```
本資料のうち, 枠囲みの内容は
商業機密の観点から公開できま
せん。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－2－2－3 制御棒駆動機構搬出入口の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 9
4.1 固有周期の計算方法 9
4．2 固有周期の計算条件 12
4.3 固有周期の計算結果 13
5．構造強度評価 14
5.1 構造強度評価方法 14
5.2 荷重の組合せ及び許容応力 14
5．2．1 荷重の組合せ及び許容応力状態 14
5．2．2 許容応力 14
5．2．3 使用材料の許容応力評価条件 14
5．2．4 設計荷重 19
5.3 設計用地震力 20
5.4 計算方法 22
5.5 計算条件 24
5.6 応力の評価 24
6．評価結果 25
6.1 設計基準対象施設としての評価結果 25
6．2 重大事故等対処設備としての評価結果 29
7．参照図書 32

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，制御棒駆動機構搬出入口が設計用地震力に対して十分な構造強度を有していることを説明するものである。

制御棒駆動機構搬出入口は，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力による荷重及び重大事故等時の荷重に対する評価について記載するものとし，前述の荷重を除く荷重による制御棒駆動機構搬出入口の評価は，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））による（以下「既工認」という。）。

2．一般事項

2.1 構造計画

制御棒駆動機構搬出入口の構造計画を表 2－1 に示す。
O 2 （3）VI－2－9－2－2－3 R 1

2.2 評価方針

制御棒駆動機構搬出入口の応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合 せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，「4．固有周期」 で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

制御棒駆動機構搬出入口の耐震評価フローを図 2－1 に示す。

図 2－1 制御棒駆動機構搬出入口の耐震評価フロー
2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－ 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

	2.4 記号の説明		
	記号	記号の説明	単位
	A	断面積	mm ${ }^{2}$
	C_{H}	水平方向設計震度	－
	C_{v}	鉛直方向設計震度	－
	D	死荷重	－
	d_{1}	直径	mm
	E	縦弾性係数	MPa
	I	断面二次モーメント	mm^{4}
	$\mathrm{K}_{1 \mathrm{~B}}$	外荷重によって取付部に生じる変形モデルを仮定した軸直角方向ばね定数	N / mm
	$\mathrm{K}_{1} \mathrm{~s}$	片持はりを仮定した軸直角方向ばね定数	N / mm
	$\mathrm{K}_{2} \mathrm{~B}$	外荷重によって取付部に生じる変形モデルを仮定した軸方向ば ね定数	N / mm
$\stackrel{-}{2}$	$\mathrm{K}_{2} \mathrm{~s}$	片持はりを仮定した軸方向ばね定数	N / mm
\sim	L	重心までの距離	mm
$\stackrel{\sim}{\text { a }}$	ℓ_{i}	長さ（ $\mathrm{i}=1,2,3)$	mm
¢	M	機械的荷重	－
I	M_{L}	地震と組み合わせる機械的荷重	－
5	$\mathrm{M}_{\text {SAL }}$	機械的荷重（SA 後長期（L）機械的荷重）	－
（c）	$\mathrm{M}_{\text {SALL }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
\sim	P	圧力	－
\bigcirc	$P_{\text {L }}$	地震と組み合わせる圧力	－
	$\mathrm{P}_{\text {SAL }}$	圧力（SA 後長期（L）圧力）	kPa
	Psall	圧力（SA 後長期（LL）圧力）	kPa
	R	半径	mm
	R_{h}	半径	mm
	S	許容引張応力	MPa
	S d	弾性設計用地震動S d により定まる地震力	－
	S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
	S s	基準地震動S s により定まる地震力	－
	S_{u}	設計引張強さ	MPa
	S_{y}	設計降伏点	MPa
	S_{y}（R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa

記号	記号の説明	単位
T_{1}	軸直角方向固有周期	S
T 2	軸方向固有周期	S
t i	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
T SAL	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
Tsall	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
W	死荷重	N
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

[^0]2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理标	処理方法	表示椨
固有周期	s	小数点以下第4位	四捨五入	小数点以下第 3 位
震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
圧力	kPa	－	－	整数位＊${ }^{* 1}$
温度	${ }^{\circ} \mathrm{C}$	－	－	整数位 ${ }^{* 1}$
質量	kg	－	－	整数位
長さ	mm	－	－	整数位＊${ }^{* 1}$
面積	mm²	有効数字 5 桁目	四捨五入	有効数字 4 桁
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁
断面2次モーメント	mm ${ }^{4}$	有効数字 5 桁目	四捨五入	有効数字 4 桁
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁
絶弾性係数	MPa	有效数字 4 桁目	四捨五入	有效数字 3 桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊${ }^{\text {2 }}$

注記＊1：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
制御棒駆動機構搬出入口の形状及び主要寸法を図 3－1 に，使用材料及び使用部位を表3－1 に示す。

①蓋フランジ
（5）補強板

（単位：mm）

図 3－1 制御棒駆動機構搬出入口の形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料
蓋フランジ	SGV480
鏡板	SGV480
円筒胴	SGV480
補強板	SPV490

[^1]4．固有周期
4． 1 固有周期の計算方法
制御棒駆動機構搬出入口の固有周期の計算方法を以下に示す。
（1）計算モデル
a．制御棒駆動機構搬出入口の質量は，重心に集中するものとする。
b．制御棒駆動機構搬出入口は，原子炉格納容器に固定されており，一端固定，他端自由とする。また，制御棒駆動機構搬出入口を片持はりと考え，変形モードは曲げ又は圧縮•引張りを考慮する。
c．制御棒駆動機構搬出入口より加わる荷重（以下，外荷重と称す）によって制御棒駆動機構搬出入口取付部に生じる変形を考える。変形モードは曲げモーメントによる取付部変形，又は圧縮•引張りによる取付部変形を考慮する。
d．b 及び c による変形の両者を考慮する。
e．耐震計算に用いる寸法は，公称値を使用する。

制御棒駆動機構搬出入口は，図 4－1 に示す集中荷重が作用する片持はりと，図 4－2 に示す外荷重によって取付部に生じる変形モデルの，両者の合成として考える。

図 4－1 固有周期の計算モデル（片持はり）

図 4－2 固有周期の計算モデル（外荷重によって取付部に生じる変形モデル）
（2）軸直角方向ばね定数
片持はりを仮定した軸直角方向ばね定数は次式で求める。

外荷重によって取付部に生じる変形モデルを仮定した軸直角方向ばね定数は，参照図書 （2）を基に荷重と変位の関係より求める。ばね定数を $\mathrm{K}_{1 \mathrm{~B}}$ とし，その値を表4－1に示す。
（3）軸方向ばね定数
片持はりを仮定した軸方向ばね定数は次式で求める。

$$
\mathrm{K}_{2 \mathrm{~S}}=\frac{\mathrm{A} \cdot \mathrm{E}}{\mathrm{~L}}
$$

外荷重によって取付部に生じる変形モデルを仮定した軸方向ばね定数は，参照図書（2）を基に荷重と変位の関係より求める。ばね定数を $\mathrm{K}_{2 \mathrm{~B}}$ とし，その値を表4－1に示す。
（4）合成ばね定数
片持はりを仮定したばね定数と，外荷重によって取付部に生じる変形モデルを仮定した ばね定数の，両者の合成ばね定数は次式で求める。

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{1}{\frac{1}{\mathrm{~K}_{1 \mathrm{~S}}}+\frac{1}{\mathrm{~K}_{1 \mathrm{~B}}}} \\
& \mathrm{~K}_{2}=\frac{1}{\frac{1}{\mathrm{~K}_{2 \mathrm{~S}}}+\frac{1}{\mathrm{~K}_{2 \mathrm{~B}}}}
\end{aligned}
$$

（5）軸直角方向固有周期
軸直角方向固有周期は次式で求める。

$$
\mathrm{T}_{1}=\frac{2 \cdot \pi}{\sqrt{\frac{\mathrm{~g} \cdot \mathrm{~K}_{1}}{\mathrm{~W}}}}
$$

（6）軸方向固有周期
軸方向固有周期は次式で求める。

$$
T_{2}=\frac{2 \cdot \pi}{\sqrt{\frac{\mathrm{~g} \cdot \mathrm{~K}_{2}}{\mathrm{~W}}}}
$$

4． 2 固有周期の計算条件
固有周期の計算に用いる計算条件を表 4－1 に示す。

表 4－1 固有周期の計算に用いる計算条件

注記＊：通常運転時温度 $57^{\circ} \mathrm{C}$ と重大事故等時限界温度 $200^{\circ} \mathrm{C}$ の平均温度を適用する。

4． 3 固有周期の計算結果

（1）設計基準対象施設としての固有周期
固有周期の計算結果を表 4－2 に示す。固有周期は 0.05 秒以下であり，剛構造であることを確認した。

表 4－2 固有周期（設計基準対象施設）

卓越方向	固有周期 (s)
水平方向（軸）	0.016
水平方向（軸直角）	0.009
鉛直方向（軸直角）	0.009

（2）重大事故等対処設備としての固有周期
固有周期の計算結果を表 4－3に示す。固有周期は 0.05 秒以下であり，剛構造であることを確認した。

表 4－3 固有周期（重大事故等対処設備）

卓越方向	固有周期 (s)
水平方向（軸）	0.016
水平方向（軸直角）	0.009
鉛直方向（軸直角）	0.009

5．構造強度評価

5.1 構造強度評価方法

（1）制御棒駆動機構搬出入口は，円筒胴がドライウェルに支持された構造であり，水平方向荷重は原子炉格納容器シヤラグ及び基部を介して，鉛直方向荷重は基部を介して原子炉建屋に伝達される。

制御棒駆動機構搬出入口の耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 において計算された荷重を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表 2－1 に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
制御棒駆動機構搬出入口の荷重の組合せ及び許容応力状態のうち，設計基準対象施設 の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示 す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力

制御棒駆動機構搬出入口の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 5－3に示すとおりとする。

5．2．3 使用材料の許容応力評価条件

制御棒駆動機構搬出入口の使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 5－4に，重大事故等対処設備の評価に用いるものを表 5－5に示す。
表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度 分類	機器等 の区分	荷重の組合せ＊1		許容応力状態
原子炉格納施設	原子炉格納 容器	制御棒駆動 機構搬出入 口	S	$\begin{gathered} \text { クラスMC } \\ \text { 容器 } \end{gathered}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	$\begin{aligned} & (9) \\ & (10) \\ & (13) \\ & (15) \end{aligned}$	$I I I A S^{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{aligned} & (11) \\ & (12) \\ & (14) \\ & \hline \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}^{* * 2}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

後の最終障辟となることからっ構造体全体としての安全裕度を確認する意味で，冷却材喪失事故後の最大内圧との組合せを考慮する。
表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	荷重の組合せ＊2		許容応力状態
原子炉格納	原子炉格納	制御棒駆動機	常設耐震／防止	重大事故等	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}^{* 3}$	（V（L）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$
施設	容器	構搬出入口	常設／緩和	クラス2容器	$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S}_{\text {S }}$	（V（LL）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。
＊3：重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

注記＊1：3•Sを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。SmはSと読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ）を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\text {y }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
制御棒駆動機構搬出入口取付部	SPV490	周囲環境温度	171	167	429	550	－

表5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S (MPa)	S_{y} (MPa)	S_{u} (MPa)	S_{y} $(\mathrm{R} \mathrm{T})$ (MPa)
制御棒駆動機構搬出入口 取付部	SPV490	周囲環境 温度	$111 / 178^{* 1}$ $(200) * 2$	167	417	545	-

注記＊1：SA 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（LL）の時 $111^{\circ} \mathrm{C}$ 。
＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度，死荷重及 び活荷重は，既工認（参照図書（1））からの変更はなく，以下のとおりとする。
a．最高使用圧力及び最高使用温度

内圧 P	427 kPa
外圧 P_{e}	13.7 kPa
温度 T	$171^{\circ} \mathrm{C}$

b．死荷重
制御棒駆動機構搬出入口の自重を死荷重とする。

死荷重

kg
c．活荷重
燃料交換時に制御棒駆動機構搬出入口に作用する荷重を活荷重とする。活荷重 \square kg
（2）重大事故等対処設備としての評価圧力及び評価温度重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 P SAL	640 kPa （SA 後長期（L））
内圧 P SAL L	427 kPa （SA 後長期（LL））
温度 T SAL	$178^{\circ} \mathrm{C}$（SA 後長期（L））
温度 T SAL L	$111^{\circ} \mathrm{C}$（SA 後長期（LL））

枠囲みの内容は商業機密の観点から公開できません。

5.3 設計用地震力

評価に用いる設計用地震力を表5－6～表5－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\begin{aligned} & \text { 0. P. } \\ & 3.40 \end{aligned}$	0.016	0． 009	$\mathrm{C}_{\mathrm{H}}=0.56$	$\mathrm{C}_{\mathrm{v}}=0.57$	$\mathrm{C}_{\mathrm{H}}=1.09$	$\mathrm{C}_{\mathrm{V}}=0.98$

表 5－7 設計用地震力（重大事故等対処設備）

据付場所 及び 設置高さ （m）	固有周期(s)		弾性設計用地震動 S d		基準地震動 S s	
	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\begin{aligned} & \text { 0. P. } \\ & \text { 3. } 40 \end{aligned}$	0.016	0.009	$\mathrm{C}_{\mathrm{H}}=0.56$	$\mathrm{C}_{\mathrm{v}}=0.57$	$\mathrm{C}_{\mathrm{H}}=1.09$	$\mathrm{C}_{\mathrm{v}}=0.98$

表 5－8 設計用地震力（設計基準対象施設）

応力評価点＊	水平荷重 $\mathrm{S} \mathrm{d}^{*}$		水平荷重 S s	
	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$
P3				
P4				
P5				

注記 $*$ ：応力評価点の位置は，図 5－1 参照のこと。

表 5－9 設計用地震力（重大事故等対処設備）

応力評価点＊1	水平荷重 S d ＊2		水平荷重 S S	
	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	$\begin{gathered} \text { モーメント } \\ \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \\ \hline \end{gathered}$	せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$	$\begin{gathered} \text { モーメント } \\ \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{gathered}$
P3				
P4				
P5				

注記 $* 1:$ 応力評価点の位置は，図 $5-1$ 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 S d に加えて静的地震力を考慮 する。

5.4 計算方法

制御棒駆動機構搬出入口の応力評価点は，制御棒駆動機構搬出入口を構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－10及び図 5－1 に示す。

応力計算方法は既工認から変更はなく，参照図書（1）に示すとおりである。
応力評価点 P3～P5 の応力は，既工認の各荷重条件や耐震条件の比を用いて発生応力を算出 し評価する。

表 5－10 応力評価点

応力評価点番号	応力評価点
P1＊	鏡板中央部
P2＊	蓋フランジ
P3～P5	制御棒駆動機構搬出入口取付部

注記＊：応力評価点P1 及びP2 については，地震荷重は荷重値が小さく無視できるので評価を行わない。

図 5－1 制御棒駆動機構搬出入口の応力評価点
5.5 計算条件

応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。
5.6 応力の評価

「5．4 計算方法」で求めた各応力が表 5－3に示す許容応力以下であること。ただし，一次 + 二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300（PVB－3313 を除く。 S mはSと読み替える。）に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

6．評価結果

6.1 設計基準対象施設としての評価結果

制御棒駆動機構搬出入口の設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1 及び表 6－2 に示す。
表中の「荷重の組合せ」欄には，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」における表 3－6 の荷重の組合せのNo．を記載する。

なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23項に て，設計•建設規格 PVB－3140（6）を満たしていることから，一次＋二次＋ピーク応力強さ の評価は不要である。
O 2 （3） $\mathrm{VI}-2-9-2-2-3$ R 1
表 6－1 許容応力状態 $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）

	$\begin{aligned} & \text { 捛 } \\ & \text { 䍚 } \end{aligned}$						
		$\stackrel{\rightharpoonup}{\theta}$	$\stackrel{\theta}{\theta}$	$\stackrel{\theta}{\theta}$	$\stackrel{\theta}{\theta}$	$\stackrel{\ominus}{\ominus}$	$\stackrel{\ominus}{\ominus}$
	$\frac{\text { 㪰 }}{\frac{10}{2}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\sim		$\stackrel{8}{8}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{8}{8}$	$\stackrel{\rightharpoonup}{0}$	号	$\stackrel{\rightharpoonup}{6}$
三		$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\sim}$	앙	$\stackrel{\sim}{\#}$	\％	$\stackrel{\sim}{\sim}$
		一次膜応力+一次曲げ応力	$\begin{aligned} & \text { 左 } \\ & \text { 首 } \\ & + \\ & + \\ & + \end{aligned}$				号
			䈱				品品
		2		Σ			

O 2 （3）VI－2－9－2－2－3 R 1

評価対象設備	評価部位		応力分類			判定	荷重の組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
制御棒駆動機構搬出入口	P3	制御棒駆動機構搬出入口取付部		一次膜応力 + 一次曲げ応力	107	495	\bigcirc	（12）	
				一次＋二次応力	212	501	\bigcirc	（12）	
	P4	制御棒駆動機構搬出入口取付部	一次膜応力 + 一次曲げ応力	92	495	\bigcirc	（12）		
			一次＋二次応力	184	501	\bigcirc	（12）		
	P5	制御棒駆動機構搬出入口取付部	一次膜応力 + 一次曲げ応力	97	495	\bigcirc	（12）		
			一次＋二次応力	198	501	\bigcirc	（12）		

O 2 （3）VI－2－9－2－2－3 R 1
表 6－2（2）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊）

評価対象設備	評価部位		応力分類	IV ${ }_{\text {A }} \mathrm{S}$		判定	荷重の組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
制御棒駆動機構搬出入口	P3	制御棒駆動機構搬出入口取付部		一次膜応力 + 一次曲げ応力	98	495	\bigcirc	（16）	
				一次＋二次応力	118	501	\bigcirc	（16）	
	P4	制御棒駆動機構搬出入口取付部	一次膜応力 + 一次曲げ応力	94	495	\bigcirc	（16）		
			一次＋二次応力	106	501	\bigcirc	（16）		
	P5	制御棒駆動機構搬出入口取付部	一次膜応力 + 一次曲げ応力	95	495	\bigcirc	（16）		
			一次＋二次応力	112	501	\bigcirc	（16）		

6.2 重大事故等対処設備としての評価結果

制御棒駆動機構搬出入口の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを確認した。
（1）構造強度評価結果
構造強度評価結果を表 6－3 に示す。
なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23 項に て，設計•建設規格 PVB－3140（6）を満たしていることから，一次＋二次＋ピーク応力強さ の評価は不要である。
O 2 （3）VI－2－9－2－2－3 R 0
表 6－3（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\left.\mathrm{D}+\mathrm{PsAL}+\mathrm{MsAL}+\mathrm{S} d\right)$

表6－3（2）許容応力状態 $V_{A} S$ に対する評価結果（ $\mathrm{D}+\mathrm{P}$ SALL $+\mathrm{MSALL}+\mathrm{S} \mathrm{S}$ ）

7．参照図書

（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－1－9 制御棒駆動機構搬出入口の強度計算書」
（2）P．P．Bijlaard；
Computation of the Stresses from Local Loads in Spherical Pressure Vessels or Pressure Vessel Heads

[^0]: R 1

 | 9 |
 | :--- |
 | 1 |
 | 1 |
 | N |
 | 1 |
 | 1 |
 | 1 |
 | \cdots |
 | 1 |

 （ㄷ）
 ${ }^{\sim}$

[^1]: R 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 （ㄷ）
 N

