本資料のらち，枠囲みの内容 は商業機密の観点から公開で きません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02－工－B－19－0328＿改 0 \\

\hline 提出年月日 \& 2021 年 7 月 13 日 \\
\hline\end{array}\right.\)

VI－2－5－7－1－1 原子炉補機冷却水系熱交換器の耐震性についての計算書

2021年7月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の計算 3
4．構造強度評価 4
4． 1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件 4
4.3 計算条件 4
4.4 疲労解析評価 9
5．評価結果 11
5.1 設計基準対象施設としての評価結果 11
5.2 重大事故等対処設備としての評価結果 11

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉補機冷却水系熱交換器が設計用地震力に対して十分な構造強度を有している ことを説明するものである。

原子炉補機冷却水系熱交換器は，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，原子炉補機冷却水系熱交換器は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横置一胴円筒形容器と類似の構造であるため，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また，「4．4 疲労解析評価」にて示す方法にて疲労解析評価を実施する。

2．一般事項
2.1 構造計画

原子炉補機冷却水系熱交換器の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
胴を2個の脚で支持し， 脚をそれぞれ基礎ボルト で基礎に据え付ける。	横置一胴円筒形容器 （前後水室に平板及び鏡板を有する横置一胴円筒形容器）	

3．固有周期

3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は，本計算書の【原子炉補機冷却水系熱交換器の耐震性についての計算結果】の機器要目に示す。計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期の計算結果を表 3－1に示す。

表 3－1 固有周期
（単位：s）

| 水平方向 | | |
| :---: | :--- | :--- | :--- |
| 鉛直方向 | | |

4．構造強度評価

4.1 構造強度評価方法

原子炉補機冷却水系熱交換器の構造強度評価は，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
原子炉補機冷却水系熱交換器の荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力

原子炉補機冷却水系熱交換器の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，表 4－3 及び表 4－4 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉補機冷却水系熱交換器の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－5 に，重大事故等対処設備の評価に用いるものを表 4－6に示す。

4.3 計算条件

応力計算に用いる計算条件は，本計算書の【原子炉補機冷却水系熱交換器の耐震性について の計算結果】の設計条件及び機器要目に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉補機冷却設備	原子炬補機冷却水系熱交換器	S	クラス 3 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	IIIA ${ }_{\text {S }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 3 容器の支持構造物を含む。
表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分	

注記＊1：「常設／防止（DB拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和（DB拡張）」は常設重大事故緩和設備（設計基準拡張）を示 す。
＊2：重大事故等クラス2容器の支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（クラス 2,3 容器及び重大事故等クラス 2 容器）
o

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{gathered}\text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{gathered}$
IIIAS	S_{y} と0．6• S_{u} の小さい方 ただし，オーステナイト系ステ ンレス鋼及び高ニッケル合金 については上記値と1．2•Sと の大きい方	左欄の 1.5 倍の値	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			弾性設計用地震動 S d 又は基準地震動 S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。ただし，地震動のみ による一次 + 二次応力の変動値が $2 \cdot \mathrm{~S} \mathrm{y}$ 以下であれば，疲労解析は不要。
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$			基準地震動 S s のみによる疲労解析を行い，疲労累積係数が1．0以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下 であれば，疲労解析は不要。

注記 $* 1$ ：座屈による評価は，クラス MC 容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界 $* 1, * 2$ （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界 } \\ \text { を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(\mathrm{RT} T) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \text { SM490B } \\ \text { (厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	最高使用温度	70	－	307	461	－
脚	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	231	394	－
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	周囲環境温度	50	－	211	394	－

∞
表 4－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \text { SM490B } \\ \text { (厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	最高使用温度	70	－	307	461	－
脚	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	231	394	－
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	周囲環境温度	50	－	211	394	－

4． 4 疲労解析評価

胴の応力評価において，一次応力と二次応力の和の変動値が設計降伏点 S_{y} の 2 倍を上回る場合には，設計•建設規格 PVB－3300に規定された簡易弾塑性評価方法に基づき，疲労解析評価 を実施する。

なお，疲労解析評価に用いる基準地震動 S s の等価繰返し回数 N_{c} は， \square とする。
（1）繰返しピーク応力強さ
繰返しピーク応力強さ S_{e} は，次式により求める。

$$
\mathrm{S}_{\ell}=\mathrm{K}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{p}} / 2 \cdot \text { •••••••••••••••••••••••••• (4.4.1) }
$$

K_{e} ：次の計算式により計算した値
a． $\mathrm{S}_{\mathrm{n}}<3 \cdot \mathrm{~S}_{\mathrm{m}}$ の場合

$$
\mathrm{K}_{\mathrm{e}}=1
$$

b．$\quad \mathrm{S}_{\mathrm{n}} \geqq 3 \cdot \mathrm{~S}_{\mathrm{m}}$ の場合
（a） $\mathrm{K}<\mathrm{B}_{0}$ の場合

$$
\begin{aligned}
& \text { イ. } \mathrm{S}_{\mathrm{n}} /\left(3 \cdot \mathrm{~S}_{\mathrm{m}}\right)<\left[\left(\mathrm{q}+\mathrm{A}_{0} / \mathrm{K}-1\right)\right. \\
& \left.-\sqrt{\left\{\left(\mathrm{q}+\mathrm{A}_{0} / \mathrm{K}-1\right)^{2}-4 \cdot \mathrm{~A}_{0} \cdot(\mathrm{q}-1)\right\}}\right] /\left(2 \cdot \mathrm{~A}_{0}\right) \text { の場合 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㅁ. } \quad \mathrm{S}_{\mathrm{n}} /\left(3 \cdot \mathrm{~S}_{\mathrm{m}}\right) \geqq\left[\left(\mathrm{q}+\mathrm{A}_{0} / \mathrm{K}-1\right)\right. \\
& \left.-\sqrt{\left\{\left(\mathrm{q}+\mathrm{A}_{0} / \mathrm{K}-1\right)^{2}-4 \cdot \mathrm{~A}_{0} \cdot(\mathrm{q}-1)\right\}}\right] /\left(2 \cdot \mathrm{~A}_{0}\right) \text { の場合 } \\
& \mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{e}}{ }^{\prime}=1+(\mathrm{q}-1) \cdot\left(1-3 \cdot \mathrm{~S}_{\mathrm{m}} / \mathrm{S}_{\mathrm{n}}\right) \cdot \boldsymbol{} \text { •••••••••••(4.4.3) }
\end{aligned}
$$

（b） $\mathrm{K} \geqq \mathrm{B}_{0}$ の場合

$$
\begin{aligned}
& \text { イ. } \mathrm{S}_{\mathrm{n}} /\left(3 \cdot \mathrm{~S}_{\mathrm{m}}\right)<\left[(\mathrm{q}-1)-\sqrt{\left\{\mathrm{A}_{0} \cdot(1-1 / \mathrm{K}) \cdot(\mathrm{q}-1)\right\}}\right] / \mathrm{a} \text { の場合 } \\
& \mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{e}}{ }^{* *}=\mathrm{a} \cdot \mathrm{~S}_{\mathrm{n}} /\left(3 \cdot \mathrm{~S}_{\mathrm{m}}\right)+\mathrm{A}_{0} \cdot(1-1 / \mathrm{K})+1-\mathrm{a} \cdot \cdots \cdot \cdot \cdot \cdot \cdot(4.4 .4) \\
& \text { ロ. } \quad \mathrm{S}_{\mathrm{n}} /\left(3 \cdot \mathrm{~S}_{\mathrm{m}}\right) \geqq\left[(\mathrm{q}-1)-\sqrt{\left\{\mathrm{A}_{0} \cdot(1-1 / \mathrm{K}) \cdot(\mathrm{q}-1)\right\}}\right] / \mathrm{a} \text { の場合 } \\
& \mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{e}}{ }^{\prime}=1+(\mathrm{q}-1) \cdot\left(1-3 \cdot \mathrm{~S}_{\mathrm{m}} / \mathrm{S}_{\mathrm{n}}\right) \cdot \boldsymbol{} \text { ••••••••••••(4.4.5) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ここで, } \\
& \qquad \begin{array}{l}
\mathrm{K}=\mathrm{S}_{\mathrm{p}} / \mathrm{S}_{\mathrm{n}} \cdot \text { •••••••••••••••••••••••••(4.4.6) } \\
\\
\mathrm{a}=\mathrm{A}_{0} \cdot(1-1 / \mathrm{K})+(\mathrm{q}-1)-2 \cdot \sqrt{\left\{\mathrm{~A}_{0} \cdot(1-1 / \mathrm{K}) \cdot(\mathrm{q}-1)\right\}}
\end{array}
\end{aligned}
$$

$\mathrm{q}, \mathrm{A}_{0}$ ， B_{0} ：下表に掲げる材料の種類に応じ，それぞれの同表に掲げる値

材料の種類	q	A_{0}	$\mathrm{~B}_{0}$
低合金鋼	3.1	1.0	1.25
マルテンサイト系ステンレス鋼	3.1	1.0	1.25
炭素鋼	3.1	0.66	2.59
オーステナイト系ステンレス鋼	3.1	0.7	2.15
高ニッケル合金	3.1	0.7	2.15

S_{n} ：一次応力と二次応力を加えて求めた応力解析による応力強さのサイクルにおいて， その最大値と最小値の差
$\mathrm{S}_{\mathrm{m}}: 2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$
K_{e} ：弾塑性解析に用いる繰返しピーク応力強さの補正係数
S_{p} ：地震荷重のみにおける一次 + 二次 + ピーク応力の応力差範囲
S_{ℓ} ：繰返しピーク応力強さ
（2）運転温度における繰返しピーク応力強さの補正
縦弾性係数比を考慮し，繰返しピーク応力強さ S_{e} を次式により補正する。

$$
\mathrm{S}_{\ell}^{\prime}=\mathrm{S}_{\ell} \cdot \mathrm{E}_{0} / \mathrm{E}
$$

$\mathrm{S}_{\ell}{ }^{\prime}$ ：補正繰返しピーク応力強さ
E 0 ：縦弾性係数
E ：運転温度の縦弾性係数
（3）疲労累積係数
疲労累積係数 U_{f} が次式を満足することを確認する。
$\mathrm{U}_{\mathrm{f}}=\Sigma\left(\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}\right) \leqq 1.0$
N_{a} ：地震時の許容繰返し回数
N_{c} ：地震時の等価繰返し回数

なお，許容繰返し回数の算出には，設計•建設規格 表 添付 4－2－1 炭素鋼，低合金鋼 および高張力鋼の設計疲労線図より求めた値を用いる。

5．評価結果
5.1 設計基準対象施設としての評価結果

原子炉補機冷却水系熱交換器の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

原子炉補機冷却水系熱交換器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【原子炬補機冷却水系熱交換器の耐震性についての計算結果】
1．設計基準対象施設
1．1 設計条件

機器名称	耐震重要度分類分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		最高使用圧力 （ MPa ）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
原子炉補機冷却水采熱交換器	S	原子炉建屋 0. P．-8.10^{*} （0．P．-6.65 ）			$\mathrm{C}_{\mathrm{H}}=0.51$	$\mathrm{C}_{\mathrm{v}}=0.43$	$\mathrm{C}_{\mathrm{H}}=1.06$	$\mathrm{C}_{\mathrm{v}}=0.73$	1． 18	70	50

果 基準床レベルを示す

m_{1} $(\mathrm{~kg})$	m_{2} $(\mathrm{~kg})$	m_{3} $(\mathrm{~kg})$	m_{4} $(\mathrm{~kg})$	m_{5} $(\mathrm{~kg})$	m_{6} $(\mathrm{~kg})$	m_{7} $(\mathrm{~kg})$

い

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	ℓ_{6} $(\mathrm{~mm})$	ℓ_{7} $(\mathrm{~mm})$	M_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	M_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$
-1957	-801	7	2009	4007	5014	5821	2.374×10^{8}	1.323×10^{8}	3.007×10^{5}	2.028×10^{5}

m_{o} (kg)	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{o} (mm)	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{W} (mm)
	1800	15.0	$30.0^{* 1}$	4000	743	1200	0.374	260		

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	$\mathrm{I}_{\mathrm{s}_{\mathrm{x}}}$ $\left(\mathrm{mm}^{4}\right)$	$\mathrm{I}_{\mathrm{s}} \mathrm{y}$ $\left(\mathrm{mm}^{4}\right)$	$\mathrm{Z}_{\mathrm{s} x}$ $\left(\mathrm{~mm}^{3}\right)$	$\mathrm{Z}_{\mathrm{s},}{ }^{y}$ $\left(\mathrm{~mm}^{3}\right)$	$\theta \mathrm{o}$ (rad)	θ (rad)
810	300	3.115×10^{10}	1.585×10^{9}	3.846×10^{7}	5.285×10^{6}	2.084	1.405

A_{S} $\left(\mathrm{mm}^{2}\right)$	E_{S} (MPa)	G_{S} (MPa)	$\mathrm{A}_{S_{S}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{S_{2}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{S}_{3}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{S}_{4}}$ $\left(\mathrm{~mm}^{2}\right)$
8.650×10^{4}	$201000^{* 4}$	$77300^{* 4}$	4.713×10^{4}	3.373×10^{4}	3.528×10^{4}	2.843×10^{4}

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} $(\mathrm{mm})^{2}$	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$	d_{3} $(\mathrm{~mm})$
15	6	3	2	670	1650	48 $(M 48)$	1.810×10^{3}	85	160	825

$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{\text {(胴板) }} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}} \text { (胴板) }}$	$\begin{gathered} \text { S (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}^{\mathrm{y}} \text { (脚) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \text { F (脚) } \\ & \text { (MPa) } \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (脚) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \hline \text { F (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$
$\begin{gathered} 307^{* 3} \\ (\text { 厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	$461 * 3$	－		$394^{* 4}$	231	276	$\begin{gathered} 211^{* 4} \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	$394 * 4$	211	253

注記 $~ 1 ~: ~$ 本計算においては当板を有効とした。
$* 2$ ：表中で上段は一次応力，下段は二次応力の係数とする。
＊3：最高使用温度で算出
＊4：周囲環境温度で算出

1．3計算数値
1．3．1胴に生じる応力
（単位： MPa ）

					基準地震動S s			
地震の方向	長手方向		横方向		長手方向		横方向	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	$\sigma_{\phi 1}=72$	$\sigma_{\times 1}=36$						
内圧による応力 （鉛直方向地震時）	$\sigma_{\phi 2}=0$	－						
運転時質量による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 2}=28$						
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	$\sigma \times 6=12$	－	$\sigma_{\times 6}=12$	－	$\sigma_{\times 6}=21$	－	$\sigma_{x 6}=21$
長手方向地震により胴軸断面全面に生じる引張応力	－	$\sigma \times 413=3$	－	－	－	$\sigma \times 413=7$	－	－
組合せ応力	$\sigma_{0 \ell}=79$		$\sigma_{0 \mathrm{c}}=76$		$\sigma_{0 \ell}=90$		$\sigma_{0 \mathrm{c}}=84$	

$\stackrel{\rightharpoonup}{\triangleright}$

		弾性設計用地震動 Sd 又は静的震度				基準地震動S s			
	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力 （鉛直方向地震時）		$\sigma_{\phi 2}=0$	－						
$\begin{gathered} \text { 鉛直方向地震による長手方向 } \\ \text { 曲げモーメントより生じる応 } \end{gathered}$		－	$\sigma_{\times 6}=12$	－	$\sigma_{\times 6}=12$	－	$\sigma_{\times 6}=21$	－	$\sigma_{\times 6}=21$
$\begin{gathered} \text { 鉛直方向地震による脚反力 } \\ \text { により生じる応力 } \end{gathered}$		$\begin{aligned} & \sigma_{\phi 71}=12 \\ & \sigma_{\phi 72}=47 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma \times 71=12 \\ & \sigma \times 72=27 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}=12 \\ & \sigma_{\phi 72}=47 \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}=12 \\ & \sigma \times 72=27 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}=20 \\ & \sigma_{\phi 72}=80 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma \times 71=20 \\ & \sigma \times 72=46 \\ & \hline \end{aligned}$	$\begin{gathered} \sigma_{\phi 71}=20 \\ \sigma_{\phi 72}=80 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma \times 71=20 \\ & \sigma \times 72=46 \\ & \hline \end{aligned}$
水平方向地震 による応力	引張り	$\sigma_{641}=16$	$\sigma_{\times 41}=12$	${ }_{0}{ }_{651}=15$	$\sigma_{\times 51}=41$	$\sigma_{\phi 41}=33$	$\sigma_{\times 41}=25$	$\sigma_{\phi 51}=31$	$\sigma_{\times 51}=84$
		$\begin{aligned} & \sigma_{\phi 421}=13 \\ & \sigma_{\phi 422}=20 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma \times 421=26 \\ & \sigma \times 422=12 \end{aligned}$	$\sigma_{\phi 52}=129$	$\sigma_{\times 52}=56$	$\begin{aligned} & \sigma_{\phi 421}=27 \\ & \sigma_{\phi 422}=41 \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}=54 \\ & \sigma_{\times 422}=23 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=267$	$\sigma_{\times 52}=117$
		$\sigma_{642}=33$	$\sigma_{\times 42}=37$			$\sigma_{\phi 42}=68$	$\sigma_{\times 42}=77$		
	せん断	$\tau_{0}=15$		$\tau_{\mathrm{c}}=4$		$\tau_{0}=30$		$\tau_{\mathrm{c}}=7$	
組合せ応力		$\sigma_{2}{ }_{0}=234$		$\sigma_{2 \mathrm{c}}=402$		$\sigma_{2}{ }_{8}=445$		$\sigma_{2 \mathrm{c}}=791$	

E＇		地震の種類	弾性設計用地震動 Sd 又は静的震度		基漼地震動S s	
		地震の方向	長手方向	横方向	長手方向	横方向
	運転時質量による応力	圧縮	$\sigma_{\text {s } 1}=4$			
	鉛直方向地震による応力	圧縮	$\sigma_{\text {s } 4}=2$	$\sigma_{\text {s } 4}=2$	$\sigma_{\text {s } 4}=3$	$\sigma_{\text {s } 4}=3$
	水平方向地震に上る応力	曲げ	$\sigma_{\text {s } 2}=19$	$\sigma_{\text {s }}{ }_{3}=5$	$\sigma_{\text {s } 2}=40$	$\sigma_{\text {s } 3}=11$
	水平向地辰による尤」	せん断	$\tau_{\mathrm{s} 2}=8$	$\tau_{\text {s } 3}=6$	$\tau_{\mathrm{s} 2}=16$	$\tau_{\mathrm{s} 3}=12$
	組合せ応力		$\sigma_{\mathrm{se}}=28$	$\sigma_{\text {s } \mathrm{e} \text { 仡 }}=14$	$\sigma_{\text {s } \ell}=53$	$\sigma_{\text {s c }}=26$

基礎ボルトに生じる応力				（単位： MPa ）	
	地震の種類	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
－	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び水平方向地震による応力	引張り	$\sigma_{\mathrm{b} 11}=25$	$\sigma_{\mathrm{b} 2}=18$	$\sigma_{\mathrm{b} 1}=75$	$\sigma_{\mathrm{b} 2}=61$
水平方向地震による応力	せん断	$\tau_{\mathrm{b} 11}=25$	$\tau_{\mathrm{b} 2}=15$	$\tau_{\mathrm{b} 1}=51$	$\tau_{\mathrm{b} 2}=30$

1．4．2 応力（単位： MPa						
部材	材料	応力	弾性設計用地震動S d 又 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板	SM490B	一次一般膜	$\sigma_{0}=79$	$\mathrm{S}_{\mathrm{a}}=277$	$\sigma_{0}=90$	$\mathrm{S}_{\mathrm{a}}=277$
		一次	$\sigma_{1}=154$	$\mathrm{S}_{\mathrm{a}}=415$	$\sigma_{1}=214$	$\mathrm{S}_{\mathrm{a}}=415$
		一次＋二次	$\sigma_{2}=402$	$\mathrm{S}_{\mathrm{a}}=615$	$\sigma_{2}=791 * 2$	$\mathrm{S}_{\mathrm{a}}=615$
脚	SS400	組合せ	$\sigma_{\text {s }}=28$	$f_{\mathrm{t}}=231$	$\sigma_{\text {S }}=53$	$f_{\mathrm{t}}=276$
基䧼ボルト	SS400	引張り	${ }_{0}{ }_{b}=25$	$f_{\text {t }}=140^{* 1}$	$\sigma_{b}=75$	$f_{\text {t }}=184^{* 1}$
		せん断	$\tau_{\mathrm{b}}=25$	$f_{\mathrm{s} \mathrm{b}}=122$	$\tau_{\mathrm{b}}=51$	$f_{\text {s b }}=146$

注記 $* 1: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{t}} \mathrm{o}\right]$ より算出
＊2：算出応力が許容応力を満足しないが，設計•建設規格 PVB－3300に基づいて疲労評価を行い，この結果より耐震性を有することを確認した。

評価部位	S_{n} (MPa)	K_{e}	S_{p} (MPa)	S_{ℓ} (MPa)	$\mathrm{S}_{\ell}{ }^{\prime}{ }^{*}$ (MPa)	N_{a} $($ 回 $)$	N_{c} $($ 回）	疲労累積係数 $\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
胴板								

注記 $*: ~ \mathrm{E}_{0}=2.07 \times 10^{5} \mathrm{MPa} \mathrm{E}=2.00 \times 10^{5} \mathrm{MPa}$ として補正する。

$$
\text { O } 2 \text { (2) VI-2-5-7-1-1 R } 1
$$

【原子炉補機冷却水系熱交換器の耐震性についての計算結果】

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
原子炉補機冷却水系熱交換器	常設／防止 （DB拡張）常設／緩和 （DB 拡張）	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. }-8.10^{*} \\ & \text { (0.P. }-6.65 \text {) } \end{aligned}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.06$	$\mathrm{C}_{\mathrm{v}}=0.73$	1． 18	70	50

注記 $*$ ：基準床レベルを示す。

\sim

\rightleftharpoons | ℓ_{1}
 $(\mathrm{~mm})$ | ℓ_{2}
 $(\mathrm{~mm})$ | ℓ_{3}
 $(\mathrm{~mm})$ | ℓ_{4}
 $(\mathrm{~mm})$ | ℓ_{5}
 $(\mathrm{~mm})$ | ℓ_{6}
 $(\mathrm{~mm})$ | ℓ_{7}
 $(\mathrm{~mm})$ | M_{1}
 $(\mathrm{~N} \cdot \mathrm{~mm})$ | M_{2}
 $(\mathrm{~N} \cdot \mathrm{~mm})$ | R_{1}
 $(\mathrm{~N})$ | R_{2}
 $(\mathrm{~N})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1957 | -801 | 7 | 2009 | 4007 | 5014 | 5821 | 2.374×10^{8} | 1.323×10^{8} | 3.007×10^{5} | 2.028×10^{5} |

m_{o} (kg)	$\mathrm{m}_{\mathrm{s}} 1$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	h_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
	1800	15.0	$30.0^{* 1}$	4000	743	1200	0.374	260		

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	$\mathrm{I}_{\mathrm{s} x^{x}}$ $\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{\mathrm{s}_{\mathrm{y}}}$ $\left(\mathrm{mm}^{4}\right)$	$\mathrm{Z}_{\mathrm{s}_{\mathrm{x}}}$ $\left(\mathrm{m}^{3}\right)$	$\mathrm{Z}_{\mathrm{s},}$ $\left(\mathrm{mm}^{3}\right)$	$\theta \mathrm{o}$ (rad)	θ (rad)
810	300	3.115×10^{10}	1.585×10^{9}	3.846×10^{7}	5.285×10^{6}	2.084	1.405

A～A矢視図

A_{S} $\left(\mathrm{mm}^{2}\right)$	E_{S} (MPa)	G_{S} (MPa)	$\mathrm{A}_{\mathrm{S}_{1}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{S}_{2}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{S}_{3}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{S}_{4}}$ $\left(\mathrm{~mm}^{2}\right)$
8.650×10^{4}	$201000^{* 4}$	$77300^{* 4}$	4.713×10^{4}	3.373×10^{4}	3.528×10^{4}	2.843×10^{4}

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$	d_{3} $(\mathrm{~mm})$
15	6	3	2	670	1650	48 $(\mathrm{M} 48)$	1.810×10^{3}	85	160	825

	$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{\mathrm{y}} \mathrm{(} \mathrm{胴 板} \mathrm{)} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}(\text { 胴板 })}$	$\begin{gathered} \text { S (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{y} \text { (脚) }}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}} \text { (脚) }}$	$\begin{aligned} & \text { F (脚) } \\ & \text { (MPa) } \end{aligned}$	$\begin{gathered} \mathrm{F}_{(\mathrm{MPa})}^{*} \text { (脚) } \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \\ & \text { (基礎ボルト) } \\ & \text { (MPa) } \end{aligned}$	$\begin{gathered} \mathrm{F} \\ \text { (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ \text { (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$
	$\begin{gathered} 307 * 3 \\ \text { (厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	461＊3	－	$\begin{gathered} 231^{* 4} \\ (16 \mathrm{~mm}<\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 4$	－	276	$\begin{gathered} 211^{* 4} \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	394＊4	－	253

[^0]2．3 計算数値
2．3．1胴に生じる応力

					（単位： MPa ）			
					基準地震動S s			
C－地震の方向	長手方向		横方向		長手方向		横方向	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	－	－	－	－	$\sigma_{\phi 1}=72$	$\sigma_{\times 1}=36$	$\sigma_{\phi 1}=72$	$\sigma_{\times 1}=36$
内圧による応力 （鉛直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運転時質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=28$	－	$\sigma_{\times 2}=28$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 6}=21$	－	$\sigma_{x 6}=21$
長手方向地震により胴軸断面全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=7$	－	－
組合せ応力	－		－		$\sigma_{0 \ell}=90$		$\sigma_{0 \mathrm{c}}=84$	

ϖ
（2）一次応力
（単位：MPa）

（地震の種類		弾性設計用地震動 S d 又は静的震度				基準地震動S s			
		長手方向		横方向		長手方向		横方向	
		周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力		－	－	－	－	$\sigma_{\phi 1}=72$	$\sigma_{\times 1}=36$	$\sigma_{\phi 1}=72$	$\sigma_{\times 1}=36$
内圧による応力 （鉛直方向地震時）		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運転時質量による長手方向曲げ モーメントにより生じる応力		－	－	－	－	－	$\sigma_{\times 2}=28$	－	$\sigma_{\times 2}=28$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力		－	－	－	－	－	$\sigma_{\times 6}=21$	－	$\sigma{ }_{x 6}=21$
運転時質量による脚反力 により生じる応力		－	－	－	－	$\sigma_{\phi 3}=27$	$\sigma_{\times 3}=27$	$\sigma_{\phi 3}=27$	$\sigma \times 3=27$
$\begin{gathered} \text { 鉛直方向地震による脚反力 } \\ \text { により生じる応力 } \\ \hline \end{gathered}$		－	－	－	－	$\sigma_{\phi 71}=20$	$\sigma_{\times 71}=20$	$\sigma_{\phi 71}=20$	$\sigma_{\times 71}=20$
水平方向地震 による応力	引張り	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	－	－	$\begin{gathered} \sigma_{\phi 411}=23 \\ \sigma_{\phi 412}=10 \\ \sigma_{\phi 41}=32 \end{gathered}$	$\begin{gathered} \sigma \times 411=9 \\ \sigma \times 412=10 \\ \hline \sigma \times 41=25 \end{gathered}$	$\sigma_{\phi 51}=31$	$\sigma \times 51=84$
	せん断	－		－		$\tau_{\ell}=30$		$\tau_{\mathrm{c}}=7$	
組合せ応力		－		－		$\sigma_{1 \ell}=182$		$\sigma_{1 \mathrm{c}}=214$	

（3）地震動のみによる一次応力と二次応力の和の変動値
（単位： MPa ）

－		弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度				基準地震動S s			
		長手方向		横方向		長手方向		横方向	
		周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力 （鉛直方向地震時）		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
鉛直方向地震による長手方向曲げモーメントにより生じる応力		－	－	－	－	－	$\sigma_{\times 66}=21$	－	$\sigma_{\times 6}=21$
$\begin{gathered} \hline \text { 鉛直方向地震による脚反力 } \\ \text { により生じる応力 } \\ \hline \end{gathered}$		-	-	-	-	$\begin{aligned} & \sigma_{\phi 71}=20 \\ & \sigma_{\phi 72}=79 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}=20 \\ & \sigma \times 72=46 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}=20 \\ & \sigma_{\phi 72}=79 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma \times 71=20 \\ & \sigma \times 72=46 \\ & \hline \end{aligned}$
水平方向地震 による応力	引張り	－	－	－	－	$\sigma_{\phi 41}=32$	$\sigma_{\times 41}=25$	$\sigma_{\phi 51}=31$	$\sigma_{\times 51}=84$
		$-$	$-$	－	－	$\begin{aligned} & \sigma_{\phi 421}=27 \\ & \sigma_{\phi 422}=41 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}=54 \\ & \sigma \times 422=23 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=267$	$\sigma_{\times 52}=117$
		－	－			$\sigma_{\phi 42}=68$	$\sigma_{\times 42}=77$		
	せん断	－		－		$\tau_{0}=30$		$\tau_{c}=7$	
組合せ応力		－		－		$\sigma_{2}{ }_{0}=445$		$\sigma_{2 \mathrm{c}}=791$	

N

2．3．3 基礎ボルトに生じる応力（単位： MPa ）					
地震の種類 地震の方向		弾性設計用地震動 Sd 又は静的震度		基準地震動S s	
		長手方向	横方向	長手方向	横方向
$\begin{gathered} \text { 鉛直方向地震及び } \\ \text { 水平方向地震による応力 } \end{gathered}$	引張り	－	－	$\sigma_{\mathrm{b} 1}=75$	$\sigma_{\mathrm{b} 2}=61$
水平方向地震による応力	せん断	－	－	$\tau_{\mathrm{b} 1}=51$	$\tau_{\mathrm{b} 2}=30$

2．4 結論

2．4．1 単位：s）			
方向	周期		固有周期
長手方向			
横方向			
鉛直方向			

＊2：算出応力が許容応力を満足しないが，設計•建設規格 PVB－3300に基づいて疲労評価を行いっこの結果より耐震性を有することを確認した。

2．4．3 疲労評価
評価部位 S_{n} (MPa) K_{e}
胴板

注記 $*: ~ \mathrm{E}_{0}=2.07 \times 10^{5} \mathrm{MPa} \mathrm{E}=2.00 \times 10^{5} \mathrm{MPa}$ として補正する。

枠囲みの内容は商業機密の観点から公開できません。

[^0]: 注記 $~ 1 ~: ~$ 本計算においては当板を有効とした。
 $* 2$ ：表中で上段は一次応力，下段は二次応力の係数とする。
 ＊ 3 ：最高使用温度で算出
 ＊4：周囲環境温度で算出

