本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0083_改 0
提出年月日	2021年7月13日

VI-2-4-3-1-1 燃料プール冷却浄化系熱交換器の耐震性についての計算書

2021年7月

東北電力株式会社

目 次

1. 概要 · · · · · · · · · · · · · · · · · ·
2. 一般事項 · · · · · · · · · · · · · · · · · · ·
2.1 構造計画
3. 固有周期 · · · · · · · · · 3
3.1 固有周期の <mark>計算</mark> · · · · · · · · · · · · · · · · 3
4. 構造強度評価 · · · · · · · · · · · · 4
4.1 構造強度評価方法 · · · · · · · · 4
4.2 荷重の組合せ及び許容応力 4
4.2.1 荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・・ 4
4.2.2 許容応力4
4.2.3 使用材料の許容応力評価条件・・・・・・・・・・・・・・・・・・ 4
4.3 計算条件 · · · · · · · · · · · · 4
4.4 疲労解析評価 · · · · · · · · · 9
5. 評価結果 · · · · · · · · · · · · · · · · · · ·
5.1 重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、燃料プール冷却浄化系熱交換器が設計用地震力に対して十分な構造強度を有していることを説明するものである。

燃料プール冷却浄化系熱交換器は、重大事故等対処設備においては常設耐震重要重大事故防 止設備に分類される。以下、重大事故等対処設備としての構造強度評価を示す。

なお、燃料プール冷却浄化系熱交換器は、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載の横置一胴円筒形容器<mark>と類似の構造</mark>であるため、添付書類「VI-2-1-13-2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また、「4.4 疲労解析評価」にて示す方法にて疲労解析評価を実施する。

2. 一般事項

2.1 構造計画

燃料プール冷却浄化系熱交換器の構造計画を表 2-1 に示す。

0 2

(単位: mm) 垂 5415 概略構造図 0019 φ 表 2-1 構造計画 基礎ボルト 鏡板を有する横置一胴 (水室側及び胴側に, 横置一胴円筒形容器 主体構造 円筒形容器) 計画の概要 脚をそれぞれ基礎ボルト 胴を2個の脚で支持し, で基礎に据え付ける。 基礎·支持構造

3. 固有周期

3.1 固有周期の<mark>計算</mark>

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の【燃料 プール冷却浄化系熱交換器の耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。 固有周期の計算結果を表 3-1 に示す。

	表 3-1	固有周期	(単位:s)
水平 <mark>方向</mark>			
鉛直 <mark>方向</mark>			

4. 構造強度評価

4.1 構造強度評価方法

燃料プール冷却浄化系熱交換器の構造強度評価は、添付書類「VI-2-1-13-2 横置一胴円筒 形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

燃料プール冷却浄化系熱交換器の荷重の組合せ及び許容応力状態のうち重大事故等対処 設備の評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

燃料プール冷却浄化系熱交換器の許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、表 4-2 及び表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

燃料プール冷却浄化系熱交換器の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-4 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態 (重大事故等対処設備)

許容応力狀態	$ m IV_AS$	V_AS (V_AS として IV_AS の許容限界 を用いる)				
荷重の組合せ	$\mathrm{D} + \mathrm{P}_{\mathrm{D}} + \mathrm{M}_{\mathrm{D}} + \mathrm{S} \mathrm{s} \mathrm{*}^{3}$	$\mathrm{D} + \mathrm{P}_{\mathrm{SAD}} + \mathrm{M}_{\mathrm{SAD}} + \mathrm{S}_{\mathrm{S}}$				
機器等の区分		重大事故等 クラス2容器*2				
設備分類*1	常設耐震/防止					
機器名称	燃料プール冷却浄化系熱交換器					
区分	使用済燃料貯蔵槽冷却浄化設備					
施割	施設区分 核燃料物質 の取扱施設 及び貯蔵施 設					

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*2: 重大事故等クラス2容器の支持構造物を含む。

*3 : 「D+P_{SAD}+M_{SAD}+S_S」の評価に包絡されるため、評価結果の記載を省略する。

O 2 \bigcirc VI-2-4-3-1-1 R 1

表 4-2 許容応力 (重大事故等クラス 2 容器)

	7 1 7	川 守心ノ(玉へまめせ~/~~4 中部)	/ 7 4 4 4 4 4 7 / 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		許容限	許容限界*1, *2	
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次十二次応力	一次十二次十ピーク応力
$ m IV_AS$		40年十	基準地震動Ssのみによる疲労解析を行い、疲労累積係数が	お析を行い、疲労累積係数が
V _A S (V _A S としてIV _A S の 許容限界を用いる)	0.6 · S u	左欄の 1.5 倍の順	1.0以下であること。 ただし, 地震動のみによる一次+二次応力の変動値が2・Sヶ以 下であれば, 疲労解析は不要。	二次応力の変動値が2・S y 以

注記*1 : 座屈による評価は,クラスMC容器の座屈に対する評価式による。

*2 : 当該の応力が生じない場合, 規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 許容応力 (重大事故等クラス2支持構造物)

		,	1		
	許容限界*1, *2 (ボルト等)	一次応力	せん断		1.5 • f s *
<u> </u>	許容限(ボル	 	引張り		1.5 • f .*
女 4-5 - 町谷心刀(黒八ず収≒	許容限界*1, *2 (ボルト等以外)	一次応力	引張り		1.5 · f · *
		許容応力状態		$\mathrm{IV_AS}$	V_{AS} $(V_{AS} \ge L \subset IV_{AS} $ の許容限界を用いる)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2 :当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-4 使用材料の許容応力評価条件 (重大事故等対処設備)

評価部材	材料	温度条件 (°C)	4	S (MPa)	S _y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板	SGV410	最高使用温度	0.2	I	210	380	1
脚	SS400 ()厚さ≦16mm)	周囲環境温度	99	ı	234	385	1
基礎ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	99	I	225	385	1

4.4 疲労解析評価

胴の応力評価において、一次応力と二次応力の和の変動値が設計降伏点S_yの2倍を上回る場合には、設計・建設規格 PVB-3300に規定された簡易弾塑性評価方法に基づき、疲労解析評価を実施する。

なお、疲労解析評価に用いる基準地震動Ssの等価繰返し回数N。は、とする。

(1)繰返しピーク応力強さ

繰返しピーク応力強さS_aは、次式により求める。

K。: 次の計算式により計算した値

- b. S_n≧3・S_mの場合
- (a) K < B₀の場合

(b) K≥B₀の場合

イ.
$$S_{n}/(3 \cdot S_{m}) < [(q-1) - \sqrt{A_{0} \cdot (1-1/K) \cdot (q-1)}] / a の場合 K_{e}=K_{e}^{**}=a \cdot S_{n}/(3 \cdot S_{m}) + A_{0} \cdot (1-1/K) + 1-a \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4.4.4)$$

ここで, $a = A_0 \cdot (1 - 1/K) + (q - 1) - 2 \cdot \sqrt{A_0 \cdot (1 - 1/K) \cdot (q - 1)}$

q, A₀, B₀:下表に掲げる材料の種類に応じ、それぞれの同表に掲げる値

材料の種類	q	Α 0	Во
低合金鋼	3. 1	1.0	1. 25
マルテンサイト系ステンレス鋼	3. 1	1.0	1. 25
炭素鋼	3. 1	0.66	2. 59
オーステナイト系ステンレス鋼	3. 1	0.7	2. 15
高ニッケル合金	3. 1	0.7	2. 15

S: 一次応力と二次応力を加えて求めた応力解析による応力強さのサイクルにおい て, その最大値と最小値の差

 $S_{m}: 2/3 \cdot S_{v}$

K_e: 弾塑性解析に用いる繰返しピーク応力強さの補正係数

S₃: 地震荷重のみにおける一次+二次+ピーク応力の応力差範囲

S。:繰返しピーク応力強さ

(2) 運転温度における繰返しピーク応力強さの補正

縦弾性係数比を考慮し、繰返しピーク応力強さS₂を次式により補正する。

 $S_{\ell}' = S_{\ell} \cdot E_{0} / E$

S。':補正繰返しピーク応力強さ

E : 縦弾性係数

E:運転温度の縦弾性係数

(3) 疲労累積係数

疲労累積係数Ufが次式を満足することを確認する。

 $U_f = \sum (N_c / N_a) \le 1.0$

Na: 地震時の許容繰返し回数

N_c: 地震時の等価繰返し回数

なお,許容繰返し回数の算出には、設計・建設規格 表 添付 4-2-1 炭素鋼,低合金鋼 および高張力鋼の設計疲労線図より求めた値を用いる。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系熱交換器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】 1. 重大事故等対処設備

設計条件

周囲環境温度	(D _o)	99		
最高使用温度 (℃)		02		
最高使用圧力 (MPa)		1.18		
§動Ss	鉛直方向 設計震度	$C_{\frac{\mathbf{v}}{\mathbf{v}}} = 1.37$		
養地土	水平方向 設計震度	C_{H} =1.97		
地震動Sd 的震度	鉛直方向 設計震度	-		
弾性設計用地震 又は静的震	水平方向 設計震度	l		
) (s) 崩	鉛直方向			
固有周	水平方向			
据付場所及び床面高さ (m)		原子炉建屋 0.P. 15.00		
耐震重要度分類		常設耐震/防止		
松阳夕华	(数46.41亿)	燃料プール冷却浄化系 熱交換器		

機器要目
2
i,

$\langle \chi_1 \rangle \langle \chi_2 \rangle \langle \chi_4 \rangle \langle \chi_5 \rangle \langle \chi_4 \rangle \langle \chi_5 \rangle \langle \chi_$	10000000000000000000000000000000000000	m m m m m m m m m m m m m m m m m m m		WMS1 Z Z M MS2V V	William Wi	<u> </u>	2b		
)4	1	$\ell_{\rm w}$ (mm)	20				
	$\overset{\mathbf{R}}{(N)}^{2}$	1. 720×10		$\frac{\theta}{(rad)}$	0.001				
	$\mathop{\rm R}_{1} \\ \mathop{\rm (N)}$	2.143×10^4		$\mathop{\mathrm{h}}_{2} (N \bullet \mathop{\mathrm{mm}})$	009				
	M_2 $\mathrm{(N \cdot mm)}$	7.971 \times 10 ⁶ 5.690 \times 10 ⁶ 2.143 \times 10 ⁴ 1.720 \times 10 ⁴		h_1 (N • mm)	444		θ (rad)	1.395	
	\mathbf{M}_1 $(\mathbf{N} ullet \mathrm{mm})$	7.971×10^6		$\ell_{\rm o}$ (mm)	2600		$^{ heta}_{ ext{(rad)}}$	2, 096	
m 6 (kg)	θ ₆ (mm)	3328		t _e (mm)	12.0*1		$Z_{\mathrm{s.y}} $ (mm 3)	1. 400×10^6	
m 5 (kg)	$\ell_{\rm S}$ (mm)	2600		t (mm)	12.0		$Z_{\mathrm{s.x}}$ (mm ³)	1. 009×10^9 2. 099×10^8 3. 736×10^6 1. 400×10^6	
m 4 (kg)	θ ₄ (mm)	1300		D _i (mm)	009		$I_{\mathrm{s.y}} $ (mm ⁴)	2. 099×10^{8}	
m 3 (kg)	θ_3 (mm)	0		ms2 (kg)	119		$I_{\mathrm{s.x}}$ (mm ⁴)	1. 009×10^9	
m 2 (kg)	ℓ_2 (mm)	-441		m s 1 (kg)	119		$\frac{C_2}{(mm)}$	150	
m 1 (kg)	θ_1 (mm)	-971		m。 (kg)	4177		C_1 (mm)	270	

4 (< 104
$\begin{array}{c} A_{S4} \\ (mm^2) \end{array}$	1.410>
$A_{\mathrm{S}3} = (\mathrm{mm}^2)$	6.064×10^{3}
$A_{\mathrm{S}2} \atop (\mathrm{mm}^2)$	1.650 \times 10 ⁴
$A_{\rm S1} \atop (mm^2)$	7. 238×10^3
Gs (MPa)	77100*4
${ m E}_{ m S}$ (MPa)	200000*4
$A_{\mathrm{S}} (\mathrm{mm}^2)$	2. 586×10^4

C . 2			
C . 1			
$C_{\ell 2}$			
$C_{\ell l}$			
K c 2			
K c 1			
$K_{\ell \ell 2}$			
$K_{\emptyset 1}$			
K 2 2 *2	1		
K 2 1 *2			
K 1 2 *2			
K 1 1 *2			

]		
]		
	d_{2} (mm)	120
	$d_{1} \atop (mm)$	20
	$\frac{\mathbf{A}_{\mathbf{b}}}{(mm^2)}$	706.9
	d (mm)	30 (M30)
	b (mm)	009
	a (mm)	400
	n 2	2
1	n 1	2
	n	4
	w	15

F*(基礎ボルト) (MPa)	270
F (基礎ボルト) (MPa)	l
S _u (基礎ボルト) (MPa)	385*4
S _y (基礎ボルト) (MPa)	225^{*4} (16mm < $\cong 40$ mm)
F *(脚) (MPa)	270
F (脚) (MPa)	
S _u (脚) (MPa)	385*4
S _y (脚) (MPa)	234*4 (厚さ≦16mm)
S (胴板) (MPa)	
S _u (胴板) (MPa)	380*3
S _y (胴板) (MPa)	210^{*3}

注記*1:本計算においては当板を無効とした。

*2:表中で上段は一次応力,下段は二次応力の係数とする。

*3 : 最高使用温度で算出

*4:周囲環境温度で算出

1.3 計算数値 1.3.1 胴に生じる応力 (1)一次一般膜応力

1.3.1 がによっずが (1) 一次一般膜応力	17.								(単位: MPa)
	地震の種類	神	生設計用地震動	弾性設計用地震動Sd又は静的震度	震度		基準地震動S s	§動Ss	
	地震の方向	長手方向	方向	横	横方向	長手方向	方 向	横方向	ラ向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	る応力		I	I		$\sigma_{\phi 1} = 31$	$\sigma_{x1} = 16$	$\sigma_{\phi 1} = 31$	$\sigma_{x1} = 16$
内圧による応力 (鉛直方向地震時	る応力 地震時)	I	-	-	1	$\sigma_{\phi 2} = 0$	1	$\sigma_{\phi 2} = 0$	-
運転時質量による長手方向曲げ モーメントにより生じる応力	,長手方向曲げ 9 生じる応力	I	I	I	ı	ı	$\sigma_{x2} = 22$	ı	$\sigma_{x2} = 22$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	る長手方向曲げ 9 生じる応力	I	-	-	1	_	$\sigma_{x6} = 29$	_	$\sigma = 29$
長手方向地震により胴軸断面 全面に生じる応力	より胴軸断面 る応力	I	I	I	ı	ı	$\sigma_{x413}=4$	ı	I
組合せ応力	志力		_			0 0	σ 0 = 69	σ 0 c	ο ο ο =66

(単位: MPa)

_					_		1	1	1					
	デ向	軸方向応力	$\sigma_{x 1} = 16$	I		$\sigma_{x2} = 22$	$\sigma_{x 6} = 29$	$\sigma_{x3} = 13$	$\sigma_{x71} = 18$		$\sigma_{x 5 1} = 75$		τ $_{\rm c}$ =4	=171
§動Ss	横方向	周方向応力	$\sigma_{\phi 1} = 31$	$\sigma_{\phi 2} = 0$,	Ι		$\sigma_{\phi 3} = 13$	$\sigma_{\phi71} = 18$		$\sigma_{\phi 51} = 27$		° 2	$\sigma_{1 c} = 171$
基準地震動S	方 向	軸方向応力	$\sigma_{X1} = 16$			$\sigma_{x} = 22$	$\sigma_{x 6} = 29$	$\sigma_{x 3} = 13$	$\sigma_{x71} = 18$	$\sigma_{x 4 1 1} = 17$	$\sigma_{x 412} = 7$	$\sigma_{x 41} = 27$	=11	$\sigma_{10} = 127$
	長手方向	周方向応力	$\sigma_{\phi 1} = 31$	$\sigma_{\phi 2} = 0$		_	_	$\sigma_{\phi 3} = 13$	$\sigma_{\phi71} = 18$	$\sigma_{\phi 411} = 36$	$\sigma_{\phi 412} = 7$	$\sigma_{\phi 41} = 42$	11 = 0	- 0 1 0
養 度	横方向	軸方向応力	1			Ι		_	_				-	
弾性設計用地震動Sd又は静的震度	横入	周方向応力	1			Ι		_	_				1	ı
1性設計用地震	長手方向	軸方向応力		I		I		I	I			-		
	手	周方向応力		ı		I		I	I				-	
地震の種類	地震の方向	/ 応力の方向	内圧による応力	内圧による応力(※)古七位も無罪)		運転時質量による長手方向曲げ モーメントにより生じる応力	鉛直方向地震による長手方向曲げ モーメントにより生じる応力	運転時質量による脚反力 により生じる応力	鉛直方向地震による脚反力 により生じる応力		引張り		せん断	組合せ応力
	//	/	内圧に	内圧に	(如)国力	運転時質量に」 モーメントに	鉛直方向地震に モーメントに	運転時質量 により生	鉛直方向地 により生		水平方向地震	による応力		組合

(2)一次応力

変動値
力の和の
と二次応力
一次応力
みによる
3) 地震動の。
_

(単位: MPa)

	地震の種類	薄体	弾性設計用地震動Sd又は静的震度	Sd又は静的	賽 度		基準地震動S	§動S s	
//	地震の方向	長子	長手方向	横方向	5向	長手方向	方向	横7	横方向
/	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内压(鉛直	内圧による応力 (鉛直方向地震時)	-	1	I	1	$\sigma_{\phi 2} = 0$	-	0 = 0	I
鉛直方向地 曲げモーメン	鉛直方向地震による長手方向 曲げモーメントにより生じる応力	I	l	I	l	l	σ × 6 = 29	l	σ _{×6} =29
鉛直方向地	鉛直方向地震による脚反力	I		I	I	$\sigma_{\phi 71} = 18$	$\sigma_{x71} = 18$	$\sigma_{\phi 71} = 18$	$\sigma_{x71} = 18$
/ ポン/	(生じる応力	1	1	1	1	$\sigma_{\phi72} = 66$	$\sigma_{x72} = 38$	$\sigma_{\phi72}$ =66	$\sigma_{x72} = 38$
						$\sigma_{\phi 41} = 42$	$\sigma_{x41} = 27$	$\sigma_{\phi 51} = 27$	$\sigma_{x 51} = 75$
## ± 1	기를					$\sigma_{\phi 421} = 50$	$\sigma_{x 4 2 1} = 98$		
大十万三 当歌 ドーク 引力	C >TC C		1		1	$\sigma_{\phi 422} = 26$	$\sigma_{x422} = 15$	$\sigma_{\phi52} = 227$	$\sigma_{x 5 2} = 106$
						$\sigma_{\phi 42} = 75$	$\sigma_{x42} = 113$		
	せん断	-			ı	$\tau_{\theta} = 11$	=11	0 2	$\tau_{\rm c}=4$
第	組合せ応力	1	ı			O 20=	σ ₂₀ =456	02°	$\sigma_{2c} = 675$

1.3.2 脚に生じる応力

(単位: MPa)

n O	横方向	$\sigma_{s1} = 1$	$\sigma s_4 = 2$	σ s 3 = 8	τ s 3 = 4	$\sigma = 11$
基準地震動S	長手方向	$\sigma_{s_1} = 1$	$\sigma_{s4} = 2$	$\sigma s_2 = 14$	τ s 2 = 14	o s _ℓ =28
用地震動Sd又は静的震度	横方向	I	I	I	1	
弹性設計用地震動S	長手方向	I	I	I	1	
地震の種類	地震の方向	圧縮	圧縮	曲げ	せん断	1
		運転時質量による応力	鉛直方向地震による応力	十七 2 4 乙 9 年 5 千 4 4	パナノヨ宮東によるがプラ	組合せ応力

1.3.3 基礎ボルトに生じる応力

(単位: MPa)	は静的震度 基準地震動Ss	横方向 長手方向 横方向	$- \qquad \qquad \sigma_{b1} = 48 \qquad \qquad \sigma_{b2} = 48$	$ \tau_{b1} = 29$ $\tau_{b2} = 16$
	弾性設計用地震動Sd又は静的震度	長手方向	I	I
ンる応力	地震の種類	地震の方向	り張り	せん断
1.3.3 基礎ボルトに生じる応力			鉛直方向地震及び 水平方向地震による応力	水平方向地震による応力

141 固有周期 1.4 結論

/周期 (単位:s)	固有周期	$T_1 =$	$T_2 =$	$T_3 =$
1.4.1 固有周	方向	長手方向	横方向	鉛直方向

1.4.2 応力						(単位: MPa)
	i e lestos	1	弹性設計用地震動	弾性設計用地震動Sd又は静的震度	s S順鬘娴嶽署	§動S s
影響	材料	RW	算出応力	許容応力	算出応力	計容応力
		一次一般膜	_	_	$^{0} = ^{0}$	$S_a = 228$
胴板	SGV410	一次			$\sigma_1 = 171$	$S_a = 342$
		一次十二次	1	1	$\sigma_2 = 675^{*2}$	$S_a = 420$
超	SS400	組合せ	1	1	$\sigma_{\rm S} = 28$	1 ₁ = 270
てで光巻声	00733	引張り	1	1	$\sigma_b = 48$	$f_{\rm ts} = 202^{*1}$
番帳 小ゲー	22400	せん断	_		$\tau_{\rm b} = 29$	$\frac{J_{\rm s}}{J_{\rm s}} = 155$

注記*1 : 『f.』=Min[1.4・『f.。-1.6・τ。, 『f.。] *2 : 算出応力が許容応力を満足しないが,設計・建設規格 PVB-3300 に基づいで疲労評価を行い,この結果より耐震性を有することを確認した。

1.4.3 疲労評価

疲労累積係数 N <mark>。//N。</mark>	
N (国)	
N_{a}	
S _{0′} * (MPa)	
S ₀ (MPa)	
S _p (MPa)	
$ m K_e$	
S _n (MPa)	
評価部位	胴板

注記*: E₀=2.07×10⁵ MPa E=2.00×10⁵ MPaとして補正する。