| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－3－別添 3－2－11 津波監視設備の強度計算書

2021年7月
東北電力株式会社

VI－3－別添3－2－11－1 取水ピット水位計の強度計算書

VI－3－別添3－2－11－1 取水ピット水位計の強度計算書

目次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
2.6 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 8
4． 1 固有値解析方法 8
4．2 解析モデル及び諸元 8
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5.3 設計用地震力 13
5.4 計算方法 14
5.5 計算条件 18
5.6 応力の評価 18
6．評価結果 19
6． 1 設計基準対象施設としての評価結果 19

1．概要

本計算書は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に基づ き，津波監視設備のらち取水ピット水位計が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有することを確認するものである。

2．一般事項

2.1 配置概要

津波監視設備の配置図を図2－1 に示す。

図2－1 津波監視設借配置図
2.2 構造計画
取水ピット水位計の構造計画を表2－1 に示す。
表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
取水ピット水位計のバ ブラー管上部は取付ボル トでフランジに固定さ れ，バブラー管下部は取付治具で保護管に固定さ れる。保護管（サポート） は取水ピット内壁面に基礎ボルトで固定される。	バブラー管	【取水ピット水位計】

2．3 評価方針

取水ピット水位計の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価 により実施する。応力評価では，取水ピット水位計の評価部位に作用する応力等が許容限界以下であることを「5．1 構造強度評価方法」に示す方法により，「5．5 計算条件」に示す評価条件を用いて評価し，「6．評価結果」にて確認する。

取水ピット水位計の強度評価フローを図 2－2 に示す。取水ピット水位計の強度評価において は，その構造を踏まえ，津波及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位 を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下，「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下，「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添 3－1津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S_{d} による地震力とする。余震荷重の設定に当たつては，弾性設計用地震動 S_{d} を入力し て得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用いる。

図 2－2 取水ピット水位計の耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J EAG4601•補—1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）
（5）港湾の施設の技術上の基準•同解説（（社）日本港湾協会 平成 19 年 2 月）

記 号	記 号 の 説 明	単 位
A_{b}	取付ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	取付ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F_{b}	取付ボルトに作用する引張力（ 1 本当たり）	N
F_{x}	取付ボルトに作用する力（ X 方向）	N
F_{Y}	取付ボルトに作用する力（ Y 方向）	N
F_{z}	取付ボルトに作用する力（ Z 方向）	N
$f_{\text {s b }}$	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
f_{t} 。	引張力のみを受ける取付ボルトの許容引張応力	MPa
$f_{\mathrm{t}} \mathrm{s}$	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
ℓ_{1}	M_{x} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
ℓ_{2}	M_{z} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
M_{X}	取付ボルトに作用するモーメント（ X 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	取付ボルトに作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	取付ボルトに作用するモーメント（ C 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
m_{a}	バブラー管の質量	kg
Pa_{a}	バブラー管拘束点からの反力	－
n	取付ボルトの本数	－
n x	M_{X} の引張力に耐えらる取付ボルトの本数	－
n z	M_{Z} の引張力に耐えうる取付ボルトの本数	－
Q_{b}	取付ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ におけ る値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

2.6 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
本資料で表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点第 1 位以下の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。

3．評価部位

取水ピット水位計の構造強度評価は，「2．2 構造計画」にて設定している構造を踏まえて，津波に伴ら荷重の作用方向及び伝達過程を考慮し設定する。

津波時は，取水ピットからの突き上げ津波荷重が取水ピット水位計検出器取付座及び取付ボル トに作用する。重畳時は，取水ピットからの突き上げ津波荷重及び余震による慣性力が取水ピッ ト水位計検出器取付座及び取付ボルトに作用する。
以上より，構造強度評価においては，応力評価による評価部位として，強度評価上厳しくなる取付ボルトを選定する。評価部位については，表 2－1 の構造計画に示す。

4．固有周期

4． 1 固有値解析方法
取水ピット水位計の固有値解析方法を以下に示す。
（1）取水ピット水位計は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考え る。

4.2 解析モデル及び諸元

取水ピット水位計の解析モデルを図 4－1 に，解析モデルの概要を以下に示す。
（1）バブラー管の質量は支持点に集中するものとする。
（2）図 4－1 中の \triangle は質点を示し，バブラー管の質量 m_{a} は \square である。
（3）㧦束条件として，支持点（バブラー管支持部）のXYZ方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コ ードの検証及び妥当性確認等の概要については，添付書類「VI－5－25 計算機コード概要 NX NASTRAN」に示す。

また，解析に必要な機器要目を表 2－3に示す。

表 2－3 解析に必要な機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
維弾性係数	E	MPa	
ポアソン比	v	-	
ボ要素数	-	個	
節点数	-	個	

図 4－1 取水ピット水位計解析モデル

4．3 固有値解析結果

固有値解析結果を表 4－1 に示す。
固有周期は 0.05 秒以下であり剛であることを確認した。

表 4－1 固有値解析結果
（単位：s）

モード	卓越方向	固有周期	水平方向刺激係数		鉛直方向 刺激係数
			Z 方向	-	
1 次	水平方向		-	-	-

5．構造強度評価

5.1 構造強度評価方法

（1）地震力は，取水ピット水位計に対して，水平方向及び鉛直方向から同時に作用するもの とする。
（2）取水ピット水位計は，フランジ部にて取付ボルトでスリーブに固定されるものとする。
（3）強度計算に用いる寸法は，公称値を使用する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せを用いる。取水ピット水位計の荷重の組合せを表 5－1 に示す。

5．2．2 許容応力
取水ピット水位計の許容応力は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設 の強度計算の方針」の「4．2 許容限界」にて設定している許容応力に基づき表5－2 のとお りとする。

5．2．3 使用材料の許容応力評価条件
取水ピット水位計の使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用 いるものを表 5－3 に示す。

表 5－1 荷重の組合せ

施設区分	機器名称	荷重の組合せ＊1，＊2
浸水防護施設 （津波監視設備）	取水ピット水位計	$\mathrm{D}+\mathrm{Sd}+\mathrm{P}_{\mathrm{t}}$

注記 $~ 1 ~ 1: ~ D は$ 固定荷重， S d は余震荷重， P_{t} は突き上げ津波荷重を示す。
＊2：固定荷重（D）及び余震荷重（S d）の組合せが，強度評価上，突き上げ津波荷重 $\left(\mathrm{P}_{\mathrm{t}}\right)$ を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

表 5－2 許容応力（その他の支持構造物）

許容応力状態	許容応力 $* 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	S_{y} $(\mathrm{R} \mathrm{T})$ (MPa)
取付ボルト	SUS304	周囲環境温度	40	205	520	-

5.3 設計用地震力

「4．固有周期」に示したとおり取水ピット水位計の固有周期は 0.05 秒以下であることを確認したため，取水ピット水位計の強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。耐震評価に用いる設計用地震力を表 5－4 に示 す。

表 5－4 設計用地震力

地震動	据付場所 及び 床面高さ （m）	余震による設計震度	
弾性設計用地震動$\mathrm{Sd}-\mathrm{D} 2$	$\begin{gathered} \text { 海水ポンプ室 } \\ \text { 0.P. } 2.25 \\ \left(0 . \mathrm{P} .2 .00^{*}\right) \end{gathered}$	水平方向 C_{H}	1． 05
		鉛直方向 C_{V}	1． 03

注記＊：基準床レベルを示す。

5.4 計算方法

取水ピット水位計に作用する応力及び算出式を示す。
5． 4.1 突き上げ津波荷重の計算方法
取水ピット水位計に作用する突き上げ津波荷重 P_{t} は次式にて求める。
$\mathrm{P}_{\mathrm{t}}=\rho \cdot \mathrm{g} \cdot \mathrm{T}_{\mathrm{h}} \cdot \mathrm{A}_{1}+\frac{1}{2} \cdot \mathrm{Cd} \cdot \rho \cdot \mathrm{A}_{1} \cdot \mathrm{U}^{2}$
（5．4．1．1）
ここで，突き上げ津波荷重及び静水頭圧を受けるフランジの面積 A_{1} は次式にて求め る。
$\mathrm{A}_{1}=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
（5．4．1．2）
ここで，入力津波高さThは次式にて求める。
$\mathrm{Th}=\mathrm{h}-\mathrm{z}$
（5．4．1．3）

5．4．2 応力の計算方法

5．4．2．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

地震応答解析によって得られたフランジ部の評価点の最大反力とモーメントを表 5－5に示す。

表 5－5 フランジ部発生反力，モーメント

対象計器	反力（ N ）			モーメント $(\mathrm{N} \cdot \mathrm{mm})$		
	F_{X}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}
取水ピット 水位計						

（1）引張応力
取付ボルト（1本当たり）に対する引張応力は，下式により計算する。

引張力
$\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{X}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{Z}}}+\mathrm{P}_{\mathrm{t}}$

引張応力
$\sigma_{b}=\frac{F_{b}}{A_{b}}$
ここで，取付ボルトの軸断面積 A_{b} は次式により求める。
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}$
（5．4．2．1．3）
（2）せん断応力
取付ボルト（1 本当たり）に対するせん断応力は，下式により計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{Z}}^{2}}}{\mathrm{n}} \tag{5.4.2.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.2.1.5}
\end{equation*}
$$

5.5 計算条件

5．5．1 取付ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【取水ピット水位計の強度についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 取付ボルトの応力評価
ボルトの引張応力 σ_{b} は次式より求めた許容引張応力 f_{t} 以下であること。
ただし，ftoは下表による。

$$
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]
$$

（5．6．1．1）
せん断応力 τ bはせん断力のみを受ける取付ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であるこ と。ただし，f_{sb} は下表による。

弹性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	
許容引張応力 f_{to}	$\frac{\mathrm{F}}{2} \cdot 1.5$
許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果

6.1 設計基準対象施設としての評価結果

取水ピット水位計の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【取水ピット水位計の強度についての計算結果】 1．設計基準対象施設 1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
取水ピット水位計	S	$\begin{gathered} \text { 海水ポンプ室 } \\ \text { O.P. } 2.25 \\ \left(0 . \text { P. } 2.00^{* 1}\right) \\ \hline \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=1.05$	$\mathrm{C}_{\mathrm{V}}=1.03$	－	－	40

注記 \boldsymbol{c}^{1} ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{d} \text { d又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S s
取付ボルト	205	520	205	－	水平方向	－

1．2 機器要目

部材	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{x}	n_{z}
取付ボルト							

1.3 計算数値

1．3．1 取付ボルトに作用する力

部 材	F_{x}		F_{Y}		F_{z}	
	弾性設計用地震動 Sd又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
取付ボルト		－		－		－
1．3．2 取付ボルトに作用するモーメント						（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）
			M_{Y}		M_{z}	
部 材	弹性設計用地震動 Sd又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト		－		－		－

1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト	SUS304	引張り	$\sigma_{\mathrm{b}}=38$	$f_{\mathrm{ts}}=153^{*}$	－	－
		せん断	$\tau_{\mathrm{b}}=0$	$f_{\text {s b }}=118$	－	－

すべて許容応力以下である。

