本資料のうち，枠囲みの内容は商業機密の観点から公開できま せん。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－2－1－1 ドライウェルの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．固有周期 9
5．構造強度評価 10
5.1 構造強度評価方法 10
5.2 荷重の組合せ及び許容応力 10
5．2．1 荷重の組合せ及び許容応力状態 10
5．2．2 許容応力 10
5．2．3 使用材料の許容応力評価条件 10
5．2．4 設計荷重 16
5.3 設計用地震力 17
5.4 計算方法 19
5.5 計算条件 21
5.6 応力の評価 21
6．評価結果 22
6.1 設計基準対象施設としての評価結果 22
6.2 重大事故等対処設備としての評価結果 32
7．参照図書 39

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，ドライウェルが設計用地震力に対して十分な構造強度を有していることを説明するものである。

ドライウェルは，設計基準対象施設においては S クラス施設に，重大事故等対処設備におい ては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力による荷重及び重大事故等時の荷重に対する評価について記載するものとし，前述の荷重を除く荷重によるドライウ エルの評価は，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類 （参照図書（1））による（以下「既工認」という。）。

2．一般事項

2.1 構造計画

> ドライウェルの構造計画を表 2-1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
ドライウェルは，原子炉格納容器シヤラグ及び基部（サンドクッション部）を原子炉建屋により拘束された構造であり，水平方向荷重は原子炉格納容器シヤラグ及び基部 を介して，鉛直方向荷重 は基部を介して原子炉建屋に伝達される。	内半径 mm，板厚鏡，内径 \square厚 \square部，内半径 \square部，内径 \square半径 \square \square \square \square mm の上 \square鋼製構造物である。 mm，板 mm の円筒部，板 mm のナックル mm ， mm の上部球形 \square mm，板 mm の円筒部，内 mm ，板厚 \square mm の下鏡で構成される ドライウェル基部外側 には，サンドクッショ こを備える。	（単位：mm）

2.2 評価方針

ドライウェルの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

ドライウェルの耐震評価フローを図 2－1 に示す。

図 2－1 ドライウェルの耐震評価フロー
2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

	4 記号の説明		
	記号	記号の説明	単位
	A	断面積	mm^{2}
	C v	鉛直方向設計震度	－
	D	死荷重	－
	D i	直径（ $\mathrm{i}=1,2)$	mm
	f_{b}	曲げモーメントに対する座屈応力	MPa
	$\mathrm{f}_{\text {c }}$	軸圧縮荷重に対する座屈応力	MPa
	$\ell_{\text {i }}$	長さ（ $\mathrm{i}=1,2,3 \cdots$ ）	mm
	M	機械的荷重，曲げモーメント	－， $\mathrm{N} \cdot \mathrm{mm}$
	M_{L}	地震と組み合わせる機械的荷重	－
	$\mathrm{M}_{\text {SAL }}$	機械的荷重（SA 後長期（L）機械的荷重）	－
	$\mathrm{M}_{\text {SALL }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
	P	圧力，軸圧縮荷重	－
$\stackrel{\rightharpoonup}{2}$	$P_{\text {L }}$	地震と組み合わせる圧力	－
$\stackrel{4}{4}$	$\mathrm{P}_{\text {SAL }}$	圧力（SA 後長期（L）圧力）	kPa
I	$\mathrm{P}_{\text {SALL }}$	圧力（SA 後長期（LL）圧力）	kPa
¢	R ${ }_{\text {i }}$	半径（ $\mathrm{i}=1,2,3$ ）	mm
I	S	許容引張応力	MPa
5	S d	弾性設計用地震動S d により定まる地震力	－
（a）	S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
\sim	S s	基準地震動S s こより定まる地震力	－
\bigcirc	S_{u}	設計引張強さ	MPa
	S_{y}	設計降伏点	MPa
	S_{y}（ $\mathrm{R}^{\text {T }}$ ）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
	t_{i}	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
	TsAL	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
	T SALL	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
	Z	断面係数	－
	A S S	オーステナイト系ステンレス鋼	－
	HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
圧力	kPa	-	-	整数位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位 $^{\text {（長さ }}$
モーメント	mm	-mm	有効数字 5 桁目	四捨五入
有効数字 4 桁				
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 ${ }^{* 2}$

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ドライウェルの形状及び主要寸法を図 3－1 及び図 3－2 に，使用材料及び使用部位を表3－1 に示す。

（1）上鏡球形部
（2）上鏡ナックル部
（3）円筒部
（4）フランジ
⑤ナックル部
（6）上部球形部
（7）ドライウェルスプレイ管取付部
（8）下鏡
（9）サンドクッション部

図 3－1 ドライウェルの形状及び主要寸法

（単位：mm）

図 3－2 サンドクッション部の形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料
ドライウェル	SGV480
	SPV490

[^0]4．固有周期
ドライウェルは，添付書類「VI－2－3－2 炬心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」にて計算したドライウェルの設計用地震力を用いて評価することとし，固有周期の計算は省略する。

5．構造強度評価

5.1 構造強度評価方法

（1）ドライウェルは，原子炉格納容器シヤラグ及び基部（サンドクッション部）を原子炉建屋により拘束された構造であり，水平方向荷重は原子炉格納容器シヤラグ及び基部を介し て，鉛直方向荷重は基部を介して原子炉建屋に伝達される。

ドライウェルの耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において計算された荷重を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ドライウェルの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用 いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力

ドライウェルの許容応力は添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－3 に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
ドライウェルの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用い るものを表 5－4に，重大事故等対処設備の評価に用いるものを表5－5に示す。
表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	荷重の組合せ＊1		許容応力状態
原子炉格納施設	原子炉格納容器	ドライウェル	S	クラスMC 容器	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}^{*}$	$\begin{gathered} (9) \\ (10) \\ (13) \\ (15) \end{gathered}$	III $_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{aligned} & (11) \\ & (12) \\ & (14) \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{* * 2}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

＊2：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，冷却材喪失事故後の最大内圧との組合せを考慮する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）							
施設区分		機器名称	設備分類＊1	機器等 の区分	荷重の組合せ＊		許容応力状態
原子炉格納施設	原子炉格納容器	ドライウェル	常設耐震／防止常設／緩和	重大事故等 クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}^{* 3}$	（V（L）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	（V（LL）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。 ＊3：重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

注記＊1：3•Sを超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。 S_{m} は S と読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d 又はS s 地震動による応力の全振幅」と読み替える。 ＊3：運転状態 I，IIにおいて，疲労解析を要しない場合は，地震動のみによる疲労累積係数を 1.0 以下とする。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ） を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

応力分類	特別な応力限界 （座屈）
${ }_{\text {III }}{ }_{\text {S }}$ S	軸圧縮荷重と曲げモーメントが負荷される場合，次の不等式を満足しなければならない。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{f}_{\mathrm{c}}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}} \leqq 1.0$
$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{*}$	本式の適用範囲は ℓ / R は 5 以下とする。ただし，強め輪等 により l / R が 0.5 以下となる場合は，その効果を別途検討 により考慮することができる。

[^1]| 評価部材 | 材料 | 温度条件
 $\left({ }^{\circ} \mathrm{C}\right)$ | | $\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ドライウェル | SGV480 | 周囲環境
 温度 | 171 | 131 | 229 | 423 | － |
| | SPV490 | 周囲環境温度 | 171 | 167 | 429 | 550 | － |

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ドライウェル	SGV480	周囲環境 温度	$\begin{gathered} 111 / 178^{* 1} \\ (200)^{* 2} \end{gathered}$	131	226	422	－
	SPV490	周囲環境 温度	$\begin{gathered} 111 / 178^{* 1} \\ (200)^{* 2} \end{gathered}$	167	417	545	－

注記 $* 1: ~ \mathrm{SA}$ 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（LL）の時 $111^{\circ} \mathrm{C}$ 。
＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度，死荷重及 び活荷重は，既工認（参照図書（1））からの変更はなく，以下のとおりとする。
a．最高使用圧力及び最高使用温度

内圧	427 kPa
温度	$171^{\circ} \mathrm{C}$

b．死荷重
ドライウェル及び付属物の自重を死荷重とし，参照図書（1）の表 4－1 に示すとおり とする。
c．活荷重燃料交換時に，ドライウェル主フランジ部ウォータシール部に作用する水荷重及
（2）重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 $P_{\text {SAL }}$	640 kPa （SA 後長期（L））
内圧 P SAL L	427 kPa （SA 後長期（LL））
温度 T SAL	$178^{\circ} \mathrm{C}$（SA 後長期（L））
温度 T SALL	$111^{\circ} \mathrm{C}$（SA 後長期（LL））

5.3 設計用地震力

評価に用いる設計用地震力を表5－6～表5－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平 方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 0. P.	－	－	－	$\mathrm{C}_{\mathrm{v}}=0.57$	－	$\mathrm{C}_{\mathrm{v}}=0.98$

表 5－7 設計用地震力（重大事故等対処設備）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 0. P. \qquad	－	－	－	$\mathrm{C}_{\mathrm{v}}=0.57$	－	$\mathrm{C}_{\mathrm{v}}=0.98$

表 5－8 設計用地震力（設計基準対象施設）

応力評価点＊	水平荷重 $\mathrm{Sd}^{\text {d }}$		水平荷重 S S	
	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { モーメント } \\ & \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { モーメント } \\ & \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{aligned}$
P1				
P2				
P3				
P4				
P5				
P6				
P7				
P8				
P9				
P10				
P11				

注記 $*:$ 応力評価点の位置は，図 5－1参照のこと。

表 5－9 設計用地震力（重大事故等対処設備）

応力評価点＊${ }^{*}$	水平荷重 S d ＊${ }^{\text {2 }}$		水平荷重 S s	
	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { モーメント } \\ & \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { モーメント } \\ & \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{aligned}$
P1				
P2				
P3				
P4				
P5				
P6				
P7				
P8				
P9				
P10				
P11				

注記 $* 1$ ：応力評価点の位置は，図 5－1 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 $\mathrm{S} d$ に加えて静的地震力を考慮する。

枠囲みの内容は商業機密の観点から公開できません。

5．4 計算方法

ドライウェルの応力評価点は，ドライウェルを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－10 及び図 5－1 に示 す。

応力計算方法は既工認から変更はなく，参照図書（1）に示すとおりである。
応力評価点 P1～P11 の応力は，既工認の各荷重条件や耐震条件の比を用いて発生応力を算出し評価する。

表 5－10 応力評価点

応力評価点番号	応力評価点
P1	上鏡球形部
P2	上鏡球形部と上鏡ナックル部の接合部
P3	円筒部と上フランジの接合部
P4	下フランジと円筒部の接合部
P5	円筒部とナックル部の接合部
P6	ナックル部と上部球形部の接合部
P7	ドライウェルスプレイ管取付部
P8	上部球形部と円筒部の接合部
P9	円筒部中心部
P11	円筒部と下鏡の接合部
	サンドクッション部

（単位：mm）
図 5－1 ドライウェルの応力評価点
5.5 計算条件

応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。
5.6 応力の評価

「5．4 計算方法」で求めた各応力が，表 5－3に示す許容応力以下であること。ただし，次＋二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300（PVB－3313 を除く。 S_{m} は S と読み替える。）に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

6．評価結果

6.1 設計基準対象施設としての評価結果

ドライウェルの設計基準対象施設としての耐震評価結果を以下に示す。発生值は許容限界 を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1～表 6－3 に示す。
表中の「荷重の組合せ」欄には，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」における表 3－6 の荷重の組合せのNo．を記載する。

なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23項に て，設計•建設規格 PVB－3140（6）を満たしていることから，一次十二次＋ピーク応力強さ の評価は不要である。
表 6－1 許容応力状態 $\mathrm{m}_{A} \mathrm{~S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{\text {A }} \mathrm{S}$		判定	荷重の 組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
ドライウェル	P1	上鏡球形部		一次一般膜応力	2	229	\bigcirc	（9）	
				一次膜応力 + 一次曲げ応力	2	344	\bigcirc	（9）	
			一次 + 二次応力	0	393	\bigcirc	（9），（10）		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	5	344	\bigcirc	（9）		
			一次＋二次応力	6	393	\bigcirc	（9），（10）		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	4	344	\bigcirc	（9）		
			一次＋二次応力	6	393	\bigcirc	（9），（10）		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	11	344	\bigcirc	（9），（10）		
			一次 + 二次応力	22	393	\bigcirc	（9），（10）		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	12	344	\bigcirc	（10）		
			一次 + 二次応力	22	393	\bigcirc	（9），（10）		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	22	344	\bigcirc	（10）		
			一次 + 二次応力	36	393	\bigcirc	（10）		

O 2 （3）VI－2－9－2－1－1 R 1
表 6－1 許容応力状態III S に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}$ d＊）（その 2）

O 2 （3）VI－2－9－2－1－1 R 1
表 6－2（1）許容応力状態 $\mathrm{I}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	荷重の組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
ドライウェル	P1	上鏡球形部		一次一般膜応力	2	253	\bigcirc	（11）	
				一次膜応力 + 一次曲げ応力	2	380	\bigcirc	（11）	
			一次＋二次応力	0	393	\bigcirc	（11），（12）		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	6	380	\bigcirc	（11）		
			一次＋二次応力	10	393	\bigcirc	（11），（12）		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	6	380	\bigcirc	（11）		
			一次 + 二次応力	10	393	\bigcirc	（11），（12）		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	15	380	\bigcirc	（11），（12）		
			一次＋二次応力	30	393	\bigcirc	（11），（12）		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	16	380	\bigcirc	（11）		
			一次＋二次応力	30	393	\bigcirc	（11），（12）		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	29	380	\bigcirc	（12）		
			一次＋二次応力	62	393	\bigcirc	（12）		

O 2 （3）VI－2－9－2－1－1 R 1
表 6－2（1）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 2 ）

	$\begin{aligned} & \text { 把 } \\ & \text { 逼 } \end{aligned}$												
			$\overparen{\Xi}$	$\underset{\cong}{\overparen{\Xi}}$	$\stackrel{\overparen{N}}{\approx}$	$\underset{\cong}{\overparen{\Xi}}$	$\underset{\cong}{\overparen{\Xi}}$	$\underset{\Xi}{\overparen{\Xi}}$	$\underset{\approx}{\overparen{E}}$	$\underset{\Xi}{\overparen{E}}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { ® }}{ \pm}$	$\stackrel{\text { ® }}{ }$
$\frac{\text { 屴 }}{\frac{1}{T}}$			\bigcirc										
$\begin{aligned} & i \\ & z \end{aligned}$		\sum_{\sum}^{∞}	$\underset{\sim}{\infty}$	た્ల	$\stackrel{18}{7}$	$\stackrel{\rightharpoonup}{\circ}$	৷্লি	$\stackrel{10}{8}$	$\stackrel{3}{5}$	$\stackrel{\llcorner 8}{8}$	$\stackrel{3}{\circ}$	$\stackrel{18}{4}$	$\stackrel{3}{\circ}$
		\sum_{\sum}^{∞}	\bigcirc	$\stackrel{\circ}{7}$	\bigcirc	$\stackrel{-1}{-1}$	こ	さ	$\stackrel{\infty}{\sim}$	8	$\stackrel{\infty}{\bullet}$	\bigcirc	슷
									$$			$\text { 一次膜応力 }+ \text { 一次曲げ応力 }$	$\xrightarrow{\text { ¢ }}$
				乞		∞		2			，		

表 6－2（2）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{d}^{*}$ ）（その 1

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	荷重の 組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
ドライウェル	P1	上鏡球形部		一次一般膜応力	56	253	\bigcirc	（16）	
				一次膜応力 + 一次曲げ応力	56	380	\bigcirc	（16）	
			一次＋二次応力	0	393	\bigcirc	（16）		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	82	380	\bigcirc	（16）		
			一次＋二次応力	6	393	\bigcirc	（16）		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	33	380	\bigcirc	（16）		
			一次＋二次応力	6	393	\bigcirc	（16）		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	27	380	\bigcirc	（16）		
			一次＋二次応力	22	393	\bigcirc	（16）		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	41	380	\bigcirc	（16）		
			一次＋二次応力	22	393	\bigcirc	（16）		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	118	380	\bigcirc	（16）		
			一次 + 二次応力	18	393	\bigcirc	（16）		

O 2 （3）VI－2－9－2－1－1 R 1
表 6－2（2）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊）（その 2）

O 2 （3）VI－2－9－2－1－1 R 1

表 6－3（1）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）							
評価対象設備	評価部位		$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{f}_{\mathrm{c}}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	荷重の組合せ	備考
ドライウェル	P10	円筒部と下鏡の接合部	0． 33	1.0	\bigcirc	（10）	
	P11	サンドクッション部	0.47	1.0	\bigcirc	（10）	

O 2 （3）VI－2－9－2－1－1 R 1
表 6－3（2）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}$ s）

評価対象設備		評価部位	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{f}_{\mathrm{c}}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	荷重の組合せ	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.50	1.0	\bigcirc	（12）	
	P11	サンドクッション部	0.70	1.0	\bigcirc	（12）	

O 2 (3) VI-2-9-2-1-1 R 1
2 (3) 2-9-2-1

6.2 重大事故等対処設備としての評価結果

ドライウェルの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価結果を表 6－4 及び表 6－5 に示す。
なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23 項に て，設計•建設規格 PVB－3140（6）を満たしていることから，一次十二次＋ピーク応力強さ の評価は不要である。
O（3）VI－2－9－2－1－1 R 0
表6－4（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} d$ ）（その1）

評価対象設備	評価部位		応力分類			判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	111	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	111	379	\bigcirc	
			一次＋二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	162	379	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	63	379	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	49	379	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	79	379	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	235	379	\bigcirc		
			一次＋二次応力	18	393	\bigcirc		

O 2 （3）VI－2－9－2－1－1 R 0
表6－4（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 2）

表6－4（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{4} \mathrm{~S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	74	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	74	379	\bigcirc	
			一次＋二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	109	379	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	45	379	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	36	379	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	55	379	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	158	379	\bigcirc		
			一次＋二次応力	32	393	\bigcirc		

O 2 （3）VI－2－9－2－1－1 R 0
表6－4（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\left.\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} s\right) ~(そ の 2$ ）

	$\begin{aligned} & \text { 抑 } \\ & \text { 遮 } \end{aligned}$												
	$\frac{\text { 岗 }}{\frac{T}{T}}$		\bigcirc										
\sim		\sum_{\sum}^{∞}	$\underset{\sim}{\infty}$	®্ট	$\stackrel{8}{7}$	$\stackrel{\rightharpoonup}{\circ}$	$\underset{\sim}{N}$	$\stackrel{8}{7}$	$\stackrel{\rightharpoonup}{\circ}$	8	$\stackrel{\rightharpoonup}{\circ}$	¢	$\stackrel{\rightharpoonup}{\circ}$
		$\stackrel{\pi}{\sum}$	8	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	H	$\stackrel{\Im}{7}$	$\stackrel{\text { N }}{\sim}$
					一次膜応力 + 一次曲げ応力	$$			$$	一次膜応力 + 一次曲げ応力	$$		
				－		\propto		∞					
								$\begin{aligned} & \stackrel{\lambda}{\mathrm{H}} \\ & \text { H } \\ & \stackrel{\text { In }}{2} \end{aligned}$					

O 2 （3）VI－2－9－2－1－1 R 0
表6－5（1）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）

評価対象設備	評価部位		$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ffc}_{\mathrm{c}}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.32	1.0	\bigcirc	
	P11	サンドクッション部	0． 45	1． 0	\bigcirc	

O 2 （3） $\mathrm{VI}-2-9-2-1-1 \quad \mathrm{R} \mathrm{O}$

表 6－5（2）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S}$ s）						
評価対象設備	評価部位		$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{f}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.48	1.0	\bigcirc	
	P11	サンドクッション部	0.69	1.0	\bigcirc	

7．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－4 ドライウェルの強度計算書」

[^0]: R 1

[^1]: 注記＊：V ${ }_{A} S$ として $V_{A} S$ の許容限界を用いる。

