```
本資料のうち, 枠囲みの内容は
商業機密の観点から公開できま
せん。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－2－1－3 原子炬格納容器シヤラグの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 12
5．2．1 荷重の組合せ及び許容応力状態 12
5．2．2 許容応力 12
5．2．3 使用材料の許容応力評価条件 12
5．2．4 設計荷重 20
5.3 設計用地震力 21
5.4 計算方法 25
5．4．1 応力評価点 25
5．4．2 内側フィメイルシヤラグ（応力評価点 P1，P2） 26
5．4．3 外側メイルシヤラグ（応力評価点 P3，P4） 30
5．4．4 外側フィメイルシヤラグ（応力評価点 P5～P10） 34
5．4．5 原子炉格納容器シヤラグ取付部（応力評価点 P11） 45
5.5 計算条件 47
5.6 応力の評価 47
6．評価結果 48
6.1 設計基準対象施設としての評価結果 48
6．2 重大事故等対処設備としての評価結果 62
7．参照図書 72

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉格納容器シ ヤラグが設計用地震力に対して十分な構造強度を有していることを説明するものである。

原子炉格納容器シヤラグは，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

原子炉格納容器シヤラグの構造計画を表 2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉格納容器シヤラグ は，地震時の原子炉圧力容器及び原子炉しゃへい壁に生じる荷重及び変位 を小さくするためにドラ イウェル上部に設置され る。 前記荷重は，原子炉格納容器シヤラグを介し原子炬建屋に伝達させる。	内側フィメイルシヤラ グ，外側メイルシヤラ グ，外側フィメイルシ ヤラグで構成される鋼製構造物である。	

2.2 評価方針

原子炉格納容器シヤラグの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合 せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力によ る応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認すること で実施する。確認結果を「6．評価結果」に示す。

原子炉格納容器シヤラグの耐震評価フローを図2－1に示す。

図 2－1 原子炉格納容器シヤラグの耐震評価フロー
2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

	記号の説		
	記号	記号の説明	単位
	$\mathrm{A}_{\text {i }}$	断面積（ $\mathrm{i}=1,2,3 \cdots)$	mm^{2}
	C_{V}	鉛直方向設計震度	－
	D	死荷重	－
	E	縦弾性係数	MPa
	f b	許容曲げ応力度	MPa
	$f \mathrm{c}$	許容圧縮応力度	MPa
	$f \mathrm{p}$	許容支圧応力度	MPa
	f s	許容せん断応力度	MPa
	f t	許容引張応力度	MPa
	F c	コンクリートの設計基準強度	$\mathrm{kg} / \mathrm{cm}^{2}$
	K_{e}	弾塑性解析に用いる繰返しピーク応力強さの補正係数	－
	ℓ_{i}	長さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
\checkmark	L	活荷重	－
$\xrightarrow{\square}$	M	機械的荷重	－
P	M_{i}	曲げモーメント（ $\mathrm{i}=1,2,3 \cdots)$	$\mathrm{N} \cdot \mathrm{mm}$
N	M_{L}	地震と組み合わせる機械的荷重	－
$\stackrel{1}{1}$	$\mathrm{M}_{\text {SAL }}$	機械的荷重（SA 後長期（L）機械的荷重）	－
5	$\mathrm{M}_{\text {SALL }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
（2）	Na	地震時の許容繰返し回数	－
\bigcirc	Nc	地震時の実際の繰返し回数	－
\bigcirc	P	圧力	kPa
	P_{L}	地震と組み合わせる圧力	kPa
	$\mathrm{P}_{\text {SAL }}$	圧力（SA 後長期（L）圧力）	kPa
	$\mathrm{P}_{\text {SALL }}$	圧力（SA 後長期（LL）圧力）	kPa
	R s	半径	mm

O2（3）VI－2－9－2－1－3 R 1

記号	記号の説明	単位
S	許容引張応力	MPa
S d	弾性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動 S d により定まる地震力又は静的地震力	－
Se	繰返しピーク応力強さ	MPa
S ℓ^{\prime}	補正繰返しピーク応力強さ	MPa
Sn	地震動による応力振幅	MPa
Sp	地震荷重のみにおける一次＋二次＋ピーク応力の応力差範囲	MPa
S s	基準地震動S s により定まる地震力	－
S_{u}	設計引張強さ	MPa
S_{y}	設計降伏点	MPa
$S_{y}(\mathrm{RT})$	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t_{i}	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
T	温度	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {L }}$	地震と組み合わせる温度	${ }^{\circ} \mathrm{C}$
T SAL	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
Tsall	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
V	せん断力	N
$\mathrm{W}_{\text {i }}$	荷重（ $\mathrm{i}=1,2)$	N
W_{L}	荷重	N
$\mathrm{W}_{\text {L i }}$	荷重（ $\mathrm{i}=1,2)$	N
W_{H}	荷重	N
$\mathrm{W}_{\text {s }}$	荷重	N
$\mathrm{W}_{\text {s i }}$	荷重（ $\mathrm{i}=1,2)$	N
Z i	断面係数（ $\mathrm{i}=1,2,3 \cdots)$	mm^{3}
α	角度	－
σ b	曲げ応力	－
σ c	圧縮応力	－
$\sigma_{\text {p }}$	支圧応力	－
τ	せん断応力	－
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
原子炉格納容器シヤラグの形状及び主要寸法を図 3－1 に，使用材料及び使用部位を表3－1 に示す。

（1）内側フィメイルシヤラグ
（2）外側フィメイルシヤラグ
③外側メイルシヤラグ

球 R s

（単位：mm）

図 3－1 原子炉格納容器シャラグの形状及び主要寸法（その1）

内側フィメイルシヤラグ

各荷重の組合せに対する ℓ_{5} の値を以下に示す。

$: \mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}^{*} \mathrm{~d}^{*} \mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$
$: \mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S}^{*} \mathrm{~d}^{*}$
$: \mathrm{D}+\mathrm{P}$ SAL$+\mathrm{MSAL}+\mathrm{Sd}$
$: \mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{MSALL}+\mathrm{S} \mathrm{s}$

注記：各荷重の組合せは表5－1 及び表5－2 参照
（単位：mm）

図 3－1 原子炉格納容器シヤラグの形状及び主要寸法（その 2）

（1）

（1）外側フィメイルシヤラグ

（2）外側メイルシヤラグ
$\ell_{6}=\square$

各荷重の組合せに対する ℓ_{16} 及び ℓ_{17} の値を以下に示す。

$\ell_{16}=$	ℓ_{17}	$: \mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}{ }^{*}, \mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$
$\ell_{16}=$	$\ell_{17}=$	$: \mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊
$\ell_{16}=$	$\ell_{17}=$	$: \mathrm{D}+\mathrm{PsAL}+\mathrm{MsAL}+\mathrm{Sd}$
ℓ_{16}	ℓ_{17}	$: \mathrm{D}+\mathrm{PSALL}+\mathrm{MSALL}+\mathrm{S} \mathrm{S}$

注記：各荷重の組合せは表 5－1 及び表 5－2 参照
（単位：mm）

図 3－1 原子炉格納容器シャラグの形状及び主要寸法（その 3）

表3－1 使用材料表

使用部位	使用材料
原子炉格納容器本体	SGV480
外側メイルシヤラグ	
内側フィメイルシヤラグ	
$\begin{gathered} \text { 外側フィメイルシヤラグ } \\ \text { ベースプレート } \end{gathered}$	
外側フィメイルシヤラグ （ベースプレートを除く）	
基礎ボルト	
コンクリート部	コンクリート $\left(\mathrm{Fc}_{\mathrm{c}}=330 \mathrm{~kg} / \mathrm{cm}^{2}\right)$

[^0]4．固有周期
原子炉格納容器シヤラグのうち，内側フィメイルシヤラグ及び外側メイルシヤラグは，ドラ イウェルからの突出し長さが短いため，固有周期は十分に小さく剛構造となる。また，外側フ イメイルシヤラグは，ベースプレート及び基礎ボルトがコンクリートに埋め込まれた構造であ り，埋め込み部からの突出し長さが短いため，固有周期は十分に小さく剛構造となる。 よって，固有周期の計算は省略する。

5．構造強度評価

5.1 構造強度評価方法

（1）原子炉格納容器シヤラグは，内側フィメイルシヤラグ及び外側メイルシヤラグがドライ ウェルに溶接され，また，外側フィメイルシヤラグが生体遮蔽壁コンクリートに埋め込ま れた構造であり，地震荷重はドライウェル底部及び生体遮蔽壁コンクリートを介して原子炉建屋に伝達される。

原子炉格納容器シヤラグの耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 において計算された荷重を用いて，「5．4 計算方法」にて示す方法に従い，構造強度評価 を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器シヤラグの荷重の組合せ及び許容応力状態のうち，設計基準対象施設 の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示 す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力
原子炉格納容器シヤラグの許容応力及び許容応力度は添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表 5－3～表 5－5 に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
原子炉格納容器シヤラグの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表5－6に，重大事故等対処設備の評価に用いるものを表 5－7に示す。
表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

注記＊1：内側フィメイルシヤラグ，外側メイルシヤラグ及び外側フィメイルシヤラグはその他の支持構造物であるが，冷却材喪失事故後地震時の原子炉圧力容器及び原子炉しやへい壁に生じる荷重を原子炉建屋に伝達させる機能の維持を確認する意味で，クラスMC支持構造物に準 じた許容応力状態及び荷重の組合せを適用する。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6の荷重の組合せのNo．を示す。
＊3：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，冷却材喪失事故後の最大内圧との組合せを考慮する。

施設区分		機器名称	設備分類＊1	機器等 の区分	荷重の組合せ
－	－	原子炉	－	その他の支持構造物	$\mathrm{D}+\mathrm{P}_{\text {SAL }}+\mathrm{M}_{\text {SAL }}+\mathrm{S}$
		シヤラグ			$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+$
原子炉格納施設	原子炉格納容器	原子炉	常設耐震／防止 常設／緩和	重大事故等 クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\text {SAL }}+\mathrm{S}$
		シヤラグ 取付部			$\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+$

[^1]
注記＊1：3•Sを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。SmはS と読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ）を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。
表5－4 クラスMC支持構造物及び重大事故等クラス2支持構造物の許容応力度＊1

注記 $* 1$ ：本表の対象部としては，内側フィメイルシヤラグ，外側メイルシヤラグ及び外側フィメイルシヤラグが該当する。 ＊2：すみ肉溶接部にあっては最大応力に対して $1.5 \cdot f \mathrm{~s}$ とする。 ＊3：設計•建設規格 SSB－3121．1（4）により求めた f b とする。
 ＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。
O 2 （3）VI－2－9－2－1－3 R 0

注記＊： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－6 使用材料の許容応力評価条件（設計基準対象施設）							
評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
内側フィメイルシヤラグ本体（溶接部），内側フィメイルシヤラグ取付部（溶接部），外側メイルシヤラグ取付部（溶接部）及び外側メイルシヤラグ本体		周囲環境温度	171				－
原子炉格納容器シヤラグ取付部	SGV480	周囲環境温度	171	131	229	423	－
外側フィメイルシヤラグベースプレート		周囲環境温度	171	－			－
			40＊	－			\square
外側フィメイルシヤラグ本体（溶接部）及び外側フィメイルシヤラグ本体		周囲環境温度	171	－			－
			40＊	－			－
外側フィメイルシヤラグ基礎ボルト		周囲環境温度	171	－			－
			40＊	－			\square

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$（荷重の組合せ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）及び $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$（荷重の組合せ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）の評価温度を示す。
表5－7 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
内側フィメイルシヤラグ本体（溶接部），内側フィメイルシヤラグ取付部（溶接部），外側メイルシヤラグ取付部（溶接部）及び外側メイルシヤラグ本体		周囲環境 温度	$\begin{gathered} 111 / 178 * 1 \\ (200) * 2 \end{gathered}$				－
原子炉格納容器シヤラグ取付部	SGV480	周囲環境温度	$\begin{gathered} 111 / 178 * 1 \\ (200) * 2 \end{gathered}$	131	226	422	－
外側フィメイルシヤラグベースプレート		周囲環境 温度	$\begin{aligned} & \frac{178 * 1}{(200)^{* 2}} \end{aligned}$	－			－
			$66^{* 3}$	－			－
外側フィメイルシヤラグ本体（溶接部）及び外側フィメイルシヤラグ本体		周囲環境 温度	$\frac{178 * 1}{(200) * 2}$	－			－
			$66^{* 3}$	－			－
外側フィメイルシヤラグ基礎ボルト		周囲環境 温度	$\begin{aligned} & \frac{178 * 1}{(200)^{* 2}} \end{aligned}$	－			－
			$66^{* 3}$	－			－

[^2]
5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての評価圧力，評価温度，死荷重及び活荷重は，以下のとおり とする。
a．最高使用圧力及び最高使用温度
外圧 P
内圧 P_{L}
13． 7 kPa （最高使用圧力）
温度 T
温度 T_{L}
324 kPa （冷却材喪失事故後の最大内圧）
$171^{\circ} \mathrm{C}$（最高使用温度）
$146^{\circ} \mathrm{C}$（冷却材喪失事故後の最高温度）

b．死荷重

原子炉格納容器シヤラグより上部の原子炉格納容器本体及び付属物の自重を死荷重とし，参照図書（3）の表 4－1 に示すとおりとする。

c．活荷重

燃料交換時に，ドライウェル主フランジウォーターシール部に作用する水荷重を活荷重とし，参照図書（3）の表 4－1 に示すとおりとする。
（2）重大事故等対処設備としての評価圧力及び評価温度
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。
内圧 $P_{S A L}$
640 kPa （ SA 後長期（L））
内圧 $\mathrm{P}_{\mathrm{SALL}}$
427 kPa （SA 後長期（LL））
温度 T SAL
$178^{\circ} \mathrm{C}$（SA 後長期（L））
温度 TSALL
$111^{\circ} \mathrm{C}$（ SA 後長期（LL））

5.3 設計用地震力

原子炉格納容器本体に作用する設計用地震力を表 5－8～表5－11に示す。また，原子炉格納容器シヤラグに作用する設計用地震力を表 5－12 及び表 5－13に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－8 原子炉格納容器本体に作用する設計用地震力（設計基準対象施設）

据付場所 及び 設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\begin{aligned} & \text { 0. P. } \\ & \text { 21. } 55 \end{aligned}$	—＊	—＊	－	$\mathrm{C} v=0.57$	－	$\mathrm{C}_{\mathrm{v}}=0.98$

注記＊：固有周期は十分に小さく，計算を省略する。

表 5－9 原子炉格納容器本体に作用する設計用地震力（重大事故等対処設備）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\begin{gathered} \text { 0. P. } \\ \text { 21. } 55 \end{gathered}$	—＊	—＊	－	$\mathrm{Cv}=0.57$	－	$\mathrm{Cv}=0.98$

注記＊：固有周期は十分に小さく，計算を省略する。

表 5－10 原子炉格納容器本体に作用する設計用地震力（設計基準対象施設）

応力評価点＊	水平荷重 Sd^{*}		水平荷重 S s		
	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$	

注記 $*$ ：応力評価点の位置は，図 5－2 参照のこと。

表 5－11 原子炉格納容器本体に作用する設計用地震力（重大事故等対処設備）

応力評価点＊1	水平荷重 $\mathrm{Sd}^{* 2}$		水平荷重 S s	
	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$

注記 $* 1$ ：応力評価点の位置は，図 5－2 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 S d に加えて静的地震力を考慮 する。

表 5－12 原子炉格納容器シヤラグに作用する設計用地震力（設計基準対象施設）

応力評価点＊	水平荷重 S d $\left(\times 10^{3} \mathrm{~N}\right)$	水平荷重 S s $\left(\times 10^{3} \mathrm{~N}\right)$
P1 及び P2		
$\mathrm{P} 3 \sim \mathrm{P} 10$		

注記 $*$ ：応力評価点の位置は，図 5－2 参照のこと。

表 5－13 原子炉格納容器シヤラグに作用する設計用地震力（重大事故等対処設備）

応力評価点 ${ }^{* 1}$	水平荷重 $\mathrm{S} \mathrm{d}^{* 2}$ $\left(\times 10^{3} \mathrm{~N}\right)$	水平荷重 S s $\left(\times 10^{3} \mathrm{~N}\right)$
P1 及びP2		
P3～P10		

注記 $* 1$ ：応力評価点の位置は，図 5－2 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 S d に加えて静的地震力を考慮する。

卆囲みの内容は商業機密の観点から公開できません。

表 5－12 及び表 5－13 の荷重を用いて，原子炉格納容器シヤラグの 1 個あたりの荷重を求める。
（i）シヤラグの荷重分布

図 5－1 シヤラグにおける荷重の分布

原子炉格納容器シヤラグに最大反力が生じる図 5－1 に示す方向に水平地震荷重が作用する場合の各位置における荷重の分布は次式によって得られる。
$\mathrm{W}_{\mathrm{H}}=2\left(\mathrm{~W}_{1}+2 \mathrm{~W}_{2} \cos \alpha\right)$
ここに，
W_{1} ：図5－1 の（A）点に作用する力
W_{2} ：図5－1 の ® 点に作用する力
$\alpha: 45^{\circ}$
$\mathrm{W}_{2}=\mathrm{W}_{1} \cos \alpha$ ゆえ，
$\mathrm{W}_{\mathrm{H}}=2 \mathrm{~W}_{1}\left(1+2 \cos ^{2} \alpha\right)=2 \mathrm{~W}_{1}\left(1+2 \cos ^{2} 45^{\circ}\right)=4 \mathrm{~W}_{1}$
$\therefore \mathrm{W}_{1}=\frac{1}{4} \mathrm{~W}_{\mathrm{H}}$
（ii）原子炉格納容器シヤラグ 1 個あたりの荷重
表 5－12 及び表 5－13 に示す荷重を用いて，（i）に示す方法にて計算した原子炉格納容器シヤラグ 1 個に作用する最大地震荷重を表 5－14 及び表 5－15 に示す。

表 5－14 原子炉格納容器シヤラグ 1 個の最大荷重（設計基漼対象施設）

応力評価点＊	水平荷重 S d ＊ $\left(\times 10^{3} \mathrm{~N}\right)$	水平荷重 S S $\left(\times 10^{3} \mathrm{~N}\right)$
P 1 及び P 2	$\mathrm{~W}_{\mathrm{S} 1}=\square$	$\mathrm{W}_{\mathrm{S} 2}=\square$
$\mathrm{P} 3 \sim \mathrm{P} 10$	$\mathrm{~W}_{\mathrm{L} 1}=\square$	$\mathrm{W}_{\mathrm{L} 2}=\square$

注記 $*$ ：応力評価点の位置は，図 5－2 参照のこと。

表 5－15 原子炉格納容器シヤラグ 1 個の最大荷重（重大事故等対処設備）

応力評価点 ${ }^{*} 1$	水平荷重 $\mathrm{S} \mathrm{d} * 2$ $\left(\times 10^{3} \mathrm{~N}\right)$	水平荷重 S S $\left(\times 10^{3} \mathrm{~N}\right)$
P 1 及び P 2	$\mathrm{~W}_{\mathrm{S} 1}=\square$	$\mathrm{W}_{\mathrm{S} 2}=\square$
$\mathrm{P} 3 \sim \mathrm{P} 10$	$\mathrm{~W}_{\mathrm{L} 1}=\square$	$\mathrm{W}_{\mathrm{L} 2}=\square$

注記 $* 1$ ：応力評価点の位置は，図 5－2 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 Sd に加えて静的地震力を考慮する。

5.4 計算方法

5．4．1 応力評価点

原子炉格納容器シヤラグの応力評価点は，原子炉格納容器シヤラグを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表5－16及び図 5－2 に示す。

応力評価点 P11 の応力は，既工認の各荷重条件や耐震条件の比を用いて発生応力を算出し評価する。

表 5－16 応力評価点

応力評価点番号	応力評価点	
P1	内側フィメイルシヤラグ	本体（溶接部）
P2	内側フィメイルシヤラグ	取付部（溶接部）
P3	外側メイルシヤラグ	取付部（溶接部）
P4	外側メイルシヤラグ	本体
P5	外側フィメイルシヤラグ	本体（溶接部）
P6	外側フィメイルシヤラグ	本体
P7	外側フィメイルシヤラグ	ベースプレート
P8	外側フィメイルシヤラグ	基礎ボルト
P9	外側フィメイルシヤラグ	本体（溶接部）
P10	コンクリート	
P11	原子炉格納容器シヤラグ取付部	

図 5－2 原子炉格納容器シヤラグの応力評価点

5．4．2 内側フィメイルシヤラグ（応力評価点 P1，P2）
内側フィメイルシヤラグに作用する荷重の状態を図 5－3 に示す。

図 5－3 内側フィメイルシヤラグに作用する荷重の状態
（1）荷 重
荷重は表 5－14 及び表5－15に示すW ${ }^{\text {S } 1}$ または $\mathrm{W}_{\mathrm{S} 2}$ を用いる。
図 5－3 の応力評価点 P1，P2 に作用する荷重の計算方法を表5－17に示す。

表 5－17 内側フィメイルシヤラグに作用する荷重の計算方法

P 1	P 2	$\mathrm{P} 1, \mathrm{P} 2$
曲げモーメント	曲げモーメント	せん断力
M_{1}	M_{2}	$\mathrm{~W}_{\mathrm{S}}$
$\mathrm{M}_{1}=\mathrm{W}_{\mathrm{S}_{1}} \cdot \ell_{5}$	$\mathrm{M}_{2}=\mathrm{W}_{\mathrm{S}_{1}} \cdot\left(l_{5}+\mathrm{t}_{1}\right)$	$\mathrm{W}_{\mathrm{S} 1}$
または	または	または
$\mathrm{M}_{1}=\mathrm{W}_{\mathrm{S}_{2}} \cdot l_{5}$	$\mathrm{M}_{2}=\mathrm{W}_{\mathrm{S}_{2}} \cdot\left(l_{5}+\mathrm{t}_{1}\right)$	$\mathrm{W}_{\mathrm{S}_{2}}$

（2）断面性能
応力評価点 P1

図 5－4 内側フィメイルシヤラグ取付部

図 5－4 に示す溶接部（応力評価点 P1）において，応力計算では安全側に $\ell_{20} 0^{\circ}$ のみを考え る。この場合，溶接部の断面は図 5－4となる。

図 5－5 応力評価点 P1 断面

図 5－5 の形状による断面性能は以下のようになる。
断面積は，
$\mathrm{A}_{1}=\ell_{3} \cdot \ell_{4}-\left(\ell_{3}-2 \ell_{20}\right)\left(\ell_{4}-2 \ell_{20}\right)$

断面係数は，

応力評価点 P2
応力評価点P2 は脚長 \square mm のすみ肉溶接部であり，その断面図は図 5－6 に示すとおりで ある。

図 5－6 応力評価点 P2 断面

断面積は，

断面係数は，

（3）応力計算
表 5－17における荷重作用時の応力計算方法を示す。

応力評価点 P1
せん断応力

$$
\tau=\frac{\mathrm{W}_{\mathrm{S}}}{\mathrm{~A}_{1}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{1}}{\mathrm{Z}_{1}}
$$

応力評価点 P2
せん断応力

$$
\tau=\frac{\mathrm{W}_{\mathrm{S}}}{\mathrm{~A}_{2}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{2}}{\mathrm{Z}_{2}}
$$

5．4．3 外側メイルシヤラグ（応力評価点 P3，P4）
外側メイルシヤラグに作用する荷重の状態を図 5－7 に示す。

図 5－7 外側メイルシヤラグに作用する荷重の状態
（1）荷 重
荷重は表 5－14 及び表5－15に示す $W_{\mathrm{L} 1}$ または $\mathrm{W}_{\mathrm{L} 2}$ を用いる。
図 5－7 の応力評価点 P3，P4 に作用する荷重の計算方法を表5－18に示す。

表 5－18 外側メイルシヤラグに作用する荷重の計算方法

P 3	P 3	P 4
曲げモーメント	せん断力	支圧荷重
M_{3}	$\mathrm{~W}_{\mathrm{L}}$	W_{L}
$\mathrm{M}_{3}=\mathrm{W}_{\mathrm{L} 1} \cdot \ell_{16}$	$\mathrm{~W}_{\mathrm{L} 1}$	$\mathrm{~W}_{\mathrm{L} 1}$
または	または	または
$\mathrm{M}_{3}=\mathrm{W}_{\mathrm{L} 2} \cdot \ell_{16}$	$\mathrm{~W}_{\mathrm{L} 2}$	$\mathrm{~W}_{\mathrm{L} 2}$

（2）断面性能
応力評価点 P3

図 5－8 外側メイルシヤラグ取付部

図 5－8 に示す溶接部（応力評価点 P3）において，溶接部の断面は図 5－9 となる。

図 5－9 応力評価点 P3 断面

図 5－9 の形状による断面性能は以下のようになる。
断面積は，

断面係数は，

$$
Z_{3}=\frac{\left(l_{15}+\sqrt{2} l_{42}\right)\left(l_{14}+\sqrt{2} l_{42}\right)^{3}-\left(l_{15}-2 l_{22}\right)\left(l_{14}-2 l_{22}\right)^{3}}{6\left(l_{14}+\sqrt{2} l_{42}\right)}
$$

応力評価点 P4

各荷重の組合せに対する ℓ_{23} の値を以下に示す。

（単位：mm）
図 5－10 外側メイルシヤラグと外側フィメイルシヤラグ

応力評価点 P4 では，支圧応力の評価を行うので外側メイル，フィメイルシヤラグ間の接触面積を求める。（図 5－10 参照）

接触面積の計算方法を以下に示す。

$$
\mathrm{A}_{4}=\ell_{15} \cdot \ell_{23}
$$

（3）応力計算
表 5－18における荷重作用時の応力計算方法を示す。

応力評価点 P3
せん断応力

$$
\tau=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~A}_{3}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{3}}{\mathrm{Z}_{3}}
$$

応力評価点 P4
支圧応力

$$
\sigma_{\mathrm{p}}=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~A}_{4}}
$$

5．4．4 外側フィメイルシヤラグ（応力評価点 P5～P10）

外側フィメイルシヤラグに作用する荷重の状態を図 5－11に示す。

図 5－11 外側フィメイルシヤラグに作用する荷重の状態

以下応力評価点ごとに荷重及び応力計算方法を示す。なお，応力評価点 P6 については，支圧応力の計算であり，応力評価点 P4 と同じ支圧応力となる。
（1）応力評価点 P5
（a）荷重
荷重は表 5－14 及び表5－15に示す $W_{\mathrm{L} 1}$ または $\mathrm{W}_{\mathrm{L} 2}$ を用いる。
図 5－11 の応力評価点P5に作用する荷重の計算方法を表 5－19に示す。

表 5－19 外側フィメイルシヤラグに作用する荷重の計算方法

P 5	P 5
曲げモーメント	せん断力
M_{5}	$\mathrm{~W}_{\mathrm{L}}$
$\mathrm{M}_{5}=\mathrm{W}_{\mathrm{L} 1} \cdot \ell_{17}$	$\mathrm{~W}_{\mathrm{L} 1}$
または	または
$\mathrm{M}_{5}=\mathrm{W}_{\mathrm{L} 2} \cdot \ell_{17}$	$\mathrm{~W}_{\mathrm{L} 2}$

（b）断面性能

$\ell_{24}=\square \mathrm{mm}, \ell_{43}=\square \mathrm{mm}$
 （溶接部の有効のど厚）

図 5－12 外側フィメイルシヤラグ取付部

図 5－12 に示す溶接部（応力評価点 P5）において，溶接部の断面は図 5－13 となる。

図 5－13 応力評価点 P4 断面

図 5－13 の形状による断面性能は以下のようになる。
断面積は，

断面係数は，

$$
\begin{aligned}
Z_{5} & =\frac{\left(\ell_{13}+\sqrt{2} \ell_{43}\right)\left(\ell_{12}+\sqrt{2} \ell_{43}\right)^{3}-\left(\ell_{13}-2 \ell_{24}\right)\left(\ell_{12}-2 \ell_{24}\right)^{3}}{6\left(\ell_{12}+\sqrt{2} \ell_{43}\right)} \\
& =\square \mathrm{mm}^{3}
\end{aligned}
$$

（c）応力計算
表 5－19 における荷重作用時の応力計算方法を示す。

せん断応力

$$
\tau=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~A}_{5}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{5}}{\mathrm{Z}_{5}}
$$

（2）コンクリート及び基礎ボルトの応力計算応力計算は参考文献（1）の 10 章の手法に従って行う。
（a）計算モデル
図 5－11 より計算モデルとして図 5－14を考える。

図 5－14 計算モデル
（b）使用記号
本計算において使用する記号
M ：曲げモーメントで図5－11より，

$$
\mathrm{M}=\mathrm{W}_{\mathrm{L}} \cdot\left(\ell_{17}+\frac{\mathrm{t}_{6}}{2}\right)
$$

f s ：ボルトの引張応力
f_{C} ：コンクリートの圧縮応力
$f_{c} \max$ ：コンクリートの最大圧縮応力
$\mathrm{k}:$ 係数で $\mathrm{k}=1 /\left(1+\mathrm{f} \mathrm{s} / \mathrm{n} \cdot \mathrm{f}_{\mathrm{C}}\right)$
$\mathrm{n}: \mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}$

Es：ボルトの縦弾性係数
E_{C} ：コンクリートの縦弾性係数
$\mathrm{N}: ~ ホ ゙ ル ト の$ 本数（片側） $\mathrm{N}=\square$
$\mathrm{A}_{\mathrm{b}} \quad: ~ ホ ゙ ル ト 一$ 本の断面積（呼び径 \square ）

A_{C} ：圧縮側のベースプレートの面積

$$
\mathrm{A}_{\mathrm{C}}=(\mathrm{k} \cdot \mathrm{~d}+\mathrm{e}) \mathrm{b}
$$

d，b，e：図5－14に示すベースプレートの寸法
（c）荷重のつり合い条件式
参考文献（1）の 10 章より以下の荷重のつり合い条件式が成立する。
力のつり合い条件より，

$$
\begin{equation*}
N \cdot A_{b} \cdot f_{S}-N \cdot A_{b}\left(n \cdot f_{C}\right)-\frac{1}{2} f_{C} \max \cdot A_{C}=0 \tag{1}
\end{equation*}
$$

モーメントのつり合い条件より，
$M-N \cdot A_{b} \cdot f_{S}(1-k) d-N \cdot A_{b}\left(n \cdot f_{C}\right) k \cdot d$
$-\frac{1}{3}(\mathrm{k} \cdot \mathrm{d}+\mathrm{e}) \mathrm{f}_{\mathrm{C}} \max \cdot \mathrm{A}_{\mathrm{C}}=0$
ここに，

$$
\mathrm{f}_{\mathrm{C}} \max =\frac{(\mathrm{d} \cdot \mathrm{k}+\mathrm{e}) \mathrm{f}_{\mathrm{C}}}{\mathrm{~d} \cdot \mathrm{k}}
$$

（d）応力計算

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{C}}=(\mathrm{k} \cdot \mathrm{~d}+\mathrm{e}) \mathrm{b} \\
& \mathrm{f}_{\mathrm{C}} \max =\frac{(\mathrm{d} \cdot \mathrm{k}+\mathrm{e}) \mathrm{f}_{\mathrm{C}}}{\mathrm{~d} \cdot \mathrm{k}} \\
& \mathrm{M}=\mathrm{W}_{\mathrm{L} 1} *\left(e_{17}+\frac{\mathrm{t}_{6}}{2}\right) \\
& \text { または, } \\
& \mathrm{M}=\mathrm{W}_{\mathrm{L} 2} \cdot\left(e_{17}+\frac{\mathrm{t}_{6}}{2}\right)
\end{aligned}
$$

これらの値を（1）及び（2）式に代入すると， f s ， f C 及び $\mathrm{f}_{\mathrm{C}} \max$ の各応力値を求めること
が出来る。 \square

枠囲みの内容は商業機密の観点から公開できません。
（3）ベースプレート（部材①）（応力評価点 P7）
（a）計算モデルと荷重条件
図 5－11，図 5－14 及び図 5－15に示す計算モデルを考え，Ⓐ及び 点における強度を検討 する。

図 5－15 計算モデル

$\ell_{27}, \ell_{28}, \ell_{29}, \ell_{30}:$ 前項（2）で求めたkに対して定まる長さ
（図5－14 及び図 5－15 参照）
（b）力，モーメント及びせん断力
基礎ボルトよりベースプレートが受ける引張力は，

$$
\mathrm{F}_{\mathrm{t}}=\mathrm{N} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{s}}
$$

基礎ボルトよりベースプレートが受ける圧縮力は，

$$
\mathrm{F}_{\mathrm{cB}}=\mathrm{N} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n} \cdot \mathrm{f}_{\mathrm{c}}
$$

ベースプレートがコンクリートより受ける圧縮力は，
$\mathrm{F}_{\mathrm{CC}}=\mathrm{f}_{\mathrm{C}} \max \cdot \ell_{29} \cdot \ell_{7} / 2$

以上より，
（A）点に生じるモーメントは，

$$
\mathrm{M}_{\mathrm{A}}=\mathrm{F}_{\mathrm{t}} \cdot \ell_{26}
$$

Ⓑ点に生じる曲げモーメントは，

$$
\mathrm{M}_{\mathrm{B}}=\mathrm{F}_{\mathrm{CB}} \cdot \ell_{26}+\mathrm{F}_{\mathrm{CC}} \cdot \ell_{30}
$$

Ⓐ点に生じるせん断力は，

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{F}_{\mathrm{t}}
$$

Ⓑ点に生じるせん断力は，
$\mathrm{V}_{\mathrm{B}}=\mathrm{F}_{\mathrm{CB}}+\mathrm{F}_{\mathrm{CC}}$
枠囲みの内容は商業機密の観点から公開できません。
（c）応力計算方法
ベースプレートの断面性能は，以下のようになる。
断面積は，

断面係数は，

$$
\begin{aligned}
\mathrm{Z}_{6} & =\ell_{7} * \mathrm{t}_{6}^{2} / 6 \\
& =\square \mathrm{mm}^{3} \\
& =\square
\end{aligned}
$$

ゆえに，曲げ応力は，

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{Z}_{6}}
$$

せん断応力は，

$$
\tau=\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{~A}_{6}}
$$

または，

$$
\tau=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{~A}_{6}}
$$

（4）応力評価点 P9
（a）荷 重
図 5－16 に示す計算モデルを用いて，部材（1）と部材（2）の溶接部に作用する荷重を求める。

図 5－16 計算モデル

部材（2）に作用する荷重Wは，部材（1）と部材（2）の側面積の比に比例すると考える。

$$
\mathrm{W}=\mathrm{W}_{\mathrm{L} 1} \times \frac{l_{9} \cdot \ell_{11}}{\ell_{9} \cdot l_{11}+\mathrm{t}_{6} \cdot \ell_{7}}
$$

または，

$$
\mathrm{W}=\mathrm{W}_{\mathrm{L} 2} \times \frac{l_{9} \cdot l_{11}}{l_{9} \cdot l_{11}+\mathrm{t}_{6} \cdot \ell_{7}}
$$

せん断力Vは，

$$
\mathrm{V}=\mathrm{W}
$$

曲げモーメントMは， $\mathrm{M}=\frac{1}{2} \mathrm{~W} \cdot \ell_{11}$
（b）断面性能

溶接部の有効のど厚 ℓ_{32} は，
$l_{32}=\left(l_{31}-3\right)+l_{31} / \sqrt{2}$

図 5－17 外側フィメイルシヤラグ取付部

部材（1）と部材（2）の溶接部の断面は図 5－18 となる。

図 5－18 応力評価点 P9 断面

図 5－18 の形状による断面性能は以下のようになる。
断面積 A_{7} は，

$$
\mathrm{A}_{7}=2 \ell_{33} \cdot\left(\ell_{9}+\ell_{33}\right)+3 \ell_{33} \cdot\left(\ell_{34}-l_{33}\right)
$$

断面係数 Z_{7} は，

$$
\begin{aligned}
Z_{7} & =\frac{\left(l_{9}+l_{33}\right) \cdot\left(l_{34}+l_{33}\right)^{3}-\left(l_{9}-2 l_{33}\right) \cdot\left(l_{34}-l_{33}\right)^{3}}{6\left(l_{33}+l_{34}\right)} \\
& =\square \mathrm{mm}^{3}
\end{aligned}
$$

（c）応力計算方法
せん断応力

$$
\tau=\frac{\mathrm{V}}{\mathrm{~A}_{7}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{Z}_{7}}
$$

（5）基礎ボルト埋込部のコンクリート（応力評価点 P10）
（a）基礎ボルトの寸法
基礎ボルトの寸法は以下のとおりである。
ねじの呼び径：
ボルト長さ ：$\ell_{35}=\square \mathrm{mm}$
（b）ボルト 1 本当たりの引張荷重
ボルト 1 本に作用する引張荷重は，

$$
\mathrm{F}_{\mathrm{b}}=\mathrm{f}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{b}}
$$

ここに，
f_{S} ：ボルト 1 本に生じる引張応力（5．4．4（2）（d）項参照）
（c）応力計算
基礎ボルトの引張力によるコンクリートのせん断応力は，
$\tau=\frac{\mathrm{N} \cdot \mathrm{F}_{\mathrm{b}}}{2 \cdot \ell_{18} \cdot \ell_{36}}$
ここに，
ℓ_{36} ：有効長さ
N ：ボルト本数（片側）

（6）外側フィメイルシヤラグの側面におけるコンクリート（応力評価点P10）
（a）計算モデルと作用する荷重
計算モデルとして図 5－16 を考え，外側フィメイルシヤラグの側面のコンクリート面に作用する荷重として W_{L} を用いる。
（b）応力計算
コンクリートの圧縮応力は次式で求める。

$$
\sigma_{c}=\frac{W_{L_{1}}}{\mathrm{t}_{6} \cdot \ell_{7}+\ell_{9} \cdot \ell_{11}}
$$

または，
$\sigma_{c}=\frac{W_{L_{2}}}{\mathrm{t}_{6} \cdot l_{7}+\ell_{9} \cdot l_{11}}$

5．4．5 原子炉格納容器シヤラグ取付部（応力評価点 P11）

（1）ドライウェルに作用する荷重による応力
応力計算方法は参照図書（3）に示す既工認と同じであり，原子炉格納容器シヤラグ高さ における断面性能等を考慮する。
（2）原子炉格納容器シヤラグに作用する荷重による応力
原子炉格納容器シヤラグに作用する荷重として，図 5－19 に示す水平地震荷重を考慮す る。
（a）水平地震荷重によるモーメント

各荷重の組合せに対する ℓ_{40}, ℓ_{41} の値を以下に示す。

（単位：mm）
図 5－19 原子炉格納容器シヤラグに作用する水平地震荷重

ドライウェルの中心，すなわち図 5－19の （1）点のモーメント M_{P} は，表5－14及び表5－ 15 に示す $\mathrm{W}_{\mathrm{S} 1}, \mathrm{~W}_{\mathrm{S} 2}, \mathrm{~W}_{\mathrm{L} 1}$ 及び $\mathrm{W}_{\mathrm{L} 2}$ を用い，次式で計算する。

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{P}}=\mathrm{W}_{\mathrm{S} 1} \cdot \ell_{40}+\mathrm{W}_{\mathrm{L} 1} \cdot \ell_{41} \\
& \text { または, } \\
& \mathrm{M}_{\mathrm{P}}=\mathrm{W}_{\mathrm{S} 1} \cdot \ell_{40}+\mathrm{W}_{\mathrm{L} 2} \cdot \ell_{41}
\end{aligned}
$$

（b）応力計算
原子炉格納容器シヤラグ取付部に生じる応力を，参照図書（2）に基づき計算する。この場合，内側フィメイルシヤラグには周方向の荷重のみが作用するので図 5－20 の応力評価点P11についてのみ応力計算を行う。

なお，ここで使用する記号はすべて参照図書（2）に従う。

VI－2－9－2－1－3 R 0
（a）
－
\square

荷重 M_{1} による応力
5.5 計算条件

応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。
5.6 応力の評価

「5．4 計算方法」で求めた各応力が，表 5－3～表 5－5 に示す許容応力以下であること。た だし，一次十二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300（PVB－3313 を除く。 S_{m} は S と読み替える。）に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であ ること。

6．評価結果

6.1 設計基準対象施設としての評価結果

原子炉格納容器シヤラグの設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1 及び表 6－2 に示す。
表中の「荷重の組合せ」欄には，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」における表 3－6 の荷重の組合せのNo．を記載する。

なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23 項に て，設計•建設規格 PVB－3140（6）を満たしていることから，一次＋二次＋ピーク応力強さ の評価は不要である。
（2）疲労評価結果
疲労評価結果を表 6－3に示す。

評価対象設備	評価部位		応力分類		$\mathrm{III}_{4} \mathrm{~S}$		判定	荷重の組合せ	備考
			$\frac{\text { 算出応力 }}{1 \mathrm{MPa}}$	許容応力 MPa					
原子炉 格納容器 シヤラグ	P1	内側フィメイルシヤラグ本体（溶接部）	一次応力	せん断	43		\bigcirc	（9），（10）	
				曲げ	20		\bigcirc	（9），（10）	
				組合せ	78		\bigcirc	（9），（10）	
			一次応力 + 二次応力	せん断	43		\bigcirc	（9），（10）	
				曲げ	20		\bigcirc	（9），（10）	
				座屈	43		\bigcirc	（9），（10）	
				組合せ	78		\bigcirc	（9），（10）	
	P2	内側フィメイルシヤラグ取付部（溶接部）	一次応力	せん断	47		\bigcirc	（9），（10）	
				曲げ	15		\bigcirc	（9），（10）	
				組合せ	83		\bigcirc	（9），（10）	
			一次応力 + 二次応力	せん断	47		\bigcirc	（9），（10）	
				曲げ	$30 * 4$		\bigcirc	（9），（10）	
				座屈	47		\bigcirc	（9），（10）	
				組合せ	166		\bigcirc	（9），（10）	

[^3] ＊2：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。
注記 $* 1:$ すみ肉溶接部にあっては最大応力に対して 1.5 fs とする。
表 6－1 許容応力状態 $\mathrm{II}_{\mathrm{S}} \mathrm{S}$ に対する評価結果（D＋P＋M＋S d＊）（その 2 ）

評価対象設備	評価部位		応力分類		$\mathrm{mi}_{\text {S }} \mathrm{S}$		判定	荷重の組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉 格納容器 シヤラグ	P3	外側メイルシヤラグ取付部（溶接部）			一次応力	せん断	35		\bigcirc	（9），（10）	
					曲げ	24	\bigcirc		（9），（10）		
			組合せ	66		\bigcirc	（9），（10）				
			一次応力 + 二次応力	せん断		35	\bigcirc		（9），（10）		
				曲げ	$48^{* 4}$	\bigcirc	（9），（10）				
				座屈	35	\bigcirc	（9），（10）				
				組合せ	131	\bigcirc	（9），（10）				
	P4	外側メイルシャラグ本体	一次応力	支圧	122	\bigcirc	（9），（10）				
			一次応力 + 二次応力	支圧	122	\bigcirc	（9），（10）				
	P5	外側フィメイルシヤラグ本体（溶接部）	一次応力	せん断	54	\bigcirc	（9），（10）				
				曲げ	69	\bigcirc	（9），（10）				
				組合せ	117	\bigcirc	（9），（10）				
			一次応力 + 二次応力	せん断	54	\bigcirc	（9），（10）				
				曲げ	69	\bigcirc	（9），（10）				
				座屈	54	\bigcirc	（9），（10）				
				組合せ	117	\bigcirc	（9），（10）				

＊2：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。
枠囲みの内容は商業機密の観点から公開できません。
注記 $* 1$ ：応力の最大圧縮値を示す
＊ 2 ：曲げに対する許容座屈応力を示す。
＊ 4 ：応カサイクルにおける最大値と最小値の差を示す。
注記 $* 1:$ すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。
＊2：せん断に対する許容座屈応力を示す。
表 6－1 許容応力状態 $\Pi_{A} S$ に対する評価結果（D＋P＋M＋S d＊）（その 4）

評価対象設備	評価部位		応力分類		$\Pi ⿰ ⿸ \zh14 口 ⿺_{\text {S }} \mathrm{S}$		判定	荷重の組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉格納容器 シヤラグ	P9	外側フィメイルシヤラグ本体（溶接部）			一次応力	せん断	26		\bigcirc	（9），（10）	
					曲げ	26	\bigcirc		（9），（10）		
			組合せ	52		\bigcirc	（9），（10）				
			一次応力 + 二次応力	せん断		26	\bigcirc		（9），（10）		
				曲げ	$52^{* 4}$	\bigcirc	（9），（10）				
				座屈	26	\bigcirc	（9），（10）				
				組合せ	104	\bigcirc	（9），（10）				
	P10	コンクリート	ベースプレート部	圧縮	2.5	\bigcirc	（9），（10）				
			外側フィメイル シヤラグ側面	圧縮	11.9	\bigcirc	（9），（10）				
			基礎ボルト	せん断	0.46	\bigcirc	（9），（10）				
	P11	原子炉格納容器シヤラグ取付部	一次膜応力 + 一次曲げ応力		50	344	\bigcirc	（10）			
			一次＋二次応力		242	393	\bigcirc	（10）			

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 1）

評価対象設備	評価部位		応力分類		$\mathrm{IV}_{4} \mathrm{~S}$		判定	荷重の 組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉格納容器シヤラグ	P1	内側フィメイルシヤラグ 本体（溶接部）			一次応力	せん断	72		\bigcirc	（11），（12）	
					曲げ	33	\bigcirc		（11），（12）		
			組合せ	129		\bigcirc	（11），（12）				
			一次応力 + 二次応力	せん断		72	\bigcirc		（11），（12）		
				曲げ	33	\bigcirc	（11），（12）				
				座屈	72	\bigcirc	（11），（12）				
				組合せ	129	\bigcirc	（11），（12）				
	P2	内側フィメイルシヤラグ取付部（溶接部）	一次応力	せん断	78	\bigcirc	（11），（12）				
				曲げ	24	\bigcirc	（11），（12）				
				組合せ	138	\bigcirc	（11），（12）				
			一次応力 + 二次応力	せん断	78	\bigcirc	（11），（12）				
				曲げ	48＊4	\bigcirc	（11），（12）				
				座屈	78	\bigcirc	（11），（12）				
				組合せ	275	\bigcirc	（11），（12）				

[^4] ＊ 2 ：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。

評価対象設備	評価部位		応力分類		$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	荷重の 組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉 格納容器 シヤラグ	P3	外側メイルシヤラグ取付部（溶接部）			一次応力	せん断	63		\bigcirc	（11），（12）	
					曲げ	43	\bigcirc		（11），（12）		
			組合せ	118		\bigcirc	（11），（12）				
			一次応力 + 二次応力	せん断		63	\bigcirc		（11），（12）		
				曲げ	86＊4	\bigcirc	（11），（12）				
				座屈	63	\bigcirc	（11），（12）				
				組合せ	235	\bigcirc	（11），（12）				
	P4	外側メイルシヤラグ本体	一次応力	支圧	222	\bigcirc	（11），（12）				
			一次応力 + 二次応力	支圧	222	\bigcirc	（11），（12）				
	P5	外側フィメイルシヤラグ 本体（溶接部）	一次応力	せん断	97	\bigcirc	（11），（12）				
				曲げ	126	\bigcirc	（11），（12）				
				組合せ	211	\bigcirc	（11），（12）				
			一次応力 + 二次応力	せん断	97	\bigcirc	（11），（12）				
				曲げ	126	\bigcirc	（11），（12）				
				座屈	97	\bigcirc	（11），（12）				
				組合せ	211	\bigcirc	（11），（12）				

[^5]＊2：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。
O 2 （3）VI－2－9－2－1－3 R 1
表 6－2（1）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 3 ）

[^6]表 6－2（1）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 4）

評価対象設備	評価部位		応力分類		$\mathrm{IV}_{4} \mathrm{~S}$		判定	荷重の組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉 格納容器 シヤラグ	P9	外側フィメイルシヤラグ 本体（溶接部）			一次応力	せん断	47		\bigcirc	（11），（12）	
					曲げ	47	\bigcirc		（11），（12）		
			組合せ	94		\bigcirc	（11），（12）				
			一次応力 + 二次応力	せん断		47	\bigcirc		（11），（12）		
				曲げ	94＊4	\bigcirc	（11），（12）				
				座屈	47	\bigcirc	（11），（12）				
				組合せ	188	\bigcirc	（11），（12）				
	P10	コンクリート	ベースプレート部	圧縮	4.6	\bigcirc	（11），（12）				
			外側フィメイル シャラグ側面	圧縮	21.6	\bigcirc	（11），（12）				
			基礎ボルト	せん断	0.84	\bigcirc	（11），（12）				
	P11	原子炬格納容器シヤラグ取付部	一次膜応力 + 一次曲げ応力		82	380	\bigcirc	（12）			
			一次＋二次応力		420	393	$\times * 5$	（12）			

注記 $* 1:$ すみ肉溶接部にあっては最大応力に対
$\quad * 2:$ せん断に対する許容座屈応力示す。
$\quad * 3:$ 許容引張応力の値を用いる。
注記 $* 1: ~ す み$ 肉溶接部にあっては最大応力に対して 1.5 f s とする。
＊ 3 ：許容引張応力の値を用いる。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。
＊5：P11の一次＋二次応力評価は許容値を満足しないが，設計•建設規格 PVB－3300に基づいて疲労評価を行い，十分な構造強度を有して いることを確認した。
表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊）（その1）

[^7] ＊ 2 ：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。

評価対象設備	評価部位		応力分類		$\mathrm{IV}_{4} \mathrm{~S}$		判定	荷重の 組合せ	備考		
			算出応力	許容応力							
			MPa	MPa							
原子炉 格納容器 シヤラグ	P3	外側メイルシヤラグ 取付部（溶接部）			一次応力	せん断	35		\bigcirc	（16）	
					曲げ	19	\bigcirc		（16）		
			組合せ	64		\bigcirc	（16）				
				せん断		35	\bigcirc		（16）		
			－次店力＋－次店力	曲げ	$38^{* 4}$	\bigcirc	（16）				
			一次応刀＋－次边	座屈	35	\bigcirc	（16）				
				組合せ	128	\bigcirc	（16）				
		外側メイルシヤラグ	一次応力	支圧	78	\bigcirc	（16）				
	P4		一次応力＋二次応力	支圧	78	\bigcirc	（16）				
	P5	外側フィメイルシヤラグ 本体（溶接部）	一次応力	せん断	54	\bigcirc	（16）				
				曲げ	55	\bigcirc	（16）				
				組合せ	109	\bigcirc	（16）				
			一次応力＋二次応力	せん断	54	\bigcirc	（16）				
				曲げ	55	\bigcirc	（16）				
				座屈	54	\bigcirc	（16）				
				組合せ	109	\bigcirc	（16）				

[^8]＊2：せん断に対する許容座屈応力を示す。
＊ $4:$ 応力サイクルにおける最大値と最小値の差を示す。
表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊）（その 3）

[^9]| 評価対象設備 | 評価部位 | | 応力分類 | | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | | 判定 | $\begin{aligned} & \text { 荷重の } \\ & \text { 組合せ } \end{aligned}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 算出応力 | 許容応力 | | | |
| | | | MPa | MPa | | | |
| 原子炉
 格納容器 シヤラグ | P9 | 外側フィメイルシヤラグ本体（溶接部） | | | 一次応力 | せん断 | 26 | | \bigcirc | （16） | |
| | | | | | 曲げ | 26 | \bigcirc | | （16） | |
| | | | 組合せ | 52 | | \bigcirc | （16） | | |
| | | | 一次応力 + 二次応力 | せん断 | | 26 | \bigcirc | | （16） | |
| | | | | 曲げ | $52^{* 4}$ | \bigcirc | （16） | | |
| | | | | 座屈 | 26 | \bigcirc | （16） | | |
| | | | | 組合せ | 104 | \bigcirc | （16） | | |
| | P10 | コンクリート | ベースプレート部 | 圧縮 | 2.2 | \bigcirc | （16） | | |
| | | | 外側フィメイル
 シヤラグ側面 | 圧縮 | 11.9 | \bigcirc | （16） | | |
| | | | 基礎ボルト | せん断 | 0.40 | \bigcirc | （16） | | |
| | P11 | 原子炉格納容器シヤラグ取付部 | 一次膜応力 + 一次曲げ応力 | | 90 | 380 | \bigcirc | （16） | |
| | | | 一次＋二次応力 | | 240 | 393 | \bigcirc | （16） | |
| 注記 $* 1$ ：すみ肉溶接部にあっては最大応力に対して 1.5 fs とする。
 ＊2：せん断に対する許容座屈応力を示す。
 ＊3：許容引張応力の値を用いる。
 ＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。 | | | | | | | | | |

評価部位	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K_{e}	$\begin{gathered} S_{p} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\ell} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}^{\prime} * \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\mathrm{a}} \\ & (\text { 回 }) \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\mathrm{c}} \\ & (\text { 回) } \end{aligned}$	疲労累積係数 $\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
P11								0.485
注記＊： S_{ℓ} に（ $\mathrm{E}=$$\square$$\square$ MPa								

6． 2 重大事故等対処設備としての評価結果
原子炉格納容器シヤラグの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している設計•建設規格 PVB－3300に基づいてことを確認した。
（1）構造強度評価結果
構造強度評価結果を表 6－4 に示す。
なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23項に
て，設計•建設規格 PVB－3140（6）を満たしていることから，一次＋二次＋ピーク応力強さ の評価は不要である。
（2）疲労評価結果
疲労評価結果を表 6－5に示す。

評価対象設備	評価部位		応力分類		$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考		
			算出応力	許容応力						
			MPa	MPa						
原子炉 格納容器 シヤラグ	P1	内側フィメイルシヤラグ本体（溶接部）			一次応力	せん断	43		\bigcirc	
					曲げ	45	\bigcirc			
			組合せ	88		\bigcirc				
			一次応力 + 二次応力	せん断		43	\bigcirc			
				曲げ	45	\bigcirc				
				座屈	43	\bigcirc				
				組合せ	88	\bigcirc				
	P2	内側フィメイルシヤラグ取付部（溶接部）	一次応力	せん断	47	\bigcirc				
				曲げ	19	\bigcirc				
				組合せ	84	\bigcirc				
			一次応力 + 二次応力	せん断	47	\bigcirc				
				曲げ	38＊4	\bigcirc				
				座屈	47	\bigcirc				
				組合せ	168	\bigcirc				

[^10] ＊ 2 ：せん断に対する許容座屈応力を示す。
＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。
表 6－4（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 2）

評価対象設備	評価部位		応力分類		$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考		
			算出応力	許容応力						
			MPa	MPa						
原子炉格納容器 シヤラグ	P3	外側メイルシヤラグ取付部（溶接部）			一次応力	せん断	35		\bigcirc	
					曲げ	18	\bigcirc			
			組合せ	64		\bigcirc				
			一次応力 + 二次応力	せん断		35	\bigcirc			
				曲げ	$36 * 4$	\bigcirc				
				座屈	35	\bigcirc				
				組合せ	127	\bigcirc				
	P4	外側メイルシヤラグ本体	一次応力	支圧	69	\bigcirc				
			一次応力 + 二次応力	支圧	69	\bigcirc				
	P5	外側フィメイルシヤラグ本体（溶接部）	一次応力	せん断	54	\bigcirc				
				曲げ	51	\bigcirc				
				組合せ	107	\bigcirc				
			一次応力 + 二次応力	せん断	54	\bigcirc				
				曲げ	51	\bigcirc				
				座屈	54	\bigcirc				
				組合せ	107	\bigcirc				

[^11]＊2：せん断に対する許容座屈応力を示す。
＊
表 6－4（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 3）

評価対象設備	評価部位		応力分類		$\mathrm{V}_{4} \mathrm{~S}$		判定	備考		
			算出応力	許容応力						
			MPa	MPa						
原子炉 格納容器 シヤラグ	P6	外側フィメイルシヤラグ			一次応力	支圧	69		\bigcirc	
		本体			一次応力＋二次応力	支圧	69		\bigcirc	
	P7	外側フィメイルシヤラグベースプレート	一次応力	せん断	5	\bigcirc				
				曲げ	89	\bigcirc				
				組合せ	90	\bigcirc				
			一次応力 + 二次応力	せん断	$10^{* 4}$	\bigcirc				
				曲げ	$178 * 4$	\bigcirc				
				座屈	89＊1	\bigcirc				
				組合せ	179	\bigcirc				
	P8	外側フィメイルシヤラグ基礎ボルト	引張応力		89	\bigcirc				

[^12]O 2 （3）VI－2－9－2－1－3 R 1
表 6－4（1）一許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 4 ）

評価対象設備	評価部位		応力分類		$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考		
			算出応力	許容応力						
			MPa	MPa						
原子炉 格納容器 シャラグ	P9	外側フィメイルシヤラグ 本体（溶接部）			一次応力	せん断	26		\bigcirc	
					曲げ	26	\bigcirc			
			組合せ	52		\bigcirc				
			一次応力 + 二次応力	せん断		26	\bigcirc			
				曲げ	$52^{* 1}$	\bigcirc				
				座屈	26	\bigcirc				
				組合せ	104	\bigcirc				
	P10	コンクリート	ベースプレート部	圧縮	2.1	\bigcirc				
			外側フィメイル シヤラグ側面	圧縮	11.9	\bigcirc				
			基礎ボルト	せん断	0.38	\bigcirc				
	P11	原子炉格納容器シヤラグ取付部	一次膜応力 + 一次曲げ応力		143	379	\bigcirc			
			一次＋二次応力		240	393	\bigcirc			

 ＊2：せん断に対する許容座屈応力を示す。
＊3：許容引張応力の値を用いる。
＊4：応カサイクルにおける最大値と最小値の差を示す。

評価対象設備	評価部位		応力分類		$\mathrm{V}_{\mathrm{A}} \mathrm{S}$			
			算出応力	許容応力				
			MPa	MPa				
原子炉 格納容器 シヤラグ	P1	内側フィメイルシヤラグ本体（溶接部）			一次応力	せん断	72	
					曲げ	57		
			組合せ	138				
			一次応力 + 二次応力	せん断		72		
				曲げ	57			
				座屈	72			
				組合せ	138			
	P2	内側フィメイルシヤラグ取付部（溶接部）	一次応力	せん断	78			
				曲げ	28			
				組合せ	138			
			一次応力 + 二次応力	せん断	78			
				曲げ	$56^{* 4}$			
				座屈	78			
				組合せ	276			

[^13]＊2：せん断に対する許容座屈応力を示す。
＊4：応力サイクルにおける最大値と最小値の差を示す。
表 6－4（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{s}_{\mathrm{ALL}}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}$ ）（その2）

評価対象設備	評価部位		応力分類		$\mathrm{V}_{4} \mathrm{~S}$		判定	備考		
			算出応力	許容応力						
			MPa	MPa						
原子炉格納容器 シヤラグ	P3	外側メイルシヤラグ 取付部（溶接部）			一次応力	せん断	63		\bigcirc	
					曲げ	37	\bigcirc			
			組合せ	116		\bigcirc				
			一次応力 + 二次応力	せん断		63	\bigcirc			
				曲げ	$74^{* 4}$	\bigcirc				
				座屈	63	\bigcirc				
				組合せ	231	\bigcirc				
	P4	外側メイルシヤラグ 本体	一次応力	支圧	154	\bigcirc				
			一次応力＋二次応力	支圧	154	\bigcirc				
	P5	外側フィメイルシヤラグ 本体（溶接部）	一次応力	せん断	97	\bigcirc				
				曲げ	106	\bigcirc				
				組合せ	199	\bigcirc				
			一次応力 + 二次応力	せん断	97	\bigcirc				
				曲げ	106	\bigcirc				
				座屈	97	\bigcirc				
				組合せ	199	\bigcirc				

[^14]

[^15]| 評価部位 | $\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$ | $\mathrm{K}_{\text {e }}$ | $\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\ell} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{aligned} & \mathrm{S}_{\ell^{\prime}} * \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | N_{a} (回) | N_{c} (回) | 疲労累積係数 $\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P11 | | | | | | | | 0． 467 |
| \square E）を乗じた値である。 | | | | | | | | |

7．参照図書

（1）L．E．BROWNELL AND E．H．YOUNG ： PROCESS EQUIPMENT DESIGN，JOHN WILEY \＆SONS，INC．APRIL， 1968.
（2）K．R．WICHMAN，A．G．HOPPER AND J．L．MERSHON ：
LOCAL STRESSES IN SPHERICAL AND CYLINDRICAL SHELLS DUE TO EXTERNAL LOADINGS． WELDING RESEARCH COUNCIL BULLETIN，\＃107 AUGUST 1965
（3）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－4 ドライウェルの強度計算書」

[^0]: R 1

 | ∞ |
 | :--- | :--- |
 | 1 |
 | 1 |
 | 1 |
 | 1 |
 | 1 |
 | \cdots |
 | 1 |

 （a）
 N

[^1]: ＊2：内側フィメイルシヤラグ，外側メイルシヤラグ及び外側フィメイルシヤラグは重大事故等クラス2支持構造物（その他の支持構造物）であ るが，重大事故等後地震時の原子炉圧力容器及び原子炉しやへい壁に生じる荷重を原子炉建屋に伝達させる機能の維持を確認する意味で，重大事故等クラス2支持構造物（クラスMC 支持構造物）に準じた許容応力状態及び荷重の組合せを適用する。
 ＊4：重大事故等後の最高内圧及び最高温度との組合せを考慮する。 ＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

[^2]: 注記＊1：SA 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（LL）の時 $111^{\circ} \mathrm{C}$ 。
 ＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。
 ＊3：SA 後長期（LL）の評価温度を示す。

[^3]: 注記 $* 1$ ：すみ肉溶接部にあっては最大応力に対して 1.5 fs とする。

[^4]: 注記 $* 1:$ すみ肉溶接部にあっては最大応力に対して 1.5 fs とする。

[^5]: 注記 $* 1$ ：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^6]: 注記 $* 1$ ：心力の最大圧縮値を示す。
 ＊ 2 ：曲げに対する許容座屈応力を示す。
 ＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。

[^7]: 注記 $* 1$ ：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^8]: 注記＊1：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^9]: ＊2：曲げに対する許容座屈応力を示す。
 ＊ 3 ：許容引張応力の値を用いる。
 ＊ 4 ：応カサイクルにおける最大値と最小値の差を示す。

[^10]: 注記 $~$ 1 ：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^11]: 注記＊1：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^12]: 注記 $* 1$ ：応力の最大圧縮値を示す。
 ＊2：曲げに対する許容座屈応力を示す。
 ＊3：許容引張応力の値を用いる。
 ＊ 4 ：応カサイクルにおける最大値と最小値の差を示す。

[^13]: 注記 $~$ 1：すみ肉溶接部にあっては最大応力に対して 1.5 f s とする。

[^14]: 注記 $* 1$ ：すみ肉溶接部にあっては最大応力に対して 1.5 fs とする。
 ＊2：せん断に対する許容座屈応力を示す。
 ＊3：許容引張応力の値を用いる。
 ＊ 4 ：応カサイクルにおける最大値と最小値の差を示す。

[^15]:
 ＊ 2 ：曲げに対する許容座屈応力を示す。
 ＊3：許容引張応力の値を用いる。
 ＊ 4 ：応力サイクルにおける最大値と最小値の差を示す。

