女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－19－0343＿改 0
提出年月日	2021 年 7 月 13 日

VI－2－6－4－1－2 ほう酸水注入系貯蔵タンクの耐震性についての計算書

2021年7月
東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の計算 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態• 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件． 4
4.3 計算条件 4
5．評価結果 9
5.1 設計基準対象施設としての評価結果 9
5.2 重大事故等対処設備としての評価結果 9

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，ほう酸水注入系貯蔵タンクが設計用地震力に対して十分な構造強度を有してい ることを説明するものである。

ほう酸水注入系貯蔵タンクは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象設備及び重大事故等対処設備としての構造強度評価を示す。

なお，ほう酸水注入系貯蔵タンクは，添付書類「VI－2－1－13 計算書作成の方法」に記載の平底たて置円筒形容器と類似の構造であるため，添付書類「VI－2－1－13－3 平底たて置円筒形容器 の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

ほう酸水注入系貯蔵タンクの構造計画を表 2－1に示す。

3．固有周期

3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は，本計算書の【ほう酸水注入系貯蔵タンクの耐震性についての計算結果】の機器要目に示す。

計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期の計算結果 を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平	
鉛直	\square

4．構造強度評価
4.1 構造強度評価方法

ほう酸水注入系貯蔵タンクの構造強度評価は，添付書類「VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
ほう酸水注入系貯蔵タンクの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
ほう酸水注入系貯蔵タンクの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，表 4－3 及び表 4－4 のとおりとする。

4．2．3 使用材料の許容応力評価条件
ほう酸水注入系貯蔵タンクの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－5 に，重大事故等対処設備の評価に用いるものを表 4－6に示す。

4． 3 計算条件
応力計算に用いる計算条件は，本計算書の【ほう酸水注入系貯蔵タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	ほう酸水	ほう酸水注入系貯蔵タンク	S	クラス 2 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	$\mathrm{III}_{A} \mathrm{~S}$
系統施設	注入設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 2 容器の支持構造物を含む。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	ほう酸水注入設備	ほう酸水注入系貯蔵タンク	常設耐震／防止常設／緩和	重大事故等＊2 クラス 2 容器	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{Sm}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）
原子炉冷却系統施設	非常用炉心冷却設備 その他原子炉注水設備 ほう酸水注入系	ほう酸水注入系貯蔵タンク	常設耐震／防止	重大事故等＊2 クラス 2 容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{Sm}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）
原子炉格納施設	圧力低減設備 その他の安全設備 ほう酸水注入系	ほう酸水注入系貯蔵タンク	常設／緩和	$\begin{aligned} & \text { 重大事故等*2 } \\ & \text { クラス } 2 \text { 容器 } \end{aligned}$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{Sm}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として IV ${ }_{A} \mathrm{~S}$ の許容限界 を用いる）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス 2 容器の支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（クラス 2， 3 容器及び重大事故等クラス 2 容器）

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{array}{l}\text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{array}$
$\mathrm{III}_{4} \mathrm{~S}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \text { と0.6•Suの小さい方。 } \\ & \text { ただし, オーステナイト系ステ } \\ & \text { ンレス鋼及び高ニッケル合金に } \\ & \text { ついては上記の値と } 1.2 \cdot \mathrm{~S} \text { の } \\ & \text { うち大きい方とする。 } \end{aligned}$	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準地震動 S s のみに よる疲労解析を行い，疲労累積係数が 1.0 以下で あること。 ただし，地震動のみによる一次＋二次応力の変動値 が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。
$\mathrm{IV}_{\text {A }} \mathrm{S}$			
$\begin{gathered} V_{A} S \\ \left(V_{A} S \text { として }{ }^{2} V_{A}\right. \text { の } \\ \text { 許容限界を用いる) } \end{gathered}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値 が $2 \cdot \mathrm{~S}$ y以下であれば，疲労解析は不要。

注記 $* 1$ ：座屈による評価が必要な場合には，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊3：2•S yを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313 を除く。 S_{m} は $2 / 3$ • S_{y} と読み替える。）の簡易弾塑性解析を用いる。

表 4－4 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界 ${ }^{*} 1, * 2$ （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{III}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{f} \mathrm{s}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として右に示す $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{ft} *$	$1.5 \cdot \mathrm{f} \mathrm{s}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
胴板	SUS304	最高使用温度	66	126	188	479	205
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	231	394	－

表 4－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\frac{\mathrm{S}_{\mathrm{y}}}{(\mathrm{MPa})}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} S_{y} \quad(R T) \\ (\mathrm{MPa}) \end{gathered}$
胴板	SUS304	最高使用温度	66	126	188	479	205
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	－	225	385	－

5．評価結果
5.1 設計基準対象施設としての評価結果

ほう酸水注入系貯蔵タンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認し た。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 Sd 及び静的震度は基準地震動 S s を下回つており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又 は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 $\mathrm{S} d$ 又は静的震度による発生値の算出を省略した。
5.2 重大事故等対処設備としての評価結果

ほう酸水注入系貯蔵タンクの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【ほら酸水注入系貯蔵タンクの耐震性についての計算結果】
．設計基準対象施設
1． 1 設計条件

機器名称	$\underset{\substack{\text { 耐震重要度 } \\ \text { 分類 }}}{ }$	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用 圧力 （MPa）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
ほう酸水注入系貯蔵タンク	S	$\begin{aligned} & \text { 原子炉建坔 } \\ & \text { O.P. } 22.50^{* 1} \\ & \text { (0.P. 23. } 23.105 \text {) } \end{aligned}$			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=2.15$	C v $=1.58$	静水頭	66	50	1． 07

＊ 2 ：III S については，基準地震動 S s で評価する。

1.2 機器要目

m_{o} (kg)	m_{e} (kg)	D_{i} (mm)	t (mm)	E (MPa)	G (MPa)	ℓ_{g} (mm)	H (mm)	s	n
		2750	6.0	$192000^{* 1}$	$73700^{* 1}$	1706	3405	15	20

$\underset{(\mathrm{mm})}{\mathrm{D}_{\mathrm{c}}}$	$\underset{(\mathrm{mm})}{\mathrm{D}_{\mathrm{b}} \mathrm{o}}$	$\underset{(\mathrm{mm})}{\mathrm{D}_{\mathrm{b}} \mathrm{i}}$	$\underset{(\mathrm{mm})}{\mathrm{d}}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{b}}}$	Ms（ $\mathrm{N} \cdot \mathrm{mm}$ ）	
					弾性設計用地震動 S d又は静的震度	基準地震動 S s
2900	3040	2750	$\begin{gathered} 24 \\ \text { (M24) } \end{gathered}$	452.4	－	8.885×10^{8}

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \text { S (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \hline \text { F (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	
188＊1	479＊1	$126^{* 1}$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	231	276

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

1．3 計算数値
1．3．1 胴に生じる応力

		弾性設計用地震動S d 又 静的震度			基準地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
静水頭による応力		$\sigma_{\text {¢ } 1}=9$	－	－	$\sigma_{\phi 1}=9$	－	－
鉛直方向地震による引張応力		$\sigma_{\phi 2}=13$	－	－	$\sigma_{\phi 2}=13$	－	－
空質量による圧縮応力		－	$\sigma \times 2=1$	－	－	$\sigma \times 2=1$	－
鉛直方向地震による軸方向応力		－	$\sigma \times 3=1$	－	－	$\sigma \times 3=1$	－
水平方向地震による応力		－	$\sigma_{\times 4}=25$	$\tau=20$	－	$\sigma_{\times 4}=25$	$\tau=20$
応力の和	引張側	$\sigma_{\delta}=22$	$\sigma_{x}{ }_{t}=26$	－	$\sigma_{\delta}=22$	$\sigma_{\mathrm{x} t}=26$	－
	圧縮側	$\sigma_{\delta}=-22$	$\sigma_{\times \mathrm{c}}=27$	－	$\sigma_{\delta}=-22$	$\sigma_{\times \mathrm{c}}=27$	－
組合せ応力	引張り	$\sigma_{\text {ot }}=44$			$\sigma_{\text {ot }}=44$		
	圧縮	$\sigma_{\text {oc }}=34$			$\sigma_{\text {oc }}=34$		

		弾性設計用地震動 S d 又 静的震度			基準地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
鉛直方向地震による応力		$\sigma_{\phi 2}=13$	$\sigma \times 3=1$	－	$\sigma_{\phi 2}=13$	$\sigma \times 3=1$	－
水平方向地震による応力		－	$\sigma \times 4=25$	$\tau=20$	－	$\sigma_{\times 4}=25$	$\tau=20$
応力の和	引張側	$\sigma_{2 \phi}=13$	$\sigma_{2 \times t}=26$	－	$\sigma_{2 \phi}=13$	$\sigma_{2 \times \mathrm{t}}=26$	－
	圧縮側	$\sigma_{2}{ }_{\text {d }}=-13$	$\sigma_{2 \times \mathrm{c}}=26$	－	$\sigma_{2 ¢}=-13$	$\sigma_{2 \times c}=26$	－
組合せ応力 （変動値）	引張り	$\sigma_{2}{ }_{t}=81$			$\sigma_{2 t}=81$		
	圧縮	$\sigma_{2 \mathrm{c}}=69$			$\sigma_{2 \mathrm{c}}=69$		

（単位 $: \mathrm{MPa}$ ）		
	基礎ボルトに生じる応力 弾性設計用地震動 S d 又は静的震度	基準地震動 S S 引張応力$\quad \sigma_{\mathrm{b}}=121$

1.4 結論

部材	材料	応力	弾性設計用地震動 S d 又 は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板	SUS304	一次一般膜	$\sigma_{0}=44$	$\mathrm{S}_{\mathrm{a}}=188$	$\sigma_{0}=44$	$\mathrm{S}_{\mathrm{a}}=287$
		一次＋二次	$\sigma_{2}=81$	$\mathrm{S}_{\mathrm{a}}=377$	$\sigma_{2}=81$	$\mathrm{S}_{\mathrm{a}}=377$
		圧縮と曲げ の組合せ （座屈の評価）	$\frac{\eta \cdot\left(\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}\right)}{\mathrm{fc}}+\frac{\eta \cdot \sigma_{\mathrm{x} 4}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$		$\frac{\eta \cdot\left(\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}\right)}{\mathrm{fc}}+\frac{\eta \cdot \sigma_{\mathrm{x} 4}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$	
			0.21 （無次元）		$\sigma_{\mathrm{b}}=121 \quad 0.21$	（無次元）
基礎ボルト	SS400	引張り	$\sigma_{\text {b }}=121$	$f_{\mathrm{ts}}=150$＊		$f_{\text {t }}=197$＊
		せん断	$\tau_{\mathrm{b}}=58$	$f_{\text {s b }}=133$	$\tau_{\mathrm{b}}=58$	$f_{\text {s b }}=159$

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向 設計震度	鉛直方向設計震度				
ほう酸水注入系貯蔵タンク	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { (0. P. 22. } 50^{*} \\ \text { (0. P. } 23.105) \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.15$	$\mathrm{C} v=1.58$	静水頭	66	66	1.07

2.2 機器要目

m_{0} $(\mathrm{~kg})$	m_{e} (kg)	D_{i} (mm)	t (mm)	E (MPa)	G (MPa)	ℓ_{g} (mm)	H (mm)	s	n
		2750	6.0	$192000^{* 1}$	$73700^{* 1}$	1706	3405	15	20

$\begin{gathered} \mathrm{D}_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{D}_{\mathrm{b}}}$	$\underset{(\mathrm{mm})}{\mathrm{D}_{\mathrm{b}} \mathrm{i}}$	$\underset{(\mathrm{mm})}{\mathrm{d}}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{b}}}$	Ms（ $\mathrm{N} \cdot \mathrm{mm}$ ）	
					弾性設計用地震動 S d又は静的震度	基準地震動S s
2900	3040	2750	$\begin{gathered} 24 \\ \text { (M24) } \end{gathered}$	452.4	－	8． 885×10^{8}

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}^{\text {(胴板) }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}}^{\text {(胴板) }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { S (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \hline \text { F (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \hline \text { F * (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$
188＊1	479＊1	126＊1	$\begin{gathered} 225^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	385＊2	－	270

注記 $* 1$ ：最高使用温度で算出
$* 2$ ：周囲環境温度で算出
2.3 計算数値
2.3.1 胴に生じる応力

		弾性設計用地震動S d 又 は 静的震度			基準地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
静水頭による応力		－	－	－	$\sigma_{\phi 1}=9$	－	－
鉛直方向地震による引張応力		－	－	－	$\sigma_{\phi 2}=13$	－	－
空質量による圧縮応力		－	－	－	－	$\sigma_{\times 2}=1$	－
鉛直方向地震による軸方向応力		－	－	－	－	$\sigma \times 3=1$	－
水平方向地震による応力		－	－	－	－	$\sigma_{\times 4}=25$	$\tau=20$
応力の和	引張側	－	－	－	$\sigma_{\phi}=22$	$\sigma_{\mathrm{x} t}=26$	－
	圧縮側	－	－	－	$\sigma_{\phi}=-22$	$\sigma_{\mathrm{xc}}=27$	－
組合せ応力	引張り	－			$\sigma_{\text {ot }}=44$		
	圧縮	－			$\sigma_{\text {oc }}=34$		

O 2 （2）VI－2－6－4－1－2 R1E
（2）地震動のみによる一次応力と二次応力の和の変動値

		弾性設計用地震動S d 又は静的震度			基準地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
鉛直方向地震による応力		－	－	－	$\sigma_{\text {¢ } 2}=13$	$\sigma \times 3=1$	－
水平方向地震による応力		－	－	－	－	$\sigma \times 4=25$	$\tau=20$
応力の和	引張側	－	－	－	$\sigma_{2 \phi}=13$	$\sigma_{2 \times t}=26$	－
	圧縮側	－	－	－	$\sigma_{2 \phi}=-13$	$\sigma_{2 \times \mathrm{c}}=26$	－
$\begin{gathered} \text { 組合せ応力 } \\ (\text { 変動値 }) \\ \hline \end{gathered}$	引張り	－			$\sigma_{2 t}=81$		
	圧縮	－			$\sigma_{2} \mathrm{c}=69$		

2． 4 結論

2． 4 結論			
2．4．1	固有周期		（単位：s）
方向		固有周期	
水平方向			
鉛直方向			

2．4．2 応力					（単位：MPa）	
部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板	SUS304	一次一般膜	－	－	$\sigma_{0}=44$	$\mathrm{S}_{\mathrm{a}}=287$
		一次＋二次	－	－	$\sigma_{2}=81$	$\mathrm{S}_{\mathrm{a}}=377$
		圧縮と曲げ の組合せ （座屈の評価）	$\frac{\eta \cdot\left(\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}\right)}{\mathrm{fc}}+\frac{\eta \cdot \sigma_{\mathrm{x} 4}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$		$\frac{\eta \cdot\left(\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}\right)}{\mathrm{fc}}+\frac{\eta \cdot \sigma_{\mathrm{x} 4}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$	
			－		0.21 （無次元）	
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=121$	$f_{\text {t }}=190^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=58$	$f_{\text {s b }}=155$

すべて許容応力以下である。
注記 $*: ~ f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} \text { o }}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$

