本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0333_改 0
提出年月日	2021年7月13日

VI-2-5-7-2-1 高圧炉心スプレイ補機冷却水系熱交換器の 耐震性についての計算書

2021年7月

東北電力株式会社

目 次

1.	概	要 …	• • • • •				• • • •		• • •	• • •			• •	 	 ٠.	 • •	• •	 	 	• •	 • 1
2.	<u> </u>	般事	項 · · ·											 	 	 		 	 		 • 1
2.	. 1	構造	計画											 	 	 		 	 		 • 1
3.	固	有周期	期 …											 	 	 		 	 		 • 3
3.	. 1	固有	周期の) 計算	~									 	 	 		 	 		 • 3
4.	構	造強力	度評価											 	 	 		 	 		 • 4
4.	. 1	構造	強度	平価力	方法									 	 	 		 	 		 • 4
4.	. 2	荷重	で組合	させ及	をび	許多	字応	力・						 	 	 		 	 		 • 4
4	4. 2	. 1	荷重の)組台	うせ	及で	が許さ	容応	5力:	状態	N			 	 	 		 	 		 • 4
4	4. 2	. 2	許容点	ぶ力										 	 	 		 	 		 • 4
4	4. 2	. 3	使用标	才料0	つ許	容师	い力	評価	6条	件・				 	 	 		 	 		 • 4
4.	. 3	計算	条件											 	 	 		 	 		 • 4
5.	評	価結	果 …											 	 	 		 	 		 . 9
5.	. 1	設計	基準文	计象加	包設	とし	て	の割	[個]	結果	₹			 	 	 		 	 		 . 9
5.	. 2	重大	事故等	争対负	ル設	備と	こし	ての)評/	価約	丰果	· · ·		 	 	 		 	 		 . 9

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、高圧炉心スプレイ補機冷却水系熱交換器が設計用地震力に対して十分な構造強度を有していることを説明するものである。

高圧炉心スプレイ補機冷却水系熱交換器は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)に分類される。以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお、高圧炉心スプレイ補機冷却水系熱交換器は、添付書類「VI-2-1-13 機器・配管系の計算 書作成の方法」に記載の横置一胴円筒形容器と類似の構造であるため、添付書類「VI-2-1-13-2 横 置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

高圧炉心スプレイ補機冷却水系熱交換器の構造計画を表 2-1 に示す。

表 2-1 構造計画

		表 2-1 構造計画
計画の	概要	概略構造図
基礎・支持構造	主体構造	(X)的特. (2)
胴を2個の脚で支持し、脚をそれぞれ基礎ボルトで基礎に据え付ける。	横置一胴円筒形容器(前後水室に平板及び鏡板を有する横置一胴円筒形容器)	7323 胴板 基礎ボルト
		(単位:mm)

3. 固有周期

3.1 固有周期の<mark>計算</mark>

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の【高圧 炉心スプレイ補機冷却水系熱交換器の耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は0.05秒以下であり,剛であることを確認した。 固有周期の計算結果を表3-1に示す。

	表 3-1	固有	「周期	(単位:s)
水平 <mark>方向</mark>				
鉛直 <mark>方向</mark>				

4. 構造強度評価

4.1 構造強度評価方法

高圧炉心スプレイ補機冷却水系熱交換器の構造強度評価は、添付書類「VI-2-1-13-2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ補機冷却水系熱交換器の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

高圧炉心スプレイ補機冷却水系熱交換器の許容応力は,添付書類「VI-2-1-9 機能維持の基本方針」に基づき,表 4-3 及び表 4-4 のとおりとする。

4.2.3 使用材料の許容応力評価条件

高圧炉心スプレイ補機冷却水系熱交換器の使用材料の許容応力評価条件のうち設計基準 対象施設の評価に用いるものを表 4-5 に、重大事故等対処設備の評価に用いるものを表 4-6 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【高圧炉心スプレイ補機冷却水系熱交換器の耐震性についての計算結果】の設計条件及び機器要目に示す。

施設	区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	高圧炉心スプレイ補機冷却水系	C	クラス3容器 <mark>*</mark>	$D+P_D+M_D+S d$	III _A S
系統施設	冷却設備	熱交換器	5	クノ へ 3 谷品	$D+P_D+M_D+S_S$	IV _A S

注記*:クラス3容器の支持構造物を含む。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S s^{*3}$	IV _A S
原子炉冷却 系統施設	原子炉補機冷却設備	高圧炉心スプレイ補機冷却水系 熱交換器	常設/防止 (<mark>DB</mark> 拡張)	重大事故等* ² クラス2容器	$D + P_{SAD} + M_{SAD} + S s$	V _A S (V _A S として IV _A S の許容限界 を用いる。)

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張)を示す。

*2: 重大事故等クラス2容器の支持構造物を含む。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

O 2 ② VI-2-5-7-2-1 R 1

表 4-3 許容応力 (クラス 2, 3 容器及び重大事故等クラス 2 容器)

		許容隆	很界 ^{*1, *2}				
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ ピーク応力			
Ⅲ _A S	Syと0.6・Suの小さい方 ただし、オーステナイト系ステ ンレス鋼及び高ニッケル合金 については上記値と1.2・Sと の大きい方	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準析を行い,疲労累積係数が 1.0				
IV _A S		七棚の15位の体	ただし、地震動のみによる一次 以下であれば、疲労解析は不要	て十二次応力の変動値が 2・S y 戻。			
V _A S (V _A S としてIV _A S の 許容限界を用いる。)	0.6 · S u	左欄の 1.5 倍の値	基準地震動Ssのみによる疲労解析を行い、疲労累積係数1.0以下であること。ただし、地震動のみによる一次+二次応力の変動値が2・Sy下であれば、疲労解析は不要。				

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	許容限界* ^{1,*2} (ボルト等以外)	許容限界* ^{1,*2} (ボルト等)					
許容応力状態	一次応力	一次応力					
	引張り	引張り	せん断				
III₄S	1.5 · f t	1.5 · f t	1.5 · f s				
IV _A S							
V _A S (V _A S としてIV _A S の許容限界 を用いる。)	1.5 • f t*	1.5 • f _t *	1.5 • f _s *				

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

_ 1

評価部材	材料	温度条 (℃)	温度条件 (℃)		S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
胴板	SM490B (厚さ≦16mm)	最高使用温度	70	_	307	461	
脚	SS400 (厚さ≦16mm)	周囲環境温度	50	_	241	394	_
基礎ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	50	_	231	394	_

表 4-6 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条 (℃)	件	S (MPa)	S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
胴板	SM490B (厚さ≦16mm)	最高使用温度	70	_	307	461	_
脚	SS400 (厚さ≦16mm)	周囲環境温度	60	_	237	389	_
基礎ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	60	_	227	389	_

 ∞

5. 評価結果

5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ補機冷却水系熱交換器の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sd及び静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するため、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

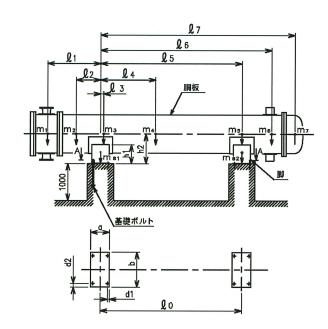
5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ補機冷却水系熱交換器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【高圧炉心スプレイ補機冷却水系熱交換器の耐震性についての計算結果】 1. 設計基準対象施設


1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ	固有周期	朝(s)	弾性設計用 又は静	地震動Sd 的震度	基準地別	§動Ss	最高使用圧力	最高使用温度	周囲環境温度
18,46-41-77	加及星安反刀類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(°C)
高圧炉心スプレイ 補機冷却水系 熱交換器	S	原子炉建屋 0. P. −8. 10*¹ (0. P. −7. 10)			*2	<u></u> *2	C _H =1.04	$C_{v} = 0.72$	1. 18	70	50

注記*1:基準床レベルを示す。 *2:Ⅲ_ASについては、基準地震動S_Sで評価する。

1.2 機器要目

m ₁ (kg)	m ₂ (kg)	m ₃ (kg)	m ₄ (kg)	m ₅ (kg)	m ₆ (kg)	m ₇ (kg)				
ℓ ₁ (mm)	ℓ ₂ (mm)	Ω ₃ (mm)	ℓ ₄ (mm)	ℓ ₅ (mm)	ℓ ₆ (mm)	ℓ ₇ (mm)	M ₁ (N • mm)	M ₂ (N • mm)	R 1 (N)	R 2 (N)
-1562	-788	6	1913	3804	4598	5119	5.556×10^7	3.024×10^7	9. 029×10^4	6. 313×10 ⁴
m o (kg)	m _{S1} (kg)	m _{S2} (kg)	D _i (mm)	t (mm)	t e (mm)	l o (mm)	h ₁ (mm)	h ₂ (mm)	θ _w (rad)	ℓ _W (mm)
			1000	15. 0	30.0*1	3800	520	800	0.400	200
C 1	C 2	Тт	т	7	7	0	θ			
(mm)	(mm)	I s x (mm ⁴)	I sy (mm ⁴)	$Z_{s x}$ (mm^3)	$Z_{\text{sy}} $ (mm^3)	θ o (rad)	(rad)			
450	225	3.686×10^9	3. 648×10^8	8. 190×10 ⁶	1. 621×10 ⁶	2. 127	1. 369			
					<u> </u>					

15

O_2	2	VI-2-5-7-2-1	R 1
-------	---	--------------	-----

A_S (mm ²)	Es (MPa)	G _s (MPa)	A _{S1} (mm ²)	A _{S2} (mm ²)	A _{S3} (mm ²)	A _{S4} (mm ²)					
3. 523×10^4	201000*4	77300*4	1. 924×10 ⁴	1. 444×10^4	1. 443×10^4	1. 258×10^4					
		Parameter Control of the Control of					T				
K ₁₁ *2	K ₁₂ *2	K 2 1 *2	K 2 2 *2	$K_{\ell 1}$	$K_{\ell 2}$	K c 1	К с 2	$C_{\ell 1}$	C ₂ 2	C c 1	C c 2
											-
S	n	n 1	n 2	a (mm)	b (mm)	d (mm)	А _ь (mm²)	d ₁ (mm)	d ₂ (mm)		

950

(mm) 36

(M36)

S _y (胴板) (MPa)	S u(胴板) (MPa)	S (胴板) (MPa)	S y (脚) (MPa)	Sų(脚) (MPa)	F(脚) (MPa)	F*(脚) (MPa)	S _y (基礎ボルト) (MPa)	S _u (基礎ボルト) (MPa)	F (基礎ボルト) (MPa)	F* (基礎ボルト) (MPa)
307*³ (厚さ≤16mm)	461*³ (厚さ≤16mm)	_	241* ⁴ (厚さ≤16mm)	394* ⁴ (厚さ≤16mm)	241	276	231*4 (16mm<終<40mm)	394*4 (16mm< 4×<40mm)	231	276

50

100

 1.018×10^{3}

注記*1:本計算においては当板を有効とした。

*2: 表中で上段は一次応力,下段は二次応力の係数とする。

2

2

500

*3:最高使用温度で算出 *4:周囲環境温度で算出

1.3 計算数值

1.3.1胴に生じる応力 (1) 一次一般膜応力 (単位:MPa)

地震の種類		弾性設計用地震動	Sd又は静的震度		基準地震動 S s			
地震の方向	長手方向		横方向		長手方向		横っ	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	<mark>*</mark>	<u> </u>	<u> </u>	<u></u> *	$\sigma_{\phi 1} = 40$	$\sigma_{x 1} = 20$	σ _{φ 1} = 40	σ _{x1} =20
内圧による応力 (鉛直方向地震時)	<mark>*</mark>	_	<u></u> *	_	σ _{φ2} =0	_	$\sigma_{\phi} = 0$	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	<u></u> *	_	<u></u> *	_	σ _{x2} =22	_	σ _{x2} =22
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	<u></u> *	_	<u></u> *	_	$\sigma_{x6} = 16$	_	σ _{x 6} =16
長手方向地震により胴軸断面 全面に生じる引張応力	_	<u></u> *	_	_	_	σ _{x413} =4		_
組合せ応力		*		*	σορ	=62	σος	=58

*:ⅢASについては、基準地震動Ssで評価する。

(単位:MPa) (2) 一次応力

地震	震の種類		弾性設計用地震動	Sd又は静的震度			基準地原	長動Ss	
地震	悪の方向	長手	方向	横之		長手	方向	横方向	
応力	力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力		<mark>*</mark>	<u></u> *	<u></u> *	<u></u> *	$\sigma_{\phi 1} = 40$	$\sigma_{x 1} = 20$	$\sigma_{\phi 1} = 40$	$\sigma_{x 1} = 20$
内圧による応力 (鉛直方向地震時)		<mark>*</mark>	_	<u></u> *	_	$\sigma_{\phi 2} = 0$	_	$\sigma_{\phi 2} = 0$	_
運転時質量による長手方向曲 モーメントにより生じる応	II	_	<u></u> *	_	<mark>*</mark>		σ _{x2} =22	_	$\sigma_{x2}=22$
鉛直方向地震による長手方向 モーメントにより生じる応		_	<u></u> *		<u></u> *	_	$\sigma_{x6} = 16$	_	$\sigma_{x6} = 16$
運転時質量による脚反力 により生じる応力		<mark>*</mark>	<mark>*</mark>	<mark>*</mark>	<mark>*</mark>	σ _{φ3} =10	σ _{x3} =10	σ _{φ3} =10	$\sigma_{x3} = 10$
鉛直方向地震による脚反力 により生じる応力	ħ	*	<u></u> *	<mark>*</mark>	<mark>*</mark>	σ _{φ71} =8	σ _{x71} =8	σ _{φ71} =8	σ _{x71} =8
水平方向地震 による応力	引張り	* * *	* * *	<mark>*</mark>	— <mark>*</mark>	$ \begin{array}{c} \sigma_{\phi 4 1 1} = 12 \\ \sigma_{\phi 4 1 2} = 3 \\ \sigma_{\phi 4 1} = 14 \end{array} $	$ \begin{array}{c} \sigma_{x411} = 5 \\ \sigma_{x412} = 3 \\ \sigma_{x41} = 11 \end{array} $	σ _{φ 5 1} = 13	$\sigma_{x 5 1} = 29$
	せん断	_		_	_*		=12	τ с	=4
組合せ応力		_	*		*	σ 10	=93	σ _{1 с}	=105

*:ⅢASについては、基準地震動Ssで評価する。

	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地別	戛動Ss	
	地震の方向	長手	方向	横	横方向		長手方向		す 向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応 (鉛直方向地震		<u>*</u>	_	<u></u> *	_	$\sigma_{\phi} = 0$	_	$\sigma_{\phi 2} = 0$	
鉛直方向地震による 曲げモーメントにより		_	<mark>*</mark>	_	<mark>*</mark>	_	$\sigma_{x6} = 16$	_	$\sigma_{x6} = 16$
鉛直方向地震による脚反力 により生じる応力		<u></u> *k	<mark>*</mark>	<mark>*</mark>	<mark>*</mark>	$\begin{array}{c} \sigma_{\phi 7 1} = 8 \\ \sigma_{\phi 7 2} = 24 \end{array}$	$\begin{array}{c} \sigma_{x71} = 8 \\ \sigma_{x72} = 14 \end{array}$	$\begin{array}{c} \sigma_{\phi71} = 8 \\ \sigma_{\phi72} = 24 \end{array}$	$\sigma_{x71} = 0$ $\sigma_{x72} = 1$
		<u></u> *	<mark>*</mark>	<mark>*</mark>	<mark>*</mark>	$\sigma_{\phi 4 1} = 14$	$\sigma_{x 4 1} = 11$	σ _{φ51} =13	$\sigma_{x 5 1} = 2$
水平方向地震 による応力	引張り	*	* *	<mark>*</mark>	<mark>*</mark>	$\sigma_{\phi 421} = 14$ $\sigma_{\phi 422} = 9$	$\sigma_{x421} = 26$ $\sigma_{x422} = 5$	σ _{φ 5 2} =85	σ _{x 5 2} =4
	せん断		<mark>*</mark>	_	_ <mark>*</mark>	σ _{φ 4 2} = 22 τ _ℓ	$\sigma_{x42} = 31$	τς	=4
組合せ応力		_	*	_	*		=171	_	=258

1.3.2 脚に生じる応力

(単位:MPa)

1.0.1						(
	地震の種類	弾性設計	ト用地震動 S d 又は静的	震度	基準地震動 S s		
	地震の方向	長手方	向 横方	向	長手方向	横方向	
運転時質量による応力	圧縮	<mark>*</mark>	*	k .	$\sigma_{S1} = 3$	$\sigma_{S1}=3$	
鉛直方向地震による応力	圧縮	<mark>*</mark>	³	k .	$\sigma_{S4}=2$	$\sigma_{84}=2$	
水平方向地震による応力	曲げ	<mark>*</mark>	[*]	k .	σ _{S2} =27	σ _{S3} =10	
小半万円地展による応力	せん断	<u>*</u>	³	k .	$\tau_{S2} = 12$	τ _{S3} =8	
組合せ応力	<u>*</u>	³	k .	σ _{Sℓ} =37	σ _{Sc} =19		
租市也心力					0 St-31	0 Sc-19	

 $*: \coprod_{A}S$ については、基準地震動 S_{S} で評価する。

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

11010 21,200					(, , ,	
	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地震動Ss		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	— <mark>*</mark>	— <mark>*</mark>	σ _{b1} =51	σ _{b2} =44	
水平方向地震による応力	せん断	<mark>*</mark>	<mark>*</mark>	τ _{b1} =40	τ _{b2} =24	

*:Ⅲ_ASについては、基準地震動Ssで評価する。

1.4.1固有周期

(単位: s)

方向	固有周期
長手方向	
横方向	
鉛直方向	

1.4.2応力

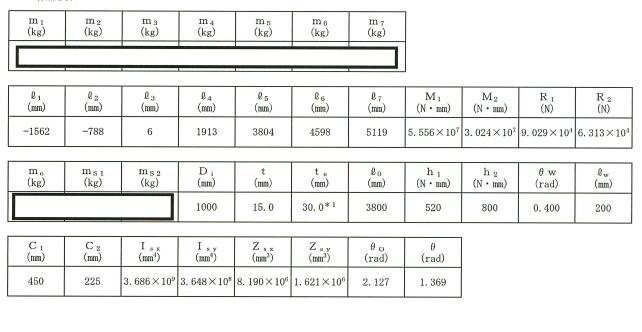
(単位:MPa)

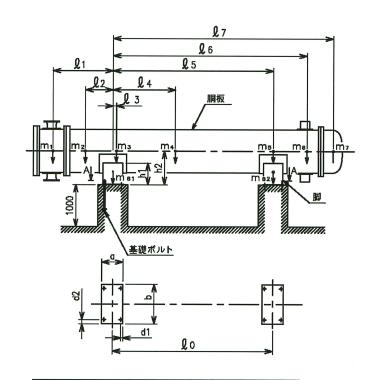
₹7+ +	材料	+	弾性設計用地震動	Sd又は静的震度	基準地	震動Ss
部材	1717年	応力	算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma_0 = 62^{*2}$	S a = 277	$\sigma_0 = 62$	$S_a = 277$
胴板	SM490B	一次	$\sigma_1 = 105^{*2}$	$S_{a} = 415$	$\sigma_1 = 105$	S _a =415
		一次+二次	$\sigma_2 = 258^{*2}$	$S_a = 615$	σ ₂ =258	S a =615
脚	SS400	組合せ	$\sigma_{\rm S} = 37^{*2}$	$f_{\rm t} = 241$	σ _S =37	$f_t = 276$
基礎ボルト	SS400	引張り	$\sigma_b = 51^{\frac{*2}{}}$	<mark>∫</mark> t s=173* <mark>1</mark>	σ _b =51	f _{t s} =207* <mark>¹</mark>
至#E41/1	22400	せん断	$\tau_{b} = 40^{*2}$	$f_{\rm s\ b} = 133$	τ _b =40	$f_{\rm s\ b} = 159$

注記*<mark>1</mark>: // t, =Min[1.4・// t, σ-1.6・τ b, // t, σ] より算出 *2: 基準地震動S s による算出値

すべて許容応力以下である。

-


2. 重大事故等対処設備


2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ (m)	固有周	期 (s)	弾性設計用 又は静	地震動Sd 的震度	基準地別	§動Ss	最高使用圧力	最高使用温度	周囲環境温度
	以加力叛		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
高圧炉心スプレイ補機冷却水系熱交換器	常設/防止 (<mark>DB</mark> 拡張)	原子炉建屋 0. P8. 10* (0. P7. 10)				_	C _H =1.04	$C_{v} = 0.72$	1. 18	70	60

注記*:基準床レベルを示す。

2.2 機器要目

枠囲みの内容は商業機密の観点から公開できません。

O 2 ② VI-2-5-7-2-1 R 1

3.523×10^{4} 201000^{*4} 77300^{*4} 1.924×10^{4} 1.444×10^{4} 1.443×10^{4} 1.258×10^{4}

	-1									
ı										
1			_	1.	1	Δ.	,	1	1	

S	n	n 1	n 2	a (mm)	b (mm)	d (mm)	А _ь (mm²)	d ₁ (mm)	d ₂ (mm)
15	4	2	2	500	950	36 (M36)	1. 018×10^3	50	100

S _y (胴板) (MPa)	Sų(胴板) (MPa)	S (胴板) (MPa)	S _y (脚) (MPa)	Sų(脚) (MPa)	F (脚) (MPa)	F*(脚) (MPa)	S _y (基礎ボルト) (MPa)	S』 (基礎ボルト) (MPa)	F (基礎ボルト) (MPa)	F* (基礎ボルト) (MPa)
307*3 (厚さ≦16mm)	461*³ (厚さ≦16mm)	_	237 ^{*4} (厚さ≦16mm)	389*⁴ (厚さ≦16mm)	_	272	227*4 (16mm<径≦40mm)	389 ^{*4} (16mm<径≦40mm)	_	272

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

2.3 計算数值

2.3.1胴に生じる応力 (1)一次一般膜応力

地震の種類		弾性設計用地震動	Sd又は静的震度		基準地震動 S s			
地震の方向	長手方向		横之		長手	方向	横っ	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	_	_	_	_	$\sigma_{\phi 1} = 40$	$\sigma_{x 1} = 20$	$\sigma_{\phi 1} = 40$	$\sigma_{x 1} = 20$
内圧による応力 (鉛直方向地震時)	_	_	_	_	$\sigma_{\phi 2} = 0$	_	$\sigma_{\phi 2} = 0$	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_		_	_	_	σ _{x2} =22	_	σ _{x2} =22
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_		_	_	_	$\sigma_{x6} = 16$	_	σ _{x6} =16
長手方向地震により胴軸断面 全面に生じる引張応力	_	I	_	_	_	$\sigma_{x 4 1 3} = 4$	_	_
組合せ応力	-	=	-	_	σου	=62	σ _{0 c}	=58

(2)一次応力

	地震の種類		弾性設計用地震動	Sd又は静的震度			基準地震		
	地震の方向	長手	方向	横之	方向	長手		横っ	5向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応	力	_	_	_	_	$\sigma_{\phi 1} = 40$	$\sigma_{x} = 20$	$\sigma_{\phi 1} = 40$	$\sigma_{x1}=20$
内圧による応 (鉛直方向地震		_	_	_	_	$\sigma_{\phi} = 0$	_	$\sigma_{\phi} = 0$	_
運転時質量による長号 モーメントにより生		_	_		_	_	$\sigma_{x2} = 22$	_	σ _{x2} =22
	鉛直方向地震による長手方向曲げ モーメントにより生じる応力		_	_	_	_	$\sigma_{x6} = 16$	_	$\sigma_{x 6} = 16$
運転時質量による により生じる原		_	_	_	_	$\sigma_{\phi 3} = 10$	$\sigma_{x3} = 10$	$\sigma_{\phi 3} = 10$	$\sigma_{x3} = 10$
鉛直方向地震による により生じる原		_	_	_	_	$\sigma_{\phi71}=8$	$\sigma_{x71}=8$	σ _{φ71} =8	$\sigma_{x71} = 8$
水平方向地震	引張り	_ _	_ _	_	_	$\sigma_{\phi 411} = 12$ $\sigma_{\phi 412} = 3$	$\sigma_{x411} = 5$ $\sigma_{x412} = 3$	σ _{φ51} =13	$\sigma_{x 5 1} = 29$
による応力	せん断			_	_	$\sigma_{\phi 41} = 14$	$\sigma_{x41} = 11$	τ	=4
組合せ応力		_		_		σ 1 ε		_	=105

	地震の種類		弾性設計用地震動	Sd又は静的震度			基準地震動 S s			
	地震の方向	長手方向		横	方向	長手	方向	横之	5向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力 (鉛直方向地震時)		_	_	_	_	σ _{φ2} =0	_	σ φ2=0	_	
鉛直方向地震による長手方向 曲げモーメントにより生じる応力		1	1	_	_	_	σ _{x6} =16	_	σ _{x6} =16	
	鉛直方向地震による脚反力 により生じる応力			_ _	_ _	$\sigma_{\phi 7 1} = 8$ $\sigma_{\phi 7 2} = 24$	$\begin{array}{c} \sigma_{x71} = 8 \\ \sigma_{x72} = 14 \end{array}$	$\begin{array}{c} \sigma_{\phi 7 1} = 8 \\ \sigma_{\phi 7 2} = 24 \end{array}$	$\begin{array}{c} \sigma_{x71} = 8 \\ \sigma_{x72} = 14 \end{array}$	
		_	_	_	_	σ φ 4 1 = 14	σ _{x 4 1} = 11	σ _{φ 5 1} = 13	σ _{x 5 1} =29	
水平方向地震	引張り	_	_			σ φ 4 2 1 = 14	σ _{x421} =26			
による応力	3102	_	_	_	_	$\sigma_{\phi 422} = 9$	$\sigma_{x 4 2 2} = 5$	$\sigma_{\phi 52} = 85$	$\sigma_{x 5 2} = 41$	
3.07070		_	_			$\sigma_{\phi 4 2} = 22$	$\sigma_{x 4 2} = 31$			
	せん断	_		-	_	τ ε=12		το	=4	
組合せ応力	1	_	_	-	_	σ 20	=171	σ 2 с	=258	

2.3.2 脚に生じる応力

(単位:MPa)

	(+ <u> </u> x: <u>m</u> t)									
	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地震動 S s						
	地震の方向	長手方向	横方向	長手方向	横方向					
運転時質量による応力	圧縮	_	_	σ _{S1} =3	σ _{S1} =3					
鉛直方向地震による応力	圧縮	_	_	σ _{S4} =2	σ _{S4} =2					
水平方向地震による応力	曲げ	_	_	σ _{S2} =27	σ _{S3} =10					
小平万円地展による応力	せん断	_	_	$\tau_{S2} = 12$	τ _{S3} =8					
組合せ応力		_	_	σ _{sℓ} =37	σ _{Sc} =19					

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地震動 S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =51	σ _{b2} =44	
水平方向地震による応力	せん断	_	_	τ b 1 = 40	τь2=24	

_

2.4.1 固有周期

(単位: s)

方向	固	有周期
長手方向		
横方向		
鉛直方向		

2.4.2 応力

(単位:MPa)

部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地震動S s		
部例		かいフリ	算出応力	許容応力	算出応力	許容応力	
	SM490B	一次一般膜		_	$\sigma_{0} = 62$	S a = 277	
胴板		一次	<u>—</u>	_	$\sigma_{1} = 105$	S a =415	
		一次十二次	- ,		$\sigma_2 = 258$	$S_a = 615$	
脚	SS400	組合せ	·		σ s=37	$f_{\rm t} = 272$	
基礎ボルト	SS400	引張り	_	-	$\sigma_b=51$	$f_{t s} = 204*$	
ARMENIA I.	22400	せん断	<u> </u>	-	τ _b =40	$f_{\rm s\ b} = 157$	

すべて許容応力以下である。

注記*:fts=Min[1.4・fto-1.6・τb, fto] より算出

枠囲みの内容は商業機密の観点から公開できません。