％ の測定値を基準として各測定値との変化率を求める。	－	試験体に複数水準のせん断ひ ずみを与え保持した状態で，圧縮力又は引張力を載荷し，鉛直荷重一変位曲線から圧縮剛性又	－
	圧縮応力度依存性	試験体に複数水準の圧縮力を載荷した状態でせん断変位を与え， せん断特性の圧縮応力度依存性 を求める。	複数水準の圧縮力を載荷した状態でせん断ひずみ 175% によ る正負繰返し加振を行い，せん断剛性を算出する。圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力時の測定値を基準として，各測定値との変化率を求める。	－	は引張剛性を算出する。せん断 ひずみ 0% の測定値を基準と し，各測定値との変化率を求め る。	－
	振動数依存性	試験体に一定圧縮力を載荷した状態で複数水準の水平振動数の せん断変形を与え，せん断特性の振動数依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で各振動数に てせん断ひずみ 175% による正負繰返し加振を行い，せん断剛性を算出する。振動数 0.5 Hz の測定値を基準として各測定値 との変化率を求める。	－	試験体に複数水準の速度を有 した錘によって圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。静的な圧縮又は引張剛性 を基準として，各速度における圧縮又は引張剛性の変化率を求める。	（以下「速度依存性試験」 という。）

表 5－2 試験項目の比較

J I S K 64.11			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
せん断特性 の各種依存性	繰返し数依存性	試験体に一定圧縮力を載荷した状態で繰返しせん断変位を連続 して与え，せん断特性の繰返し数 に対する依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。その後，せん断ひずみ 175% による正負繰返し加振を50回行い，せん断剛性を算出する。 50 回加振前の測定値を基準と して 50 回加振後の測定値との変化率を求める。	－	せん断ひずみ 175% による正負繰返し加振を行う前及び行っ た後の試験体に圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。50 回加振前の測定値を基準として 50 回加振後の測定値との変化率を求める。	－
	温度依存性	試験体を複数水準の温度に保持 して，一定圧縮力を載荷した状態 でせん断変位を与え，せん断特性 の環境温度の変化に対する依存性を求める。	各温度で加熱された試験体に圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。 $23^{\circ} \mathrm{C}$ の測定値を基準として各温度におけるせん断剛性と の変化率を求める。	－	各温度で加熱された試験体に圧縮力又は引張力を載荷し，荷重－変位曲線から圧縮又は引張剛性を算出する。 $23^{\circ} \mathrm{C}$ の測定値 を基準として各温度における圧縮又は引張剛性との変化率 を求める。	－
終局特性	せん断変形性能	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，積層 ゴムが破断又はせん断力一せん断変位曲線において，せん断力が急激に低下するなどの安定性が失われる限界を求める。	－	依存性を求め る試験でない ため対象外	－	鉛直剛性に関 する試験でな いため対象外
	引張特性	試験体にせん断変位 0 又は一定の せん断変形を与えた状態で引張力を加え，その引張力ー引張変位曲線において降伏又は破断が生 じる時点の引張力及びせん断変位を求める。	－	道路橋支承便覧の中で確認 されているた め省略	－	道路橋支承便覧の中で確認 されているた め省略

表 5－2 試験項目の比較

J I S K 6411			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
耐久性	熱老化特性	積層ゴムの各特性における経年劣化を熱老化試験から求める試験であり，熱老化後，せん断特性及び終局特性を測定し，熱老化前 に対する熱老化後の変化率から，積層ゴムの熱老化特性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。その後 60 年相当の熱老化 を行い，熱老化前と同様にせん断剛性を算出する。熱老化前の測定値を基準として熱老化後 の測定値との変化率を求める。	－	試験体に圧縮力又は引張力を載荷し，荷重－変位曲線から圧縮又は引張剛性を算出する。そ の後 60 年相当の熱老化を行 い，熱老化前と同様に圧縮又は引張剛性を算出する。熱老化前 の測定値を基準として熱老化後の測定値との変化率を求め る。	－
	クリープ	積層ゴムの長期圧縮力によるク リープひずみの予測方法であり，試験体にせん断変形を与えずに，一定の圧縮力を載荷し，規定時間経過後の圧縮変位を計測し，長期間後のクリープひずみを予測す る。	－	せん断剛性に関する試験で ないため対象外	－	鉛直剛性に関 する試験でな いため対象外
	繰返し圧縮疲労	試験体に一定のせん断変位を与 えた状態で圧縮力を繰返し与え，圧縮特性及びせん断特性の繰返 し回数による依存性を求める。	－	圧縮による繰 り返し荷重を受ける構造で ないため対象外	－	圧縮による繰 り返し荷重を受ける構造で ないため対象外
緩速変形特性	緩速変形特性	橋梁の上部構造の温度変化によ る伸縮によって生じるような低速のせん断変形弾性係数を求め る。	－	変形速度によ りせん断剛性 が変化する免震支承ではな いため対象外	－	$\begin{aligned} & \text { 鉛 直剛 性に関 } \\ & \text { する試験 でな } \\ & \text { いため対象外 } \end{aligned}$

表 5－3 鉛直剛性に係る特性試験項目

試験	項目	試験内容	試験条件
圧縮／引張剛性確認試験	（1）圧縮／引張剛性確認	圧縮／引張剛性の実剛性及び初期ばらつきを求め る。	試験体数：10体 圧縮応力度： $0.5 \sim 8.0 \mathrm{~N} / \mathrm{mm}^{2}$ 引張応力度： $0.5 \sim-2.0 \mathrm{~N} / \mathrm{mm}^{2}$
各種依存性試験	（2）せん断ひ ずみ依存性	複数のせん断ひずみを与 えたときの圧縮／引張剛性の依存性を求める。	試験体数：1体 せん断ひずみ： $\pm 0,50 \%, 75 \%, 100 \%$ の 4 水準
	（3）繰返し数依存性	繰返し荷重に対する圧縮 ／引張剛性の依存性を求 める。	$\begin{aligned} & \text { 試験体数: } 1 \text { 体 } \\ & \text { 繰返し数: } 50 \text { 回 } \end{aligned}$
	（4）温度依存性	使用環境の温度変化に対 する圧縮／引張剛性の依存性を求める。	試験体数： 1 体 温度：$-20,-10,0,10,23,40^{\circ} \mathrm{C}$ の 6 水準
	（5）熱老化特性	熱老化試験により熱老化前後の圧縮／引張剛性の経年変化を求める。	試験体数： 1 体 熱老化： $23^{\circ} \mathrm{C} \times 60$ 年相当
	（6）速度依存性	ゴム支承が高速で変形し たときの圧縮／引張剛性 を確認する。	試験体数：1体 ゴム変形速度：1．0， $1.5,2.0 \mathrm{~m} / \mathrm{s}$ の 3 水準

図 5－3 鉛直剛性に係る特性試験の実施フロー図

表 5－4 試験体の諸元

試験	測定項目	試験体		
		適用規格	形状	せん断弾性係数
（1）圧縮／引張剛性確認 （2）せん断ひずみ依存性 （3）繰返し数依存性 （4）温度依存性 （6）速度依存性	圧縮剛性引張剛性	$\begin{array}{lllllll} \mathrm{J} & \mathrm{~S} & \mathrm{~K} & 641 \end{array}$ 標準試験体 No．3＊	$\begin{aligned} & \text { 有効平面寸法 } \\ & 400 \mathrm{~mm} \times 400 \mathrm{~mm} \\ & \\ & \text { 総ゴム厚 } \\ & 54 \mathrm{~mm} \\ & (9 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	0
（5）熱老化特性		$\begin{array}{lllllll} \mathrm{J} & \mathrm{~S} & \mathrm{~K} & 641 \end{array}$ 標準試験体 No．2＊	$\begin{aligned} & \text { 有効平面寸法 } \\ & 240 \mathrm{~mm} \times 240 \mathrm{~mm} \\ & \\ & \text { 総ゴム厚 } \\ & 30 \mathrm{~mm} \\ & (5 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	1． $0 \mathrm{~N} / \mathrm{mm}^{2}$

注記＊：J I S K 6 4 1 1 で寸法等が規定されている試験体（試験項目毎に J I Sに規定されている標準試験体寸法のうち，大きい（実機寸法に近い）供試体を選定。）
（1）圧縮／引張剛性確認試験
試験体に鉛直方向の圧縮及び引張荷重を与えたときの鉛直剛性を求める。試験方法は，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 8． $0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれ の試験において 3 回載荷し， 3 回目の鉛直荷重－鉛直変位曲線から，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基 に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によ って基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。
（2）せん断ひずみ依存性試験
試験体に複数のせん断ひずみを与え保持した状態で，圧縮方向及び引張方向の鉛直剛性を測定する。試験方法は，せん断ひずみを与えた状態で，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を実施し，これを各せん断ひずみに対して行う。 それぞれの試験において3回載荷し，3回目の鉛直荷重一鉛直変位曲線から圧縮及 び引張剛性を求める。また，試験に用いる鉛直荷重は，各せん断ひずみにおける試験体の有効支圧面積より算出した圧縮／引張応力度相当の荷重とする。剛性を算出 する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に1．5
$\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性は，せん断ひずみ 0% の測定値を基準として，各せん断ひずみにおける測定値との変化率を求める。

（3）繰返し数依存性試験

試験体に繰返し水平加振 50 回を与えたときの鉛直剛性の依存性を求める。試験方法は 50 回加振試験の前に圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点と して，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載荷し， 3 回目の鉛直荷重 一 鉛直変位曲線 から鉛直剛性を求める。その後，50回加振試験後に同様の試験を実施し，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6411及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値 を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式 によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性 は， 50 回繰返し加振前の測定値を基準として， 50 回繰返し加振後における測定値と の変化率を求める。
（4）温度依存性試験
試験体に複数の温度条件を与えたときの鉛直剛性の依存性を求める。試験方法は，試験体を試験温度になるまで恒温槽で保持したのち，迅速に二軸試験機へ取り付け，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ に よる圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験にお いて 3 回載荷し， 3 回目の鉛直荷重一鉛直変位曲線から圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧 を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ と する。圧縮及び引張剛性は，基準温度（ $23^{\circ} \mathrm{C}$ ）時の測定値を基準として，各温度条件における測定値との変化率を求める。

なお，各温度条件における恒温槽での保持時間（試験体を恒温槽に入れてから取 り出すまでの時間）は，8時間以上とする。
（5）熱老化特性試験
熱老化前後の鉛直剛性の変化を確認する。熱老化は基準温度（ $23^{\circ} \mathrm{C}$ ）で 60 年に相当する試験条件とする。試験方法は，試験体の熱老化を行ら前に，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載

荷し， 3 回目の鉛直荷重一鉛直変位曲線から圧縮及び引張剛性を求める。その後，恒温槽で試験条件の熱老化をさせ，熱老化前と同様の試験を実施し，圧縮及び引張剛性を求める。圧縮側は，JIS K 6 4 1 1 及び道路橋支承便覧を参考に1．5 $\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性は，熱老化前の測定値を基準とし て，熱老化後の測定値との変化率を求める。
（6）速度依存性試験
試験体を高速で変形させたときの鉛直剛性の速度依存性について確認する。試験方法は，試験装置上に設置した供試体上に錘を落下し衝突させ，衝撃力を与える。負荷された荷重値，変位時刻履歴を計測し，荷重一変位曲線から圧縮及び引張剛性 を求める。

なお，速度は計測された変位時刻履歴から速度時刻履歴に変換し，最大荷重到達時までの平均速度を当該試験の速度条件とする。

ここで，速度依存性を確認する試験範囲については，運動量保存則に基づくゴム支承の変形速度及び衝突解析によってゴム支承が変形するときの最大鉛直変形速度 を基に設定する。以下に，運動量保存則及び衝突解析によるゴム支承の変形速度の評価について示す。衝突解析によるゴム支承の変形速度は解析時の鉛直剛性の影響 を受け，鉛直剛性が小さいほど変形速度が大きくなると考えられるため，剛性値を パラメータにした衝突解析により，鉛直剛性に対するゴム支承変形速度の傾向を踏 まえて試験条件を設定する。
a．運動量保存則によるゴム支承の変形速度の評価
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度を，衝突前後の運動量保存則から算出する。算出にあたつて，ゴム支承のばね剛性はフレー ムの移動に対し抵抗となり得るが，この影響はないものとして扱う。また，フレー ムを剛体と仮定し，簡便に一次元の衝突問題として，飛来物はゴム支承直上のフレ ーム北側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるものと する。（図5－4参照）

以上の条件から，運動量保存則から以下の式が成り立つ。

$$
\begin{aligned}
& \mathrm{m} \mathrm{v}=(\mathrm{m}+\mathrm{M}) \mathrm{V} \cdots(1) \\
& \text { ここで, } \\
& \mathrm{m}: \text { 飛来物 (鋼製材) 重量 }(\mathrm{m}=135 \mathrm{~kg}) \\
& \mathrm{v} \text { : 飛来物 (鋼製材) 衝突速度 } \quad(\mathrm{v}=16.7 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$\mathrm{M}:$ フレーム重量（ $\mathrm{M}=60000 \mathrm{~kg})$
V ：衝突後のフレーム移動速度（m／s）

図 5－4 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{m} \mathrm{v} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 16.7 /(135+60000) \\
& \fallingdotseq 0.04(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後 のフレームの変形速度は最大でも約 $0.04 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持さ れていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度になる と想定される。
b．衝突解析によるゴム支承の変形速度の評価
解析コード「LS－DYNA」による非線形時刻歴解析により，ゴム支承の変形速度を評価した。
（a）解析モデル
速度依存性試験条件を確認するために実施した衝突解析のモデル図を図 5－5に示す。飛来物及びフレームの各部材はシェル要素でモデル化し，ゴム支承はばね要素にてモデル化した。

図 5－5 解析モデル図
（b）飛来物諸元
飛来部諸元を表5－5に示す。

表 5－5 飛来物諸元

	鋼製材
寸法 (m)	$4.2 \times 0.3 \times 0.2$
質量 (kg)	135
水平方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	46.6
鉛直方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	16.7

（c）荷重条件
本解析はゴム支承の鉛直方向変形速度の評価を目的としていることから，荷重条件としては，飛来物の衝撃荷重のみを考慮した。また，接触条件として飛来物 と被衝突物の間の摩擦を考慮し，減衰に関しては考慮しないこととした。
（d）拘束条件
拘束条件を表5－6に示す。ゴム支承のせん断剛性は道路橋支承便覧に基づく設計値を入力し，鉛直剛性については，設計値に対して $1 / 100 \sim 100$ 倍までの範囲で パラメータスタディを実施した。

表 5－6 拘束条件

方向	フレームゴム支承	可動支承
X	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	自由
Y	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	拘束
Z	設計値 $(972 \mathrm{kN} / \mathrm{mm})$ を基準に， 「（f）解析ケース」に示す条件で実施	拘束

（e）材料物性等
イ。材料の応力ーひずみ関係
材料の応力ーひずみ関係は，バイリニア型とした。
材料に適用する応力ーひずみ関係の概念図を図5－6に示す。

図 5－6 応力ーひずみ関係の概念図

ロ，ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響を，以下の Cowper－Symonds 式により考慮する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}$
ここで，σ_{D} はひずみ速度 $\dot{\varepsilon}$ 時の降伏応力，$\sigma \mathrm{s}$ は初期降伏応力，$\dot{\varepsilon}$ はひずみ速度，C及びpはひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表 5－7に示す。

表 5－7 ひずみ速度依存性パラメータ

	$\begin{gathered} \text { 飛来物 } \\ \text { (鋼製材) } \end{gathered}$	竜巻防護ネット （フレーム）	
材質	SS400	SM400	SM490
C（1／s）			
p			

八。破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。
（f）解析ケース
解析ケースを表5－8に示す。

表 5－8 解析ケース

No．	鉛直剛性		飛来物の衝突条件			
	入力値 （kN／mm）	設計値から の比率	衝突位置	衝突 姿勢	衝突 方向	衝突速度 (m/s)
1	9.72	1／100	$\begin{aligned} & \text { 主桁 } \\ & \text { (ゴム支承 } \\ & \text { の直上) } \end{aligned}$	短辺	鉛直	16.7
2	97.2	1／10				
3	972	1				
4	9720	10				
5	97200	100				

（g）解析結果
飛来物が衝突した直下にあるゴム支承の鉛直方向変形速度履歴及び変位時刻歴 を図 5－7に示す。最大速度はおおむね衝突直後の圧縮側で生じている。また，各解析ケースにおける鉛直剛性と最大速度の関係を表5－9及び図5－8に示す。ゴム支承の変形速度は鉛直剛性が小さいほど大きくなり，鉛直剛性が大きくなると変形速度は小さくなる傾向となった。ここで，解析ケースNo． $1 \sim$ No． 3 において，鉛直剛性の変化がゴム支承の変形速度に与える影響が小さかった理由としては以下 のとおり考えられる。
＞飛来物はフレームに衝突することから，飛来物の衝撃荷重及び飛来物がフ レームに衝突した瞬間の加速度は，ゴム支承の剛性によらずに決まると考 えられる。
＞このとき，仮にゴム支承の鉛直剛性を 0 とした場合は，ゴム支承に反力が生じないため，ゴム支承の変形速度は最大となる。実際にはゴム支承の鉛直剛性により，ゴム支承に生じる変位に比例した反力が発生することによ り，変形速度は抑制される。
＞ゴム支承の剛性が比較的小さい場合は，鉛直剛性に応じてゴム支承の反力 が小さくなるため，ゴム支承の変形速度への影響は軽微な結果となり，ゴ ム支承の剛性が大きい場合は，飛来物の衝撃荷重が作用する時間内に，衝撃荷重を打ち消す反力が発生するため，ゴム支承の変形速度が抑制される結果となったと考えられる。
＞今回の結果においては，設計条件の剛性 $972 \mathrm{kN} / \mathrm{mm}$ とした場合（解析ケース No．3），また，設計条件から大きく剛性を下げた場合（解析ケース No． 1 及 びNo．2）でも，衝撃荷重と比較して反力が小さく，ゴム支承の変形速度へ の影響が小さかったものと考えられる。
＞なお，ゴム支承変形速度最大時のゴム支承の変位は，解析ケースNo． 3 で約 0.3 mm であり，解析ケース No． 1 及びNo． 2 においても，その際の変位は同程度となる。

また，解析ケース No． $1 \sim$ No． 3 において，圧縮側と引張側でゴム支承の最大変形速度が異なる結果となった理由について以下のとおり考えられる。
＞ゴム支承の鉛直剛性が高い場合（No．4，及びNo．5）には，ゴム支承に生じる変位が微小であることから（最大 0.3 mm 程度），フレームはほとんど応答せ ずゴム支承単体の単振動モードが顕著に表れたことにより，圧縮側と引張側で同程度の最大変形速度を得られたと考えられる。
＞一方，ゴム支承の鉛直剛性が低い場合（No．1～No．3）は，ゴム支承に生じ る変位が比較的大きくなることにより（最大 8 mm 程度），フレームが比較的大きく応答し，ゴム支承単体の単振動モードに加え，フレームの複数の振

動モードが重畳した速度時刻歴となることから，圧縮側と引張側で異なる ゴム支承最大変形速度が得られたと考えられる。

図 5－7（1）飛来物衝突位置直下のゴム支承変形速度履歴

図 5－7（2）飛来物衝突位置直下のゴム支承変位時刻歴

表 5－9 ゴム支承の鉛直剛性と最大変形速度の関係

解析ケース		No． 1	No． 2	No． 3	No． 4	No． 5
鉛直剛性（kN／mm）		9． 72	97.2	972	9720	97200
ゴム支承変形速度$(\mathrm{m} / \mathrm{s})$	最大（引張側）	0． 44	0.41	0.48	0． 42	0． 23
	最小（圧縮側）	－0．83	－0．82	－0．72	－0．46	－0．20
	絶対値最大	0.83	0.82	0． 72	0． 46	0． 23

図 5－8 ゴム支承の鉛直剛性と最大変形速度の関係
c．試験条件
速度依存性が存在する場合，一般的には速度が速くなると剛性が大きくなること から，上記予備解析の結果より，変形速度の最大値（ $0.83 \mathrm{~m} / \mathrm{s}$ ）を包絡するよう，目標とするゴム支承の変形速度を $1.0 \mathrm{~m} / \mathrm{s}$ として試験を実施する。その際，参考として より大きな速度である $1.5 \mathrm{~m} / \mathrm{s}$ 及び $2.0 \mathrm{~m} / \mathrm{s}$ についても試験を実施することとする。
なお，運動量保存則より，飛来物がフレームに衝突した際のゴム支承の変形速度 は $0.04 \mathrm{~m} / \mathrm{s}$ 程度であり，この速度は今回設定した試験条件に十分包絡される。

5．3．2 試験装置

（1）～（5）の試験には 2 MN 二軸試験機，（6）の試験には落錘式衝撃試験装置を用い る。試験装置の主な仕様を表 5－10及び表 5－11に，試験装置の概要を図 5－9～図 5－ 11 に示す。

表 5－10 2MN 二軸試験機の主な仕様

項目		2MN 二軸試験機	制御系	計測
鉛直方向	最大荷重	$\begin{aligned} & 2000 \mathrm{kN} \text { (圧縮) } \\ & 1000 \mathrm{kN} \text { (引張) } \end{aligned}$	荷重制御 変位制御	荷重 変位
	最大変位	300 mm		
水平方向	最大荷重	$\pm 400 \mathrm{kN}$	変位制御 （正弦波，矩形波，三角波）	荷重 変位
	最大変位	$\pm 200 \mathrm{~mm}$		
	最大速度	$630 \mathrm{~mm} / \mathrm{s}$		

表 5－11 落錘式衝撃試験装置の主な仕様

図 5－9 試験装置（2MN 二軸試験機）の外観

図 5－10 試験装置（落錘式衝撃試験装置）の外観（圧縮側）

図 5－11 試験装置（落錘式衝撃試験装置）の外観（引張側）

5．3．3 試験結果

各種試験より得られた鉛直剛性特性結果を図 5－12～図5－18に示す。以下にその結果を記載する。
（1）圧縮／引張剛性確認試験
図 5－12に示す結果より，圧縮剛性は式（5．2）から求める設計値とほぼ同等であ ることを確認した。一方，引張剛性は，圧縮剛性の設計値の 20% 程度であることを確認した。この結果を踏まえ，圧縮剛性の基準値は式（5．2）から求める設計値とし，引張剛性の基準値は本試験結果の平均値とした。

上記基準値を基に初期ばらつきを評価した結果，図 5－13に示す結果より，圧縮剛性のばらつきはプラス側で最大 $+2 \%$ 程度，マイナス側で最大 -15% 程度であること，引張剛性のばらつきはプラス側で最大 16% 程度，マイナス側で最大 -21% 程度であり，道路橋支承便覧に規定されている製品初期ばらつき $\pm 30 \%$ 以内であることを確認し た。

図 5－12 圧縮／引張剛性確認試験結果（算出値）

図 5－13 圧縮／引張剛性確認試験結果（変化率）
（2）せん断ひずみ依存性試験
竜巻防護ネットの強度評価に用いる荷重及び荷重の組合せを考慮し，水平方向に竜巻による風荷重が負荷された状態でのゴム支承に生じるせん断ひずみを想定し， せん断ひずみ 0% を基準に，せん断ひずみ 100% までの範囲を確認している。

図 5－14 に示す結果より，圧縮剛性はせん断ひずみの増加により最大で -11% 程度 の変化率となることが分かった。一方，引張剛性については最大で -2% 程度であり， せん断ひずみの増加によらずほぼ一定の傾向を示すことが分かった。

図 5－14 せん断ひずみ依存性試験結果
（3）繰返し数依存性試験
図 5－15に示す結果より，50 回の正負繰返し加振後の圧縮及び引張剛性の変化率 について，圧縮剛性は－7\％程度，引張剛性は－13\％程度となることが分かった。

図 5－15 繰返し数依存性試験結果
（4）温度依存性試験
図 5－16に示す結果より，低温になるほど剛性が大きくなることが分かる。基準温度 $23^{\circ} \mathrm{C}$ に対する圧縮及び引張剛性の変化率は，女川 2 号機の環境条件を踏まえて， $-15^{\circ} \mathrm{C}$ から $40^{\circ} \mathrm{C}$ までの範囲を確認しており，圧縮剛性について，$-15^{\circ} \mathrm{C}$ では $+27 \%$ 程度， $40^{\circ} \mathrm{C}$ では -8% 程度となること，引張剛性については，$-15^{\circ} \mathrm{C}$ では $+14 \%$ 程度， $40^{\circ} \mathrm{C}$ では -4% 程度となることが分かった。

注記 $*:-15^{\circ} \mathrm{C}$ の結果は補正式より算出

図 5－16 温度依存性試験結果
（5）熱老化特性試験
図 5－17に示す結果より，使用期間 60 年相当の熱老化に対する圧縮及び引張剛性 の変化率は，圧縮剛性は＋5\％程度，引張剛性は－18\％程度となることが分かった。

図 5－17 熱老化特性試験結果
（6）速度依存性試験
図 5－18より，圧縮剛性の速度依存性試験について，「5．3．1（6）c．試験条件」に て設定した試験条件（ゴムの変形速度）を満足していることを確認した。また，結果のばらつきや変形速度が大きくなるにしたがい，剛性が低下する傾向が見られる が，一般に速度依存性は変形速度の増加により剛性が高くなることから，錘の落下距離が大きくなるにしたがって，錘切り離し時のわずかな回転力により錘衝突時に傾斜角が増えたことが要因と考えられ，速度依存性がないと判断した。

一方，引張剛性の速度依存性試験については，変形速度の増加に伴い剛性が高く なり，速度依存性があることを確認した。

なお，引張剛性の速度依存性試験において，ゴム支承の変形速度が圧縮側に対し て小さいが，圧縮側と同様の外力を負荷しており，ゴムの速度依存性により変形が抑制されたものと考えられる。

図 5－18 速度依存性試験結果

今回，引張剛性に関して，静的な引張剛性確認試験において低い剛性を示したこ と，また，速度依存性試験において速度依存性が発現したことについて，以下のと おり考察した。

一般に，ゴム支承のゴム（天然ゴム）材料単体に着目すると，天然ゴムは粘弾性材料であり速度依存性を有すること，また，圧縮側の剛性に対して引張側の剛性が小さいことが知られている。
＞「5．3．3（1）圧縮／引張剛性確認試験」において，圧縮剛性に対して引張剛性 が小さくなったことについては，ゴム支承においてもゴム材料自体の性質が表 れたものと考えられる。
＞また，鉛直剛性を算出する際の一次形状係数は，ゴム 1 層当たりの拘束面積及 びゴム 1 層当たりの自由面積から求められ，ゴムの拘束による影響を定性的に

評価する指標である。一次形状係数が小さい場合に速度依存性を示すことが報告されている（図5－19 参照）。一次形状係数が小さいほどゴム支承の鉛直剛性 も小さくなり，このときゴム材料自体が持つ速度依存性を有する特性が顕著に表れるものと考えられる。

「5．3．3（6）速度依存性試験」において，圧縮側については，一次形状係数が図 5－19に比べて大きい（ $\mathrm{S}_{1}=8.33$ ）ため，ゴム材料自体の特性が出にくく，今回の試験範囲において速度依存性が見られない結果となったと考えられる。一方，引張側については，静的な引張剛性確認試験において圧縮剛性に対して引張剛性が小さかったことにより，ゴム材料自体が持つ速度依存性を有する特性が発現したものと考えられる。

図 5－19 拘束が小さいゴム支承の鉛直（圧縮）剛性の振動数依存性＊
（注記＊：免震用積層ゴムハンドブック，（社）日本ゴム協会，理工図書 より抜粋。図－1 の一次形状係数 $\mathrm{S}_{1}=4$ の場合は，鉛直剛性が準静的に対し 1.0 Hz で約 5% 増加し，図－2の一次形状係数 $\mathrm{S}_{1}=3.2$ の場合は，鉛直剛性が準静的に対 し 1.0 Hz で約 30% 増加している。）
5.4 せん断及び鉛直剛性に係る各種試験結果を踏まえた剛性の設定

竜巻防護ネットの衝突解析においては，設置許可段階で実施したせん断剛性の各種依存性試験及び鉛直剛性に係る特性試験結果より得られたばらつきについて，飛来物衝突解析に反映し，剛性のばらつきを考慮したケースにおいても竜巻防護ネットの構造健全性が損なわれないことを確認する。適用するばらつきの設定方針を以下に示す。
（1）せん断剛性
各種依存性試験結果を適用し，道路橋支承便覧から求める設計値（ $3.33 \mathrm{kN} / \mathrm{mm}$ ） に対するばらつきをプラス側とマイナス側それぞれ考慮する。せん断剛性のばらつ きを表5－12に示す。

なお，試験結果については，「補足－600－12 竜巻防護ネットの耐震構造設計（支承構造）についての補足説明資料」に示す。

表 5－12 せん断剛性のばらつき設定

項目	変化率	
	剛性変化（＋側）	剛性変化（一側）
基準値 $(\mathrm{kN} / \mathrm{mm})$	3.33	3.33
繰返し数依存性	-	-10%
温度依存性	$+25 \%$	-5%
熱老化依存性	$+10 \%$	-
初期ばらつき	$+10 \%$	-10%
積算値	$+45 \%$	-25%
考慮する ばらき範囲	$+50 \%$	-30%
ばらつきを 考慮した剛性値 $(\mathrm{kN} / \mathrm{mm})$	5.00	2.33

（2）鉛直剛性
「5．3．3 試験結果」の試験結果を踏まえ，圧縮剛性については，道路橋支承便覧 から求める設計値（ $972 \mathrm{kN} / \mathrm{mm}$ ）と同程度の剛性であることを確認したことから，せ ん断剛性と同様に，設計値に対するばらつきをプラス側とマイナス側それぞれ考慮 する。また，引張剛性については，圧縮剛性とは異なる特性が試験により得られた ことから，これらを包含するようなばらつき範囲を設定する。具体的には，「5．3．3（1）圧縮／引張剛性確認試験」の引張剛性試験において，低い剛性を示したことから， マイナス側は，この静的な引張剛性試験結果を踏まえたばらつきを考慮する。また，

「5．3．3（6）速度依存性試験」において，静的な引張剛性試験結果より大きい剛性 を示したことを踏まえ，プラス側は速度依存性試験結果を踏まえたばらつき考慮す る。鉛直剛性のばらつきを表5－13に示す。

表 5－13 鉛直剛性のばらつき設定

項目	変化率			
	剛性変化（＋側）		剛性変化（一側）	
	圧縮剛性	引張剛性	圧縮剛性	引張剛性
基準値（ $\mathrm{kN} / \mathrm{mm}$ ）	972＊1	1130＊2	972＊1	171＊3
初期ばらつき＊4	＋30\％	＋30\％	－30\％	－30\％
せん断ひずみ依存性	－	－	－15\％	－
繰返し数依存性	－	－	－10\％	－15\％
温度依存性	＋30\％	＋15\％	－10\％	-5%
熱老化特性	＋5\％	－	－	－20\％
積算値	＋65\％	＋45\％	－65\％	－70\％
$\begin{gathered} \text { 考慮する } \\ \text { ばらき範囲 } \\ \text { (剛性値 }(\mathrm{kN} / \mathrm{mm}) \text {) } \end{gathered}$	$\begin{gathered} +70 \% \\ (1660) \end{gathered}$	$\begin{gathered} +50 \% \\ (1700) \end{gathered}$	$\begin{gathered} -70 \% \\ (291) \end{gathered}$	$\begin{gathered} -75 \% \\ (42.7) \end{gathered}$
ばらつきを考慮した剛性値 （ $\mathrm{kN} / \mathrm{mm}$ ）	$1700 * 5$		42． $7^{* 6}$	

注記＊1：設計条件における基本ケースの剛性値（道路橋支承便覧に基づく設計値）
＊2：速度依存性試験において剛性が大きく上昇したことから，得られた結果を基準値として考慮する。具体的には，J I S K 6 4 1 1 に規定されている標準試験体により試験を実施していることを踏まえ，以下のとおり，速度依存性試験結果から得られた剛性の増加割合を実機ゴム支承の鉛直剛性の設計値に乗じ，これを基準値として設定する。
（実機ゴム支承の鉛直剛性の設計値（表 5－1 参照））
\times（ J I S 標準試験体による引張剛性の速度依存性試験結果の平均値（図 5－18参照））
（J I S 標準試験体の鉛直剛性の設計値（図 5－12参照））
$=972 \times \frac{1338}{1152}$
$=1128 \fallingdotseq 1130(\mathrm{kN} / \mathrm{mm})$
＊ 3 ：引張剛性試験結果において低い剛性を示したことから，得られた結果を基準値として考慮 する。具体的には，剛性変化（＋側）と同様の考え方により以下のとおり設定する。
（実機ゴム支承の鉛直剛性の設計値（表 5－1参照））
$\times \frac{(\mathrm{J} \text { I S 標漼試験体による引張剛性試験結果の平均値（図 5－12 参照））}}{(\mathrm{J} \text { I S 標準試験体の鉛直剛性の設計値（図 5－12 参照））}}$
$=972 \times \frac{202.9}{1152}$
$=171.1 \fallingdotseq 171(\mathrm{kN} / \mathrm{mm})$
＊4：5． 2 項に示す初期ばらつきを考慮する。
＊5：圧縮剛性及び引張剛性について，それぞれの基準値にばらつきを考慮した場合の剛性が大 きい方を考慮する。
＊6：圧縮剛性及び引張剛性について，それぞれの基準値にばらつきを考慮した場合の剛性が小 さい方を考慮する。
（3）衝突解析におけるゴム支承の剛性設定
以上を踏まえ，竜巻防護ネットの構造強度評価（衝突解析）におけるゴム支承の剛性の基本ケース及び不確かさケースについて表 5－14に示す。

表 5－14 衝突解析におけるゴム支承の剛性値

	剛性値（kN／mm）		
	基本ケース	不確かさケース	
		剛性変化（＋側）	剛性変化（－側）
せん断剛性	3.33	5.00	2.33
鉛直剛性	972	1700	42.7
備考	道路橋支承便覧に基づく設計値	各種依存性試験を踏まえたばらつきを考慮した値	

6．衝突解析における解析モデルの設定
設置許可段階での説明事項（別紙 3 参照）を踏まえ，衝突解析における解析モデル及 び評価ケースの設定方針を整理する。評価ケースの設定に当たつては，「原子力発電所 の竜巻影響評価ガイド」を踏まえ，飛来物の衝突する方向が安全側の設計となるように設定する。また，前章までに説明した衝突解析におけるゴム支承の剛性設定を踏まえ，代表的な評価ケースに対して構造成立性を確認したうえで，設定した基本ケース及び不確かさケースに対する評価結果を7章に示す。

解析モデル及び評価ケースの設定に当たつては，竜巻防護ネットが先行プラントと異 なり支持部材に支承構造を採用していることを踏まえて設定する。具体的には，飛来物 の衝突を考慮する部材の検討，構造及び荷重伝達経路を考慮して飛来物衝突により影響 を受ける部材の検討を踏まえて，飛来物の衝突位置及び評価対象部位を設定する。また，各評価ケースにおける衝突解析結果を踏まえて，ゴム支承の剛性の不確かさ及び飛来物 の姿勢の不確かさの影響について評価する。なお，長辺衝突の場合，短辺衝突時に比べ て飛来物の受ける風の抵抗が大きく，飛来物衝突速度は低くなると考えられるが，保守的に短辺衝突と同様の飛来速度にて，飛来物全面が被衝突物に衝突するものとする。
（1）飛来物の衝突を考慮する部材の検討
竜巻防護ネットの構造や周辺構造物の配置を踏まえて，飛来物が衝突しうる部材 を設定する。
＞南北方向の飛来物衝突に関して，北側については防潮壁が近接していること から飛来物衝突を考慮しない。
＞東西方向の飛来物衝突に関して，西側は原子炉建屋，東側は防潮壁が近接して いるが，保守的に飛来物衝突を考慮する。なお，竜巻防護ネットの対称性から，代表して西側からの飛来物衝突を考慮する。
＞鉛直方向の飛来物衝突に関して，竜巻防護ネットの対象性から，代表して西側 のフレーム 2 基への飛来物衝突を考慮する。
以上を踏まえ，支持部材のらち飛来物が衝突しらる部材としては，フレームのらち主桁，横補強材及びブレース並びに大梁が考えられるが，ブレースはネットの上部に設置しており，ネットの吸収エネルギ評価及び破断評価に包含されるため，主桁，横補強材及び大梁を対象とする。
（2）飛来物衝突により影響を受ける部材（評価対象）の検討
支持部材を構成する主桁，横補強材，大梁，フレームゴム支承，大梁ゴム支承，可動支承を評価対象とし，a．項に示した部材に飛来物が衝突した際の荷重の伝達経路 を考慮して評価ケースを設定する。

6． 1 解析モデル
衝突解析は，解析コード「LS－DYNA」による非線形時刻歴解析により実施した。
（1）解析モデル
衝突解析における解析モデルは，図6－1に示すフレーム配置を踏まえ，図 6－2 に示す解析モデルとする。飛来物，フレーム及び大梁の各部材はシェル要素でモ デル化し，ゴム支承はばね要素にてモデル化する。また，防護板はその質量を設置しているフレームに考慮する。

図6－1 フレーム配置図

図 6－2 解析モデル図
（2）飛来物諸元
飛来物諸元を表6－1 に示す。

表 6－1 飛来物諸元

	鋼製材
寸法 (m)	$4.2 \times 0.3 \times 0.2$
質量 (kg)	135
水平方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	46.6
鉛直方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	16.7

（3）荷重条件
自重，風圧力及び飛来物の衝撃荷重を考慮する。また，接触条件として飛来物と被衝突物の間の摩擦を考慮し，減衰に関しては考慮しないこととした。
（4）拘束条件
ゴム支承及び可動支承の拘束条件を表 6－2 に示す。

表6－2 拘束条件

方向	ゴム支承（剛性値（ $\mathrm{kN} / \mathrm{mm}$ ））						可動支承
	フレームゴム支承			大梁ゴム支承			
	$\begin{aligned} & \text { 基本 } \\ & \text { ケース } \end{aligned}$	剛性変化 (+ 側)	剛性変化 （一側）	$\begin{aligned} & \text { 基本 } \\ & \text { ケース } \end{aligned}$	剛性変化 (+ 側)	剛性変化 （一側）	
X	3.33	5.00	2.33	3.33	5.00	2.33	自由
Y	3.33	5.00	2.33	3.33	5.00	2.33	拘束
Z	972	1700	42.7	972	1700	42.7	拘束

（5）材料物性等
a．材料定数
飛来物及び竜巻防護ネットの材料定数を表 6－3に示す。
材料定数は，「発電用原子力設備規格設計•建設規格 J S M E S N C 1－ 2005／2007」に基づき設定する。

表 6－3 材料定数

	材質	降伏応力 $\sigma \mathrm{y}$ (MPa)	縦弾性係数 E (MPa)
飛来物 $($ 鋼製材 $)$	SS 400 $(\mathrm{t} \leqq 16)$	245	202000
竜巻防護ネット （フレーム及び大梁）	SM 490 $(16<\mathrm{t} \leqq 40)$	315	202000

b．材料の応力ーひずみ関係
材料の応力ーひずみ関係は，バイリニア型とする。
材料に適用する応力ーひずみ関係の概念図を図6－3 に示す。

図 6－3 応力ーひずみ関係の概念図
c．ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響をCowper－Symonds 式により考慮する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}$
ここで，σ_{D} は動的応力，$\sigma \mathrm{s}$ は静的応力，$\dot{\varepsilon}$ はひずみ速度，C及び p はひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表6－4に示す。

表 6－4 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム及び大梁）	
材質	SS 400	$\mathrm{SM490}$	
$\mathrm{C}(1 / \mathrm{s})$			
p			

d．破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。

6.2 評価ケース（基本ケース）の設定

6．（1）及び（2）項を踏まえ，竜巻防護ネットの支持部材の衝突解析における評価ケー スを設定した。表6－5に評価ケースを示す。また，飛来物衝突位置を示した解析モデ ル図を図 6－4に示す。表6－5に示す評価ケースを基本ケースとし，評価結果について は「VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書」及び 7.1 項にて説明する。

表 6－5							評価ケース
a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承は基礎ボル トにて海水ポンプ室躯体 に固定されている。南側 は可動支承及び大梁によ り支持されており，大梁 は大梁ゴム支承により支持され，ゴム支承は基礎 ボルトにて海水ポンプ室躯体に固定されている。 また，2 つの主桁は横補強材により連結している。 【荷重伝達経路】北側：主桁 \Rightarrow フレームゴ ム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 南側：主桁 \Rightarrow 可動支承 \Rightarrow大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 また，水平方向衝突によ る西側主桁から東側主桁 への荷重伝達は，横補強材を経由する。	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮する。ただし，設置許可段階 で実施した同様の評価において最もひ ずみの発生値が大きかったこと，また， 4 章に示した詳細設計段階における設計進捗が衝突解析に与える影響は軽微で あると考えられることを踏まえて，代表 してケースG1－EW－3を評価ケースとして選定する。（以下，フレーム G1 への飛来物衝突に関して，設置許可段階の結果 を踏まえて，同様に代表ケースを選定す る。）	G1－EW－1	端部 （南側）	$\begin{gathered} \hline \text { 水平 } \\ E W \end{gathered}$	（別紙3（5）水平（EW）－ 1 に対応）
				G1－EW－2	中央	$\begin{gathered} \hline \text { 水平 } \\ \mathrm{EW} \end{gathered}$	$\begin{aligned} & \text { (別紙3 (6)水平 (EW) - } \\ & 2 \text { に対応) } \end{aligned}$
				G1－EW－3	端部 （北側）	$\begin{gathered} \hline \text { 水平 } \\ \mathrm{EW} \end{gathered}$	（別紙3 7 水平（EW）－ 3 に対応）
				G1－NS－1	端部	$\begin{gathered} \text { 水平 } \\ \text { NS } \end{gathered}$	（別紙 3 1 に対応） （4）水平（NS）－
				G1－V－1	端部 （南側）	鉛直	（別紙3（1）鉛直－1に対応）
				G1－V－2	中央	鉛直	（別紙 3対応） （2）鉛直－2に
				G1－V－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直	（別紙3（3）鉛直－3に対応）
		横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮する。 なお，飛来物が主桁に衝突後，主桁の変形に追従して横補強材が変形すること により，横補強材にひずみが生じると考 えられるが，鉛直衝突に対しては，主桁 の強軸曲げであり，曲げ剛性が高く変形 が生じにくいことから，横補強材には有意なひずみが生じないと考えられるた め，鉛直衝突は対象外とする。	G1－EW－1	端部 （南側）	$\begin{gathered} \text { 水平 } \\ \text { EW } \end{gathered}$	－
				G1－EW－2	中央	水平 EW	－
				G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	$\begin{gathered} \text { 水平 } \\ E W \end{gathered}$	－

4. 1-61

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 2) \end{gathered}$	主桁（フレームG1）と同様	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮するが，主桁自身の仕様はフ レームG1と同じため，G1の評価に包絡 される。	－	－	－	－
		横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮するが，G2 には隣接するフレームが配置されていることから対象となる評価 ケースは無い。 なお，鉛直衝突に対しては，主桁の方が十分に曲げ剛性が高く，横補強材には有意な荷重が伝達されないと考えられる ため対象外とする。	－	－	－	－
		大梁	大梁に対しての影響を確認するため，大梁に近い位置で衝突荷重が集中するよ ら，可動支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。 また，大梁の曲げモーメントが大きくな るように，大梁中央に近い方の東側主桁 に衝突させる。	G2－NS－1	端部	水平 NS	－
				G2－V－1	$\begin{aligned} & \text { 端部 } \\ & \text { (南側) } \end{aligned}$	鉛直	－

4．1－62

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 2) \end{gathered}$	主桁（フレームG1）と同様	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	フレームゴム支承に対しての影響を確認するため，フレームゴム支承に近い位置で衝突荷重が集中するよう，フレーム ゴム支承近傍の主桁端部への鉛直方向 の衝突を考慮する。	G2－V－2	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直	－
		大梁ゴム 支承	大梁ゴム支承に対しての影響を確認す るため，大梁に近い位置で衝突荷重が集中するよう，可動支承近傍の主桁端部へ の水平／鉛直方向の衝突を考慮する。	G2－NS－1	端部	$\begin{gathered} \text { 水平 } \\ \text { NS } \end{gathered}$	－
				G2－V－1	端部 （南側）	鉛直	－
		可動支承	可動支承に対しての影響を確認するた め，可動支承に近い位置で衝突荷重が集中するよう，可動支承近傍の主桁端部へ の水平／鉛直方向の衝突を考慮する。	G2－NS－1	端部	水平 NS	－
				G2－V－1	端部 （南側）	鉛直	－

4．1－63

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 横補強材 } \\ \text { (フレームG2) } \end{gathered}$	【構造】 横補強材は主桁に取り付 いている。 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承は基礎ボル トにて海水ポンプ室躯体 に固定されている。南側 は可動支承及び大梁によ り支持されており，大梁 は大梁ゴム支承により支持され，ゴム支承は基礎 ボルトにて海水ポンプ室躯体に固定されている。 また，2 つの主桁は横補強材により連結している。 【荷重伝達経路】北側：横補強材 \Rightarrow 主桁 \Rightarrow フレームゴム支承 \Rightarrow 基礎 ボルト \Rightarrow 海水ポンプ室躯体 南側：横補強材 \Rightarrow 主桁 \Rightarrow可動支承 \Rightarrow 大梁 \Rightarrow 大梁ゴ	主桁	横補強材への衝突により，主桁へ伝達さ れる荷重は両側の主桁に分散されるた め，主桁衝突時の主桁評価に包絡され る。	－	－	－	－
		横補強材	横補強材自身への影響については，横補強材の上フランジが BRL式による貫通限界板厚以上であることを確認する。	－	－	－	－
			大梁に対しての影響を確認するため，大	G2－V－3	中央	鉛直	－
			衝突を考慮する。	G2－V－4	端部	鉛直	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	フレームゴム支承に対しての影響を確認するため，フレームゴム支承近傍に位置する横補強材への水平／鉛直方向の衝突を考慮する。	G2－V－5	中央	鉛直	－
				G2－V－6	端部	鉛直	－
		$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	大梁に対しての影響を確認するため，大梁に近い，可動支承近傍の横補強材への衝突を考慮する。	G2－V－3	中央	鉛直	－
				G2－V－4	端部	鉛直	－
		可動支承	可動支承に対しての影響を確認するた め，可動支承近傍に位置する横補強材へ の鉛直方向の衝突を考慮する。	G2－V－3	中央	鉛直	－
				G2－V－4	端部	鉛直	－

4．1－64

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
大梁	【構造】 大梁は大梁ゴム支承を介 して基礎ボルトにて海水 ポンプ室躯体に固定され ている。 【荷重伝達経路】 大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体	主桁	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		横補強材	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		大梁	大梁自身への影響については，BRL 式に よる貫通限界板厚以上であることを確認する。	－	－	－	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
				$B-V-1$	中央	鉛直	－
				B－V－2	端部	鉛直	－
		可動支承	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－

4．1－65

（主桁への飛来物衝突）

（横補強材への飛来物衝突）

[^1]（大梁への飛来物衝突）

図 6－4 飛来物衝突位置図
6.3 構造成立性の確認及び不確かさケースの設定
（1）構造成立性の確認
前項で整理した評価ケースのうち，設置許可段階で評価結果が厳しくなることが明らかとなった（別紙 3 参照），フレームゴム支承及び可動支承を対象として，構造健全性を確認する。確認に当たつては，ゴム支承の剛性のばらつき及び飛来物の衝突姿勢による影響も考慮する。
a．解析ケース
解析ケースを表6－6に示す。衝突位置及び衝突方向は，設置許可段階でフレーム ゴム支承及び可動支承の評価結果が厳しかった，図6－5 に示す位置及び方向とする。

表 6－6 解析ケース

No．	評価ケース	ゴム支承剛性値		飛来物の衝突条件			
		水平剛性 （kN／mm）	鉛直剛性 （ $\mathrm{kN} / \mathrm{mm}$ ）	衝突位置	衝突 姿勢	衝突 方向	衝突速度 （m／s）
1	G1-V-3 －基本	3.33	972	$\begin{aligned} & \text { 主桁 } \\ & \text { (フレームゴ } \\ & \text { ム支承近傍) } \end{aligned}$	短辺	鉛直	16． 7
2	$\begin{array}{\|l\|} \hline \text { G1-V-3 } \\ \text {-不確かさ(+) } \end{array}$	5.00	1700				
3	$\begin{array}{\|l\|} \hline \text { G1-V-3 } \\ \text {-不確かさ(-) } \end{array}$	2.33	42.7				
4	G1-EW-3 －基本	3.33	972			水平	46.6
5	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-不確かさ(+) } \end{array}$	5.00	1700				
6	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-不確かさ(-) } \end{array}$	2． 33	42.7				
7	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-基本 } \end{array}$	3.33	972	主桁 （可動支承近傍）	短辺	水平	46.6
8	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-不確かさ (+) } \\ \hline \end{array}$	5.00	1700				
9	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-不確かさ(-) } \end{array}$	2． 33	42.7				
10	$\begin{array}{\|l} \hline \text { G1-V-1 } \\ \text {-基本 } \end{array}$	3.33	972				
11	$\begin{array}{\|l\|} \hline \text { G1-V-1 } \\ \text {-不確かさ(+) } \end{array}$	5.00	1700			鉛直	16.7
12	$\begin{array}{\|l\|} \hline \text { G1-V-1 } \\ \text {-不確かさ(-) } \end{array}$	2． 33	42.7				
13	G1－V－3 －長辺	3.33	972	$\begin{aligned} & \text { 主桁 } \\ & \text { (フレームゴ } \\ & \text { ム支承近傍) } \end{aligned}$	長辺	鉛直	16.7
14	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-長辺 } \end{array}$					水平	46.6
15	$\begin{array}{\|l} \hline \text { G1-EW-1 } \\ \text {-長辺 } \\ \hline \end{array}$			主桁 （可動支承近傍）			
16	G1－V－1 －長辺					鉛直	16.7

（ゴム支承の剛性のばらつきによる不確かさの影響確認）

（飛来物の衝突姿勢による不確かさの影響確認）

図6－5 飛来物衝突位置及び衝突方向
b．解析結果
（a）基本ケースにおける構造成立性及びゴム支承の剛性のばらつきによる影響基本ケース及びゴム支承の剛性のばらつきによる影響を考慮した解析ケースに対する，フレームゴム支承の衝突解析結果を表6－7に，可動支承の衝突解析結果 を表6－8にそれぞれ示す。全ての解析ケースにおいて，フレームゴム支承及び可動支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足 することを確認した。また，ゴム支承の剛性のばらつきによる影響は比較的軽微 であると考えられる。

表 6－7 フレームゴム支承の衝突解析結果

評価対象部位		評価項目	No． 1発生値		No． 2 発生値		No． 3 発生値		No． 4 発生値		No． 5発生値		No． 6 発生値		許容値	
		西側	東側													
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体		応力度 （引張）	0.7	0.5	0.6	0.4	0.2	0.2	0.4	0.3	0.4	0.3	0.2	0.2	2．0 MPa
		せん断 ひずみ	60	66	40	44	85	94	65	70	44	48	91	99	250 \％	
		応力度 （圧縮）	2	1	2	1	1	1	1	1	1	1	1	1	23 MPa	
	内部鋼板	応力度 （引張）	22	11	22	11	11	11	11	11	11	11	11	11	280 MPa	
	取付 ボルト	応力度 （組合せ）	72	94	75	97	70	73	88	88	93	90	71	76	420 MPa	
	基礎 ボルト	応力度 （組合せ）	59	55	60	57	45	48	54	56	57	58	48	51	257 MPa	

表 6－8 可動支承の衝突解析結果

評価対象部位		評価項目	No． 7		No． 8		No． 9		No． 10		No． 11		No． 12		許容値	
		発生値	発生値													
		西側	東側													
可動支承	構造部材		水平荷重	1275	726	1249	752	1316	721	596	378	587	390	621	379	2900 kN
			鉛直荷重 （圧縮）	364	269	372	265	332	268	629	110	701	101	735	150	5600 kN
		鉛直荷重 （引張）	442	420	356	419	448	322	319	198	397	192	272	253	1800 kN	

（b）飛来物の衝突姿勢に対する影響
基本ケース及び飛来物の衝突姿勢に対する影響を考慮した解析ケースに対する， フレームゴム支承の衝突解析結果を表 6－9に，可動支承の衝突解析結果を表6－10 にそれぞれ示す。全ての解析ケースにおいて，フレームゴム支承及び可動支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足すること を確認した。なお，ゴム支承に対しては衝突姿勢を長辺衝突とした場合の影響は軽微であったが，可動支承に対しては与える影響が大きい傾向が見られた。

長辺衝突では，短辺衝突に対して荷重作用面が大きいため飛来物の局部に作用 する荷重は小さく，また，細長比が小さいことから，飛来物の圧壊に対する強度 が高く，衝突時エネルギ消費がないため，被衝突物に伝達される荷重が大きくな ったものと考えられる。また，図6－6に示すとおり，ゴム支承に対しては，支承 の配置上，支承の設置位置と飛来物の衝突位置の中心が合わないことにより，飛来物の衝突によるエネルギは支承部に集中せず分散したと考えられる。一方，可動支承に対しては，影響が大きくなるよう支承の設置位置と飛来物の衝突位置の中心を合わせていることで，飛来物の衝突によるエネルギが支承部に十分に伝達 され，支承部に与える影響が大きくなったと考えられる。

図 6－6 飛来物衝突位置の概要（長辺衝突）

表 6－9 フレームゴム支承の衝突解析結果

評価対象部位		評価項目	No． 1 発生値		No． 13		No． 4		No． 14		許容値	
		発生値	発生値		発生値		発生値					
		西側	東側	西側	東側	西側	東側	西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体		応力度（引張）	0.7	0.5	0.5	0.4	0． 4	0.3	0． 4	0.6	2.0 MPa
			せん断ひずみ	60	66	60	66	65	70	64	70	250 \％
		応力度（圧縮）	2	1	1	1	1	1	1	1	23 MPa	
	内部鋼板	応力度（引張）	22	11	11	11	11	11	11	11	280 MPa	
	取付ボルト	応力度（組合せ）	72	94	95	91	88	88	93	109	420 MPa	
	基礎ボルト	応力度（組合せ）	59	55	54	54	54	56	56	62	257 MPa	

表 6－10 可動支承の衝突解析結果

評価対象部位		評価項目	No． 7 発生値		No． 15 発生値		$\text { No. } 10$ 発生値		$\text { No. } 16$ 発生値		許容値	
		発生値	発生値		発生値		発生値					
		西側	東側	西側	東側	西側	東側	西側	東側			
可動支承	構造部材		水平荷重	1275	726	2792	1689	596	378	816	451	2900 kN
			鉛直荷重（圧縮）	364	269	843	590	629	110	3156	451	5600 kN
		鉛直荷重（引張）	442	420	718	715	319	198	1629	438	1800 kN	

c．不確かさケースの設定
構造成立性の結果を踏まえ，表6－5にて整理した基本ケースに対して，ゴム支承 の剛性のばらつきによる影響及び飛来物の衝突姿勢による影響をそれぞれ確認する。
（a）ゴム支承の剛性のばらつきによる影響評価（不確かさケース（1））
ゴム支承の剛性の変化が評価に与える影響が大きいのは，支承部の評価に対し てであると考えられることから，フレームゴム支承及び可動支承部の評価に対し て，ゴム支承の不確かさ（剛性のばらつき）による影響を確認する。結果につい ては，「6．3（1）b．（a）基本ケースにおける構造成立性及びゴム支承の剛性のばら つきによる影響」より，各種依存性試験を踏まえたゴム支承の剛性のばらつきを考慮しても，基本ケースに対する影響は軽微であったものの，他の基本ケースの結果を踏まえ，支承部近傍への衝突ケース及び支承部の裕度が小さいケースに対 して，影響評価を実施することとする。
（b）飛来物の衝突姿勢による影響評価（不確かさケース（2））
竜巻防護ネットの構造や周辺構造物の配置関係を踏まえると，飛来物の長辺衝突が起こり得る可能性は低いと考えられるが，「6．3（1）b。（b）飛来物の衝突姿勢 に対する影響」より，飛来物の衝突する位置によっては与える影響が大きい傾向 が見られることから，基本ケースに対して長辺衝突し得るケースについては，飛来物衝突姿勢の不確かさによる影響を確認することとする。

不確かさケースの選定の考え方を表6－11に示す。

表 6－11 不確かさケースの選定の考え方（1／3）

a．飛来物衝突部材	b．評価対象	基本ケース			不確かさケース（1） （剛性のばらつき）	不確かさケース（2） （飛来物衝突姿勢）
		ケース	衝突位置	衝突 方向		
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	主桁	G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	水平 EW	－＊1	評価実施
	横補強材	G1－EW－1	端部 （南側）	水平 EW		
		G1－EW－2	中央	水平 EW		
		G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	$\begin{gathered} \text { 水平 } \\ \text { EW } \end{gathered}$		
	大梁	G1－V－1	端部 （南側）	鉛直		
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \\ & \hline \end{aligned}$	水平 EW	評価実施＊${ }^{1}$	
		G1－V－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直		
	大梁ゴム 支承	G1－V－1	端部 （南側）	鉛直	評価実施＊${ }^{1}$	
	可動支承	G1－EW－1	端部 （南側）	水平 EW		
横補強材(フレームG1)	大梁	G1－V－4	中央	鉛直	－＊1	横補強材の上フラン ジの寸法が飛来物の長辺寸法未満であ り，衝突しないこと から，評価実施しな い
		G1－V－5	端部	鉛直		
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G1－V－6	中央	鉛直	評価実施＊${ }^{1}$	
		G1－V－7	端部	鉛直	－＊1	
	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G1－V－4	中央	鉛直		
		G1－V－5	端部	鉛直		
	可動支承	G1－V－4	中央	鉛直		
		G1－V－5	端部	鉛直		

注記＊ 1 ：基本ケース全体の結果を踏まえ，支承部近傍への衝突ケース及び支承部の裕度が小さいケースに対して評価を実施する。
＊2：飛来物が衝突しうる横補強材の上フランジ寸法（約 4300 mm ）と，飛来物長辺方向寸法（ 4200 mm ）がほぼ同等であるため，中央部の評価で代表する。

表 6－11 不確かさケースの選定の考え方（2／3）

小さいケースに対して評価を実施する。
＊2：飛来物が衝突しうる横補強材の上フランジ寸法（約 4300 mm ）と，飛来物長辺方向寸法（ 4200 mm ）がほぼ同等であるため，中央部の評価で代表する。

表 6－11 不確かさケースの選定の考え方（3／3）

a．飛来物衝突部材	b．評価対象	基本ケース			不確かさケース（1） （剛性のばらつき）	不確かさケース（2） （飛来物衝突姿勢）
		ケース	衝突位置	衝突 方向		
大梁	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	$B-V-1$	中央	鉛直		評価実施
		$B-V-2$	端部	鉛直	－＊1	横補強材の上フラン ジの寸法が飛来物の長辺寸法未満であ り，衝突しないこと から，評価実施しな い

注記＊ 1 ：基本ケース全体の結果を踏まえ，支承部近傍への衝突ケース及び支承部の裕度が小さいケースに対して評価を実施する。
＊2：飛来物が衝突しうる横補強材の上フランジ寸法（約 4300 mm ）と，飛来物長辺方向寸法（ 4200 mm ）がほぼ同等であるため，中央部の評価で代表する。

7．評価結果

6 章にて設定した基本ケース及び不確かさケースに対する評価結果を示す。また，詳細設計段階への申送り事項への対応として，飛来物衝突時の上向き反力に対してフレー ムが浮き上がるような損傷モードが発生しないことを確認する。具体的には，基本ケー ス及び不確かさケースの評価結果において，フレームゴム支承のゴム本体の引張に対し て十分な構造強度を有していることを網羅的に確認する。

7．1 基本ケースに対する評価結果

基本ケースの評価結果を表7－1に示す。
全ての解析ケースにおいて，支持部材に発生するひずみ，応力等は許容限界を超え ず，構造強度上の評価方針を満足することを確認した。

表 7－1 基本ケースの評価結果（1／6）

評価対象部位		評価項目	評価ケース	発生値 （ - ）	許容限界 （ - ）
フレーム	主桁	ひずみ	G1－EW－3		
	横補強材	ひずみ	G1－EW－1		
			G1－EW－2		
			G1－EW－3		
	大梁	ひずみ	G1－V－1		
			G1－V－4		
			G1－V－5		
			G2－NS－1		
			G2－V－1		
			G2－V－3		
			G2－V－4		

注記＊：下線部は発生値最大を示す。

表 7－1 基本ケースの評価結果（2／6）

評価対象部位		評価項目	評価ケース	発生値		許容限界	
		西側		東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体		引張応力	G1－EW－3	0.4	0.3	2．0 MPa
		G1－V－3		0.7	0.5		
		G1－V－6		1.1	1.1		
		G 1－V－7		0.7	0.5		
		G2－V－2		0.6	0.7		
		G2－V－5		1.0	0.9		
		G2－V－6		0.7	0.7		
		せん断 ひずみ	G1－EW－3	65	$\underline{70}$	250 \％	
			G1－V－3	60	66		
			G1－V－6	60	66		
			G1－V－7	60	66		
			G2－V－2	45	53		
			G2－V－5	45	53		
			G2－V－6	45	53		
		圧縮応力	G1－EW－3	1	1	23 MPa	
			G1－V－3	2	1		
			G1－V－6	2	2		
			G1－V－7	2	1		
			G2－V－2	2	1		
			G2－V－5	1	2		
			G2－V－6	$\underline{2}$	1		

注記＊：下線部は発生値最大を示す。

表 7－1 基本ケースの評価結果（3／6）

評価対象部位		評価項目	評価ケース	発生値 （MPa）		許容限界 （MPa）	
		西側		東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	内部鋼板		引張応力	G1－EW－3	11	11	280
		G1－V－3		22	11		
		G1－V－6		22	22		
		G1－V－7		22	11		
		G2－V－2		22	11		
		G2－V－5		11	22		
		G2－V－6		$\underline{22}$	11		
	取付ボルト	組合せ応力	G1－EW－3	88	88	420	
			G1－V－3	72	94		
			G1－V－6	81	84		
			G1－V－7	72	$\underline{95}$		
			G2－V－2	60	66		
			G2－V－5	72	74		
			G2－V－6	63	67		
	基礎ボルト	組合せ応力	G1－EW－3	54	56	257	
			G1－V－3	59	55		
			G1－V－6	69	$\underline{71}$		
			G1－V－7	59	56		
			G2－V－2	50	54		
			G2－V－5	61	62		
			G2－V－6	52	55		

注記＊：下線部は発生値最大を示す。

表 7－1 基本ケースの評価結果（4／6）

評価対象部位		評価項目	評価ケース	発生値	許容限界
$\begin{gathered} \text { 大梁 } \\ \text { ゴム支承 } \end{gathered}$	ゴム本体	引張応力	G1－V－1	0.2	2．0 MPa
			G1－V－4	0． 2	
			G1－V－5	0.1	
			G2－NS－1	0	
			G2－V－1	0	
			G2－V－3	0	
			G2－V－4	0	
			B－V－1	0.2	
			B－V－2	0.2	
		せん断 ひずみ	G1－V－1	64	250 \％
			G1－V－4	64	
			G1－V－5	64	
			G2－NS－1	65	
			G2－V－1	64	
			G2－V－3	64	
			G2－V－4	64	
			B－V－1	64	
			B－V－2	64	
		圧縮応力	G1－V－1	1	23 MPa
			G1－V－4	1	
			G1－V－5	1	
			G2－NS－1	1	
			G2－V－1	1	
			G2－V－3	1	
			G2－V－4	1	
			B－V－1	1	
			B－V－2	1	

注記＊：下線部は発生値最大を示す。

表 7－1 基本ケースの評価結果（5／6）

評価対象部位		評価項目	評価ケース	発生値 （MPa）	許容限界 （MPa）
$\begin{gathered} \text { 大梁 } \\ \text { ゴム支承 } \end{gathered}$	内部鋼板	引張応力	G1－V－1	11	280
			G1－V－4	11	
			G1－V－5	11	
			G2－NS－1	11	
			G2－V－1	11	
			G2－V－3	11	
			G2－V－4	11	
			B－V－1	11	
			B－V－2	11	
	取付ボルト	組合せ応力	G1－V－1	72	420
			G1－V－4	76	
			G1－V－5	72	
			G2－NS－1	61	
			G2－V－1	61	
			G2－V－3	61	
			G2－V－4	61	
			B－V－1	72	
			B－V－2	72	
	基礎ボルト	組合せ応力	G1－V－1	36	257
			G1－V－4	37	
			G1－V－5	36	
			G2－NS－1	31	
			G2－V－1	32	
			G2－V－3	32	
			G2－V－4	31	
			B－V－1	36	
			B－V－2	36	

注記＊：下線部は発生値最大を示す。

表 7－1 基本ケースの評価結果（6／6）

評価対象部位	評価項目	評価ケース	発生値 （kN）		許容限界 （kN）
			西側	東側	
可動支承	水平荷重	G1－EW－1	$\underline{1275}$	726	2900
		G1－V－4	883	850	
		G1－V－5	558	384	
		G2－NS－1	359	213	
		G2－V－1	391	285	
		G2－V－3	1011	881	
		G2－V－4	518	340	
	鉛直荷重 （圧縮）	G1－EW－1	364	269	5600
		G1－V－4	487	445	
		G1－V－5	577	231	
		G2－NS－1	53	22	
		G2－V－1	250	$\underline{641}$	
		G2－V－3	572	291	
		G2－V－4	194	413	
	鉛直荷重 （引張）	G1－EW－1	442	420	1800
		G1－V－4	519	563	
		G1－V－5	368	242	
		G2－NS－1	139	120	
		G2－V－1	264	369	
		G2－V－3	564	447	
		G2－V－4	248	272	

注記＊：下線部は発生値最大を示す。
7.2 不確かさケース（1）（ゴム支承の剛性のばらつきに対する影響）に対する評価結果不確かさケース（1）（ゴム支承の剛性のばらつきに対する影響）の評価結果を表 7－2及び表 7－3に示す。

全ての解析ケースにおいて，支持部材に発生するひずみ，応力等は許容限界を超え ず，構造強度上の評価方針を満足することを確認した。
表 7－2 不確かさケース（1）（ゴム支承剛性変化＋側）の評価結果まとめ

評価対象部位		評価項目	G1－EW－1		G1－EW－3		G1－V－1		G1－V－3		G1－V－6		発生値最大	許容限界
フレーム	主桁	ひずみ												
	横補強材	ひずみ												
大梁	大梁	ひずみ												
			西側	東側										
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体	引張応力	0.2	0.1	0.4	0.3	0.3	0．2	0.6	0.4	1.4	1.2	1． 4 MPa	2.0 MPa
		せん断ひずみ	40	45	44	48	40	44	40	44	40	44	48 \％	250 \％
		圧縮応力	1	1	1	1	1	1	2	1	2	2	2 MPa	23 MPa
	内部鋼板	引張応力	11	11	11	11	11	11	22	11	22	22	22 MPa	280 MPa
	取付ボルト	組合せ応力	72	76	93	90	78	76	75	97	103	97	103 MPa	420 MPa
	基礎ボルト	組合せ応力	47	50	57	58	49	49	60	57	87	80	87 MPa	257 MPa
大梁ゴム支承	ゴム本体	引張応力	0		0		0.2		0		0.1		0．2 2 MPa	2．0 MPa
		せん断ひずみ	46		44		43		43		43		46 \％	250 \％
		圧縮応力	1		1		1		1		1		1 MPa	23 MPa
	内部鋼板	引張応力	11		11		11		11		11		11 MPa	280 MPa
	取付ボルト	組合せ応力	66		60		79		58		68		79 MPa	420 MPa
	基礎ボルト	組合せ応力	34		31		39		30		34		39 MPa	257 MPa
可動支承		水平荷重	1249	752	529	329	587	390	447	215	394	234	1249 kN	2900 kN
		鉛直荷重（圧縮）	372	265	221	230	701	101	99	50	107	211	701 kN	5600 kN
		鉛直荷重（引張）	356	419	247	259	397	192	108	121	101	289	419 kN	1800 kN

表 7－3 不確かさケース（1）（ゴム支承剛性変化一側）の評価結果まとめ

評価対象部位		評価項目	G1－EW－1		G1－EW－3		G1－V－1		G1－V－3		G1－V－6		発生値最大	許容限界
フレーム	主桁	ひずみ												
	横補強材	ひずみ												
大梁	大梁	ひずみ												
			西側	東側										
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体	引張応力	0.1	0.1	0.2	0．2	0.2	0.1	0.2	0.2	0．2	0．2	0.2 MPa	2.0 MPa
		せん断ひずみ	85	94	91	99	85	94	85	94	85	94	99 \％	250 \％
		圧縮応力	0	0	1	1	1	1	1	1	1	1	1 MPa	23 MPa
	内部鋼板	引張応力	0	0	11	11	11	11	11	11	11	11	11 MPa	280 MPa
	取付ボルト	組合せ応力	64	70	71	76	67	71	70	73	70	72	76 MPa	420 MPa
	基礎ボルト	組合せ応力	44	47	48	51	44	47	45	48	45	48	51 MPa	257 MPa
大梁ゴム支承	ゴム本体	引張応力	0		0		0		0		0		0 MPa	2.0 MPa
		せん断ひずみ	96		91		91		91		91		96 \％	250 \％
		圧縮応力	1		1		1		1		1		1 MPa	23 MPa
	内部鋼板	引張応力	11		11		11		11		11		11 MPa	280 MPa
	取付ボルト	組合せ応力	64		60		61		61		61		64 MPa	420 MPa
	基礎ボルト	組合せ応力	31		29		30		31		30		31 MPa	257 MPa
可動支承		水平荷重	1316	721	520	365	621	379	458	191	478	198	1316 kN	2900 kN
		鉛直荷重（圧縮）	332	268	177	191	735	150	150	115	179	218	735 kN	5600 kN
		鉛直荷重（引張）	448	322	211	239	272	253	168	223	199	346	448 kN	1800 kN

7．3 不確かさケース（2）（飛来物の衝突姿勢に対する影響）に対する評価結果不確かさケース（2）（飛来物の衝突姿勢に対する影響）の評価結果を表7－4にそれぞ れ示す。

全ての解析ケースにおいて，支持部材に発生するひずみ，応力等は許容限界を超え ず，構造強度上の評価方針を満足することを確認した。なお，一部評価において破断 ひずみを超えるひずみが確認されたケースについても，全断面の破断に至らないこと を確認している。G1－EW－1 の長辺衝突による衝突解析結果を図7－1に示す。
表 7－4 不確かさケース（2）（飛来物長辺衝突）の評価結果まとめ（ $1 / 2$ ）

評価対象部位		評価項目	G1－EW－1		G1－EW－2		G1－EW－3		G1－NS－1		G1－V－1		G1－V－2		G1－V－3		G2－NS－1	
フレーム	主桁	ひずみ																
	横補強材	ひずみ																
大梁	大梁	ひずみ																
		\bigcirc	西側	東側														
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体	引張応力	0.4	0.3	0.5	0.5	0.4	0.6	0.2	0.2	0.3	0.2	0.4	0.3	0.5	0.4	0.3	0.2
		せん断ひずみ	60	66	62	68	64	70	64	70	60	66	60	66	60	66	49	58
		圧縮応力	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1
	内部鋼板	引張応力	11	11	11	11	11	11	0	11	11	11	11	11	11	11	0	11
	取付ボルト	組合せ応力	84	88	97	100	93	109	73	78	78	75	87	82	95	91	67	70
	基礎ボルト	組合せ応力	51	53	56	59	56	62	48	51	48	49	52	52	54	54	41	45
大梁ゴム支承	ゴム本体	引張応力	0		0.1		0		0		0.1		0.1		0.1		0	
		せん断ひずみ	68		66		65		64		64		64		64		65	
		圧縮応力	1		1		1		1		1		1		1		1	
	内部鋼板	引張応力	11		11		11		11		11		11		11		11	
	取付ボルト	組合せ応力	67		68		61		59		67		70		66		59	
	基礎ボルト	組合せ応力	35		35		31		29		34		35		34		30	
可動支承		水平荷重	2792	1689	818	538	770	496	647	364	816	451	580	373	605	340	544	560
		鉛直荷重（圧縮）	843	590	577	522	568	543	439	207	3156	451	365	187	345	208	235	392
		鉛直荷重（引張）	718	715	573	647	492	578	351	274	1629	438	440	282	377	278	307	358

＊2：許容限界を超えるようなひずみが確認される場合は，破断個所を確認し，全断面の破断に至らないことを確認する。
表 7－4 不確かさケース（2）（飛来物長辺衝突）の評価結果まとめ（2／2）

評価対象部位		$\frac{\text { 評価項目 }}{\text { ひずみ }}$	G2－V－1		G2－V－2		G2－V－3		G2－V－5		B－V－1		発生値最大	許容限界
フレーム	主桁													
	横補強材	ひずみ												
大梁	大梁	ひずみ												
			西側	東側	\bigcirc									
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム本体	引張応力	0.3	0.2	0.5	0.5	0.4	0.4	0.9	0.8	0.3	0.3	0.9 MPa	2.0 MPa
		せん断ひずみ	46	54	45	53	45	53	45	53	45	53	70 \％	250 \％
		圧縮応力	1	1	2	1	1	1	1	1	1	1	2 MPa	23 MPa
	内部鋼板	引張応力	11	11	22	11	11	11	11	11	11	11	22 MPa	280 MPa
	取付ボルト	組合せ応力	65	66	58	63	75	80	70	72	64	72	109 MPa	420 MPa
	基礎ボルト	組合せ応力	40	42	47	51	43	47	59	60	39	44	62 MPa	257 MPa
大梁ゴム支承	ゴム本体	引張応力	0		0		0		0		0		0.1 MPa	2.0 MPa
		せん断ひずみ	64		64		64		64		64		68 \％	250 \％
		圧縮応力	1		1		1		1		1		1 MPa	23 MPa
	内部鋼板	引張応力	11		11		11		11		11		11 MPa	280 MPa
	取付ボルト	組合せ応力	63		60		60		58		64		70 MPa	420 MPa
	基礎ボルト	組合せ応力	32		31		31		28		33		35 MPa	257 MPa
可動支承		水平荷重	749	642	510	383	1545	1509	570	388	1057	828	2792 kN	2900 kN
		鉛直荷重（圧縮）	543	4244	220	245	503	440	212	156	594	585	4244 kN	5600 kN
		鉛直荷重（引張）	814	1678	349	320	689	467	295	279	734	844	1678 kN	1800 kN

[^2]\square
枠囲みの内容は商業機密の観点から公開できません。

7．4 飛来物衝突時の上向き反力に対する損傷モードの確認結果
基本ケース及び不確かさケースの評価結果において，フレームゴム支承のゴム本体の引張に対して十分な構造強度を有していることを網羅的に確認し，飛来物衝突時の上向き反力に対して，ゴム支承が損傷し，フレームが浮き上がるような損傷モー ドが発生しないことを確認した。確認結果を表 7－5に示す。

表 7－5 飛来物衝突時の上向き反力に対する損傷モードの確認結果

評価対象部位		評価項目	評価ケース		発生値（MPa）		許容限界 （MPa）	
		西側			東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	$\begin{aligned} & \text { ゴム } \\ & \text { 本体 } \end{aligned}$		引張 応力	基本ケース	G1－EW－3	0.4	0.3	2.0
		G1－V－3			0.7	0.5		
		G1－V－6			1.1	1.1		
		G1－V－7			0.7	0.5		
		G2－V－2			0.6	0.7		
		G2－V－5			1.0	0.9		
		G2－V－6			0.7	0.7		
		不確かさケース (1)		G1－EW－1（剛性変化＋側）	0.2	0.1		
				G1－EW－1（剛性変化－側）	0.1	0.1		
				G1－EW－3（剛性変化＋側）	0.4	0.3		
				G1－EW－3（剛性変化一側）	0.2	0.2		
				G1－V－1（剛性変化＋側）	0.3	0.2		
				G1－V－1（剛性変化一側）	0.2	0.1		
				G1－V－3（剛性変化＋側）	0.6	0.4		
				G1－V－3（剛性変化－側）	0.2	0.2		
				G1－V－6（剛性変化＋側）	1． 4	1.2		
				G1－V－6（剛性変化一側）	0.2	0.2		
		不確かさケース(2)		G1－EW－1	0.4	0.3		
				G1－EW－2	0.5	0.5		
				G1－EW－3	0.4	0.6		
				G1－NS－1	0.2	0.2		
				G1－V－1	0.3	0.2		
				G1－V－2	0.4	0.3		
				G1－V－3	0.5	0.4		
				G2－NS－1	0.3	0.2		
				G2－V－1	0.3	0.2		
				G2－V－2	0.5	0.5		
				G2－V－3	0.4	0.4		
				G2－V－5	0.9	0.8		
				B－V－1	0.3	0.3		

8．まとめ
本資料では，竜巻防護ネットのうち支持部材の強度評価に係る設計方針及び評価方針を示し，構造成立性について確認した。
－詳細設計段階において，設置許可段階の説明事項から方針変更がないことを確認し た。
－設置許可段階で実施したせん断特性試験結果に加えて，詳細設計段階で新たにゴム支承の鉛直剛性に係る特性試験を実施し，衝突解析におけるゴム支承剛性の設定方針，解析モデルの設定及び評価ケースの考え方を示した。解析モデルの設定及び評価ケースの設定に当たっては，引張剛性に関して，圧縮剛性と比較して異なる特性を示す結果（速度依存性を示す等）が得られたが，不確かさケースとして，試験結果を包含するようばらつきの範囲を幅広に考慮して影響碓認する方針を示した。 －試験結果を踏まえたゴム支承の剛性の不確かさ及び衝突姿勢による不確かさも考慮し，衝突解析における評価ケースの設定の考え方について示した。代表的な評価 ケースに対して構造成立性が確保できることを確認し，また，設定した基本ケース及び不確かさケースに対する衝突解析の結果より，竜巻防護ネットの構造健全性 が確保されることを確認した。ゴム支承のゴム本体に生じる引張応力が許容値を満足し，フレームが浮き上がるような損傷モードが発生しないことを確認した。 なお，詳細設計段階における対応事項について，別紙 6 に示す。

先行プラントとの設計方針の比較（EPまとめ資料抜粋）

別紙1
竜巻防護ネットの設計方針に関する先行プラントとの比較

竜巻防護ネットの設計方針等について，先行プラントと比較した結果を表1に整理する。構成部材のうち，ネット（金網部）と防護板は先行プラントと構造設計の相違がないが，ゴム支承及び可動支承を用いることで先行プラントと支持部材が異 なることを踏まえて，支持部材に対する設計方針について比較を実施した。

表1 竜巻に対する設計の基本方針，竜巻防護ネットの設計方針等の比較

プラント	女川	（参考）東海第二	差異理由
竜卷に対する設計の基本方針	竜巻飛来物防護対策設俑は，竜卷防護ネッ ト，防讙铜板等から構成し，飛来物から外部事象防護対象施設を防護できる設計とす る。 （まとめ資料：1．8．2．1設計方針（1）竜巻 に対する設計の基本方針より拔挅）	竜巻飛来物防護対策設備は，防護ネット，防護䥼板等から構成し，飛来物から外部事像防護対象施設を防謢できる設計とする。 （設置変更許可申請書（一部補正）1．7．2．1設計方針（1）竜巻に対する設計の基本方針 より抜粋）	差異無し
竜巻防濩ネット の設計方針	竜巻防護ネットは，竜卷時及び竜巻通過後 において，設計竜巻荷重及びその他考慮す べき荷重に対し，内包する非常用海水ボン フ等が安全機能な損たわない上う。設計飛来物が非常用海水ボンブ等に衜突すること を防止可能な設計とする。 また，竜巻防濩ネットは，その他考えら れる自然現象に対して，非常用海水ボンフ等に波及的影響を及ほさない設計とする。	防護对策施設は，竜巻時及び竜巻通渦後に おいて，設計竜巻荷重及びその他考慮す き侔重に対し，内包する外部事象防嚄対象㫌設が安全機能を捛なわたい上う，設計飛来物等が外部市像防漕対像施設に䡓突する ことを防止可能な設計とする。 また，防護対策施設は，その他考えられ る自然現象（地震等）に対して，外部事象防護対象施設に波及的影響を及ぼさない設計とする。 （工認 V－1－1－2－3－1 竜巻への配慮に関する基本方針 2．1．3 竜巻の影響を考慮する施設の竜巻防護設計方針 c．防護対策施設）	設備名称の相達
支持部材の設計方針	支持猃林は設胡竜券の風圧力による荷重，飛来物による術撃荷重及びその他の荷重に対し，飛来物が非常用海水ホンンフ等へ銜突 することを防止するために，飛来物が支持的材を構成する主要な構造部材を貫通せ ず，上連するネット及び防護板を支持する機能を維持可能な樸造強度を有し，非常用海水ボンプ等に波及的影響を与えないため に，支持部材を構成する部材自体の朊倒及 ひ脱落を生じない設計とする。	架構は，設計竜巻の風圧力による荷重，飛来物による徚撃荷重及びその他の荷重に対 し，飛来物が外部亦象防濩対象施設～術突 することを防止するために，飛来物が架構 を構成する主要な構造部材を貫通せず，上載する防護ネット及び防護铜板を支持する機能を維持可能な構造強度を有し，外部事象防護対象施設に波及的影響を与えないた めに，架横を構成する部材自体の転倒及び脱落を生じない設計とする （工認 V－3－別添 1－2 防護対策施設の強度計算の方針 2.2 構造強度の設計方針（3）架構）	部材名称の相違設備名称の相違
支持機能を担保する部材	フレーム，大梁，プラケット，ヨ゙ム支泉，「動支示，ストッバー	架構	支持偁造の相造
支持部材に対する評価項目	貫通評価及び支持機能評価	貫通評価及び支持機能評価	差異無し

女川 2 号炉の竜巻防護ネットは，先行プラントと支持構造に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方針」，「支持部材の設計方針」，「評価項目」に対して，先行プラントとの相違はないことを確認した。

ゴム支承のせん断剛性の衝突解析への適用性（EP まとめ資料抜粋）

別紙 3 （補足 1）

衝突解析に対するゴム支承の影響に対する検討

竜巻防護ネットに採用する地震時水平力分散型ゴム支承は，ゴム支承のせん断剛性を利用して，上部構造の慣性力を複数の下部構造に分散させる機能を持 つ。耐震設計については「道路橋示方書•同解説（（社）日本道路協会，平成 14年 3 月）」及び「道路橋支承便覧（（社）日本道路協会，平成 16 年 4 月）」に則 り，線形ばね要素でモデル化し，ゴム支承による荷重の低減効果を見込んだ耐震評価を実施する。（竜巻防護ネットの耐震評価方針については，設置許可基準規則第 4 条に対する適合状況説明資料『設計基準対象施設について（第 4 条地震による損傷の防止）』で説明）

一方，飛来物の衝撃荷重によるゴム支承の影響•評価については，先行プラ ントにおいて審査実績がないことや，評価に関わる規格類が制定されていない ことを踏まえ，衝突解析におけるゴム支承の影響について，以下のとおり検討 を実施した。

1．飛来物衝突時と地震時におけるゴム支承変位速度の比較
（1）検討方法
竜巻防護ネットのフレームはゴム支承に支持されているため，飛来物が衝突した場合や地震時にはフレームが移動する。フレームの移動速度が飛来物衝突時と地震時で異なる場合，ゴム支承の挙動が異なることが考えら れる。

この影響を検討するため，飛来物衝突後のフレーム移動速度から想定さ れるゴム支承の変位速度と，耐震評価において想定するゴム支承の変位速度を比較し検討する。
（2）飛来物衝突時のフレーム速度の算出
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度 は，衝突前後の運動量保存則から算出する。算出にあたつて，ゴム支承のば ね剛性はフレームの移動に対し抵抗となり得るが，この影響はないものとし て扱ら。飛来物はフレームの南側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるものとする。（図 1 参照）

以上の条件から，運動量保存則から以下の式が成り立つ

$$
\mathrm{mv}=(\mathrm{m}+\mathrm{M}) \quad \mathrm{V} \cdots(1)
$$

ここで， m ：設計飛来物（鋼製材）重量（ $\mathrm{m}=135 \mathrm{~kg}$ ）
v ：設計飛来物（鋼製材）衝突速度（ $\mathrm{v}=46.6 \mathrm{~m} / \mathrm{s}$ ）
M ：フレーム重量（ $\mathrm{M}=62000 \mathrm{~kg}$ ）
V ：衝突後のフレーム移動速度（m／s）

6 条（竜巻）－別添 1 —添付 3.7 —別紙 $3-5$

図1 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{mv} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 46.6 /(135+62000) \\
& \fallingdotseq 0.1(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後のフレームの移動速度は最大でも約 $0.1 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持されていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度になると想定される。
（3）ゴム支承特性試験について
ゴム支承の動的特性を把握するための試験のうち振動数依存性試験を実施している。本試験は，ゴム支承を振幅 95 mm の単振動（ $0.1 \sim 1 \mathrm{~Hz}$ の振動数） でせん断変形させた際の剛性を実測したものである。試験結果を図 2 に示す。
（図2は「設置許可基準規則第 4 条に対する適合状況説明資料『設計基準対象施設について（第4条 地震による損傷の防止）』」より抜粋）

ここで，変位 $\mathrm{x}=\mathrm{A} \sin \omega \mathrm{t}$ より $(\mathrm{A}=95 \mathrm{~mm}, \omega=2 \pi \mathrm{f}, \mathrm{f}=0.1,0.5,1.0 \mathrm{~Hz})$変位速度 $\mathrm{x}=\mathrm{A} \omega \cos \omega \mathrm{t}$ であるから，変位速度の最大値は $\mathrm{A} \omega$ となる。

$$
\begin{aligned}
& \mathrm{f}=0.1 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 0.1 \fallingdotseq 0.06 \mathrm{~m} / \mathrm{s} \\
& \mathrm{f}=1.0 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 1.0 \fallingdotseq 0.60 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

よって振動数依存性試験における変位速度の最大値は約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の範囲となる。試験結果から，この速度範囲において，せん断剛性の変化は無視できるものであることを確認している。

6 条（竜巻）一別添 1 －添付 3.7 －別紙 3－6

＊ $2 \mathrm{~Hz}, ~ 4 \mathrm{~Hz}$ の結果は補正式より算出
（c）振動数依存性試験

図2 せん断特性試験結果

6 条（竜巻）—別添 1 －添付 3.7 －別紙 3－7
（4）検討結果
飛来物衝突後のフレーム移動速度から想定されるゴム支承の変位速度は約 $0.1 \mathrm{~m} / \mathrm{s}$ 程度である。一方，振動数依存性試験結果から，ゴム支承の変位速度が約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の速度範囲において，せん断剛性の変化は無視できる ものであることを確認している。
よって，飛来物衝突時のゴム支承の変位速度は，振動数依存性試験で確認 している速度範囲内であることから，飛来物衝突時においてもゴム支承のせ ん断剛性は適用できると考える。

2．衝突解析におけるゴム支承境界条件の影響確認
前項の検討を踏まえて，耐震評価に使用したせん断剛性を考慮した衝突解析を実施し，衝突解析におけるゴム支承せん断剛性の影響を確認する。
（1）検討方法
ゴム支承に支持される竜巻防護ネットに飛来物が衝突した場合，飛来物に よる衝撃荷重がフレームや大梁を介してゴム支承に伝わり変形することに より，衝撃荷重が低減されることが考えられる。

この影響について，衝突解析におけるゴム支承の境界条件を耐震評価に使用した線形ばねモデルと同等としたものと，ゴム支承の影響を排除する観点 で 3 方向固定としてモデル化したものでそれぞれ衝突解析を実施し，ゴム支承と可動支承へ伝達される衝撃荷重の差を比較する。
（2）検討における解析条件
衝突解析は，解析コード「LS－DYNA」を用いて3次元 FEM モデルによりフ レームをモデル化し評価を実施する。フレームはシェル要素でモデル化し，境界条件は端部を固定条件としたものと，ゴム支承を線形ばねモデルとし，水平剛性を考慮したものでそれぞれ解析を実施する。可動支承の境界条件は，可動方向はフリー，固定方向は固定の条件とする。飛来物の衝突方向につい ては，ゴム支承の剛性が小さく，変形が大きい水平方向からの水平衝突とし，衝突位置はフレームの中央に衝突したケースを代表として実施する。検討に おける解析条件を表1に，検討に用いる衝突位置や解析モデルを図3に示す。

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－8

表1 検討における解析条件

検討ケース		（1）フレームゴム支承部を固定 としてモデル化	（2）フレームゴム支承部を線形ばねモデル化
解析モデル		LS－DYNA による 3 次元 FEM モデル	
$\begin{aligned} & \text { 境 } \\ & \text { 界 } \\ & \text { 条 } \\ & \text { 件 } \end{aligned}$	ゴム支承	固定条件	線形ばねモデル＊1水平剛性： $2.689 ~(\mathrm{kN} / \mathrm{mm})$鉛直方向 ：863（ $\mathrm{kN} / \mathrm{mm}$ ）
	可動支承	可動方向は拘束なし非可動方向は固定条件	
衝突方向		ゴム支承の剛性が小さく，変形量が大きい水平方向（西から東）からの衝突	
衝突位置		フレーム中央	

＊1：耐震評価モデルと同様の水平剛性を設定

図 3 ゴム支承の影響検討における飛来物衝突位置及び解析モデル図

6 条（竜巻）－別添 1 －添付 3.7 －別紙 3－10
（3）検誩結果
検討の結果，ゴム支承と可動支承へ伝達される衝撃荷重は，ゴム支承の境界条件を固定条件とした場合に大きな反力が発生する結果となることを確認した。特にゴム支承における衝撃荷重に大きな差が生じており，ゴム支承 のせん断剛性を固定条件とすると，ゴム支承自体に発生する衝撃荷重が非常 に大きくなることを確認した。検討結果を表2に示す。
なお，今回の検討は水平方向からの衝突に対する結果であるが，ばね剛性 を考慮することによる影響は鉛直方向についても同様であり，境界条件を固定とした場合，衝撃荷重は大きくなることが想定される。

表2 ゴム支承せん断剛性影響の検討結果

評価対象			衝撃荷重（ピーク値）（kN）	
			ゴム支承境界条件	
			固定	せん断剛性有
ゴム支承 （東側）	X 方向	＋側	456	2
		－側	－478	－4
	Y 方向	＋側	229	1
		－側	－265	－24
ゴム支承 （西側）	X 方向	＋側	429	4
		－側	－415	－2
	Y 方向	＋側	224	1
		－側	－260	－24
可動支承 （東側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	454	424
		一側	－508	－392
可動支承 （西側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	300	265
		－側	－375	－355

3．まとめ

衝突時と地震時においてゴム支承の変位速度について有意な差がないことか ら，衝突解析においても耐震評価と同等条件でゴム支承をモデル化した評価が適用可能と考えられる。
そこで，ゴム支承のせん断剛性を考慮したものと，考慮しない固定条件とし たものでそれぞれ衝突解析を実施し，衝突時におけるゴム支承のせん断剛性の影響を確認した。解析の結果から，ゴム支承を固定条件とすると特にゴム支承自体に発生する衝撃荷重が非常に大きくなることを確認した。この場合，ゴム支承の下部構造に伝達される荷重も大きくなるため，下部構造に対しても厳し い条件となることを確認した。

6 条（竜巻）－別添 1 －添付 3.7 －別紙 3－11

竜巻防護ネットの構造成立性確認結果について（STEP1） （ゴム支承の剛性を耐震評価時に用いるせん断剛性とする場合）

1．解析条件
ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，図 1 に示すンロー（）とおり，ゴム文承や剛性を考慮した衝兟解析を奏施する。

衝突解析は，ゴノ支承による影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合において，フ レームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。

評価対象は支持機能に大きな影響を与える部材であるフレームゴム支承と可動支承とする。解析条件とその考え方を表1，2及び図 2 に示す。

SIEP1

図1 STEP1構造成立性確認フロー

表1 STEP1 の解析条件

設定項目	設定条件	考え方
\|ごム支承	耐震評価で用い るせん断剛性 （表2参照）	設計飛来物がフレームに衝突した場合に想定されるゴム支承の変位速度 は，約 $0.1 \mathrm{~m} / \mathrm{s}$ と考えられる（別紙 3（補足 1）参照）。 この変位速度は，地震時のゴム支承の動的特性を把握するために実施し た振動数依存性試験におけるゴム支承の変位速度（ $0.06 \sim 0.6 \mathrm{~m} / \mathrm{s}$ ）に包絡されることから，飛来物衝突においても，耐震訊価で用いるゴム支承のせん断剛性を適用する。
衝突方向	水平方向	配置及び形状から水平方向から衝突する可能性は極めて低いと考えられ るが，鉛直速度よりも最大速度が大きく，ゴム支承のせん断剛性への影響が大きい方向。
衝突位置	ゴム支承近傍	ゴム支承への影響が大きくなると考えられる位置。
飛来物姿勢	長辺全面で衝突	フレームには防護板や補強用のリブが設置されることから，平面となる面積が限られており，長辺全面が部材に垂直に衝突する可能性は極めて低いと考えるが，最もゴム支承に対し厳しい姿勢による挙動を確認する観点から，長辺全面が衝突すると設定。

表2 フレーースー゙人支承，可動支承の結合条件

方向	フレームゴノ支承	可動支承
X	弾性	自中
Y	弾性	剛
Z	剛	剛

図 7．飛来物衝突位置及で解析干デル図（STFP1）

6 条（竜巻）一別添 1 —添付 3.7 －別紙 3－2

2．解析結果

フレームゴム文承（ ）衝炎解析結果を表3，可動文承（）衝尜解析結果を表4に示す。
フレームゴム支承の評価対象部材に発生する応力等は許容値を超えず，「4．1．2 支持部材（4）」に定める構造強度上の評価方針を満足する。

可動支承については，評価対象部材のらち，「レール」「レール取付ボルト」「エンド ブレート接合ボルト」について許容値を超える結果となった。

STEГ1 の評価結果から，フレ・ムゴム支承の剛性を考慮した場合において，フレ ムゴム支承による影響が最む大きくなると想定される個所に飛来物が衝突した場合 でもフレームゴム支承は構造強度上の評価方針を満足し，フレームを支持する機能を維持可能な構造強度を有することを確認した。可動支承については一部部材が許容値 を超える結果となったが，詳細設計段階では，可動文承のリイズアップやボルトの訨様変更等の対応を行らことで，許容値を満足させる方針とする。

表3 STEP1 におけるフレームゴム支承の解析結果
（注）本評価結果は

| 評価項目 | 発生値 | |
| :--- | :--- | :--- | :--- |
| | | |

暫定値

評価対象		評価項目	発生値		許容値	
		西㑡	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張） せん断ひずみ	$\begin{gathered} 1.2 \mathrm{MPa} \\ 61 \% \end{gathered}$	0.7 MPa 60%	$\begin{gathered} 2.0 \mathrm{MPa}^{* 1} \\ 250 \%^{* 1} \\ \hline \end{gathered}$
		応力度（圧縮）	2． 3 MPa	2． 1 MPa	$29.8 \mathrm{MPa}^{* 1}$	
	（2）内部鋼板	応力度（引張）	22 MPa	20 MPa	$280 \mathrm{MPa}^{* / 2}$	
	（3）取付ボルト	応力度（組合せ）	63 MPa	56 MPa	$420 \mathrm{MPa}^{* 2}$	
	$\begin{aligned} & \text { (4)アンカーボ } \\ & \text { ルト } \end{aligned}$	応ノ度（組合せ）	86 MPa	68 MPa	$294 \mathrm{MPa}^{* 2}$	

※1：「道路憍小方書•同解説V耐震設計編（H14．3）」に基－゙く道路憍支承使覧による許容値
$※ 2: J E A G 4601$ に基づく許容応力状態 V V S の許容応力
注）上記の評価項目については裕度が小さい項目を代表して記載している。

図3 ノレームゴム支承ひ構造図

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－3

表4 STEP1 における可動支承の評価結果
（注）本評価結果は暫定値

評価対象			評価項目	発生値［ MPa ］		許容値［MPa ${ }^{\text {\％}}$（	
			西側	東側			
可動 支承	（1）ソールプレート			支圧応力	18	21	351
	（2）すべり材		支圧应力	22	25	60 （メーカー䛧）	
	（3）圧縮ゴム		支圧応力	18	21	50 （メーカー値）	
	（4）ピストン		曲げ応力	65	74	280	
	（5）座金		支圧応力	57	65	335	
	（6）ベースポット	突出部	せん断応力	16	15	148	
			曲げ応力	33	32	258	
			支圧応力	67	66	351	
		支圧部	支圧応力	110	110	351	
	（7）レール		曲げ応力	400	390	343	
			引張応力	8.8	8.7	343	
			せん断応力	54	54	198	
	（8）レール取付ボルト （9）エンドプレート接合ボルト		引張応力	600	600	525	
			引張応力	450	450	420	
	（10）上部接合ボルト		せん断応力	220	220	323	
	（11）下部接合ボルト		組合せ	$\begin{gathered} 208 \\ (211) \\ \hline \end{gathered}$	$\begin{gathered} 206 \\ (212) \end{gathered}$	$※ 2$	
	（12）ベースプレート		せん断応力	11	11	198	
			曲げ応力	180	170	343	

※1：メーカー値でないものは，JEAG4601 に基づく許容応ノ状態 $V_{A} S$ の許容応ノ
$※ 2$ ：組合せ応力の許容値については（ ）内に許容引張応力を記載
$\square:$ 支持機能に係る部材
：支持機能に係る部材のうち許容値を超えるもの
注）上記の評価項目については裕度が小さい項目を代表して記載している。

図 4 可動支承の構造図

6 条（竜巻）—別添 1—添付 3．7－別紙3－4

竜巻防護ネット構造成立性確認結果について（STEP2）

（支持部材全体の構造成立性）

1．評価力法

飛来物㣫突時の竜巻防護ネットを構成する支持部村全休の構造成立性を碓認す るため，図 1 に示すフローで評価を実施する。
STEP2－1 の条件で，支持部材全体に対し評価を実施する。STEP2－1 の条件で評価 を㬰施した結果，フレームゴム文承が許容值を満足しない場合，詳細評仙として STEP2－2 でゴム支承のせん断剛性を考慮した解析条件にて評俩を実施する。STEP2－ 2 の結果を踏まえて，STEP2－3としてストッパーの評価を実施する。

図1 STEP2詊価フロー

2．ゴム剛性の結合条件を 3 方向固定（STEP2－1）
（1）解析条件
評価はフレ․ ムに飛来物が衝突したときに，直接荷重を受けるフレ…及びそ の荷重が伝達されるフレームゴム支承，可動支承，大梁，大梁ゴム支承，ブラケ ットに対して実施する。解析条件とその考え方を表1，2 及び図 2 に示す。

表1 STEP2－1解析条件

設定項目	設定条件	考え方
$\begin{gathered} \text { ゴム支承の } \\ \text { 剛性 } \end{gathered}$	3 方向固定 （表2参照）	下部構造物に伝達する衝撃荷重のピーク値が大きくなるため
衝突方向	水平及び鉛直	鉛直•水平方向からの衝突による部材への影響をそれぞれ確認するため （配置及び形状から水平方向から衝突する可能性は極めて低いと考えら れるが，鉛直速度よりも速度が大きいため，評価を行う）
衝突位置	7 パターン	＞衝突方向は衝突面積が大きい鉛直（1）～（3），障害物がないN S 方向南側からの水平（4））に加えて，障害物があり飛来物衝突の可能性が低いと考えられるEW方向からの水平（5）～（7）\＆）考慮する - 各部材に対する影響が大きいと考えられる箇所を抽出 - フレームの曲げモーメントが最大になるフレムの中央部いの衝突 （2），（6） －可動支承，大梁ゴム支承，ブラケットが影響を受けるように，当該部材の近傍に衝突（1）（5）） －ゴム支承が大きな影響を受けるように，当該部材の近傍に衝突（3）， （7） －可動支承のスライドによるフレームの変位によりゴム支承が大きな影響を受ける部位への衝突（4）
飛来物姿勢	短辺全面で衝突	竜巻防護ネットの形状，衝突時の影響，先行プラントの審查実績を踏ま えて設定

表2 フレ…ゴム支承，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	剛	自由
Y	剛	剛
Z	剛	剛

図2 飛来物衝突位置及び解析モデル図（STEP2－1）

6 条（竜巻）一別添 1—添付 3．7—別紙4－2
（2）解析結果
各部材ひ衝㰫解析結果を表3に示す。
全ての衝突ケースにおいて，フレーム，大梁，ブラケット，大梁ゴム支承は許容値を超えず，構造強度上の評価方針を満足することを確認した。

また，フレームゴム支泉は表 4 に小すとおり，（1）～（ $\overline{6})$ の衝突位惪の詊侢条件にお いて，構造強度上の評価方針を満足することを確認した。（7）の衝突位置の場合には， 2 つのゴム支承が許容値を満足しないことから，詳細評価（STEP2－2）としてゴム剛性を考慮した衝突解析を行い，構造成立性の確認を行ら。

可動支承については一部部材が許容値を超える結果上なったが，詳細設計段階で は，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

表3 STEP2－1 における解析結果
（注）本評価結果は暫定値

評価対象部位		評価項目（単位）	飛来物衝突位置														許容値	
		（1）	（2）		（3）		（4）		（5）		（6）		（7）					
		鉛直－1	鉛直－2		鉛直－3		水平（NS）－1		水平（EW）－1		水平（EW）－2		水平（EW）－3					
	フレーム，		最大ひずみ．（\％）	0.23		0． 16		1.66		1． 11		1.12		1.83		9．05\％1		7.0
	大梁		応力度（組合せ）（MPa）	$\begin{gathered} \hline 260 \\ (364) \\ \hline \end{gathered}$		$\begin{gathered} 160 \\ (364) \\ \hline \end{gathered}$		$\begin{gathered} 110 \\ (364) \end{gathered}$		$\begin{gathered} 120 \\ (364) \end{gathered}$		$\begin{gathered} 150 \\ (364) \end{gathered}$		$\begin{gathered} 130 \\ (364) \\ \hline \end{gathered}$		$\begin{gathered} 120 \\ (364) \end{gathered}$		※2
ブラ	本体	応力度（組合せ）（MPa）	$\begin{gathered} 100 \\ (343) \end{gathered}$		$\begin{gathered} 64 \\ (343) \end{gathered}$		$\begin{gathered} 45 \\ (343) \\ \hline \end{gathered}$		$\begin{gathered} 47 \\ (343) \end{gathered}$		$\begin{gathered} 63 \\ (343) \end{gathered}$		$\begin{gathered} 53 \\ (343) \end{gathered}$		$\begin{gathered} 46 \\ (343) \end{gathered}$		$※ 2$	
	アンカーボルト	応力度（引張）（MPa）	140		100		79		84		130		100		84		294	
			兆側	東側	四側	果側	四側	果側	西側	果側	西側	東側	西側	果側	西側	果側		
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム } \\ & \text { 支承 } \end{aligned}$	ゴム体	応力度（引張）（ MPa ）	0	0	1.4	0.9	14	0.6	0.3	0.2	0.1	0	1.2	0.9	23	3.2	2.0	
		せん断ひずみ（\％）	58	56	190	200	310	98	170	140	130	190	230	240	360	310	250	
		応力度（圧縮）（MPa）	1.2	1.2	3.4	2.6	47.5	2.1	2.2	1.8	1.6	2.2	3.8	3.4	25	7.7	29.8	
	内部鋼板	応ノ度（引張）（MPa）	11	11	32	24	450	20	21	17	15	21	36	32	240	72	280	
	取付ボルト	応力度（組合せ）（MPa）	$\begin{array}{\|c\|} \hline 45 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 660 \\ (392) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 95 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 140 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 120 \\ (420) \end{array}$	$\begin{gathered} 100 \\ (420) \end{gathered}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \end{array}$	$\begin{array}{\|c\|} \hline 200 \\ (420) \end{array}$	$\begin{array}{\|c\|} \hline 210 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 420 \\ (349) \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 310 \\ (392) \end{array} \right\rvert\,$	※2	
	アクーボルト	応力度（組合せ）（MPa）	$\begin{array}{\|c\|} \hline 40 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 38 \\ (294) \\ \hline \end{array}$	$\begin{gathered} 170 \\ (259) \end{gathered}$	$\begin{array}{\|c\|} \hline 160 \\ (253) \end{array}$	$\begin{gathered} 370 \\ (163) \end{gathered}$	$\begin{array}{\|c\|} \hline 93 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 130 \\ (272) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ (294) \\ \hline \end{array}$	$\begin{gathered} 100 \\ (294) \end{gathered}$	$\begin{array}{c\|} \hline 130 \\ (255) \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (230) \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (220) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 310 \\ (110) \end{array}$	$\begin{array}{\|c\|} \hline 210 \\ (163) \end{array}$	\％2	
$\begin{gathered} \text { 大桨 } \\ \text { ゴム } \\ \text { 支承 } \end{gathered}$	ゴム体	応力度（引張）（MPa）	1.2		0.7		0.2		0.3		0.8		0.6		0.2		2.0	
		せん断ひずみ（\％）	110		96		89		95		170		120		91		250	
		応力度（圧縮）（ MPa ）	4.7		2.8		1.8		1.9		3.2		2． 3		1.9		23.1	
	内部鋼板	応力度（引張）（MPa）	50		30		19		20		34		25		20		280	
	取付ボル	応力度（組合せ）（MPa）	$\begin{gathered} 110 \\ (420) \end{gathered}$		$\begin{gathered} 130 \\ (420) \end{gathered}$		$\begin{gathered} 100 \\ (420) \\ \hline \end{gathered}$		$\begin{gathered} 110 \\ (420) \end{gathered}$		$\begin{gathered} 180 \\ (420) \end{gathered}$		$\begin{gathered} 140 \\ (420) \end{gathered}$		$\begin{gathered} 100 \\ (420) \end{gathered}$		$※ 2$	
可動 支承	ソールブレート	心力（圧縮）（MPa）	82	23	33	22	13	13	15	14	22	24	19	18	15	14	351	
	すべり材	底力（厈縮）（MPa）	$\underline{100}$	28	40	27	16	16	18	17	27	30	23	22	18	17	60	
	圧縮ゴム	応力（圧縮）（MPa）	82	23	33	22	13	13	15	14	22	24	19	18	15	14	50	
	ビストン	心力（曲げ）（MPa）	$\underline{290}$	81	120	79	48	46	54	49	80	86	66	65	53	48	280	
	座金	応力（圧縮）（MPa）	260	70	100	69	41	40	47	43	70	75	58	57	46	40	335	
	ベースボット突出部	応力（せん断）（MPa）	43	20	21	12	3.5	0.1	3.8	3.3	20	10	14	11	2.7	0.4	148	
		応力（曲げ）（MPa）	91	43	45	24	7.3	0.2	7.9	6.9	42	21	30	23	5.5	0.8	258	
		応力（圧縮）（MPa）	190	89	92	50	15	0.3	16	14	85	44	61	47	11	1.5	351	
	ベースポット支圧部	応力（圧縮）（MPa）	93	82	62	68	51	52	61	63	160	230	95	110	54	56	351	
	V－N	応力（曲げ）（ MPa ）	430	320	260	250	170	160	200	210	550	740	340	390	180	180	343	
		応力（引張）（ MPa ）	25	12	12	6.6	2.0	0.1	2.2	1.9	11	5.8	8.1	6.2	1.5	0.2	343	
		応力（せん断）（ MPa ）	49	40	30	33	25	25	30	31	77	110	47	56	26	28	198	
	レール取付ボルト	応力（引張）（MPa）	500	140	340	360	270	280	330	310	810	1220	510	610	290	300	525	
	エンドプレート接合ボルト	応力（引張）（MPa）	520	380	310	280	190	170	220	230	620	810	390	430	190	190	420	
	上部接合ボルト	応力（せん断）（ MPa ）	190	160	120	140	100	100	120	130	310	460	190	230	110	110	323	
	下部接合ボルト	応力度（組合せ）（MPa）	$\begin{gathered} 320 \\ (273) \end{gathered}$	$\begin{gathered} 200 \\ (309) \end{gathered}$	$\begin{gathered} 180 \\ (376) \end{gathered}$	$\begin{aligned} & 140 \\ & (358) \end{aligned}$	$\begin{gathered} 77 \\ (416) \end{gathered}$	$\begin{gathered} 62 \\ (412) \end{gathered}$	$\left.\begin{array}{c} 91 \\ (379) \end{array}\right)$	$\begin{gathered} 91 \\ (374) \end{gathered}$	$\begin{aligned} & 280 \\ & (56) \end{aligned}$	$\left\|\begin{array}{c} 320 \\ (183) \end{array}\right\|$	$\left\|\begin{array}{c} 180 \\ (264) \end{array}\right\|$	$\begin{gathered} 190 \\ (202) \end{gathered}$	$\begin{gathered} 76 \\ (405) \end{gathered}$	$\begin{gathered} 70 \\ (397) \end{gathered}$	※2	
	ベースプレート	応力（せん断）（ MPa ）	16	10	9.1	7.0	4.0	3.2	4． 7	4.7	14	16	9.3	9.5	3.9	3.5	198	
		応力（曲げ）（ MPa ）	270	170	150	120	65	52	77	77	240	270	150	150	64	58	343	

※1：フレーム部材端部に生じる最大ひずみが破断ひずみを上回るが，全断面欠損に至らず部材は支
持されることを傕認
※2：組合せ応力の許容値については（ ）内に許容引張応力を記載
$\square:$ 支持機能に係る部材
— ：支持機能に係る部材以外で許容値を超えるもの
：支持機能に係る部材のうち許容値を超えるもの
注）上記の評価項目については裕度が小さい項目を代表して記載している。また，可動支承について は 部部材が許容值を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボ ルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

6 条（竜巻）一別添 1—添付 3.7 —別紙 4－4
表4 STEP2－1 における支承部の評価

＊1：フレームゴム支承は，2 つのうち 1 つ以上の支承が構造強度上の評価方針を満足することを確認する
＊ 2 ：一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行う
ことで，許容値を満足させる方針とする
\square ：STEP2－2 にて詳細評価を実施

6 条（竜巻）一別添 1 —添付 3．7—別紙4－5

3．詳細評価（ゴム支承のせん断剛性を考慮した解析）（STEP2－2）
（1）解析条件
STEP2－1におちる（7）の衝突位置の場合には，2つのゴム支承が許容値を満足し ないことを踏まえて，詳細評価としてゴム剛性を考慮した衝突解析を行い，構造成立性な確認を行ら。解析条件とそす䒓え力を表5，6及び図3に示す。

表5 STEP2－2解析条件

設定項目	設定条件	考え方
$\begin{array}{\|l\|l\|} \text { ゴム支承の } \\ \text { 剛吽 } \end{array}$	耐震評価で用いるせ ん断剛性 （表6参照）	実現象に近いと考えられる条件で評価を行ら観点から，STEP1 で用いた耐震評俩で用いるゴム支承のせん断剛性を適用する
衝突方向	水平	
衝突位㯰	ゴム支我近傍	STEP2－1 の（7）の衝突位直と同栐
飛来物姿勢	短辺全面で衝突	

表 6 フレームーで八支承，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	弾性	自由
Y	弾性	剛
Z	剛	剛

図 3 飛来物衝突位置及び解析モデル図（STEP2－2）

[^3]（2）解析結果
ンレームゴム文承（）衝突解析結果を表りに小す。
フレームゴム支承の部材に発生する応力等は許容値を超えず，構浩強度上の評価方針を満足することを確認した。
（注）本評価結果は
表7 STEP2－2 におけるフレームゴム支承の解析結果 ${ }^{\text {（注）}}$ 暫定值

評価対象		評価項目	発生値		許容値	
		西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張）	1．1 1 MPa	0.8 MPa	$2.0 \mathrm{MPa}^{* 1}$
		せん断ひずみ	62 \％	62 \％	250 \％${ }^{1}$	
		心力度（圧縮）	2． 0 MPa	2．0 MPa	$29.8 \mathrm{MPa}^{* 1}$	
	（2）内部鋼板	応力度（引張）	19 MPa	19 MPa	$280 \mathrm{MPa}^{\text {\％2 }}$	
	（3）取付ボルト	応力度（組合せ）	61 MPa	60 MPa	$420 \mathrm{MPa}^{* 2}$	
	（4）アンカーボルト	応力度（組合せ）	98 MPa	82 MPa	$294 \mathrm{MPa}^{* 2}$	

※1：「道路橋示方書•同解説V耐震設訳編（H14．3）」に基づく道路橋支承便覧による許容値 ※2：JEAG4601 に基づく許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力

図4 飛来物衝突位置及で評価対象（STEP2－2）

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－7

3．ストッパーの評価（ゴム剛性の結合条件を自由とした解析）（STEP2－3）
（1）解析条件
今回実施した（1）～（7）の衝突ケースでは，フレームでム支承が許容値を満足しない場合は確認されなかったことから，ストッパーに支持機能が必要な状況ではないが， STEP2－2 の評価で許容値を満足しない場合を想定し，ストッパーの評価を実施する。

飛来物の衝撃荷重に対して，ゴム支承による荷重を負担せずに，ストッパ・に全 ての荷重を伝達する条件で評価する。解析条件とその考え方を表8，9及び図5に示す。

表 8 STEP2－3解析条件

設定項目	設定条件	考え方

表 9 フレームゴノ支飛，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	自由	自由
Y	自由	剛
Z	自由	剛

図5 可動支承の挙動確認における飛来物衝突位置
及び解析モデル図（STEP2－3）

6 条（竜巻）一別添 1—添付 3.7 —別紙 4－8
（2）解析結果
ストッパー 評亚結果を図 6 及び表 10 に示す。発生する出力は計谷伯を満足す る。

図6 設訃飛来物衝突洔のフレーム変位アスージ

表10 ストッパー応力評価結果

	発生値（MPa）	許容値（ MPa ）
せん断底力	19	198
曲げ心力	228	343
組合せ応力	230	343

[^4]4．飛来物衝突後の竜巻風荷重に対する評価
飛米物衝突後ひ）竜巻による風何重に対じて，竜巻乃護ネットは非常用海水ボンデ等に波及的影響を与えないことが要求される。

STEP2－1 及び STEP2－2 の評価結果から，許容値を超えないゴム支承が少なくとも 1 つは残るため，フレーム全体が受ける竜巻による風荷重が，ت゙ム支承1つに対し て作用する条件で評亚を実施した。評仙条件は以下のとおり。

- 風速 $100 \mathrm{~m} / \mathrm{s}$（設計竜巻風速）
- 風力係数Cは2．1とする
- 受圧面積は形状を考慮した投影面積
- フレームゴム支承（西側）のみが残存し風荷重を受ける場合を代表とした
- 評価モデル図は図 7 のとおり

図7 竜巻風荷重に対する評価モデル図
以上の条件で評他を行ったとこら，フレームゴム文承1つが残仔すれば，竜巻風荷重を受けても当該支承に生じる応力等は許容値以下となり，竜巻風荷重に対する支持機能を維持することを確認した。評価結果を表11に示す。
（注）本評価結果は
表 11 竜巻風荷重に対するフレームゴム支承の評俩結果㪙定値

評価対象		評価項目	発生値	計容伯	
		東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張）	0.4 MPa	$2.0 \mathrm{MPa}^{* 1}$
		せん断ひずみ	130 \％	250% \％	
		応力度（厈縮）	1． 2 MPa	$29.8 \mathrm{MPa}^{* 1}$	
	（2）内部鋼板	応力度（引張）	11 MPa	$280 \mathrm{MPa}^{* 2}$	
	（3）取付ボルト	応力度（組合せ）	100 MPa	$420 \mathrm{MPa}^{* 2}$	
	（4）アンカーボルト	応力度（組合せ）	73 MPa	$294 \mathrm{MPa}^{\text {\％2 }}$	

※1：「道路橋示方書•同解説V耐震設計編（H14．3）」に基づく道路橋支承便覧による許容値 ※2：JEAG4601 に基づく許容応力状態 $I V_{A} S$ の許容応力

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－10

5．STEP2における構造成立性見通し

（1）～（7）の全ての衝焱位惪において，フレーム，大梁，ブラケット，大梁ゴム支承 は許容値を超えず，構造強度上の評価方針を満足することを確認した。

フレームゴム支承については，STEP2－1 においてフレームゴム支承近傍に設計飛来物が水平に衝突する場合のみ（7 の衝突位置），フレームゴム支承が2つ許容値 を満足しない結果をなったが，STEP2－2において詳細評価を実施し，フレ～ムゴム支承が構造強度上の評価方針を満足することを確認した。

また，飛来物衝突後には，構造健全性を保つゴム支承が少なくとも 1 つ残存する ことから，1 つひゴム支承にな竜巻による風荷重及び常時作用する荷重に対し，ノ レームの支持機能を維持することを確認した。

さらに，STEP2－1 及び STEP2－2 の評価において，許容値を超えないゴム支承が 1 つ残存するため，ストッパーに支持機能が必要な状況ではないが，STEP2－3 として飛束物の衝撃荷重に対してつレームゴム支承による荷重を負担せずに，ストッパー に全ての荷重を伝達する条件で評価を実施し，構造強度上の評価方針を満足するこ とを確認した。

可動支承にいいては一部部忯が許容値を超える結果となつにが，詳細設計段階だ は，可動支承のサイズアップやボルトの什様恋更等の対応を行うことで，許容値を満足させる方針とする。

以上より，竜巻防護ネットの支持部材は構造強度上の詊価方針を満足する方針で ある。よって，飛来物衝突時及び衝突後において竜巻防護衣ットの支持機能を維持 するため，構造成立性の見通しがあることを確認した。

詳細設計段階における説明事項（EP まとめ資料抜粋）

別紙 6
設置許可段階と詳細設計段階での説明事項
3 項の説明事項 No．に対応
設置許可段階ぐは，【STEP1】及び【STEP2】の評価のとおり，竜巻防護ネットひ構造成文吽にかかわる代表的な評価結果をあって，構造成六吽の見通し，有説明した。
詳細設計段階では現実に即した解析モデルとして，フレームゴム支承の特性を考慮 した解析モデルを適用し，詊価を実施する方針とする。

設置許可段階での構造成立性の見通し時に用いた評価フワーを組み替圥，詳細設計段階の評価フロー（基本ケース）を以下のとおり設定する。

可動支承の評価対象部材について，設置許可段階における構造成立性の見通し確認 において，可動支承近傍へ，飛來物が衝突した場合，訳容値を超完る結果しなっている が，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行う ことで，許容値を満足させる方針とする。
基本少ースによる各部忖の設計を実施しに後に，不確かさクースの確認として，ご ム支承の剛性のばらつきを耆慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針とする。

評価フロー（不確かさケース）

図1詳細設計段階における評価フロー
6 条（竜巻）一別添 1 —添付 3.7 —別紙6－1
表1 設置許可段階及び詳細設計段階での説明事項（ $1 / 3$ ）

6 条（竜巻）—別添 1 —添付 3．7－別紙 6－2
表1 設置許可段階及び詳細設計段階での説明事項（2／3）

[^5]＊2：不碓かさケースではストッハーに支持機在を期街する場合があり得る
※ EP ：段置許可段樎 CP ：詳細設計役階

6 条（竜巻）一別添 1 —添付 3.7 －別紙 6－3
表1 設置許可段階及び詳細設計段階での説明事項（ $3 / 3$ ）

[^6]注）可動支承については一部部村が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアッブやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。
6 条（竜巻）一別添 1—添付 3．7－別紙 6－4
詳細設計段階における対応状況（竜巻防護ネット）
【例】フレーム基数の変更（ 5 基 $\Rightarrow 4$ 基）
大梁の支持位置変更（ブラケット廃止）
と対比した。

- 設置許可段階（まとめ資料）から設計進捗があった内容を抽出し，詳細設計段階における対応
- 抽出結果を踏まえ，以下の 3 点に分類し備考欄に記載した。
（1）海水ポンプ室の側壁及び隔壁の補強計画を踏まえた竜巻防護ネットの配置設計進捗
（2）設置許可段階での説明事項を踏まえた耐震及び強度計算方針の設定並びに方針に基づく設
計進捗
【例】構造強度評価フロー図の設定
ゴム支承に係る特性試験を踏まえた剛性の設定
（3）記載適正化（内容に変更なし）
赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所
【6 条（竜巻）—別添1—添付3．7－4】

図3竜巻防護ネットの概要図（北西側から見た場合）

図2－1 竜巻防護ネットの概要図

赤字：詳細設計を踏まえた変更箇所
詳細設計段階における対応状況（竜巻防護ネット）

詳細設計段階			備考
表 2－2 竜巻防護ネット主要仕様比較			分類（1） （フレーム基数の変更） 東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。
総質量		約 358ton	
全体形状		約 26 m （東西方向）\times 約 23 m （南北方向）高さ 約 1 m	
ネット（金網部）	構成	－（変更なし）	
	寸法	－（変更なし）	
	主要材料	－（変更なし）	分類（2）
フレーム	数量	4 組	
	寸法		（大梁断面サイズ変更及び材料変更，防護板の材料変更）設計進捗を踏まえ，断面サイズ及び材料を変更した。 分類（3） （記載適正化）
	主要材料	SM490A，SM400A，SS400	
大梁	寸法	長さ×幅×高さ： 約 $25 \mathrm{~m} \times 1.6 \mathrm{~m} \times 1.3 \mathrm{~m}$	
	主要材料	SM490A	
ゴム支承	仕様	－（変更なし）	
	数量	大梁用： 4 個（ 2 組（ 2 個／組）） フレーム用： 8 個（4組（2個／組））	
可動支承	数量	8個（4組（2個／組））	
防護板	材料	SM400A	
耐震クラス	－	C（ S s ）	

赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所

設置許可段階	詳細設計段階	備考
［6 条（竜巻）一別添 1 －添付 $3.7-15$ 】 2．6．2 構造設計 ゴム支承はフレームと隔壁（北側）の接続部及び大梁とブラケットの接続部に設置する。 フレームと隔壁（北側）の接続部は，フレーム 1 基に対して，隔壁（北側）の天面に設置した 2 個 のゴム支承をとりつける構造とする。（隔壁（北側）には計 10 個のゴム支承を設置） 大梁の支持は，片側 1 か所あたり 2 基のブラケットを設置し，各ブラケットの上に 1 個のゴム支承を設置する。（ブラケットには計 4 個のゴム支承を設置） 大梁とフレームの接続部は可動支承を用いる。可動支承はフレーム 1 基に対して， 2 個の可動支承で支持する。（大梁には計 10 個の可動支承を設置）可動方向は南北方向のみである。	ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個のゴム支承を取り付け，大梁 と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフ レーム及び大梁を支持する構造とする。 可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレ ーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。	分類（1） （フレーム基数の変更） 東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変 更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6 条（竜巻）一別添1－添付3．7－15】 図 10 支持構造模式図	支持方式模式図（A－A矢視） 図2－5 竜巻防護ネットの支持構造模式図	分類（1） （フレーム基数の変更） 東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映（フレーム幅を調整） 分類（1） （ブラケットの廃止•支持壁変 更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

赤字：詳細設計を踏まえた変更箇所
【6 条（竜巻）- 別添1—添付 3.7 置許可段階
 コム文
詳細設計段階における対応状況（竜巻防護ネット）

赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所
赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所

設置許可段階	詳細設計段階	備考
【6 条（竜巻）—別添1—添付 3．7－27】 これらの影響を踏まえて，構造成立性の見通しを確認するために，竜巻防護ネットを構成する支持部材に対し，代表的な飛来物衝突の解析評価を実施する。評価は以下の 2 ステップで実施する。各 STEP の評価フローを図 14 に示す。また，支持部材の評価方法については別紙 2 に幣理する。 【STEP1】 ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴム支承の剛性 を考慮した衝突解析を実施する。衝突解析は，フレームゴム支承による影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合 において，フレームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。STEP1 の評価結果について別紙3に幣理する。 【STEP2】 衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下の評価を実施 する。STEP2 の評価結果については別紙 4 に幣理する。 STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）はゴム剛性の結合条件を 3 方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行う。 STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価としてゴム支承のせん断剛性を考慮した解析条件にて評価を実施する。 STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施する。ス トッパーの評価はゴム剛性の結合条件を自由（ゴム支承による荷重の負担は期待せずス トッパーに全ての荷重を伝達する条件）とし衝突解析を行い，構造成立性の確認を行う。	（1）詳細設計段階における検討経緯 「3．設置許可段階における主な説明事項」及び海水ポンプ室の耐震補強計画を踏まえて，竜巻防護ネットの詳細設計を実施した。検討の経緯及び概要について以下に示す。 海水ポンプ室の詳細設計における構造を，竜巻防護ネットの設計を反映した。具体的には，東西側壁上部への補強梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなったことか ら，フレーム幅及びフレーム基数の見直しを実施することとした。また，南側隔壁補強を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造から，補強す る南側隔壁にて大梁を支持する構造とした。 設置許可段階では保守的にゴム支承の拘束条件を 3 方向固定として支持部材の構造成立性を確認していたが，詳細設計段階では，ゴム支承剛性に係る特性試験を実施した上で， ゴム支承の拘束条件を 3 方向弾性とし，試験を踏まえた剛性のばらつきを不確かさケース として影響確認することとした。このとき，竜巻防護ネットの機能維持の考え方として，設置許可段階では 2 つのフレームゴム支承のうち 1 つ以上の支承が構造強度上の評価方針を満足することを確認するとしていたが，詳細設計段階においては，いずれのゴム支承 も許容値を超えず構造強度上の評価方針を満足させる方針とした。 可動支承についても，詳細設計段階においてはサイズアップやボルトの仕様変更等の対応 を行い，許容値を満足させる方針とした。 いずれの支承部も許容値を満足させる方針としたことに伴い，構造強度評価において，ス トッパーに対して竜巻防護ネットの支持機能を期待しない方針とした。 飛来物の衝突姿勢（長辺衝突）による影響について，不確かさケースとして確認する方針 とした。 （4）詳細設計段階における設計フロー 詳細設計段階での説明事項を踏まえ，竜巻防護ネットの衝突解析において基本ケース及び不確か さケースを設定し評価を実施する。詳細設計段階における竜巻防護ネットの支持部材の評価フロー図を図4－1 に示す。 なお，詳細設計段階における説明事項に対する対応方針について，別紙5に示す。 衝突解析の実施に当たり，現実に即したゴム支承の特性を考慮し，適切な解析モデルを設定する よう，ゴム支承の剛性の設定方針及び特性試験の実施について次章に示す。	分類（2） （強度評価フローの見直し）設置許可段階における説明事項を踏まえ，構造成立性を確認 した評価フローを組み替え，基本ケース及び不確かさケース の評価を実施する評価フロー とした。詳細については「補足説明資料 710－14．1 竜巻防護 ネットの衝突解析について」に示す。

赤字：詳細設計を踏まえた変更箇所

赤字：詳細設計を踏まえた変更箇所

設置許可段階	詳細設哬段階	備考
【6 条（竜巻）一別添1—添付3．7－38】 図19 設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	図19 設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変 更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。 分類（2） （フレームゴム支承の仕様変 更。P4．1－別紙5－2と同様。） 分類（2） （ストッパーの位置付けの整 理） 構造強度評価上は期待しない が，道路橋示方書における落橋 防止装置を参考に，自主的にス トッパーを設置することとし た。

赤字：詳細設計を踏まえた変更箇所

設置䍃可段階		供考
【6 条（竜巻）—別添 1 －添付 3．7－38】 図 20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	図 20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	分類（1） （フレーム基数の変更） 東西側壁補強に伴い東西方向 開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの䧹止•支持壁変 更） 海水ボンプ室補强計画を踏ま 元，既設束西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補强する南側隔壁にて大梁を支持する構造 とした。 分類（2） （フレームゴム支承の仕怺変 更。P4．1－別紙 5 －2 と同梯。） 分類（2） （ストッパーの位置付けの整 理） 構造強度評価上は期待しない が，道路橋示方書における落憍防止装置在参考に，自主的にス トッパーを設置することとし た。

赤字：詳細設計を踏まえた変更箇所

設置許可段階	颜絽設計段階	備考
図21 設計飛来物衝突時の荷重伝達例 （鉛直方向から衝突した場合）	図21 設計飛来物衝突時の荷重伝達例 （鉛直方向から衝突した場合）	分類（1） （フレーム基数の変更） 東西側壁禣強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変 更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。 分類（2） （フレームゴム支承の仕様変更。P4．1－別紙 5－2 と同様。） 分類（2） （ストッパーの位置付けの整理） 構造強度評価上は期待しない が，道路橋示方書における落橋防止装置を参考に，自主的にス トッパーを設置することとし た。

赤字：詳細設計を踏まえた変更箇所

竜巻防護ネットの支持部材の評価フロー図に対して，詳細設計段階における説明事項及び申送り事項への対応方針を整理した結果について図1及び表1に示す。

注記＊1：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	基本ケース における設定【（2）】＊2	$\begin{gathered} \text { 不確かさケース } \\ \text { における設定 } \\ \text { 【(4)】*2 } \end{gathered}$	
解析モデルにおける ゴム支承の剛性 【（1）】 ${ }^{2}$	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定【c】＊2
衝突解析における衝突姿勢【b】＊2	短辺衝突	不確かさ ケース (2)	長辺衝突による影響を確認

＊2：【】内は表1に示す各No．に対応

図1 竜巻防護ネットの支持部材の評価フロー図
表1 詳細設計段階における対応事項整理結果（1／2）

分類	No．	内容	対応方針	資料等への反映
説明 事項	（1）	詳細設計段階では現実に即した解析モ デルとして，ゴム支承の特性を考慮した解析モデルを適用し，評価を実施する方針とする。	「5．衝突解析に係るゴム支承の剛性の設定」にて実施したゴム支承の鉛直剛性に係る特性試験結果を踏ま え，ゴム支承の特性を考慮した衝突解析を実施する方針を示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」
	（2）	設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フローを設定する。	「4．詳細設計段階における設計方針」にて，衝突解析 において基本ケース及び不確かさケースを設定する評価フローを示した。	「補足－710－14．14．詳細設計段階における設計方針」
	（3）	可動支承について，設置許可段階におけ る構造成立性の見通し碓認において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承のサイズアップや ボルトの仕様変更等の対応を行らこと で，許容値を満足させる方針とする。	「6．衝突解析における解析モデルの設定」及び「7．評価結果」にて，可動支承部に発生する荷重が許容限界 を超えず，可動支承の支持機能が維持されることを示 した。	「補足－710－1 4．16．衝突解析における解析モデルの設定」及び「補足－710－14．1 7．評価結果」
	（4）	基本ケースによる各部材の設計を実施 した後に，不確かさケースの確認とし て，ゴム支承の剛性のばらつきを考慮し た解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突） を実施し，評価を実施する方針とする。	「5．衝突解析に係るゴム支承の剛性の設定」にてゴ ム支承の剛性のばらつきを考慮した解析モデルの設定 について示した。また，「6．衝突解析における解析モ デルの設定」及び「7．評価結果」にて，衝突姿勢の影響を考慮した評価ケースの設定の考え方について示 し，基本ケース及び不確かさケースの評価結果より，支持部材に発生するひずみや応力等が許容限界を超え ず，支持機能が維持されることを示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」，「補足－710－14．1 6．衝突解析における解析 モデルの設定」及び「補足－ 710－1 4．17．評価結果」

表1 詳細設計段階における対応事項整理結果（2／2）

分類	No．	内容	対応方針	資料等への反映
$\begin{aligned} & \text { 申送り } \\ & \text { 事項 } \end{aligned}$	a	飛来物衝突時の上向反力に対して，フレ ームが浮き上がらないことを詳細設計段階で説明する。	「6．衝突解析における解析モデルの設定」及び「7．評価結果」にて，衝撃荷重による上向きの反力によりフ レームゴム支承に生じる引張応力度が許容限界を超え ず，フレームの浮き上がりによる損傷が生じないこと を示した。	「補足－710－1 4.1 6．衝突解析における解析モデル の設定」及び「補足－710－1 4． 1 7．評価結果」
	b	衝突方向に対する影響について，ガイド の考え方を踏まえて詳細設計段階で説明する。	「6．衝突解析における解析モデルの設定」にて，「原子力発電所の竜巻影響評価ガイド」を踏まえた衝突解析の評価ケースの設定の考え方について示した。また，「7．評価結果」にて，衝突方向に対する影響を不確か さケースとして評価した結果より，支持部材に発生す るひずみや応力等が許容限界を超えず，支持機能が維持されることを示した。	「補足－710－1 4．1 6．衝突解析における解析モデル の設定」及び「補足－710－1 4．17．評価結果」
	c	ゴム支承の衝撃荷重に対する試験内容 について，詳細設計段階で説明する。	「5．衝突解析に係るゴム支承の剛性の設定」にて，衝突解析に資するゴム支承の鉛直剛性に係る特性試験を実施し，試験を踏まえたゴム支承の剛性の設定方針を示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」

4．8 ストッパーの評価について

1．はじめに

竜巻防護ネットは，外部事象防護対象施設の機能喪失に至る可能性のある飛来物が外部事象防護対象施設に衝突することを防止するために，支持部材について，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持し，外部事象防護対象施設に波及的影響を与えないよう，支持部材に破断が生じないよう十分 な余裕を持った強度が確保されていることを確認することで，外部事象防護対象施設に波及的影響を及ぼさないこととしている。また，基準地震動 S S に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラス施設に対して波及的影響を及ぼさないこととしている。

ここで，添付書類「VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書」及び「VI －2－11－2－2 竜巻防護ネットの耐震性についての計算書」において，竜巻防護ネットの支承部が想定する荷重に対して許容限界を超えず，十分な構造強度を有していることを確認しているが，「道路橋示方書•同解説 V 耐震設計編」の落橋防止構造の考え方を参考 に，フレーム落下防止のためのストッパーを自主的に設置することとしている。

本書では，竜巻防護ネットにストッパーを設置することにより外部事象防護対象施設 に波及的影響を与えないことを確認する。

2．ストッパーの構造
ストッパーの設置位置及び構造概要について図2－1に示す。図2－1に示すとおり，ス トッパーは設置位置及び移動制限方向によって表2－1 のとおり分類される。

図 2－1 ストッパーの設置位置及び構造概要

表 2－1 ストッパーの種類

	ストッパー①	ストッパー（2）	ストッパー（3）	
設置位置	南側	北側	北側	
取付場所	フレーム側	フレーム側	隔壁側	フレーム側
移動制限方向	南北	南北	東西	

3．ストッパーの波及的影響評価
3.1 想定する事象及び評価方法

「1．はじめに」のとおり，竜巻防護ネットの支承部は想定する荷重（地震や竜巻等の自然現象）に対して支持機能を維持することを確認しているが，ポンプ点検等に伴うフレームの取り付け・取り外しによって，1 基のフレームに取り付くフレームゴ ム支承（2 基）がいずれも機能喪失した場合を仮定し，「道路橋示方書•同解説 V 耐震設計編」における落橋防止構造に対する設計の考え方を参考に，竜巻防護ネットに設置するストッパーの応力評価を実施する。

ストッパーに作用する水平荷重は，「道路橋示方書•同解説 V 耐震設計編」に基づ き次式により算出する。参考とした落橋防止構造に関する規定について別紙1に示す。

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{F}}=1.5 \cdot \mathrm{R}_{\mathrm{d}} \\
& \text { ここで, }
\end{aligned}
$$

H_{F} ：ストッパーに作用する水平荷重
R_{d} ：支承部に作用する鉛直反力
なお，ストッパーの波及的影響評価における事象想定に関して，フレームの取り付 け・取り外し作業概要及びゴム支承の保全の概要を別紙2に示す。
3.2 応力の算出方法

ストッパーに生じる応力は，設計•建設規格に基づき，次式により算出する。また， ストッパーに作用する水平荷重の模式図について図3－1に示す。
（1）せん断応力
$\tau=\frac{\left|\mathrm{H}_{\mathrm{F}}\right|}{\mathrm{A}}$
ここで，
A：有効せん断断面積
（2）曲げ応力

$$
\begin{aligned}
& \sigma=\frac{|\mathrm{M}|}{\mathrm{Z}} \\
& \text { ここで, } \\
& \mathrm{M}: \text { 次式により算出する曲げモーメント }
\end{aligned}
$$

$$
\mathrm{M}=\mathrm{H}_{\mathrm{F}} \times \mathrm{h}
$$

h ：荷重作用点から支持点間距離

Z：断面係数
（3）組合せ応力（曲げ＋せん断）
$\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
また，組合せ応力の評価は，次式を満たすことを確認する。
$\frac{\sqrt{\sigma^{2}+3 \cdot \tau^{2}}}{1.5 \cdot \mathrm{f}_{\mathrm{t}}^{*}} \leqq 1$
（4）ストッパー（隔壁側）のボルトに作用する引張応力
$\sigma_{b}=\frac{\mathrm{F}}{\mathrm{A}_{\mathrm{b}}}$
ここで，
F：次式により算出する，水平荷重によりボルトに作用する引張力

$$
\begin{aligned}
& \mathrm{F}=\frac{\left|\mathrm{H}_{\mathrm{F}}\right| \times \mathrm{h}}{\mathrm{Z}_{\mathrm{b}}} \\
& \mathrm{Z}_{\mathrm{b}}=\frac{\sum\left(\mathrm{n}_{\mathrm{j}} \cdot \ell_{\mathrm{j}}^{2}\right)}{\max \left(\ell_{\mathrm{j}}\right)}
\end{aligned}
$$

h ：荷重作用点から支持点間距離
Z_{b} ：ボルト群の断面係数
$\ell_{\mathrm{j}}:$ 中心からのボルト距離 $(\mathrm{j}=1,2)$
n_{j} ：各位置でのボルト数 $(\mathrm{j}=1,2)$
A_{b} ：ボルトの呼び径断面積
（5）ストッパー（隔壁側）のボルトに作用するせん断応力
$\tau_{\mathrm{b}}=\frac{\left|\mathrm{H}_{\mathrm{F}}\right|}{\mathrm{n} \cdot \mathrm{A}_{\mathrm{b}}}$
ここで，
n ：ボルト本数
A_{b} ：ボルトの呼び径断面積
（6）ストッパー（隔壁側）のボルトに作用する組合せ応力
3．2（4）で算出した応力を用いる。
（北）

（南）

ストッパー（1）（南北方向の移動を制限するストッパー（南側））

ストッパー（2）（南北方向の移動を制限するストッパー（北側））

図 3－1 ストッパーに作用する水平荷重の模式図（ $1 / 2$ ）

ストッパー（3）（東西方向の移動を制限するストッパー（隔壁側））

（西）

ストッパー（3）（東西方向の移動を制限するストッパー（フレーム側））

ストッパー（隔壁側）のボルト配置

図 3－1 ストッパーに作用する水平荷重の模式図（2／2）

3． 3 許容限界

許容限界はJEAG4601の許容応力状態IV IV_{A} S に基づく許容値を適用する。許容限界を表3－1に示す。

表 3－1 許容限界

許容応力状態	許容限界＊1 （ボルト等以外）			許容限界＊1，＊2 （ボルト等）	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	引張	曲げ	せん断	引張	せん断
	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fb}^{*}$	$1.5 \cdot \mathrm{f}^{\text {s }}$＊	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊

注記＊1：応力の組合せに対しても評価を行う。
＊ 2 ：引張応力とせん断応力を同時に受けるボルトの許容引張応力 $1.5 \cdot \mathrm{f} \mathrm{t} \mathrm{s}$＊ は以下により算出する。
$1.5 \cdot \mathrm{ft}_{\mathrm{s}} *=\mathrm{m} \mathrm{i} \mathrm{n}\left(1.4 \cdot 1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}-1.6 \cdot \tau \mathrm{~b}, 1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}\right)$

4．評価条件

材料仕様及び評価条件を表4－1～表4－3に示す。

表 4－1 材料仕様

評価対象部位	材料	S_{y} (MPa)	S_{u} (MPa)	F ＊ (MPa)
ストッパー（1）（フレーム側）	SM490A	315	490	343
ストッパー（2）（フレーム側）	SM490A	315	490	343
ストッパー（3）（隔壁側）	SM490A	315	490	343
ストッパー（3）（隔壁側）ボルト	SNR490B	325	490	343
ストッパー（3）（フレーム側）	SM490A	315	490	343

表 4－2 ストッパーの評価条件

評価対象部位	有効せん断 断面積 A^{*} $\left(\mathrm{~mm}^{2}\right)$	断面係数 $\mathrm{Z} *$ $\left(\mathrm{~mm}^{3}\right)$	荷重作用点から 支持点間の距離 h (mm)
ストッパー（1）（フレーム側）	7.809×10^{3}	4.170×10^{6}	620
ストッパー（2）（フレーム側）	6.973×10^{3}	3.670×10^{6}	750
ストッパー（3）（隔壁側）	7.000×10^{3}	6.100×10^{6}	267
ストッパー（3）（フレーム側）	8.750×10^{3}	4.140×10^{6}	195

注記＊：断面積及び断面係数は図3－1 の断面 A－A の位置で算出。

表 4－3 ストッパー（隔壁側）のボルトの評価条件

評価対象部位	呼び径 $(-)$	呼び径 断面積 A_{b} $\left(\mathrm{mm}^{2}\right)$	本数 n $($ 本 $)$	断面係数 Z_{b} (mm)	荷重作用点から 支持点間の距離 h (mm)
ボルト	M 30	706.8	12	3.00×10^{3}	339

5．評価結果
5.1 荷重算出

ストッパーに作用する水平荷重を表 5－1 に示す。鉛直反力については，添付書類「VI －2－11－2－2 竜巻防護ネットの耐震性についての計算書」に示している竜巻防護ネット の耐震評価フローを基に，固定荷重及び積雪荷重によって支持部に作用する反力を算出した。

表 5－1 ストッパーに作用する水平荷重
（単位：kN）

	ストッパー①	ストッパー（2）	ストッパー（3）
鉛直反力 $\mathrm{R}_{\mathrm{d}} * 1$	248	183	$366 * 2$
水平荷重 H_{F}	380	280	550

注記＊1：自重及び積雪荷重を考慮する。
＊2：ストッパー（1）及び②はそれぞれ 2 基のストッパーで荷重を負担するが， ストッパー③は1基で荷重を負担することから，ストッパー近傍のフレ ームゴム支承 2 基分の支承反力を考慮する。

5.2 応力評価

ストッパーの応力評価結果を表 5－2に示す。また，ストッパー（隔壁側）のボルト の応力評価結果を表5－3に示す。発生する応力は許容限界以下である。

表5－2 ストッパーの応力評価結果
（単位：MPa）

	発生値				許容限界
	ストッパー（1）	ストッパー（2）	ストッパー 3		
	フレーム側	フレーム側	隔壁側	フレーム側	
曲げ応力	57	58	25	27	343
せん断応力	49	41	79	63	198
組合せ応力＊	0.30	0.27	0.41	0.33	1.0

注記＊：発生値，許容限界の単位は無次元

表 5－3 ストッパー（隔壁側）のボルトの応力評価結果
（単位：MPa）

	発生値	許容限界
	ストッパー（3）	
	89	257
せん断応力	65	198
組合せ応力	89	255

16.3 落橋防止構造

（1）落橋防止帮造の耐力は，式（16．3．1）により算出する設計地震力を下回ってはならない。ここで，落橋防止構造の酎力は，割增し俰数 1.5 を考虑した許容応力度加ら算出してよい。また，落橋防止檏造の設計遊間量は，式（16．3．2）による値を超えない範囲で可能な限り大きい値とするのがよ い。

$$
\begin{align*}
H_{F} & =1.5 R_{d} \tag{16.3.1}\\
S_{F} & =c_{F} S_{E} . \tag{16.3.2}
\end{align*}
$$

ここに，
H_{F} ：落橋防止楛造の設計地震力 (kN)
R_{d} ：死荷重反力（ kN ）。ただし， 2 連のけたを相互に連結する構造を用いる場合には，いずれか大きい方の鉛直反力の値をとるものと する。
$S_{F}:$ 落橋防止構造の設計最大遊間量（m）
S_{E} ：けたかがり長（m）で， 16.2 の規定による。
c_{F} ：落橋防止構造の設計変位係数で， 0.75 を標準とする。
（2）落橋防止構造は，支承の移功，回転等の機能を損なわない構造とする ものとする。
（3）落橋防止構造は，橋軸直角方向への移動にも追随し，また，衔紫的な地震力を緩和できる暳造とするものとする。
（4）落橋防止構造の取り付け部は，落橋防止構造の設計地震力を確実に上下部構造に伝達できる構造とするものとする。
（5）落橋防止構造は，支承部の維持管理の赫害とならない構造とするもの とする。

ストッパーの波及的影響評価における事象想定に関する補足

竜巻防護ネットの構造評価においては，いずれの支承部も構造強度上の評価方針を満足 する方針とし，竜巻防護ネットの支持機能を担う部材としてストッパーに期待しないこと としているが，「道路橋示方書•同解説 V 耐震設計編」の落橋防止構造の考え方を参考に， フレーム落下防止のためのストッパーを自主的に設置することとしている。

ストッパーの波及的影響評価において，ポンプ点検等に伴うフレームの取り付け・取り外しによって，保守的に 1 基のフレームに取り付くフレームゴム支承（2基）がいずれも機能喪失した場合を仮定して評価していることについて，フレーム取り付け・取り外し作業及びゴム支承の保全の観点を踏まえて補足する。
（1）フレームの取り付け・取り外し作業
竜巻防護ネットのフレームは，ポンプ点検等に応じて取り外す必要がある。現状計画している，フレーム 1 基を取り外す際の作業概要を図 1 に示す。図 1 に示すとおり，

フレームの取り付け・取り外し作業において支承部の機能が喪失するおそれはない。

図1 フレームの取り外し作業概要 $(1 / 2)$＊

【STEP－3】ゴム支承及び可動支承の取付ボルトの取り外し

【STEP－4】フレームの吊上げ（支承部との切り離し）

図1 フレームの取り外し作業概要 $(2 / 2)$＊

注記＊：他のフレーム取り外しは，【STEP－1】から【STEP－4】を繰り返して実施する。また， フレームの取り付けは逆の手順により実施する。
（2）ゴム支承の保全について
ゴム支承は外側に厚さ 10 mm の被覆ゴムを設置し，紫外線によりゴム支承内部のゴム材料の劣化及び性能低下を防止する構造としているが，「道路橋支承便覧」等を基に， ゴム支承の健全性の確認として，ゴム支承は外観点検を行ら計画としている。点検内容について表1 に示す。また，ゴム支承の損傷イメージを図 2 に示す。

以上により，プラント供用期間中において，設計条件（解析に入力しているゴム支承の剛性値等の評価条件）に対する影響はない。

表1 ゴム支承の点検内容 ${ }^{* 1}$

点検項目	方法	箇所	管理値	頻度
亀裂	目視	全数	亀裂がないこと	1 回／年程度
側面の異常な膨出	目視	全数	異常がないこと	1 回／年程度

注記 $* 1$ ：本表に記載している内容は暫定であり，点検内容及び点検頻度は発電所の点検計画に別途定めて管理する。
（ゴム支承断面図）

図2 ゴム支承の損傷イメージ（亀裂及び膨出）
（3）ストッパーの波及的影響評価における想定事象
竜巻防護ネットの構造評価においては，いずれの支承部も構造強度上の評価方針を満足する方針としており，添付書類「VI－2－11－2－2 竜巻防護ネットの耐震性に関する計算書」及び「VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書」に示すとおり，ゴ ム支承及び可動支承に生じる応力等の発生値が許容限界を超えないため，竜巻防護不 ットの支持機能を担ら部材としてストッパーに期待することはない。

また，前項までの内容より，フレームの取り付け・取り外し作業によって支承部の機能が喪失するおそれはなく，さらに，定期的な点検によってゴム支承の健全性を確認することから，設計条件（解析に入力しているゴム支承の剛性値等の評価条件）に対する影響はない。

上記のとおり，ストッパーに機能を期待する事象はないが，「道路橋示方書•同解説 V耐震設計編」において，上下部構造間に予期し得ない大きな相対変位が生じた場合 のフェールセーフ機能として落橋防止構造を設けるよう規定されていることを参考に，何らかの要因に対してもフレームが落下することを防止するよう，ストッパーを設置 し，ストッパーの設置に伴う波及的影響評価を行う。評価に当たり，事象の想定とし ては，施設定期検査におけるポンプ点検等に伴う竜巻防護ネットのフレームの取り付 け・取り外しにより，フレームとゴム支承が接続されない状態が生じることを考慮し て，フレーム1基に取り付くゴム支承が 2 基とも機能喪失したと仮定する。なお，図 3 に示すとおり，フレーム間のクリアランスに対して，フレーム及びストッパー間の クリアランスの方が小さいことから，ストッパーの波及的影響評価において，隣接す るフレームからの影響はない。

図 3 フレーム間並びにフレーム及びストッパー間のクリアランス

[^0]: 注記＊：いずれの支承部も構造強度上の評価方針を満足することを確認する。

[^1]: \longrightarrow ：評価ケース
 \cdots ：評価ケースに包絡されるケース

[^2]:

[^3]: 6 条（竜巻）一別添 1 —添付 3.7 －別紙 4－6

[^4]: 6 条（竜巻）一別添1—添付3．7—別紙4－9

[^5]: ＊1：フレームゴム支承は， 2 つのうち 1 つ以上の支承が構造強度上の評価方釙を满足することを確認する。許容限界を满足しない結果となった場合，二次的影響評価を実施する。
 ＊2：不磪かさケースではストッハーに支持機倩を期待する場合があり得る

[^6]: ※ EP：設置許可段階 CP：詳細設計段階

