| 女川原子力発電所第 2 号機 | 工事計画審査資料 |
| :---: | :---: |
| 資料番号 | 02 －補－E－19－0600－4＿改4 |
| 提出年月日 | 2021 年 6 月 25 日 |

補足－600－4 下位クラス施設の波及的影響の検討について
1．概要 ..... 1
2．波及的影響に関する評価方針 ..... 2
2.1 基本方針 ..... 2
2．2 下位クラス施設の抽出方法 ..... 4
2.3 影響評価方法 ..... 5
2.4 プラント運転状態による評価対象の考え方 ..... 5
3．事象検討 ..... 7
3.1 別記 2 に記載された事項に基づく事象検討 ..... 7
3.2 地震被害事例に基づく事象の検討 ..... 8
3．2．1 被害事例とその要因の整理 ..... 8
3．2．2 追加考慮すべき事象の検討 ..... 9
3.3 津波，火災及び溢水による影響評価 ..... 10
3．4 周辺斜面の崩壊による影響評価 ..... 10
3.5 液状化による影響評価 ..... 10
4．上位クラス施設の確認 ..... 11
5．下位クラス施設の抽出及び影響評価方法 ..... 22
5.1 相対変位又は不等沈下による影響 ..... 22
5.2 接続部における相互影響 ..... 26
5.3 建屋内における施設の損傷，転倒，落下等による影響 ..... 35
5.4 建屋外における施設の損傷，転倒，落下等による影響 ..... 37
6．下位クラス施設の検討結果 ..... 39
6．1 相対変位又は不等沈下による影響検討結果 ..... 39
6．1．1 抽出手順 ..... 39
6．1．2 下位クラス施設の抽出結果 ..... 39
6．1．3 影響評価結果 ..... 39
6．2 接続部における相互影響検討結果 ..... 47
6．2．1 抽出手順 ..... 47
6．2．2 接続部の抽出結果及び影響評価対象の選定結果 ..... 47
6．2．3 影響評価結果 ..... 47
6.3 建屋内における施設の損傷，転倒，落下等による影響検討結果 ..... 68
6．3．1 抽出手順 ..... 68
6．3．2 下位クラス施設の抽出結果 ..... 68
6．3．3 耐震評価結果 ..... 68
6． 4 建屋外における施設の損傷，転倒，落下等による影響検討結果 ..... 120
6．4．1 抽出手順 ..... 120
6．4．2 下位クラス施設の抽出結果 ..... 120
6．4．3 耐震評価結果 ..... 120

添付資料 1－1 波及的影響評価に係る現地調查の実施要領
添付資料 1－2 波及的影響評価に係る現地調查記録
添付資料 2－1 原子力発電所における地震被害事例の要因整理
添付資料 2－2 東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理
添付資料3 周辺斜面の崩壊等による上位クラス施設への影響
添付資料 4 上位クラス施設に隣接する下位クラス施設の支持地盤について
添付資料5 設置予定施設及び撤去予定施設に対する波及的影響評価の考え方について
添付資料 6 原子炬補機冷却海水系通水機能への下位クラス施設の波及的影響の検討について

添付資料7防潮堤•防潮壁への下位クラス施設の波及的影響の検討について
添付資料 8 防潮壁への小規模建屋倒壊による波及的影響の検討について
添付資料 9 下位クラス施設の損傷による機械的荷重等の影響について
添付資料 10
制御棒貯蔵ハンガ（その 2）のプールライニング部への影響検討

参考資料 1 下位クラス配管の損傷形態の検討について
参考資料2 設置変更許可時からの相違点について


## 1．概 要

設計基準対象施設のうち耐震重要度分類Sクラスに属する施設，その間接支持構造物及び屋外重要土木構造物（以下「Sクラス施設等」という。）が下位ク ラス施設の波及的影響によって，その安全機能を損なわないことについて，ま た，重大事故等対処施設のうち常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）並び にこれらが設置される常設重大事故等対処施設（以下「重要SA施設」という。） が下位クラス施設の波及的影響によって，重大事故等に対処するために必要な機能を損なわないことについて，設計図書類を用いた机上検討及び現地調査
（プラントウォークダウン）による敷地全体を俯瞰した調査•検討を行い，評価を実施する。

ここで，Sクラス施設等と重要 SA施設を合わせて「上位クラス施設」と定義 し，Sクラス施設等の安全機能と重要SA施設の重大事故等に対処するために必要な機能を合わせて「上位クラス施設の機能」と定義する。また，上位クラス施設に対する波及的影響の検討対象とする「下位クラス施設」とは，上位クラ ス施設以外の発電所内にある施設（資機材等を含む）をいう。

なお，本資料が関連する工認図書は以下のとおり。

- 「VI－2－1－5 波及的影響に係る基本方針」
- 「VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書」


## 2．波及的影響に関する評価方針

2.1 基本方針

波及的影響評価は以下に示す方針に基づき実施する。
（1）「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」の別記 2 （以下「別記 2 」という。）に記載された波及的影響に係る 4 つの事項を基に，検討すべき事象を整理する。ま た，原子力発電所の地震被害情報を基に，別記2の波及的影響に係る 4 つの事項以外に検討すべき事象の有無を確認する。
（2）（1）で整理した検討事項を基に，上位クラス施設に対して波及的影響 を及ぼすおそれのある下位クラス施設を抽出する。
（3）（2）で抽出された下位クラス施設について，配置，設計，運用上の観点から上位クラス施設への影響評価を実施する。

また，波及的影響評価に係る検討フローを第2．1－1図に示す。

＊フロー中の（1）～⑧の数字は第5．1－1図，第5．1－2図，第5．2－8図，第5．3－1 及び第5．4－1図中の（1）～8に対応する。
第2．1－1 図 波及的影響評価に係る検討フロー

## 2．2下位クラス施設の抽出方法

上位クラス施設に対して波及的影響を及ぼすおそれのある下位クラス施設の抽出は，設計図書類を用いた机上検討及び現地調査（プラントウォーク ダウン）による敷地全体を俯瞰した調査•検討により実施する。
（1）事前準備及び机上検討 I［第2．1－1図（1）（2）］
女川原子力発電所第2号機の屋外配置図，機器配置図等の設計図書類を用いて，建屋外及び建屋内の上位クラス施設を抽出し，その配置状況の情報を整理する。配置状況確認結果を踏まえ，検討事象ごとに，以下に示す考え方を踏まえて波及的影響を及ぼすおそれのある施設を抽出する。
a．検討事象が「建屋内下位クラス施設の損傷等による影響」又は「建屋外下位クラス施設の損傷等による影響」の場合
＞上位クラス施設が大型施設であれば，重量比から仮置物品等の影響 を受けないことから，本項目（1）で調査した設計図書類の情報によっ て波及的影響を及ぼすおそれのある施設を抽出する。
＞上位クラス施設が大型施設ではない場合には，現地調査が困難な場合を除き下記（2）及び（3）に示す情報の補完作業を実施する。
b．検討事象が「相対変位又は不等沈下による影響」又は「上位，下位クラ スの接続部における相互影響」の場合
＞「相対変位又は不等沈下による影響」については，建屋外の大型施設が評価対象となることから，本項目（1）で調査した設計図書類の情報によって波及的影響を及ぼすおそれのある施設を抽出する。
＞「上位，下位クラスの接続部における相互影響」については，系統図等の設計図書類で網羅的に確認が可能であることから，本項目（1） で調査した設計図書類の情報によって波及的影響を及ぼすおそれの ある施設を抽出する。
（2）現地調査（プラントウォークダウン）［第2．1－1図（3）］
机上検討 I で抽出された下位クラス施設の詳細な設置状況又は配置状況を確認すること及び設計図書類では判別出来ない仮設設備又は資機材等が影響防止対策を施工していない状態で上位クラス施設周辺に配置さ れていないことを確認することを目的として，建屋内外の上位クラス施設 を対象として現地調査を実施する。

現地調査の実施要領を添付資料1－1に示す。また，現地調査記録の例を添付資料1－2に示す。

なお，現地調查における確認項目や判断基準についても添付資料1－1 の実施要領に示す。
（3）机上検討 II［第2．1－1図（4）］
現地調査を実施する必要があると判断したものの，現地調査を実施でき ない上位クラス施設については，現地調查と同様の判断基準で机上検討を実施する。
（4）検討対象施設の抽出［第2．1－1図（5）］
上記（1）～（3）において抽出された情報を用いて，上位クラス施設へ地震時に波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

なお，上位クラス施設と下位クラス施設の離隔距離が下位クラス施設の高さを超える場合は，「下位クラス施設の損傷等による影響」，「相対変位又は不等沈下による影響」のいずれの検討事象においても影響がないもの と考えられることから，該当する下位クラス施設は検討対象から除外する。
2.3 影響評価方法［第2．1－1図（6），77，（8）］

波及的影響を及ぼすおそれがあるとして抽出された下位クラス施設につ いては，詳細評価を実施し，上位クラス施設の機能を損なわないことにより， その影響を確認する。

詳細評価において，抽出された下位クラス施設が耐震性を有していること の確認によって上位クラス施設の機能を損なわないことを確認する場合，適用する地震動は上位クラス施設の設計に用いる基準地震動S s とし，上位ク ラス施設への波及的影響が否定できない場合には，影響を防止するための対策を検討し，実施することで評価を完了とする。
2.4 プラント運転状態による評価対象の考え方

プラントの運転状態としては，通常運転時，事故対処時及び定期検查時が あり，各運転状態において要求される上位クラス施設の機能を考慮して波及的影響評価を実施する。

通常運転時は，ほぼ全ての上位クラス施設が供用状態（運転又は待機状態） にあり，下位クラス施設の波及的影響も考慮した上で，基準地震動 S s に対 して安全機能を損なわないことを確認する。また，事故対処時においても，通常運転時と同様である。

定期検查時は，その工程に伴い，上位クラス施設は供用状態から除外され，系統も隔離される。その状態では当該施設の安全機能には期待しないことか ら，波及的影響評価の対象から除外する。また，定期検査時においても補機冷却系統や電源系等，一部の系統は供用状態にあるため，これらの施設につ いては波及的影響評価の対象となる。例として，定期検查時のオペレーショ ンフロアレイダウンエリアの資機材による使用済燃料プール及び開放され た原子炉に対する影響評価は，発電用原子炉設置変更許可申請（東北電原技第5号）に係る審查資料「02－NP－0272 設計基準対象施設について」の「第

16 条 燃料体等の取扱施設及び貯蔵施設について」のうち，「別添資料 1 使用済燃料プールへの重量物落下について」の検討により，影響がないことを確認している。

上記のことから，事故対処時及び定期検査時の評価は，通常運転時におい て要求される上位クラス施設の機能を考慮した波及的影響評価に包含され る。

## 3．事象検討

3.1 別記 2 に記載された事項に基づく事象検討

別記2に記載された波及的影響に係る 4 つの事項を基に，具体的な検討事象を整理する。
（1）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位 による影響
（1）地盤の不等沈下による影響
－地盤の不等沈下による下位クラス施設の傾きや倒壊に伴う隣接した上位クラス施設への衝突
（2）建屋間の相対変位による影響
－上位クラス施設と下位クラス施設の建屋間の相対変位による隣接し た上位クラス施設への衝突
（2）上位クラス施設と下位クラス施設との接続部における相互影響
－機器•配管系において接続する下位クラス施設の損傷又は隔離に伴 う上位クラス施設側の系統のプロセス変化

- 下位クラス機器•配管系の損傷に伴う機械的荷重の影響
- 電気計装設備において接続する下位クラス施設の損傷に伴う電気回路及び信号伝送回路を介した悪影響
（3）建屋内における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響
－下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴う溢水
（4）建屋外における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響
（1）施設の損傷，転倒，落下等による影響
－下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴う溢水
（2）周辺斜面の崩壊による影響
－周辺斜面の崩壊による土塊の衝突
3.2 地震被害事例に基づく事象の検討

3．2．1 被害事例とその要因の整理
別記 2 に記載された事項のほかに考慮すべき事項がないかを確認する ため，原子力施設情報公開ライブラリ（NUCIA：ニューシア）から，同公開ライブラリに登録された以下の地震を対象に，原子力発電所の被害情報を抽出した。また，女川原子力発電所の不適合情報から地震による被害情報を抽出した。

これまでの被害事例において，下位クラス施設の破損等による波及的影響を含めて上位クラス施設の安全機能が損なわれる事象は確認され ていないため，被害事例は全て上位クラス施設以外のものとなるが，こ れらの地震被害の発生要因（原因）を整理し，3．1項で検討した波及的影響の具体的な検討事象に加えるべき新たな被害要因がないかを検討 した。

被害事例とその要因を整理した結果を添付資料2－1及び2－2に示す。
（対象とした情報）
（1）添付資料2－1

- 宮城県沖地震（女川原子力発電所：平成17年8月）
- 能登半島地震（志賀原子力発電所：平成19年3月）
- 新潟県中越沖地震（柏崎刈羽原子力発電所：平成19年7月）
- 駿河湾地震（浜岡原子力発電所：平成 21 年 8 月）
- 東北地方太平洋沖地震（東海第二発電所，福島第二原子力発電所：平成23年3月＊1）
＊1 NUCIA最終報告を対象とした（福島第二は一部中間報告を対象）。
（2）添付資料 2－2
－東北地方太平洋沖地震（女川原子力発電所：平成23年3月＊2）
＊2 不適合情報は合計 662 件と多数であるため，これまで当社ホーム ページや NUCIA 等で公表している件名について抜粋して添付資料 2－2に示す。事象検討としては 662 件全件について実施しており下記の I～VIに分類されることを確認している。

添付資料2－1 及び2－2の整理の結果，地震被害の発生要因は以下のI ～VIに分類された。
［地震被害発生要因］
I ：地盤の不等沈下（液状化による影響を含む）による損傷
II：建屋間の相対変位による損傷
III ：地震の揺れによる施設の損傷•転倒•落下等
IV：周辺斜面の崩壊
V：使用済燃料プールのスロッシングによる溢水

VI：その他（地震の摇れによる警報発信等，施設の損傷を伴わない I～ V以外の要因等）

## 3．2．2 追加考慮すべき事象の検討

上記 I～VIの要因が3．1項で整理した（1）～（4）の検討事項の対象となっ ているかを第3．2－1表に整理した。

第 3．2－1 表に示すとおり，I～Vの要因は（1）～（4）の検討事項に分類さ れており，いずれの検討事項にも分類されなかった要因は，「VI：その他（地震の揺れによる警報発信等，施設の損傷を伴わない I～V以外の要因等）」であつた。

要因VIについては，地震の揺れによる警報発信，機器の誤動作，避圧弁の動作等の要因並びに地震に起因する津波，火災及び溢水による要因 である。このうち警報発信，機器の誤動作，避圧弁の動作等については，施設の損傷を伴わない要因であることから，波及的影響の観点で考慮す べき検討事項には当たらないと判断した。また，津波，火災及び溢水に よる影響については，3．3項に示すとおり別途影響評価を実施している ことから，ここでは検討の対象外とする。

以上のことから，波及的影響評価における検討事項（1）～（4）について，地震による原子力発電所の被害情報から確認された発生要因を踏まえ ても，特に追加すべき事項がないことが確認された。

第 3．2－1 表 地震被害事例の要因と検討事象の整理

| 番号 | 波及的影響評価における検討事項 |  | 地震被害発生要因 |
| :---: | :---: | :---: | :---: |
| （1） | 設置地盤及び地震応答性状の相違等に起因する不等沈下又 は相対変位による影響 | 地盤の不等沈下による影響 | I |
|  |  | 建屋間の相対変位による影響 | II |
| （2） | 上位クラス施設と下位クラス施設との接続部における相互影響 | 接続部における相互影響 | II ，III |
| （3） | 建屋内における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響 | 施設の損傷，転倒，落下等 による影響 | III，V |
| （4） | 建屋外における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響 | 施設の損傷，転倒，落下等 による影響 | I ，III |
|  |  | 周辺斜面の崩壊による影響 | IV |

## 3.3 津波，火災及び溢水による影響評価

地震に起因する津波，火災及び溢水による安全機能又は重大事故等に対処 するために必要な機能を有する施設への影響については，それぞれ津波側，火災側及び溢水側の説明書で影響評価を実施する。

津波の影響評価では，必要な津波防護対策（S クラス）を講じることによ り，基準津波に対して施設の安全機能又は重大事故等に対処するために必要 な機能が損なわれるおそれがない設計としている。火災の影響評価では，地震による損傷の有無に関わらず，可燃物を内包している機器•配管系の全て が火災源となることを想定して施設の安全機能又は重大事故等に対処する ために必要な機能への影響評価を実施している。また，溢水の影響評価では，水又は蒸気を内包している下位クラスの機器•配管系について，基準地震動 S s に対する耐震性を確認できないものが溢水源となることを想定して施設の安全機能又は重大事故等に対処するために必要な機能への影響評価を実施することから，地震に起因する津波，火災及び溢水による波及的影響に ついては，これらの影響評価に包絡される。

3．4 周辺斜面の崩壊による影響評価
上位クラス施設については，基準地震動 S s による地震力により周辺斜面 の崩壊の影響がないことが確認された場所に設置する。具体的には「原子力発電所耐震設計技術指針 JEAG4601－1987」，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術」及び「宅地防災マニュアルの解説」を参考に，個々 の斜面高さを踏まえて対象斜面を抽出する。

上記に基づく対象斜面の抽出とその耐震安全性評価については，「女川原子力発電所第2号炉耐震重要施設及び常設重大事故等対処施設の基礎地盤及 び周辺斜面の安定性評価について」に記載しており，上位クラス施設の機能 に対して影響がないことを確認している。また，上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設については，周辺斜面の崩壊によ る影響が無いことを確認した。確認方針，状況について添付資料3に示す。
3.5 液状化による影響評価

液状化による影響のらち不等沈下については，検討事項（1）に含まれるが， その他の被害想定として，浮き上がり及び側方流動による影響を確認する。

上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設に ついては，敷地内の地下水位を適切に反映した上で，基準地震動S s に対し て浮き上がり及び側方流動による変位によって，上位クラス施設への影響が ないことを6．4項で確認する。

4．上位クラス施設の確認
波及的影響評価を実施するに当たつて，防護対象となる上位クラス施設は以下のとおりとする。
（1）設計基準対象施設のうち，耐震Sクラス施設（津波防護施設，浸水防止設備及び津波監視設備を含む。）
（2）（1）の間接支持構造物である建物•構築物
（3）屋外重要土木構造物
（4）重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）
（5）（4）が設置される常設重大事故等対処施設（間接支持構造物である建物•構築物）

建屋外の上位クラス施設一覧を第4－1表に，建屋内の上位クラス施設一覧を第 4－2 表に示す。表中に記載の整理番号について附番方法は以下のとおりであ る。

例）$\underline{0} \underline{01}$
（1）（2）
（1）：設備の種類を表すアルファベットの分類記号で，以下のとおり設備種別 ごとに設定する。
0•••屋外設備
E•••機器配管系設備
V•••弁
B•••電気盤，制御盤
I•••計測制御設備
（2）：（1）で分類した設備種別ごとに 001 番から順次附番する。

また，表中では原子炉建屋を R／B，制御建屋を C／B と表記する。設置場所に記載している番号は第6．3－1図に示すエリア番号と対応している。

第4－1表 女川 2 号機 建屋外上位クラス施設一覧表（ $1 / 2$ ）

| 整理 <br> 番号 | 建屋外上位クラス施設 | 区分 |
| :---: | :---: | :---: |
| 0001 | 原子炉補機冷却海水ポンプ | Sクラス <br> SA施設 |
| 0002 | 原子炉補機冷却海水系配管 | Sクラス <br> SA施設 |
| 0003 | RSWポンプ吐出逆止弁 | Sクラス <br> SA施設 |
| 0004 | RSWポンプ吐出弁 | Sクラス <br> SA施設 |
| 0005 | RSWポンプ吐出連絡管止め弁 | Sクラス <br> SA施設 |
| 0006 | 高圧炉心スプレイ補機冷却海水ポンプ | Sクラス SA施設 |
| 0007 | 高圧炉心スプレイ補機冷却海水系スト レーナ | Sクラス <br> SA施設 |
| 0008 | 高圧炬心スブレイ補機冷却海水系配管 | Sクラス <br> SA施設 |
| 0009 | HPSWポンプ吐出逆止弁 | Sクラス <br> SA施設 |
| 0010 | HPSWポンプ吐出弁 | Sクラス <br> SA施設 |
| 0011 | 非常用ガス処理系配管 | Sクラス <br> SA施設 |
| 0012 | 原子炬格納容器下部注水系配管 | SA施設 |
| 0013 | 原子炬補機代替冷却水系配管 | SA施設 |
| 0014 | 原子炉格納容器代替スプレイ泠却系配管 | SA施設 |
| 0015 | 可搬型窒素ガス供給系配管 | SA施設 |
| 0016 | 燃料プール代替注水系配管 | SA施設 |
| 0017 | 原子炬格納容器フィルタベント系配管 | SA施設 |
| 0018 | ガスタービン発電設備燃料移送ポンプ | SA施設 |
| 0019 | ガスタービン発電設備燃料移送系配管 | SA施設 |
| 0020 | 復水貯蔵タンク外部注水入口弁 | SA施設 |
| 0021 | 復水貯蔵タンク | SA施設 |
| 0022 | 復水貯蔵タンク水位計器架台 | SA施設 |
| 0023 | RSWポンプ出口圧力計器架台 | Sクラス |
| 0024 | HPSWポンブ出口圧力計器架台 | Sクラス |
| 0025 | 排気筒 | Sクラス <br> SA施設 |
| 0026 | 防潮堤 | Sクラス |


| 整理番号 | 建屋外上位クラス施設 | 区分 |
| :---: | :---: | :---: |
| 0027 | 防潮壁 | Sクラス |
| 0028 | 逆流防止設備 | Sクラス |
| 0029 | 水密扉 | Sクラス |
| 0030 | 浸水防止蓋 | Sクラス |
| 0031 | 逆止弁付ファンネル | Sクラス |
| 0032 | 貫通部止水処置 | Sクラス |
| 0033 | 津波監視カメラ | Sクラス |
| 0034 | 取水ピット水位計 | Sクラス |
| 0035 | 原子炉建屋 | Sクラス <br> 間接支持構造物 SA施設 |
| 0036 | 制御建屋 | 間接支持構造物 |
| 0037 | 海水ポンプ室 | 屋外重要土木構造物間接支持構造物 SA施設 |
| 0038 | 軽油タンク室 | 屋外重要土木構造物間接支持構造物 |
| 0039 | 復水貯蔵タンク基麾 | SA施設間接支持構造物 |
| 0040 | 軽油タンク連絡ダクト | 屋外重要土木構造物間接支持構造物 |
| 0041 | 排気筒連絡ダクト | 屋外重要土木構造物間接支持構造物 |
| 0042 | 原子炬機器冷却海水配管ダクト | 屋外重要土木構造物間接支持構造物 |
| 0043 | 緊急用電気品建屋 | SA施設間接支持構造物 |
| 0044 | ガスタービン発電設備軽油タンク室 | SA施設間接支持構造物 |
| 0045 | 緊急時対策建屋 | SA施設間接支持構造物 |
| 0046 | 取水口 | 屋外重要土木構造物 SA施設 |
| 0047 | 取水路 | 屋外重要土木構造物 SA施設 |
| 0048 | 3 号機海水熱交換器建屋 | 間接支持構造物 |
| 0049 | 無線連絡設備（屋外アンテナ） | SA施設 |
| 0050 | 衛星電話設備（屋外アンテナ） | SA施設 |
| 0051 | 無線通信装置 | SA施設 |
| 0052 | 取放水路流路縮小工 | Sクラス |

第 4－1 表 女川 2 号機 建屋外上位クラス施設一覧表（2／2）

| 整理 <br> 番号 | 建屋外上位クラス施設 | 区分 |
| :--- | :--- | :---: |
| 0053 | 浸水防止壁 | Sクラス |
| 0054 | 揚水井戸 | 間接支持構造物 |

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（ $1 / 8$ ）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施陪（機器•配管） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| E001 | 称料集合体 | sクラス | R／B | PCV内 |
| E002 | 原子炬圧力容器 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | PCV内 |
| E003 | 炬心支持構造物 | Sクラス <br> SA施設 | R／B | PCV内 |
| E004 | 原子炬压力容器支持権造物 | sクラス | R／B | PCV内 |
| E005 | 原子炬圧力容器付属構造物 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E006 | 原子炬圧力容器内部構造物 | $\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E007 | 使用斎䀆料プール | Sクラス <br> SA施設 | R／B | R－301 |
| E008 | 使用济燃料眝蔵ラック | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－301 |
| E009 | 制御棒•破椇煤料眝蔵ラック | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－301 |
| E010 | 原子炬再循舞ボンブ | Sクラス | R／B | PCV内 |
| E011 | 原子炬再循閙系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E012 | 主蒸気逃がし安全升逃がし升機能用ア キュムレータ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E013 | 主蒸気逃がし安全弁自動減圧機能用ア キュムータ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E014 |  | sクラス | R／B | PCV内 |
| E015 | 主蒸気第二滑能亣用アキュムレータ | sクラス | R／B | R－B104 |
| E016 | 主蒸気系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E017 | 復水給水系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E018 | 残留熱除去系熱交换器 | $\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－104 |
| E019 | 残留熱除去系ポンブ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B304, } \\ \text { B305, B307 } \end{gathered}$ |
| E020 | 残留熱除去系ストレーナ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E021 | 残留敗除去系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E022 | 高圧炬心スプレイ系ポンブ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B306 |
| E023 | 高压炬心スプレイ系ストレーナ | Sクラス <br> SA 施設 | R／B | PCV内 |
| E024 | 高圧炬心スプレイ系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E025 | 低圧炬心スプレイ系ポンブ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | R－B303 |
| E026 | 低压炬ふスプレイ系ストレーナ | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | PCV内 |
| E027 | 低圧炬心スブレイ系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E028 |  | Sクラス <br> SA施設 | R／B | R－B307 |
| E029 | 原子炬隔離時冷却系ポンブ駆動用タービ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B307 |
| E030 | 原子炬陦皠時冾却系配管 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E031 | 原子炬補機冾却水系熱交换器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$ |
| E032 | 原子炬補機份却水ポンブ | Sクラス <br> SA施設 | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| E033 | 原子炬補機冷却水サージタンク | Sクラス <br> SA施設 | R／B | R－301 |
| E034 | 原子炬補機洽却水系配管 | $\begin{aligned} & \text { Sy ラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E035 | 原子炬補機洽却海水系ストレーナ | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$ |
| E036 | 原子炬補機汾却海水系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E037 | 高圧炻心スブレイ補機洽却水系熱交換器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B310 |
| E038 | 高圧炬心スプレイ補機给却水ポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B310 |
| E039 | 高圧炬心スブレイ補機冷却水サージタン ク | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－206 |
| E040 | 高圧炬心スプレイ補機洽却水系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E041 | 高圧炬心スプレイ補機洽却海水系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E042 | 原子炬冾却材净化系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E043 | 制御楼駆動機構 | $\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E044 | 水圧制御コニット | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B103, } \\ \text { B106 } \end{gathered}$ |
| E045 | 制御栲驃動水圧系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |


| 整理 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| E046 | ほう酸水注入系ポンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－206 |
| E047 | ほう酸水注入系拧蔵タンク | Sクラス <br> SA施設 | R／B | R－206 |
| E048 | ほう酸水注入系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E049 | 放射性ドレン移送系配管 | sクラス | R／B | － |
| E050 | 燃料プール洽却浄化系ポンプ | SA施設 | R／B | R－105 |
| E051 | 鿭料プール洽却浄化系熱交撸器 | SA施設 | R／B | R－105 |
| E052 | 燃料プール洽却浄化系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E053 | 换気空調補機常用洽却水系配管 | sクラス | R／B | － |
| E054 | 換気空澗補機彗常用冾却水系配管 | sクラス | $\begin{aligned} & \mathrm{R} / \mathrm{B} \\ & \mathrm{C} / \mathrm{B} \end{aligned}$ | － |
| E055 | 補給水系配管 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E056 | 高圧窒素かス供給奚配管 | Sクラス <br> SA施設 | R／B | － |
| E057 | 所内用圧縮空気系配管 | sクラス | R／B | － |
| E058 | 㖕装用压縮空気系配管 | sクラス | R／B | － |
| E059 | サンブリンク配管 | Sクラス | R／B | － |
| E060 | 高圧窒素ガス供給系窒素ガスボンベラッ 为 | sクラス | R／B | $\begin{gathered} \mathrm{R}-110, \\ 111 \end{gathered}$ |
| E061 | 中央制御室送風機 | Sクラス $\mathrm{SA} \text { 施設 }$ | C／B | $\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$ |
| E062 | 中央制御室排風機 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | $\begin{gathered} \hline \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$ |
| E063 | 中央制御室再循澴送風機 | Sクラス <br> SA施設 | C／B | $\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$ |
| E064 | 中央制御室再循澴フイルタ装置 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | C－B201 |
| E065 | ドライウェル | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV |
| E066 | ドライウェルバント開口部 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E067 | サプレッションチェンバ | Sクラス <br> SA 施設 | R／B | PCV |
| E068 | ボックスサポート | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B302 |
| E069 | 機器搬出入用ハッチ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV |
| E070 | 逃がし安全弁缎出入口 | sクラス <br> SA施設 | R／B | PCV |
| E071 | 制御枰䭼動機機搬出入口 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV |
| E072 | 所員用エアロック | Sクラス <br> SA施設 | R／B | PCV |
| E073 | 原子炉格納容器配管貫通部 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV |
| E074 | 原子炉格納容器電気配線貫通部 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | PCV |
| E075 | ダウンカマ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E076 | バント管 | Sクラス <br> SA施設 | R／B | PCV |
| E077 | ベント管ベローズ | $\begin{array}{\|c} \text { Sクラス } \\ \text { SA施設 } \end{array}$ | R／B | PCV |
| E078 | ベントヘッダ | $\begin{gathered} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{gathered}$ | R／B | PCV内 |
| E079 | 真空破壊装置 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| E080 | サプレッションチェンバスプレイ管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | PCV内 |
| E081 | ドライウェルスブレイ管 | Sクラス SA施設 | R／B | PCV内 |
| E082 | 原子炉格納容器スタビライザ | $\begin{array}{\|c} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$ | R／B | PCV内 |
| E083 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| E084 | 非常用力ス処理系排風幾 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| E085 | 非常用かス処理系空氧乾㷘装置 | Sクラス SA施設 | R／B | R－205 |
| E086 | 非常用かス処理系フィルタ装置 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| E087 | 非常用力ス处理系配管 | $\begin{array}{\|c} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$ | R／B | － |
| E088 | 可燃性カス濃度制御系再結合装置ブロワ | sクラス | R／B | R－206 |
| E089 | 可燃性力ス濃度制御系再結合装置 | sクラス | R／B | R－206 |
| E090 | 可燃性カス嘖度制御系配管 | sクラス | R／B | － |

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（2／8）

| $\begin{aligned} & \text { 整理 } \end{aligned}$ | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 設置场所 |
| :---: | :---: | :---: | :---: | :---: |
| E091 | 非常用ディーゼル発電設備非常用ディー ぜル機関 | Sクラス <br> SA施設 | R／B | $\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$ |
| E092 | 非常用ディーゼル発電設橵空気だめ | Sクラス <br> SA施設 | R／B | $\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$ |
| E093 | 非常用ディーゼル発電設恠燃料デイタン ク | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－203 |
| E094 | 非常用ディーゼル発電設備非常用ディー ぜル発電機 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | $\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$ |
| E095 | 非常用ディーゼル発電設備清水膨張タン ク | $\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\underset{M 203}{\mathrm{R}-\mathrm{M} 201,}$ |
| E096 | 非常用ディーぜル発電設偳清水加熱器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \\ \hline \end{gathered}$ |
| E097 | 非常用デイーゼノ発電設儲清水洽却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \hline \text { R-B108, } \\ \text { B110 } \\ \hline \end{gathered}$ |
| E098 | 非常用ディーぜル涨電設葓滑滑油加熱器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| E099 | 非常用ディーゼル発電設備清水加熱器ポ ンブ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| E100 | 非常用ディーゼル発電設備润滑油ブライ ミングポンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| E101 | 非常用ディーゼル発電設備䀳滑油サンプ タンク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-109, } \\ 111 \end{gathered}$ |
| E102 | 非常用ディーゼル涨電設偁滑滑油洽却器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| E103 | 非常用ディーゼル発電設備㵎滑油フィル夕 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| E104 | 非常用ディーゼル発電設借燃料油フィル夕 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | $\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$ |
| E105 | 非常用ディーゼル発電設備燃料移送ポン プ | $\begin{aligned} & \text { SYラス } \\ & \text { SA施設 } \end{aligned}$ | 軽油タンク室 | D0－B102 |
| E106 | 非常用ディーゼル発電設恠燃料移送系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | $\begin{gathered} \text { R/B } \\ \text { 軽油タンク室 } \end{gathered}$ | － |
| E107 | 高圧炬ふスプレイ系ディーゼル発電設備高圧灯心スブレイ系ディーゼル機関 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E108 | 高圧炬心スプレイ系ディーゼル発電設備空気だめ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E109 | 高圧炬心スブレイ系ディーゼル発電設備燃料デイタンク | $\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－203 |
| E110 | 高圧炬心スブレイ系ディーゼル発電設備高圧炬心スブレイ系ディーゼル発電機 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E111 | 高圧炬心スブレイ系ディーゼル発電設備清水髫張タンク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－M202 |
| E112 | 高圧炬心スプレイ系ディーゼル発電設備清水加熱器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E113 | 高圧炬心スプレイ系ディーゼル発電設備清水洽却器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E114 | 高圧炬心スブレイ系ディーゼル発電設備眮滑油加熱器 | $\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E115 | 高圧炬心スブレイ系ディーゼル発電設備清水加熱器ポンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E116 | 高圧炉心スブレイ系ディーゼル発電設備潤滑油プライミングポンブ | Sクラス <br> SA施設 | R／B | R－110 |
| E117 | 高圧炬ふスプレイ系ディーゼル発電設備润滑油洽却器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E118 | 高圧炬心スプレイ系ディーゼル発電設備燃料油フィルタ | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | R－110 |
| E119 | 高圧炬心スブレイ系ディーゼル発電設僙燃料移送ボンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 軽油タンク室 | D0－B102 |
| E120 | 高圧炬心スブレイ系ディーゼル発電設備発電機軸受閴滑油洽却器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| E121 | 高圧炬心スブレイ系ディーゼル発電設備燃料移送系配管 | $\begin{aligned} & \text { Sクララス } \\ & \text { SA施設 } \end{aligned}$ | $\begin{aligned} & \text { 軽油タンク } \end{aligned}$ | － |
| E122 | 㹩油タンク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | 軽油タンク室 | D0－B101 |
| E123 | SGTS室空湘機 | sクラス | R／B | R－205 |
| E124 |  | Sクラス | R／B | R－206 |
| E125 | CAMS室空調機 | sクラス | R／B | R－205 |
| E126 | FPCポンプ室空詷機 | Sクラス | R／B | R－105 |
| E127 | LPCSポンプ室空調機 | sクラス | R／B | R－B203 |
| E128 | HPCSポンプ室空澗機 | sクラス | R／B | R－B206 |
| E129 | RHRポンプ室空墭機 | sクラス | R／B | $\begin{array}{\|c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \\ \hline \end{array}$ |
| E130 | D／G室非常用給気ケーシンク | sクラス | R／B | R－303 |
| E131 | 换気空澗補機非常用洽却水系洽水ポンプ | Sクラス | R／B | R－202 |
| E132 | 換気空懱補機非常用洽却水系洽涑機 | Sクラス | R／B | R－202 |
| E133 | 原子炬補機（A）宔送風機 | Sクラス | R／B | R－203 |
| E134 | 原子炬補機（A）室給気ヶーシング | sクラス | R／B | R－203 |
| E135 | 原子炉補機（HPCS）室送風機 | sクラス | R／B | R－203 |


| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| E136 | 原子炬補機（HPCS）室排風機 | sクラス | R／B | R－203 |
| E137 | 原子炬補機（HPCS）室給気ケーシンク | sクラス | R／B | R－203 |
| E138 | 原子炉補機（B）室送風機 | Sクラス | R／B | R－203 |
| E139 | 原子炬補機（B）室給気ケーシンク | sクラス | R／B | R－203 |
| E140 | D／G（ $A$ ）室非常用送風機 | sクラス | R／B | R－203 |
| E141 | $\mathrm{D} / \mathrm{G}(\mathrm{HPCS})$ 室非常用送風機 | sクラス | R／B | R－203 |
| E142 | $\mathrm{D} / \mathrm{G}(\mathrm{B})$ 室非常用逆風機 | sクラス | R／B | R－203 |
| E143 | 原子炉補機（ $A$ ）室排風機 | sクラス | R／B | R－M203 |
| E144 | 原子炉補機（ ） 室排風機 $^{\text {a }}$ | sクラス | R／B | R－M201 |
| E145 | RCWポンプ（A）室空敛機 | sクラス | R／B | R－B308 |
| E146 | RCWポンプ（B）室空敛機 | sクラス | R／B | R－B309 |
| E147 | 中央制御室給気ケーシンク | Sクラス | C／B | $\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$ |
| E148 | 䛨測制御電源室給気ケーシング | sクラス | C／B | $\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$ |
| E149 |  | Sクラス | C／B | C－B201 |
| E150 | 計澌制狏電源 $(A)$ 室排風機 | Sクラス | C／B | C－B201 |
| E151 | 計測制狏電源（ $B$ ）室送風機 | sクラス | C／B | C－B202 |
| E152 |  | sクラス | C／B | C－B202 |
| E153 | 中央制御室換気空䛛系多クト | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | － |
| E154 | 計測制御電源（A）宔换気空澗系ダクト | sクラス | C／B | － |
| E155 | 計测制狏電源（B）室換気空調系多クト | sクラス | C／B | － |
| E156 | スキマサージタンク | SA施設 | R／B | R－301 |
| E157 | 高圧代替注水系タービンポンブ | SA施設 | R／B | R－B207 |
| E158 | 高圧代替注水系配管 | SA施設 | R／B | － |
| E159 | 代耆高圧窒素力ス供給系配管 | SA施設 | R／B | － |
| E160 | 復水移送込ンブ | SA施設 | R／B | R－B207 |
| E161 | $\begin{aligned} & \text { 原子炉格納容器フィルタベント系フィル } \\ & \text { 装装 } \end{aligned}$ | SA施設 | R／B | R－106 |
| $E 162$ | 原子炬格納容器フイルタベント系フィル 夕装置出口側圧力開放板 | SA施設 | R／B | R－106 |
| E163 | 原子炉格納容器フイルタバント系配管 | SA施設 | R／B | － |
| E164 | 静的能媒式水素再結合装置 | SA施設 | R／B | R－301 |
| ${ }^{\text {E165 }}$ | ガスタービン発電設備機関•発電機 | SA施設 | $\begin{gathered} \text { 緊急用電気品 } \\ \text { 屋 } \end{gathered}$ | E－101 |
| E166 | カススタービン発電設偳怪油タンク | SA施設 | ガスタービン発電設備軽油タンク室 | E0－B101 |
| ${ }^{16} 167$ | ガスタービン発電設備燃料移送系配管 | SA施設 | ガスタービン発電設備軽油タンク室緊急用電気品建屋 | － |
| E168 | カスタービン発電設偙燃料小出槽 | SA施設 | $\begin{gathered} \text { 緊急用電気品 } \\ \text { 建 } \\ \hline \end{gathered}$ | E－101 |
| E169 | 中央制御室しやへい壁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | c－301 |
| E170 | 中央制饰室待磁所遮蔽 | SA施設 | C／B | C－301 |
| E171 | 中央制御室待避所加圧設備 | SA施設 | C／B | C－302 |
| E172 | 緊急時対策所遮蔽 | SA施設 | 緊急時対策建屋 | TS－B203 |
| E173 | 緊急時対策所非常用送風機 | SA施設 | 緊急時対策建屋 | TS－102 |
| E174 | 緊急時対策所非常用フィルタ装置 | SA施設 | 緊急時対策建屋 | TS－102 |
| E175 |  | SA施設 | 緊急時対策建屋 | TS－B102 |
| E176 | 緊急時対策所换気空調系ダクト | SA施設 | 緊急時対策建屋 | － |
| E177 | 緊急時対策所鏗油タンク | SA施設 | 緊急時対策建屋 | TS－106 |
| E178 | 緊急時対策所燃料移送系配管 | SA施設 | 緊急時対策建屋 | － |
| E179 | 代替陮噮洽却ポンフ | SA施設 | R／B | R－B301 |
| E180 | 原子炬建屋プローアウトパネル | SA施設 | R／B | R－302 |

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（3／8）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| E181 | 原子炬建屋プローアウトパネル閉止装置 | SA 施設 | R／B | R－302 |
| E182 | 直流駆動低圧注水系ポンブ | SA施設 | R／B | R－B310 |
| E183 | 直流駆動低圧注水系配管 | SA施設 | R／B | － |
| E184 | 遠隔手動升操作設備 | SA施設 | R／B | $\begin{gathered} \text { R-111, } \\ \text { B109 } \end{gathered}$ |
| E185 | 緊急時対策所非常用給排気配管 | SA施設 | 緊急時対策建屋 | － |
| E186 | 原子炬棟換気空調系ダクト （二次格納施設バウンダリ） | Sクラス | R／B | － |
| E187 | 燃料プール代替注水系配管 | SA施設 | R／B | － |
| E188 | 燃料プールスプレイ系配管 | SA施設 | R／B | － |
| E189 | 原子炬補機代替冾却水系配管 | SA施設 | R／B | － |
| E190 | 原子炬格納容器下部注水系配管 | SA施設 | R／B | － |
| E191 | 原子炬格納容器代替スブレイ洽却系配管 | SA施設 | R／B | － |
| E192 | 代替循澴洽却系配管 | SA施設 | R／B | － |
| E193 | 可搬型空素ガス供給系配管 | SA施設 | R／B | － |


| 整理号 | 建屋内上位クラス施陪（弁） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| V001 | 主蒸気逃がして安全弃 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| v002 | 主蒸気第一隔髉并 | sクラス | R／B | PCV内 |
| v003 | 主蒸気第二隔雎尣 | sクラス | R／B | R－B104 |
| v004 |  | sクラス | R／B | PCV内 |
| v005 | 主蒸気ドレンライン第二限荿亣 | sクラス | R／B | R－B104 |
| vo06 | 原子炉給水逆止弁 | sクラス | R／B | R－B104 |
| v007 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B104 |
| V008 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| v009 | SLCタンク出口弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－206 |
| v010 | SLC注入電動弁 | Sクラス <br> SA施設 | R／B | R－206 |
| v011 | RHRポンプS／（吸込弁 | Sクラス <br> SA施設 | R／B | $\begin{array}{\|c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$ |
| V012 | RHRポンプ吐出逆止弁 | Sクラス <br> SA施設 | R／B | $\begin{array}{c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$ |
| V013 | RHR熱交换器バイパス弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－104 |
| V014 |  | Sクラス <br> SA施設 | R／B | $\underset{\substack{\text { R-MB102 }}}{ }$ |
| v015 | RHR LPCI 注入柕験可能逆止弁 | Sクラス <br> SA施設 | R／B | PCV内 |
| V016 | RHR熱交换器出口升 | sクラス <br> SA施設 | R／B | R－104 |
| V017 | RHR格納容器スブレイ流量讕整弃 | Sクラス <br> SA施設 | R／B | R－105， 107 |
| V018 |  | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－105， 107 |
| V019 |  | Sクラス <br> SA施設 | R／B | R－MB201 |
| vo20 | RHR 停止時冷却吸込第一埛皿尣 | Sクラス <br> SA施設 | R／B | PCV内 |
| v021 | RHR停止時洽却吸込第二筬䧹尣 | Sクラス <br> SA施設 | R／B | R－MB201 |
| V022 | RHRポンプ停止時洽却吸込弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B304, } \\ \text { B305 } \end{gathered}$ |
| vo23 | RHR停止時冾却注入䧩能弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB201 |
| v024 | RHR停止時冷却試検可能逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | PCV内 |
| v025 | RHRヘッドスプレイ注入啊雎尣 | sクラス | R／B | R－105 |
| v026 | RHRヘッドスブレイ注入逆止升 | sクラス | R／B | PCV内 |
| v027 | RHRポンプミニマムフロー甤止弁 | sクラス | R／B | $\begin{array}{c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$ |
| V028 | RHRポンプミニマムフロー弁 | Sクラス <br> SA施設 | R／B | R－MB201 |
| v029 | LPCSポンプS／吸达弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B303 |
| v030 | LPCSポンプ吐出逆止弁 | Sクラス <br> SA施設 | R／B | R－B303 |
| v031 | LPCS注入㞺睢弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB103 |
| v032 | LPCS注入ライン試験可能通止弁 | Sクラス <br> SA施設 | R／B | PCV内 |
| v033 | LPCSポンプミニマムフロー逆止弁 | Sクラス | R／B | R－B303 |
| v034 | LPCSポンプミニマムフロー弁 | sクラス | R／B | R－MB201 |
| v035 | HPCSポンブCST吸达弁 | Sクラス <br> SA施設 | R／B | R－B306 |
| v036 | HPCSポンプCST吸込逆止弃 | Sクラス <br> SA施設 | R／B | R－B306 |
| v037 |  | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB103 |
| v038 | HPCS注入ライン試験可能逆止弁 | Sクラス <br> SA施設 | R／B | PCV内 |
| v039 | HPCSポンプ $\mathrm{S} /$ 吸达弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B306 |
| v040 | HPCSポンプS／C吸込逆止弁 | Sクラス <br> SA施設 | R／B | R－B306 |
| v041 | HPCSポンプCST侧ミニマムフロー第一弁 | sクラス | R／B | R－MB201 |
| V042 | HPCSポンプS／C侧ミニマムフロー弁 | sクラス | R／B | R－MB201 |
| V043 | RCICポンプCST吸达弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B307 |
| V044 | RCICポンブCST吸达逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B307 |
| v045 | RCIC注入弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB201 |

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（4／8）

| 整理 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 設置场所 |
| :---: | :---: | :---: | :---: | :---: |
| v046 | RCIC注入ライン識酫可能逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB201 |
| V047 | RCICポンブS／C吸込升 | sクラス | R／B | R－B307 |
| V048 | RCICポンプS／C吸达逆止弁 | sクラス | R／B | R－B307 |
| v049 |  | Sクラス <br> SA施設 | R／B | PCV内 |
| v050 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－105 |
| v051 | RCICタービン止め弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B307 |
| v052 | RCICタービン排気ライン逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B202 |
| v053 | RCICタービン排気ライン陑催亣 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B202 |
| V054 | RCICポンプミニマムフロー逆止弁 | Sクラス | R／B | R－B307 |
| v055 | RCICポンプミニマムフロー弁 | sクラス | R／B | R－B202 |
| v056 | RCIC洽却水ライン止め升 | Sクラス | R／B | R－B307 |
| V057 | RCIC洽却水ライン圧力罵整弁 | Sクラス | R／B | R－B307 |
| v058 | RCIC真空ポンプ吐出ライン逆止弁 | sクラス | R／B | R－B202 |
| v059 |  | Sクラス | R／B | R－B202 |
| v060 | CUWスロライン第一谝雖弁 | Sクラス | R／B | PCV内 |
| v061 | CUWスロライン第二隃離弁 | sクラス | R／B | R－MB201 |
| V062 | CUW注入ライン逆止升 | sクラス | R／B | R－MB201 |
| V063 | FPC鴙料プール再循睘逆止并 | Sクラス <br> SA施設 | R／B | R－105 |
| V064 | FPC鿭料プール注入逆止弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－301 |
| v065 | D／W LCWサンプ第一陑墭弁 | sクラス | R／B | PCV内 |
| v066 | D／W LCWサンプ第二陑瀊弁 | sクラス | R／B | R－MB201 |
| v067 | D／W HCWサンブ第一陑衄交 | sクラス | R／B | PCV内 |
| v068 | D／W HCWサンプ第二陑瀊弁 | sクラス | R／B | R－MB201 |
| V069 | FPMUUW然料ナール注入弁 | sクラス | R／B | R－106 |
| v070 |  | sクラス | R／B | R－B105 |
| v071 |  | Sクラス | R／B | PCV内 |
| V072 |  | sクラス | R／B | R－B105 |
| v073 | 中央制御室給気汾却コイル温度铖節升 | sクラス | R／B | C－B202 |
| v074 | HECCY往還差圧調節弁 | Sクラス | R／B | R－202 |
| v075 | 詁測制御電源室給気洽却コイル温度調節 而 | sクラス | R／B | $\begin{gathered} \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$ |
| v076 | 原子炻補機室給気洽却コイル温度調節弁 | sクラス | R／B | R－203 |
| v077 | RCWポンブ跇出逆止弁 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v078 | RCW熱交換器冷却水出口弁 | Sクラス SA施設 | R／B | R－B308， B309 |
| v079 | RCW洽却水供給温度熱交换器镝節升 | Sクラス SA施設 | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v080 | RCW洽却水供給温度調節升後弃 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v081 | RCW洽却水供給温度ポンプ調節弁 | Sクラス | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v082 | RHR熱交換器冷却水出口弁 | $\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$ | R／B | R－104 |
| V083 | RCWサージタンク非常用補給水弁 | Sクラス | R／B | R－301 |
| v084 | 非常用D／G洽却水出口弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$ |
| v085 | RCW常用洽却水緊急しゃ断异 | sクラス | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| V086 | RCW常用洽却水供給側分㬚升 | sクラス | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v087 | RCW常用洽却水戻り側分敞弁 | sクラス | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$ |
| V088 | RCW常用洽却水戻り側逆止并 | sクラス | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| v089 |  | Sクラス | R／B | R－MB201 |
| v090 |  | sクラス | R／B | PCV内 |


| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| v091 |  | sクラス | R／B | PCV内 |
| vo92 |  | sクラス | R／B | R－MB201 |
| v093 | 原子炉補機冷却海水系ストレーナ旋回弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$ |
| V094 | RSIIストレーナブロー升 | sクラス | R／B | $\begin{gathered} \mathrm{R}-\mathrm{B} 308, \\ \text { B309 } \end{gathered}$ |
| v095 | HPCWサージタンク非常用補給水升 | sクラス | R／B | R－206 |
| v096 | HPIN非常用室素かスス昇 | sクラス <br> SA施設 | R／B | R－110， 111 |
| V097 | HPIN常用非常用窒素かス連絡弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－106， 107 |
| v098 | 非常用カス処理系入口升 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－301 |
| v099 | 非常用力ス处理系空気喤燥装置入口弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| V100 | 非常用かス処理系フイルタ装置出口升 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| $V_{101}$ | パージ用空気供給啲滑雉交 | sクラス | R／B | R－B103 |
| ${ }^{\text {V102 }}$ | D／Nパージ用入口隔㒀弁 | sクラス | R／B | R－MB201 |
| ${ }^{\text {V103 }}$ |  | sクラス | R／B | R－MB201 |
| ${ }^{\text {V104 }}$ | 格納容器外真空逃がし逆止䧀鹤尣 | sクラス | R／B | R－MB201 |
| V105 |  | sクラス | R／B | R－MB201 |
| ${ }^{\text {V106 }}$ |  | sクラス | R／B | R－MB201 |
| V107 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB201 |
| ${ }^{\text {V108 }}$ |  | sクラス | R／B | R－MB201 |
| V109 | パージ用室素力ス供給侀第二帢㦃弁 | sクラス | R／B | R－B103 |
| V110 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－107 |
| V111 |  | sクラス | R／B | R－205 |
| V112 | ベント用HVAC側限催尣 | sクラス | R／B | R－107 |
| V113 | S／Cベント用出口谝滴弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | R－MB201 |
| ${ }^{\text {V114 }}$ |  | sクラス | R／B | R－107 |
| V115 |  | sクラス | R／B | R－MB201 |
| V116 |  | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| V117 | PCV耐圧強化ベント用連絡配管止め弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| ${ }^{\text {V118 }}$ |  | sクラス | R／B | R－106， 107 |
| V119 |  | sクラス | R／B | R－MB201 |
| V120 | RCICタービン入口蒸気ドレンライン第一弁 | sクラス | R／B | R－B307 |
| V121 | RHRヘッドスプレイライン洗浄流量铫節弃 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB101 |
| V122 | RHR B系格納容器椧却ライン洗浄流量調整弁 | SA施陪 | R／B | R－107 |
| ${ }^{\text {V123 }}$ | 原子炉再循澴ポンプ吐出弁 | sクラス | R／B | PCV内 |
| V124 | RHR詞験用铖整尣 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－MB201 |
| ${ }^{\text {V125 }}$ | CRR復水入口升 | SA施陪 | R／B | R－3211 |
| V126 | WUWCサンブリング取出止め弁 | SA施設 | R／B | R－B207 |
| V127 | $\begin{aligned} & \text { 復水眝蔵タンク常用, 非常用給水管連絡 } \\ & \text { ライン升 } \end{aligned}$ | SA施設 | R／B | R－B307 |
| V128 | FPMUWポンブ吸达弁 | SA施設 | R／B | R－B307 |
| V129 | 復水貯蔵タンク常用，非常用給水管連絡 ライン逆止弁 | SA施設 | R／B | － |
| ${ }^{\text {V130 }}$ | R／B 1F 緊急時阿䉮交 | SA施設 | R／B | R－104 |
| V131 | 緊急時原子炉北側外部注水入口升 | SA施設 | R／B | R－109 |
| V132 | T／B 緊急時䧟髉弁 | $\mathrm{SA}_{\text {施設 }}$ | R／B | R－B207 |
| ${ }^{\text {V133 }}$ | 緊急時原子炉束側外部注水入口弁 | SA施設 | R／B | R－111 |
| ${ }^{\text {V134 }}$ |  | SA施設 | R／B | R－206 |
| V135 | FCVS窒素供給ライン止め并 | SA施設 | R／B | － |

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（5／8）

| $\begin{aligned} & \text { 䔩理号 } \end{aligned}$ | 建屋内上位クラス施設（并） | 区分 | 設置建屋 | 設置䀛所 |
| :---: | :---: | :---: | :---: | :---: |
| V136 | FCVS㑡PSA窒素供給ライン元弁 | SA 施設 | R／B | － |
| V137 | S／C側PSA空素供給ライン第一隔離升 | SA 施設 | R／B | R－B202 |
| V138 | FPC熱交換器入口升 | SA 施設 | R／B | R－105 |
| V139 | FPCろ過脱塩装置バイパス升 | SA 施設 | R／B | R－M204 |
| V140 | FPCろ過哾塩装置出口弁 | SA施設 | R／B | R－M204 |
| V141 | FPCろ過脱塩装置入口第一升 | SA施設 | R／B | R－M204 |
| V142 | FPCろ過脱塩装置入口第二升 | SA施設 | R／B | R－M204 |
| V143 | 中央制御室換気空調系ダンパ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | － |
| V144 | HPAC注入升 | SA 施設 | R／B | R－B207 |
| V145 | HPACタービン止め弁 | SA 施設 | R／B | R－B207 |
| V146 | RCIC蒸気供給ライン分離弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B103 |
| V147 | FPC熱交換器冷却水出口升 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－105 |
| V148 | HECW泠凁機冷却水圧力調節异 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| V149 | RCW代替冷却システム用電動仕切弁 | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － |
| V150 | FCVS排水移送ライン第二隔離弁 | SA 施設 | R／B | － |
| V151 | FCVS排水移送ライン第一隔離弁 | SA 施設 | R／B | － |
| V152 | 原子炬格納容器下部注水用復水流量調整弁 | SA施設 | R／B | R－B103 |
| V153 | 原子炬格納容器下部注水用復水仕切弁 | SA施設 | R／B | R－B103 |
| V154 | 代替制御棒挿入機能用電磁异 | SA施設 | R／B | $\begin{gathered} \text { R-B103, } \\ \text { B106 } \\ \hline \end{gathered}$ |
| V155 | HPAC 蒸気供給ライン分離弁 | SA施設 | R／B | R－B103 |
| V156 | 代替HPIN室素排気出口弁 | SA 施設 | R／B | R－107 |
| V157 | 代替HPIN第一隔離升 | SA施設 | R／B | R－107 |
| V158 | DCLIポンブ吸込弁 | SA施設 | R／B | R－B306 |
| V159 | DCLI注入流量調整弁 | SA施設 | R／B | R－B306 |
| V160 | R／B BIF 緊急時隔離弁 | SA施設 | R／B | R－B106 |
| V161 | RCW代替冷却水不要負荷分離升 | SA施設 | R／B | $\begin{gathered} \text { R-MB301, } \\ \text { MB202 } \end{gathered}$ |
| V162 | RHR格納容器代替スプレイ注入元弁 | SA施設 | R／B | R－109， 111 |
| V163 | 代替循澴洽却ポンブ吸込弁 | SA施設 | R／B | R－B302 |
| V164 | 代替循澴洽却ポンプ流量調整弁 | SA 施設 | R／B | R－B302 |
| V165 | 代替看澴洽却ポンブバイパス弁 | SA施設 | R／B | R－B301 |
| V166 | RHR MUWC連絡第一升 | SA 施設 | R／B | R－104 |
| V167 | RHR MUWC連絡第二弁 | SA 施設 | R／B | R－104 |


| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（電気盤等） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| B001 | 460v制䛫建屋モータコントロールセンタ | Sクラス SA施設 | C／B | C－B105 |
| B002 | ${ }^{125 V}$ 蓄電池 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | $\begin{aligned} & C / B \\ & \mathrm{R} / \mathrm{B} \end{aligned}$ | $\begin{gathered} \text { C-B205, B102, } \\ \text { B106, MB101, } \\ \text { R-M202 } \end{gathered}$ |
| B003 | 125V直流受電パワーセンタ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | C－B105 |
| B004 | 125 V 充電器盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | $\begin{aligned} & C / B \\ & \text { R/B } \end{aligned}$ | $\begin{aligned} & \text { C-B105 } \\ & \text { R-B109 } \end{aligned}$ |
| B005 | ${ }^{125 v}$ V直流主母綵盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | $\begin{aligned} & \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \end{aligned}$ | $\begin{gathered} \text { C-B105 } \\ \text { R-B109, } 101 \end{gathered}$ |
| B006 | ${ }^{125 V}$ 直流分電盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | $\begin{aligned} & C / B \\ & \mathrm{R} / \mathrm{B} \end{aligned}$ | $\begin{aligned} & \text { C-B105 } \\ & \text { R-B109 } \end{aligned}$ |
| B007 | 無停電交流電源用静止型無停電電源䧇置 | sクラス | C／B | C－B105 |
| B008 | 交流 120 V 無佇電交流分電艋 | sクラス | C／B | C－B105 |
| B009 | 中央制御室用電源切替艦 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | C－B105 |
| B010 | 中央制御室 $120 V$ 交流分電艋 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | C－B105 |
| B011 | 6.9 kV メタタラ | sクラス <br> SA施設 | R／B <br> 緊急用電気品 <br> $\substack{\text { 緊急時対策建屋 }}$ | $\begin{gathered} \text { R-B107, B109, } \\ 204, \text { E- } \\ \text { B101, TS-104 } \end{gathered}$ |
| B012 | 460Vパワーセンタ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \hline \text { R-B107, B109, } \\ 204 \\ \hline \end{gathered}$ |
| B013 | 460V原子炉建屋モータコントロールセン夕 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{array}{r} \text { R-B107, B110, } \\ 110,111,204 \\ \hline \end{array}$ |
| B014 | 125V直流RCICモータコントロールセンタ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B102 |
| B015 | 高压炬心スプレイ系120V交流分電盤2H | Sクラス | R／B | R－B109 |
| B016 | 原子炬洽却制御盤 | sクラス | C／B | c－301 |
| B017 | 原子炬制御媻 | sクラス | C／B | c－301 |
| B018 | 原子炬補機制御艋 | Sクラス | C／B | c－301 |
| B019 | 原子炬保讙系盤 | sクラス | C／B | c－301 |
| B020 |  | sクラス | C／B | c－301 |
| B021 | 原子炬系プロセス計装盤 | sクラス | C／B | c－301 |
| B022 | 残留熱除去系（A）－低圧炻心スプレイ系盤 | sクラス | C／B | c－301 |
| B023 | 残留熱除去系（B•C）盤 | sクラス | C／B | c－301 |
| B024 | 高圧炬心スプレイ系盤 | sクラス | C／B | c－301 |
| B025 |  | Sクラス | C／B | c－301 |
| B026 | 格納容器第一缡㕍升盤 | sクラス | C／B | c－301 |
| B027 | 格納容器第二附雜升盤 | Sクラス | C／B | c－301 |
| B028 | 自動减压系盤 | sクラス | C／B | c－301 |
| B029 | FPC•FPMUW•SLC MUWC MUWP制御盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | c－301 |
| B030 | トリップチャンネル盤 | sクラス | C／B | c－301 |
| B031 | FCS－SGTS盤 | Sクラス | C／B | c－301 |
| B032 | サブレッションプール水温度記睩監視盤 | Sクラス | C／B | c－301 |
| B033 |  | Sクラス | C／B | c－301 |
| B034 | 所内補機制御盤 | sクラス | C／B | c－301 |
| B035 | タービン発電機制循媻 | sクラス | C／B | c－301 |
| B036 | 所内電源制御媻 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | c－301 |
| B037 | 非常用换気空验系䲍 | Sクラス | C／B | c－301 |
| B038 | HPCS 系非常用换気空開系盤 | sクラス | C／B | c－301 |
| B039 | RCW－RSW盤 | sクラス | C／B | c－301 |
| B040 | RCICタービン制御獘 | Sクラス | C／B | C－B105 |
| B041 | 漏えい検出系盤 | Sクラス | C／B | c－301 |
| B042 | 㖕算機ハッフア補助りレー盤 | sクラス | C／B | c－301 |
| B043 | M／C補助継電器媻 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | c－301 |
| B044 | AM制御䇥 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | c－301 |

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（6／8）

| 整理 | 建屋内上位クラス施設（電気艋等） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| B045 | 中央制御室外原子炉停止装置盤 | sクラス | C／B | C－B103 |
| B046 | FCS SCR盤 | sクラス | R／B | R－B107，B109 |
| ${ }^{\text {B047 }}$ | 中央制御室端子盤 | Sクラス | C／B | $\begin{gathered} \mathrm{C}-201,202, \\ 203 \end{gathered}$ |
| B048 | 非常用デイーゼル発電機制御媻 | Sクラス <br> SA施設 | R／B | R－109， 111 |
| B049 | 非常用ディーゼル発電機補機制㵌轞 | Sクラス <br> SA施設 | R／B | R－109， 111 |
| B050 | 非常用ディーゼル発電機シリコン整流器 | Sクラス <br> SA施設 | R／B | R－109， 111 |
| B051 | 非常用ディーぜル発電機界磁諯整器盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－109， 111 |
| B052 | 非常用ディーゼル発電機自動電圧調整器盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－109， 111 |
| ${ }^{\text {B053 }}$ | 非常用ディーゼル発電機 NGR盤 | Sクラス <br> SA施設 | R／B | R－B107，B109 |
| B054 | 非常用デイーゼル発電機SCT盤 | Sクラス <br> SA施設 | R／B | R－B107，B109 |
| B055 | 非常用デイーゼル発電機PPT艋 | sクラス <br> SA施設 | R／B | R－B107，B109 |
| B056 | 非常用ディーぜル発電機 PT－CT艋 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B107，B109 |
| B057 | 高圧炬心スプレイ系ディーゼル発電機制御盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | R－110 |
| B058 | 高圧炬心スプレイ系ディーゼル発電機補機制御盤 | $\begin{aligned} & \text { SYラ } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| B059 | 高圧炬心スプレイ系ディーゼル発電機シ リコン整流器盤 | Sクラス <br> SA施設 | R／B | R－110 |
| B060 | 高圧炬心スプレイ系ディーゼル発電機界磁譋整器盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－110 |
| B061 | 高圧炉ふスプレイ系ディーゼル発電機自動電圧調整器盤 | Sクラス <br> SA施設 | R／B | R－110 |
| B062 | 高圧炬心スプレイ系ディーゼル発電機 NGR盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | R－B109 |
| B063 | 高圧炬心スプレイ系ディーゼル発電機 SCT盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B109 |
| B064 | 高圧炬心スプレイ系ディーゼル発電機 PPT盤 | Sクラス <br> SA施設 | R／B | R－B109 |
| B065 | 高圧炬心スブレイ系ディーゼル発電機 PT－CT盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B109 |
| B066 | スクラム電磁弁ヒューズ盤 | sクラス | R／B | R－B103，B106 |
| B067 |  | Sクラス | R／B | R－B208 |
| B068 | 換気空調補機非常用洽却水系洽涑機制御盤 | sクラス | R／B | R－202 |
| B069 | HPCS交流分電艋2H用変圧器 | Sクラス | R／B | R－B109 |
| B070 | 動力変压器 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | 繁急時対策建屋 | $\begin{array}{\|c} \text { R-B109, 204, } \\ \text { TS-104 } \end{array}$ |
| B071 | 起動領域モニタ・安全系ブロセス放射線 モニ夕盤 | Sクラス <br> SA施設 | C／B | c－301 |
| B072 | 出力領域モ二多盤 | Sクラス <br> SA施設 | C／B | c－301 |
| B073 | 出力領域モ二夕補助艋 | Sクラス <br> SA施設 | C／B | c－301 |
| B074 | TIP制御媻 | Sクラス | C／B | c－301 |
| B075 | 格納容器内雰囲気もニ多盤 | Sクラス <br> SA施設 | C／B | c－301 |
| B076 |  | Sクラス <br> SA施設 | R／B | R－B103，B106 |
| B077 | 安全系プロセス放射線モニタ多重伝送現場盤 | Sクラス | R／B | R－B107，B110 |
| B078 | RSS盤用変圧器 | Sクラス | C／B | C－B105 |
| B079 | 125 V代替蓄電池 | SA施設 | C／B | c－204 |
| B080 | 125 V代替充電罢盤 | SA施設 | C／B | C－B104 |
| B081 | ガスタービン発電機接続盤 | SA施設 | $\begin{aligned} & \text { 緊急用䨋気品 } \\ & \text { 屋 } \end{aligned}$ | E－B101 |
| B082 | 2501 蓄電池 | SA施設 | C／B | C－B203 |
| B083 | 代替原子炬再很睘ポンプトリップ遮断器 | SA施設 | R／B | R－B208 |
| B084 | HPAC制檞媻 | SA施設 | C／B | c－301 |
| B085 | 代替注水制御盤 | SA施設 | C／B | c－301 |
| B086 | DCLI制御幋 | SA施設 | C／B | c－301 |
| B087 | フィルタバント系制啲墭 | SA施設 | C／B | c－301 |
| B088 | 250 V 充電器艋 | SA施設 | C／B | C－B204 |
| B089 | 125V直流電源切替䈭 | SA施設 | R／B | R－101 |


| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（電気䑤等） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| B090 | 460 V 原子炬建屋交流電源切替盤 | SA 施設 | R／B | R－101， 204 |
| B091 | 250V直流主母線艋 | SA施設 | C／B | C－B204 |
| B092 | 緊急用電源切替操作盤 | SA 施設 | C／B | C－301 |
| B093 | ガスタービン発電設備制御盤 | SA施設 | $\underset{\text { 建屋 }}{\text { 緊気品 }}$ | E－101 |
| B094 | ガスタービン発電設備然料移送ポンプ接続盤 | SA施設 | $\underset{\text { 建屋 }}{\text { 緊気品 }}$ | E－101 |
| B095 | モータコントロールセンタ（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B096 | 105 V 交流電源切替盤（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B097 | 105 V 交流分電盤（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B098 | 120 V 交流分電盤（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B099 | 210 V 交流分電盤（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B100 | 125v直流主母線盤（緊急時対策所用） | SA 施設 | 緊急時対策所 | TS－104 |
| B101 | 250V直流受電パワーセンタ | SA 施設 | C／B | C－B204 |
| B102 | 120 V 原子炬建屋交流電源切替盤 | SA 施設 | C／B | C－B204 |

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（7／8）

| $\begin{array}{\|l\|l\|} \hline \text { 䔩理 } \end{array}$ | 建屋内上位クラス施設（部装） | 区分 | 設置建屋 | 設置场所 |
| :---: | :---: | :---: | :---: | :---: |
| 1001 | 低圧炬心スプレイ系㖕装ラック | Sクラス <br> SA施設 | R／B | R－B203 |
| 1002 | 原子炬系（広域水位）㖕装ラック | Sクラス <br> SA施設 | R／B | $\begin{gathered} \text { R-B103, } \\ \text { B106 } \end{gathered}$ |
| ${ }^{1003}$ | 原子炉系（狄域水位）計装ラック | Sクラス <br> SA施設 | R／B | $\begin{gathered} \mathrm{R}-105,106, \\ 107 \end{gathered}$ |
| 1004 | ドライウェル圧カ計装ラック | Sクラス <br> SA施設 | R／B | R－205， 206 |
| 1005 | ジェットポンブ計装ラック | Sクラス <br> SA施設 | R／B | R－B103，B106 |
| 1006 | 高圧炬心スプレイ系㖕装ラック | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B206 |
| 1007 | 主蒸気流量計装ラック | Sクラス | R／B | R－B103，B106 |
| 1008 | RHR－RCICエルボメータ計装ラック | sクラス | R／B | R－B103，B106 |
| 1009 | RCICポンブ計器架台 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B307 |
| 1010 |  | sクラス | R／B | R－B207 |
| 1011 | 残留熱除去系㖕装ラック | Sクラス <br> SA施設 | R／B | $\begin{gathered} \text { R-B307, B204, } \\ \text { B207 } \\ \hline \end{gathered}$ |
| 1012 | RHR C 系詁器架台 | Sクラス <br> SA施設 | R／B | R－B307 |
| 1013 | RCW系統流量㳯器架台 | Sクラス <br> SA施設 | R／B | R－B308，B309 |
| 1014 | RCW常用系人口流量针器架台 | sクラス | R／B | R－B308 |
| 1015 | HPCWポンブ㖕器架台 | sクラス | R／B | R－B310 |
| 1016 | RCICタービン排気ダイアフラム圧力II系計器架台 | Sクラス | R／B | R－B207 |
| 1017 | CRDスクラム排出容器水位計器架台 | Sクラス | R／B | R－B103，B106 |
| 1018 | $\mathrm{S} /$ C 圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台 | sクラス | R／B | R－B103，B106 |
| 1019 | ほう酸水注入系計器架台 | sクラス | R／B | R－206 |
| 1020 | RCICタービン計器架台 | sクラス | R／B | R－B307 |
| 1021 | 原子炬圧力（SA） | SA施設 | R／B | $\begin{gathered} \mathrm{R}-105,106, \\ 107 \end{gathered}$ |
| 1022 | 原子炉水位（SA広带域） | SA施設 | R／B | R－B106 |
| 1023 | 原子炉水位（SA燃料域） | SA施設 | R／B | R－B103 |
| 1024 | 原子炬圧力容器温度 | SA施設 | R／B | PCV内 |
| 1025 | サプレッションプール水温度 | Sクラス SA施設 | R／B | PCV内 |
| 1026 | サブレッションプール水位 | sクラス | R／B | R－B306 |
| 1027 | 压力抑制室水位 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | $\begin{gathered} \text { R-B303, } \\ \text { B304, B306 } \end{gathered}$ |
| 1028 | 原子炉建屋外気閏差圧 | Sクラス | R／B | R－301， 302 |
| 1029 | 格納容器内雰囲気モニタサンブリング ラック | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| 1030 | 格納容器内雰囲気も二タ校正ラック | Sクラス SA施設 | R／B | R－205 |
| 1031 | 格納容器内雰囲気モニタヒータ制御鱉 | sクラス | R／B | R－202， 203 |
| 1032 | 格納容器内雰囲気水素濃度 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－205 |
| 1033 | 格納容器内雰囲気酸素濃度 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | R－205 |
| 1034 | 格納容器内雰囲気放射線モ二タ（D／W） | $\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B103，B105 |
| 1035 | 格納容器内雰囲気放射綵モ二タ（ $\mathrm{S} / \mathrm{C}$ ） | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B202 |
| 1036 | 静的能媒式水素再結合装置動作監視装置 | SA施設 | R／B | R－301 |
| 1037 | SLCポンブ洞滑油圧力 | Sクラス | R／B | R－206 |
| 1038 | RCWサージタンク水位 | Sクラス | R／B | R－301 |
| 1039 | RCWサージタンク降水管水位 | sクラス | R／B | R－206 |
| 1040 | HPCWサージタンク水位 | sクラス | R／B | R－206 |
| 1041 | HPCWサージタンク隆水管水位 | Sクラス | R／B | R－107 |
| 1042 | RSWストレーナ差圧 | Sクラス | R／B | R－B308，B309 |
| 1043 | SGTSトレイン出口流量 | Sクラス | R／B | R－301 |
| 1044 | フィルタ装置チャコールエアフィルタ入口温度 | sクラス | R／B | R－205 |
| 1045 | フィルタ装置チャコールエアフィルタ温度 | sクラス | R／B | R－205 |


| 整理番号 | 建屋内上位クラス施設（㖕装） | 区分 | 設置建屋 | 設置圽所 |
| :---: | :---: | :---: | :---: | :---: |
| 1046 | フィルタ装置チャコールエアフィルタ出口温度 | sクラス | R／B | R－205 |
| 1047 | 非常用D／G部装ラック | sクラス | R／B | $\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$ |
| 1048 | 非常用D／G二次洽却水差圧計器架台 | sクラス | R／B | R－B108，B110 |
| 1049 | HPCS D／G㖕装ラック | sクラス | R／B | R－109， 111 |
| 1050 | 燃料デイタンク油面 | sクラス | R／B | R－203 |
| 1051 | オイルパン油面 | sクラス | R／B | R－110 |
| 1052 | D／G室温度 | sクラス | R／B | $\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$ |
| 1053 | D／6速度 | sクラス | R／B | $\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$ |
| 1054 | RCW洽却水供給温度 | sクラス | R／B | R－B308，B309 |
| 1055 | FCS入口カス流量 | Sクラス | R／B | R－206 |
| 1056 | FCSブロロスロ圧力 | Sクラス | R／B | R－206 |
| 1057 | FCSブロワ入口流量 | Sクラス | R／B | R－206 |
| 1058 | FCSブロワ入口温度 | sクラス | R／B | R－206 |
| 1059 | FCS加熟管内ガス温度 | Sクラス | R／B | R－206 |
| 1060 | FCS加熱管出口ガス温度 | sクラス | R／B | R－206 |
| 1061 | FCS加熱管表面温度 | Sクラス | R／B | R－206 |
| 1062 | FCS再結合器表面温度 | Sクラス | R／B | R－206 |
| 1063 | FCS洽却器出口ガス温度 | sクラス | R／B | R－206 |
| 1064 | HECW洽水往還差圧 | sクラス | R／B | R－202 |
| 1065 | HECW洽水還温度 | sクラス | R／B | R－202 |
| 1066 | HECW洽涑樓洽水出口流量 | sクラス | R／B | R－202 |
| 1067 | 原子炉補機室給気温度 | sクラス | R／B | R－203 |
| 1068 | R／B主蒸気管漏えい検出（周囲温度） | Sクラス | R／B | R－B104，M205 |
| 1069 | R／B主蒸気管漏えい検出（給気温度） | sクラス | R／B | R－B104 |
| 1070 | $\mathrm{R} / \mathrm{B}$ 主亚気管漏えい倹出（排気温度） | Sクラス | R／B | R－B104 |
| 1071 | RHR熱交室漏えい検出（周囲温度） | sクラス | R／B | R－104 |
| 1072 | RHRポンフ室漏えい検出（周囲温度） | Sクラス | R／B | R－B304，B305 |
| 1073 | RHRR熱交室漏えい検出（給気温度） | sクラス | R／B | R－104 |
| 1074 | RHRポンブ室漏えい検出（給気温度） | sクラス | R／B | R－B304，B305 |
| 1075 | RHR熱交室漏えい検出（排気温度） | Sクラス | R／B | R－104 |
| 1076 | RHRポンブ室漏えい検出（排気温度） | sクラス | R／B | R－B304，B305 |
| 1077 | RCIC機器室漏えい検出（周囲温度） | Sクラス | R／B | R－B307 |
| 1078 | RCIC幾器室漏えい検出（給気温度） | Sクラス | R／B | R－B307 |
| 1079 | RCIC機器室漏えい検出（排気温度） | sクラス | R／B | R－B307 |
| 1080 | CUW非再生熱交室漏えい検出（周囲温度） | sクラス | R／B | R－B207 |
| 1081 | CUW再生熱交室漏えい検出（周囲温度） | sクラス | R／B | R－B207 |
| 1082 | CUW非再生熱交宔漏えい検出（給気温度） | Sクラス | R／B | R－B207 |
| 1083 | CUW再生熱交宔漏えい検出（給気温度） | sクラス | R／B | R－B207 |
| 1084 | CUW非再生熱交室漏えい検出（排気温度） | sクラス | R／B | R－B207 |
| 1085 | CUW再生熱交宔漏えい検出（排気温度） | Sクラス | R／B | R－B207 |
| 1086 | 㖕測制御電源室給気温度 | sクラス | C／B | C－B101 |
| 1087 | 中央制御室還気温度 | sクラス | C／B | C－B201 |
| 1088 | $\begin{array}{\|l\|l} \text { 格納容器内雾囲気モニタプリアンブ収納 } \\ \hline 木 ⿴ 囗 ⿱ 一 一 心 \end{array}$ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | R－B107，B110 |
| 1089 | 高圧代替注水系ポンブ出口流量 | SA施設 | R／B | R－B207 |
| 1090 | 高圧代替注水系ポンプ出口圧力 | SA施毅 | R／B | R－B207 |

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（8／8）

| 整理番号 | 建屋内上位クラス施設（計装） | 区分 | 設置建屋 | 設置場所 |
| :---: | :---: | :---: | :---: | :---: |
| 1091 | 残留熟除去系洗浄ライン流量 | SA施設 | R／B | R－B103， 107 |
| 1092 | 残留熱除去系熱交換器入口温度 | SA 施設 | R／B | R－104 |
| 1093 | 残留熱除去䒺熱交俱器出口温度 | SA施設 | R／B | R－104 |
| 1094 | ほう酸水注入系ポンプ出口圧力 | Sクラス | R／B | R－206 |
| 1095 | 原子炉格納容器下部注水流量 | SA施設 | R／B | R－B103 |
| 1096 | 原子炉格納容器代替スプレイ流量 | SA施設 | R／B | R－104， 107 |
| 1097 | ドライウェル温度 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | PCV内 |
| 1098 | 压力抑制室内空気温度 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | PCV内 |
| 1099 | 压力抑制室圧力 | SA施設 | R／B | R－B106 |
| I100 | 原子炉格納容器下部水位 | SA施設 | R／B | PCV内 |
| 1101 | ドライウェル水位 | SA施設 | R／B | PCV内 |
| 1102 | 格納容器内水素澧度（D／W） | SA施設 | R／B | PCV内 |
| 1103 | 格納容器内水素滞度（S／C） | SA施設 | R／B | PCV内 |
| 1104 | 起動钼域モ二夕 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | PCV内 |
| 1105 | 出力領域モニタ | Sクラス SA施設 | R／B | PCV内 |
| 1106 | フィルタ装置入口压力（広带域） | SA施設 | R／B | R－109 |
| 1107 | フィルタ装置出口圧力（広带域） | SA施設 | R／B | R－106 |
| 1108 | フィルタ装置水位（広带域） | SA施設 | R／B | R－B105 |
| 1109 | フィルタ装置水温度 | SA施設 | R／B | R－106 |
| 1110 | フィルタ装置出口水素浱度 | SA施設 | R／B | R－206 |
| 1111 | フィルタ装置出口放射䌊モ二夕 | SA施設 | R／B | R－203 |
| 1112 | 残留熱除去系熱交換器冷却水入口流量 | SA施設 | R／B | R－B103，B106 |
| 1113 | 原子炉建屋内水素濃度 | SA施設 | R／B | $\begin{gathered} \text { R-B202, B105, } \\ 104,107,301 \\ \hline \end{gathered}$ |
| 1114 | 使用斎燃料プール水位／温度 | SA施設 | R／B | R－301 |
| 1115 | 使用済燃料プール上部空間放射線モニタ （高線量，低線量） | SA施設 | R／B | R－301 |
| 1116 | 使用斎燃料プール監視カメラ | SA施設 | R／B | R－302 |
| 1117 | 差压計 | SA施設 | C／B緊急時対策建屋 | $\begin{gathered} \text { C-302 } \\ \text { TS-B203 } \end{gathered}$ |
| 1118 | 安全パラメータ表示システム（SPDS） | SA施設 | C／B緊急時対策建屋 | $\begin{gathered} \text { C-301 } \\ \text { TS-B202,203 } \end{gathered}$ |
| 1119 | 統合原子力防災ネットワークに接続する通信連絡設備 | SA施設 | 緊急時対策建屋 | TS－B203 |
| 1120 | デー夕伝送設備 | SA施設 | C／B <br> 緊急時対策建屋 | $\begin{gathered} \text { C-301 } \\ \text { TS-B202 } \end{gathered}$ |
| 1121 | データ表示装置 | SA施設 | C／B | C－302 |
| 1122 | 代替循閙冷却ポンプ出口流量 | SA施設 | R／B | R－B301 |
| 1123 | 代替循澴冷却ポンブ出口压力 | SA施設 | R／B | R－B301 |
| 1124 | HPIN ADS入口圧力 | Sクラス $\mathrm{SA} \text { 施設 }$ | R／B | R－106， 107 |
| 1125 | 直流駆動低圧注水系ポンブ出口流量 | SA施設 | R／B | R－B310 |
| 1126 | 直流陶動低圧注水系ポンプ出口圧力 | SA施設 | R／B | R－B310 |
| 1127 | 原子炉格納容器下部温度 | SA施設 | R／B | PCV内 |
| 1128 | 耐圧強化ベント系放射䌊モ二タ | SA施設 | R／B | R－201 |
| 1129 | 代替HPIN窒素ガス供給止め弁入口压力 | SA施設 | R／B | R－110， 111 |
| 1130 | 復水移送ポンプ出口圧力 | SA施設 | R／B | R－B207 |
| 1131 | 無線連絡設備（固定型） | SA施設 | C／B <br> 緊急時対策建屋 | $\begin{gathered} \text { C-301, 302, } \\ \text { TS-B203 } \\ \hline \end{gathered}$ |
| 1132 | 衛星電話設備（固定型） | SA施設 | C／B <br> 緊急時対策建屋 | $\begin{gathered} \text { C-301, 302, } \\ \text { TS-B203 } \end{gathered}$ |

5．下位クラス施設の抽出及び影響評価方法
3 項で整理した各検討事象を基に，上位クラス施設への波及的影響を及ぼすおそれ のある下位クラス施設の抽出及び評価フローを作成し，当該フローに基づき影響評価 を実施する。
5.1 相対変位又は不等沈下による影響
（1）地盤の不等沈下による影響
第5．1－1 図のフローに従い，上位クラス施設及びそれらの間接支持構造物であ る建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地盤の不等沈下による下位クラス施設の傾きや倒壊を想定しても，上位クラ ス施設に衝突しない程度の十分な離隔距離をとって配置されていることを確認 し，離隔距離が十分でない下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 S s に対して十分な支持性能を持つ岩盤に設置されていることの確認により，不等沈下しないことを確認する。
c．不等沈下に伴う波及的影響の評価
b 項で地盤の不等沈下のおそれが否定できない下位クラス施設については，傾きや倒壊を想定し，これらによる上位クラス施設への影響を確認し，上位ク ラス施設の機能を損なわないことを確認する。
d．対策検討
c項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設 に対して，基礎地盤の補強や周辺の地盤改良等を行い，不等沈下による下位ク ラス施設の波及的影響を防止する。

＊フロー中の（1），（2），⑤～（8）の数字は第2．1－1図中の（1），（2），（5）～⑧に対応する。

第5．1－1図 不等沈下による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー
（2）建屋間の相対変位による影響
第 5．1－2図のフローに従い，上位クラス施設及びそれらの間接支持構造物であ る建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地震による建屋間の相対変位を想定しても上位クラス施設に衝突しない程度 の十分な離隔距離をとつて配置されていることを確認し，離隔距離が十分でな い下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 S s に対して建屋間の相対変位による上位クラス施設への衝突がないことを確認する。
c．相対変位に伴う波及的影響の評価
b 項で衝突のおそれが否定できない下位クラス施設について，衝突部分の接触状況を確認し，建屋全体又は局部評価を実施し，衝突に伴い，上位クラス施設の機能を損ならおそれがないことを確認する。
d．対策検討
c項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設 に対して，建屋の補強等を行い，建屋間の相対変位等による下位クラス施設の波及的影響を防止する。

＊フロー中の（1），（2），（5）～（8）の数字は第2．1－1図中の（1），（2），（5）～（8）に対応する。

第5．1－2図 相対変位による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー

## 5． 2 接続部における相互影響

第5．2－8図のフローに従い，上位クラス施設と接続する下位クラス施設を抽出し，波及的影響を検討する。

なお，接続部における相互影響のうち，下位クラス配管破損時の機械的荷重によ る影響及び環境温度への影響については添付資料 9 に示す。

## a．接続部の抽出

上位クラス施設と下位クラス施設が接続する箇所を抽出する。ここで，電気設備，計測制御設備，原子炉格納容器貫通部，空気駆動弁（以下「A0 弁」という。）駆動用空気供給配管接続部及び弁グランド部漏えい検出配管接続部については，以下のとおり設計上の配慮がなされているため抽出の対象外とする。
（a）電気設備
受電系統について，上位クラス施設と下位クラス施設は基本的に系統的に分離した設計としているが，第5．2－1， 2 図の受電系統概念図にあるように一部の受電系統においては上位クラス施設と下位クラス施設との接続がある。このた め，上位クラス施設と下位クラス施設と接続するパターンを下記のように整理 した。


第 5．2－1 図 受電系統概念図（パターン1，2）

## ［パターン 1］

第5．2－1図のパターン 1 に示すように上位クラスの電源盤と下位クラス施設が接続し，上位クラスの電源盤から下位クラス施設に給電する場合，上位 クラスの電源盤と下位クラス施設は遮断器を介して接続されており，下位ク ラス施設の故障が生じた場合においても，上位クラスの電源盤の遮断器が動作することで事故範囲を隔離し，上位クラスの電源盤の機能に影響を与えな い設計としている。

## ［パターン 2］

第5．2－1図のパターン 2 のように上位クラス施設である非常用高圧母線と下位クラス施設が接続し，下位クラス施設から非常用高圧母線に給電する場合，上位クラスの電源盤と下位クラス施設は遮断器を介して接続されており，下位クラス施設の故障が生じた場合には，上位クラスの電源盤の遮断器が動作することにより事故範囲を隔離する。この際，非常用高圧母線が停電する が非常用ディーゼル発電機が自動起動し，非常用高圧母線に給電するため，上位クラス施設である非常用高圧母線が機能喪失しない設計としている。
［パターン3］
パターン 1，2 以外に考えられる上位クラス施設と下位クラス施設が接続 する組合せとして，第5．2－2図のように下位クラスの電源盤から上位クラス施設に給電するパターンが挙げられる。この場合，下位クラスの電源盤の故障により上位クラス施設が機能喪失することとなるが，女川 2 号機において は本パターンのような系統はない。


第5．2－2 図 受電系統概念図（パターン 3 ）

以上より，電気設備については，上位クラス施設に接続する下位クラス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計としてい る。
（b）計測制御設備
計測制御設備について，非常用系（上位クラス施設）と常用系（下位クラス施設）は原則物理的に分離しているが，制御信号及び計装配管の一部に上位ク ラス施設と下位クラス施設との接続部がある。このため，上位クラス施設と下位クラス施設と接続するパターンを下記のように整理した。
i）制御信号
制御信号について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。

①非常用系（上位クラス）から常用系（下位クラス）に伝送する
（2）常用系（下位クラス）から非常用系（上位クラス）に伝送する

このうち，（2）のパターンについては女川 2 号機において存在しない。
①については，信号伝送における第 5．2－3 図の分離概念図に示すとおり， フォトカプラやリレー回路などの隔離装置を介することにより，電気的に分離されており，常用系（下位クラス）の故障が非常用系（上位クラス）に波及することがない設計としている。

リレー回路を用いた隔離装置の代表例


第 5．2－3 図 信号伝送における分離概念図
ii）計装配管
計装配管について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。
（1）上位クラスの機器に下位クラスの計器の計装配管が接続されている
（2）下位クラスの機器に上位クラスの計器の計装配管が接続されている
（3）上位クラスの計器の常用時における計測のために，計装用圧縮空気系（下位クラス）が接続されている

このうち，（2）については女川 2 号機において存在しない。①については，上位クラスの計器と下位クラスの計器が接続されているパターンと上位クラ スの機器（原子炉圧力容器）の計測装置として下位クラスの機器が接続され ているパターンがあるため，それぞれパターン（1）－1，（1）－2と分類し，（3）に ついてはパターン（3）と分類して下記のとおり整理した。
［パターン（1）－1］
上位クラスと下位クラスの計装配管が接続部を有している場合，第 5．2－4 図に示すとおり，計装配管の耐震設計は上位クラスの設計に合わせ ているため波及的影響はない。


第 5．2－4 図 計装配管の耐震設計概念図
［パターン（1）－2］
原子炉圧力容器（上位クラス）に接続されている下位クラスの計器につ いては，第 5．2－5 図の原子炉圧力容器からの計装ライン構成概念図に示す とおり，過流量逆止弁の下流側は下位クラスの設計としている。ただし，原子炉圧力容器に接続されている計装配管には，原子炉格納容器内側に流量制限オリフィスを設けるとともに，原子炉格納容器外側には過流量逆止弁を設置しており，万一，下位クラス範囲で配管破断が発生した場合でも，差圧大で瞬時に過流量逆止弁が閉となるため，原子炉冷却材圧力バウンダ リは隔離される。


第 5．2－5 図 原子炉圧力容器からの計装ライン構成概念図
[パターン (3) ]

上位クラスの計器の常用時における測定のために，計測用圧縮空気系 （下位クラス）を使用している場合，第 5．2－6図に示すとおり，計装用圧縮空気系の機能喪失時には逆止弁により計測用圧縮空気系との接続を隔離し，上位クラスのアキュムレータにより計測を継続するため，波及的影響はない。


第5．2－6図 計装用圧縮空気系と上位クラスの計器との接続概念図

以上より，計測制御設備については，上位クラス施設に接続する下位クラ ス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計とし ている。
（c）原子炉格納容器貫通部
原子炉格納容器貫通部については，前後の隔離弁を含めて上位クラス施設と して設計されており，接続する下位クラスの配管が破損した場合においても隔離弁の健全性は保たれ，原子炉格納容器バウンダリとしての貫通部の機能に波及的影響を及ぼすおそれがない設計としている。
（d）A0 弁駆動用空気供給配管接続部
上位クラスの配管に設置されるA0弁駆動用の空気供給配管は，上位クラス施設として設計されてはいないが，仮に空気供給配管が破損した場合でも，A0 弁 はフェイルセーフ側に動作するため，上位クラス施設の安全機能は喪失しない ことから，抽出の対象外としている。なお，空気供給配管の供給側で閉塞が発生したとしてもA0弁はフェイルセーフ側に動作しないが，動作要求信号が発生 すれば，三方弁から支障なく排気されることからA0弁の機能に影響を与えない。 また，空気供給配管のA0弁側についてはSクラスのA0弁とあわせて動的機能維持を確認している範囲であるため閉塞しない。

－－－－－Sクラスとして動的機能維持を確認している範囲

第 5．2－7 図 A0 弁概念図
（e）弁グランド部漏えい検出配管接続部
上位クラスの配管に設置される弁のグランド部に接続される弁グランド部漏 えい検出配管については，下位クラス施設であるが，仮に弁グランド部漏えい検出配管が破損した場合でも，上位クラス施設である弁の機能に影響がないこ とから抽出の対象外としている。
b．影響評価対象の選定
a項で抽出された機器，配管系を影響評価対象とする。
ただし，a 項で抽出した接続部のうち，上位クラス施設として設計された弁又 はダンパにより常時隔離されているものは，接続する下位クラスの配管が破損し た場合においても健全性は確保されるため評価対象外とする。

## c．影響評価

b 項で抽出した下位クラス施設について，下位クラス施設が損傷した場合の系

統隔離等に伴うプロセス変化により，上位クラス施設の過渡条件が設計の想定範囲内であることを確認する。

なお，下位クラス配管の損傷形態として破損と閉塞が考えられるが，接続部の影響評価においては破損について検討する。閉塞事象は配管が軸直交方向に大き な荷重を受けて折れ曲がり，流路を完全に遮断することで発生するが，地震荷重 は交番荷重であることや材料のシェイクダウンを考慮すると，完全に閉塞が発生 することは考え難い。また，周辺の下位クラス施設の損傷等の影響による閉塞に ついては，周辺に損傷等により影響を及ぼす下位クラス施設がないことを確認し ており検討対象外となる。さらに下位クラス施設が建屋間を渡って敷設されてい る場合には，相対変位や不等沈下による損傷等も考えられるが，女川 2 号機では，建屋間を渡る下位クラス施設については全てバウンダリ弁を介して上位クラス施設と隔離していることから検討対象外となる。したがって，下位クラス配管の損傷形態としては破損を考慮するものである。下位クラス配管の損傷形態の検討 については，参考資料1に詳細を示す。

また，下位クラス施設の損傷に伴う上位クラス施設のプロセス変化とは別に，内部流体の外部への放出に伴ら機械的荷重の発生が想定される。この荷重が上位 クラス施設へ及ぼす影響について検討を行った結果を添付資料9に示す。
d．耐震性の確認
c項で設計の想定範囲を超えるものについて，基準地震動 S s に対して，構造健全性が維持され内部流体の内包機能等の必要な機能を維持できることを確認 する。
e．対策検討
d 項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設に ついて，基準地震動 S s に対して健全性を維持できる構造への改造，接続部から上位クラス施設の機器，配管側に同じく健全性を維持できる隔離弁の設置等によ り波及的影響を防止する。


[^0]第5．2－8図 上位クラス施設と接続する下位クラス施設の抽出及び評価フロー

## 5.3 建屋内における施設の損傷，軽倒，落下等による影響

第5．3－1図のフローに従い，建屋内の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，下位クラス施設の損傷，転倒，落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとって配置されて いることを確認する。離隔距離が十分でない場合には，落下防止措置等の対策を適切に実施していることを確認する。

また，上述の碓認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒，落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損なうおそれ がないことを確認する。
b．耐震性の確認
a 項で損傷，転倒，落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，基準地震動 S s に対して，損傷，転倒，落下等が生じないように，構造健全性が維持できることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 S s に対して健全性を維持できるような構造への改造，上位クラス施設と下位クラス施設との間に衝撃に耐えらる緩衝体の設置，下位クラス施設の移設等に より波及的影響を防止する。

＊フロー中の（1）～（8）の数字は第2．1－1図中の（1）～⑧に対応する。

第 5．3－1 図 損傷，転倒，落下等により建屋内上位クラス施設へ影響を及ぼすおそれの ある下位クラス施設の抽出及び評価フロー

## 5.4 建屋外における施設の損傷，軽倒，落下等による影響

第5．4－1図のフローに従い，建屋外の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，施設の設置地盤及び周辺地盤の液状化 （浮き上がり及び側方流動）による影響を考慮した上で，下位クラス施設の損傷，転倒，落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとっ て配置されていることを確認する。離隔距離が十分でない場合には，落下防止措置等の対策を適切に実施していることを確認する。

また，上述の確認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒，落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損なうおそれ がないことを確認する。
b．耐震性の確認
a 項で損傷，転倒，落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，地下水位を適切に設定した上で，基準地震動 S s に対して，損傷，転倒，落下等が生じないように，構造健全性が維持で きることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 S s に対して健全性を維持できるような構造への改造，上位クラス施設と下位クラス施設との間に衝撃に耐えらる緩衝体の設置，下位クラス施設の移設等に より波及的影響を防止する。

＊フロー中の（1）～（3），（5）～（8）の数字は第2．1－1図中の（1）～（3），（5）～⑧に対応する。

第5．4－1図 損傷，転倒，落下等により建屋外上位クラス施設へ影響を及ぼすおそれの ある下位クラス施設の抽出及び評価フロー

6．下位クラス施設の検討結果
5 項で示したフローに基づき，上位クラス施設へ波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

6． 1 相対変位又は不等沈下による影響検討結果
6.1 .1 抽出手順
（1）地盤の不等沈下による影響
机上検討を基に，上位クラス施設に対して，地盤の不等沈下により波及的影響を及ぼすおそれのある下位クラス施設を抽出する。
（2）建屋間の相対変位による影響
机上検討を基に，上位クラス施設に対して，建屋間の相対変位により波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

6．1．2 下位クラス施設の抽出結果
第5．1－1図及び第5．1－2図のフローのaに基づいて，波及的影響を及ぼすお それのある下位クラス施設を抽出した結果を第6．1－1 図，第 6．1－2 図及び第 6．1－1 表に示す。

6．1．3 影響評価結果
6．1．2 で抽出した波及的影響を及ぼすおそれのある下位クラス施設の評価結果を第6．1－2表及び第6．1－3表に示す。



第6．1－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（ $1 / 3$ ）

| 整理 <br> 番号 | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれのある下位クラス施設 | 波及的影響のおそれ （○：あり，×：なし） |  | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 不等沈下 | 相対変位 |  |
| 0001 | 原子炉補機冷却海水ポンプ | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0002 | 原子炉補機冷却海水系配管 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0003 | RSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0004 | RSWポンプ吐出弁 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0005 | RSWポンプ吐出連絡管止め弁 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0006 | 高圧炬心スプレイ補機冷却海水ポンプ | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0007 | 高圧炉心スプレイ補機冷却海水系スト レーナ | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0008 | 高圧炉心スプレイ補機冷却海水系配管 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0009 | HPSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0010 | HPSWポンプ吐出弁 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0011 | 非常用ガス処理系配管 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0012 | 原子炉格納容器下部注水系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0013 | 原子炉補機代替冷却水系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0014 | 原子炉格納容器代替スプレイ冷却系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0015 | 可搬型窒素ガス供給系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0016 | 燃料プール代替注水系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0017 | 原子炬格納容器フィルタベント系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0018 | ガスタービン発電設備燃料移送ポンプ | SA施設 | － | $\times$ | $\times$ |  |
| 0019 | ガスタービン発電設備燃料移送系配管 | SA施設 | － | $\times$ | $\times$ |  |
| 0020 | 復水貯蔵タンク外部注水入口弁 | SA施設 | － | $\times$ | $\times$ |  |
| 0021 | 復水貯蔵タンク | SA施設 | － | $\times$ | $\times$ |  |
| 0022 | 復水貯蔵タンク水位計器架台 | SA施設 | － | $\times$ | $\times$ |  |
| 0023 | RSWポンプ出口圧力計器架台 | Sクラス | － | $\times$ | $\times$ |  |
| 0024 | HPSWポンプ出口圧力計器架台 | Sクラス | － | $\times$ | $\times$ |  |
| 0025 | 排気筒 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |

第6．1－1 表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（2／3）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれのある下位クラス施設 | 波及的影響のおそれ(○:あり, ×:なし) |  | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 不等沈下 | 相対変位 |  |
| 0026 | 防潮堤 | Sクラス | － | $\times$ | $\times$ |  |
| 0027 | 防潮壁 | Sクラス | タービン建屋 | $\bigcirc$ | $\times$ |  |
| 0028 | 逆流防止設備 | Sクラス | タービン建屋 | $\bigcirc$ | $\times$ |  |
| 0029 | 水密扉 | Sクラス | － | $\times$ | $\times$ |  |
| 0030 | 浸水防止监 | Sクラス | － | $\times$ | $\times$ |  |
| 0031 | 逆止弁付ファンネル | Sクラス | － | $\times$ | $\times$ |  |
| 0032 | 貫通部止水処置 | Sクラス | タービン建屋 | $\bigcirc$ | $\times$ |  |
| 0033 | 津波監視カメラ | Sクラス | － | $\times$ | $\times$ |  |
| 0034 | 取水ピット水位計 | Sクラス | － | $\times$ | $\times$ |  |
| 0035 | 原子炉建屋 | Sクラス間接支持構造物 SA施設 | タービン建屋 | $\bigcirc$ | $\bigcirc$ |  |
|  |  |  | 制御建屋 | $\times$ | $\bigcirc$ |  |
| 0036 | 制御建屋 | 間接支持構造物 | タービン建屋 | $\bigcirc$ | $\bigcirc$ |  |
|  |  |  | 補助ボイラー建屋 | $\bigcirc$ | $\bigcirc$ |  |
|  |  |  | 第1号機制御建屋 | $\bigcirc$ | $\bigcirc$ |  |
| 0037 | 海水ポンプ室 | 屋外重要土木構造物間接支持構造物 SA施設 | － | $\times$ | $\times$ |  |
| 0038 | 軽油タンク室 | 屋外重要土木構造物間接支持構造物 | － | $\times$ | $\times$ |  |
| 0039 | 復水貯蔵タンク基碘 | SA施設間接支持構造物 | － | $\times$ | $\times$ |  |
| 0040 | 軽油タンク連絡ダクト | 屋外重要土木構造物間接支持構造物 | － | $\times$ | $\times$ |  |
| 0041 | 排気筒連絡ダクト | 屋外重要土木構造物間接支持構造物 | － | $\times$ | $\times$ |  |
| 0042 | 原子炉機器泠却海水配管ダクト | 屋外重要土木構造物間接支持構造物 | － | $\times$ | $\times$ |  |
| 0043 | 緊急用電気品建屋 | SA施設間接支持構造物 | － | $\times$ | $\times$ |  |
| 0044 | ガスタービン発電設備軽油タンク室 | SA施設間接支持構造物 | － | $\times$ | $\times$ |  |
| 0045 | 緊急時対策建屋 | SA施設間接支持構造物 | － | $\times$ | $\times$ |  |
| 0046 | 取水口 | 屋外重要土木構造物 SA施設 | － | $\times$ | $\times$ |  |
| 0047 | 取水路 | 屋外重要土木構造物 SA施設 | － | $\times$ | $\times$ |  |
| 0048 | 第3号機海水熱交換器建屋 | 間接支持構造物 | － | $\times$ | $\times$ |  |

第6．1－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（3／3）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれのある下位クラス施設 | 波及的影響のおそれ （○：あり，×：なし） |  | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 不等沈下 | 相対変位 |  |
| 0049 | 無線連絡設備（屋外アンテナ） | SA 施設 | － | $\times$ | $\times$ |  |
| 0050 | 衛星電話設備（屋外アンテナ） | SA施設 | － | $\times$ | $\times$ |  |
| 0051 | 無線通信装置 | SA施設 | － | $\times$ | $\times$ |  |
| 0052 | 取放水路流路縮小工 | Sクラス | － | $\times$ | $\times$ |  |
| 0053 | 浸水防止壁 | Sクラス | － | $\times$ | $\times$ |  |
| 0054 | 揚水井戸 | 間接支持構造物 | － | $\times$ | $\times$ |  |
| 0055 | 第3号機補機冷却海水系放水ピット | 間接支持構造物 | － | $\times$ | $\times$ |  |
| 0056 | 第3号機海水ポンプ室 | 間接支持構造物 | － | $\times$ | $\times$ |  |
| 0057 | 貯留堰 | Sクラス <br> SA施設 | － | $\times$ | $\times$ |  |
| 0058 | 衛星通信装置 | SA施設 | － | $\times$ | $\times$ |  |
| 0059 | 復水貯蔵タンク水位 | Sクラス | － | $\times$ | $\times$ |  |

第6．1－2表 女川 2 号機 建屋外施設の評価結果（地盤の不等沈下による影響）

| 建屋外上位クラス <br> 施設 | 波及的影響を及ぼすおそれのある <br> 下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 防潮壁 | タービン建屋 | タービン建屋はマンメイドロック（以下「MMR」という。） を介して岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
| 逆流防止設備 | タービン建屋 | タービン建屋はMMRを介して岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
| 貫通部止水処置 | タービン建屋 | タービン建屋はMMRを介して岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
| 原子炉建屋 | タービン建屋 | タービン建屋はMMRを介して原子炉建屋と連続した岩盤 に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
| 制御建屋 | タービン建屋 | タービン建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
|  | 補助ボイラー建屋 | 補助ボイラー建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料4参照 |
|  | 第1号機制御建屋 | 第1号機制御建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。 | 本資料 <br> 添付資料 4 参照 |

第6．1－3表 女川 2 号機 建屋外施設の評価結果（相対変位による影響）

| 建屋外上位クラス <br> 施設 | 波及的影響を及ぼすおそれの <br> ある下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 原子炉建屋 | タービン建屋 | 基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。 | VI-2-11-2-3「タービ <br> ン建屋の耐震性につ いての計算書」参照 |
|  | 制御建屋＊${ }^{*}$ | 基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。 | VI－2－2－4「制御建屋の耐震性についての計算書」参照 |
| 制御建屋＊2 | タービン建屋 | 基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。 | VI-2-11-2-3「タービ <br> ン建屋の耐震性につ いての計算書」参照 |
|  | 補助ボイラー建屋 | 基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。 | VI－2－11－2－4「補助ボ イラー建屋の耐震性 についての計算書」参照 |
|  | 第1号機制御建屋 | 基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。 | VI－2－11－2－5「第1号機制御建屋の耐震性 についての計算書」参照 |

注記 $* 1$ ：当該建屋は上位クラス施設であるが，原子炉建屋に近接していることを踏まえ相対変位の影響を確認する。
＊2：制御建屋に対する原子炉建屋の影響は，原子炉建屋に対する制御建屋の影響確認内容と相違ないため記載を省略する。

## 6．2 接続部における相互影響検討結果

6．2．1 抽出手順
机上検討を基に，上位クラス施設と接続する下位クラス施設のうち，下位ク ラス施設の損傷又は隔離によるプロセス変化により，上位クラス施設に影響を及ぼすおそれがある下位クラス施設を抽出する。なお，S クラス施設等と重要 SA 施設との接続部は，第6．2－1図の接続部例に示すとおり上位クラス同士の接続であることから，上位クラス施設と下位クラス施設との接続部として抽出し ない。

接続部については，系統図等により網羅的に確認が可能であり，プラント建設時及び改造工事の際は，施工に伴う確認，系統図作成時における現場確認，使用前検査，試運転等から接続部が設計図書どおりであることを確認している ことから，接続部の波及的影響については，机上検討により評価対象の抽出が可能である。


第6．2－1図 S クラス施設等と重要 SA 施設の接続部例

6．2．2 接続部の抽出結果及び影響評価対象の選定結果
第5．2－8図のフローのa及びbに基づいて抽出された評価対象接続部につい て整理したものを第6．2－1表に示す。

6．2．3 影響評価結果
6．2．2 項で抽出した上位クラス施設と下位クラス施設との接続部について，第5．2－8図のフローのcに基づいて影響評価を行った結果を第6．2－2表に示す。

影響評価を行った結果，上位クラス施設と接続する下位クラス施設が損傷す ることによって，上位クラスの機能に影響を及ぼすおそれがないことを確認し た。

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（1／9）

| 整理番号 | 建屋外上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : } 0 \text {, 無 : } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 | 原子炉補機冷却海水ポンプ | Sクラス <br> SA施設 | 屋外 | $\bigcirc$ | $\bigcirc$ | グランドドレンライン |  |
| 0002 | 原子炉補機冷却海水系配管 | Sクラス SA施設 | 屋外 | $\bigcirc$ | $\times$ | ろ過水系ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | 鉄イオン供給ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| 0003 | RSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | 屋外 | $\times$ | － |  |  |
| 0004 | RSWポンプ吐出弁 | Sクラス <br> SA施設 | 屋外 | $\times$ | － |  |  |
| 0005 | RSWポンプ吐出連絡管止め弁 | Sクラス <br> SA施設 | 屋外 | $\times$ | － |  |  |
| 0006 | 高圧炉心スブレイ補機冷却海水ポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 屋外 | $\bigcirc$ | $\bigcirc$ | グランドドレンライン |  |
| 0007 | 高圧炉心スプレイ補機冷却海水系スト レーナ | Sクラス <br> SA施設 | 屋外 | $\times$ | － |  |  |
| 0008 | 高圧炉心スプレイ補機冷却海水系配管 | Sクラス <br> SA施設 | 屋外 | $\bigcirc$ | $\times$ | ろ過水系ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| 0009 | HPSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | 屋外 | $\times$ | － |  |  |
| 0010 | HPSWポンプ吐出弁 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | 屋外 | $\times$ | － |  |  |
| 0011 | 非常用ガス処理系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 屋外 | $\times$ | － |  |  |
| 0012 | 補給水系配管 | SA施設 | 屋外 | $\times$ | － |  |  |
| 0013 | 原子炉補機冷却水系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 屋外 | $\times$ | － |  |  |
| 0014 | 残留熱除去系配管 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | 屋外 | $\times$ | － |  |  |
| 0015 | 原子炉格納容器調気系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 屋外 | $\times$ | － |  |  |
| 0016 | 燃料プール泠却浄化系配管 | SA施設 | 屋外 | $\times$ | － |  |  |
| 0017 | 原子炉格納容器フィルタベント系配管 | SA施設 | 屋外 | $\times$ | － |  |  |
| 0018 | ガスタービン発電設備燃料移送ポンプ | SA施設 | 屋外 | $\times$ | － |  |  |
| 0019 | ガスタービン発電設備燃料移送系配管 | SA施設 | 屋外 | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | タイライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
| 0020 | 復水貯蔵タンク外部注水入口弁 | SA施設 | 屋外 | $\times$ | － |  |  |
| 0021 | 復水貯蔵タンク | SA施設 | 屋外 | $\bigcirc$ | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 復水補給水戻りライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |

第 6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（2／9）

| 整理 <br> 番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 }: ~ \text {, 無: } \times \text { ) } \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E001 | 燃料集合体 | Sクラス | R／B | $\times$ | － |  |  |
| E002 | 原子炉圧力容器 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E003 | 炬心支持構造物 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E004 | 原子炉圧力容器支持構造物 | Sクラス | R／B | $\times$ | － |  |  |
| E005 | 原子炉圧力容器付属構造物 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E006 | 原子炉压力容器内部構造物 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E007 | 使用済燃料プール | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E008 | 使用済燃料貯蔵ラック | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E009 | 制御棒•破損燃料貯蔵ラック | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E010 | 原子炉再循環ポンプ | Sクラス | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \hline \text { シールキャビティ圧力制 } \\ & \text { 御流量ライン } \end{aligned}$ |  |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { シールキャビティパージ } \\ & \text { 水ライン } \end{aligned}$ | 逆止弁を介して接続され ている |
| E011 | 原子炉再循環系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 試料採取系ライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | テストライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E012 | 主蒸気逃がし安全弁逃がし弁機能用ア キュムレータ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E013 | 主蒸気逃がし安全弁自動減圧機能用ア キュムータ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E014 | 主蒸気第一隔離弁用アキュムレータ | Sクラス | R／B | $\times$ | － |  |  |
| E015 | 主蒸気第二隔離弁用アキュムレータ | Sクラス | R／B | $\times$ | － |  |  |
| E016 | 主蒸気系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 主蒸気ライン |  |
|  |  |  |  |  | $\bigcirc$ | 主蒸気ドレンライン |  |
|  |  |  |  |  | $\times$ | テストライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | RPVベントライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { RPVフランジ漏えい検出 } \\ & \text { ライン } \end{aligned}$ | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E017 | 復水給水系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 復水給水系ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | ドレンライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E018 | 残留熱除去系熱交換器 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E019 | 残留熱除去系ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ペデスタルドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{array}{\|l} \text { メカニカルシールリーク } \\ \text { ドレンライン } \end{array}$ |  |
| E020 | 残留熱除去系ストレーナ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E021 | 残留熱除去系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 復水補給水系ライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 燃料プール泠却浄化系ラ イン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 廃乗物処理系ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 試料採取系ライン | 通常閉の弁を介して接続 されている されている |
|  |  |  |  |  | $\times$ | 事故後サンプリングライ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 復水貯蔵タンクライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている されている |
| E022 | 高圧炉心スプレイ系ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ペデスタルドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$ |  |
| E023 | 高圧炉心スプレイ系ストレーナ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（3／9）

| 整理 <br> 番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | 下位クラスとの接続＊ <br> （有：○，無：×） | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E024 | 高圧炉心スプレイ系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 復水貯蔵タンク戻りライ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | 燃料プール補給水テスト ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\bigcirc$ | 燃料プール補給水ライン |  |
|  |  |  |  |  | $\times$ | 復水補給水系ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E025 | 低圧炉心スプレイ系ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ペデスタルドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{array}{\|l} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \end{array}$ |  |
| E026 | 低圧炉心スプレイ系ストレーナ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E027 | 低圧炬心スプレイ采配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 復水貯蔵タンクライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 復水補給水系ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E028 | 原子炬隔離時冷却系ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ブラケットドレンライン |  |
| E029 | 原子炉隔離時冷却系ポンプ駆動用ター ビン | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E030 | 原子炉隔離時冷却系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 主復水器ライン |  |
|  |  |  |  |  | $\times$ | 復水補給水系ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 復水貯蔵タンク戻りライ | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 建屋内開放ライン | ラプチャディスクを介し <br> て接続されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁または安全弁 } \\ & \text { (通常閉)を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E031 | 原子炬補機冷却水系熱交換器 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E032 | 原子炬補機冷却水ポンブ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$ |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{array}{\|l\|l\|} \hline \text { ベアリングブラケットド } \\ \text { レンライン } \\ \hline \end{array}$ |  |
| E033 | 原子炉補機冷却水サージタンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 補給水ライン |  |
|  |  |  |  |  | $\times$ | 燃料プール補給水系ライ ン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 大気開放ライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E034 | 原子炬補機冷却水系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 常用系ライン |  |
|  |  |  |  |  | $\bigcirc$ | 燃料プール補給水ポンプ軸受冷却ライン |  |
|  |  |  |  |  | $\times$ | 燃料プール補給水系ライ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁または安全弁 （通常閉）を介して接続 されている |
|  |  |  |  |  | $\times$ | 試料採取系ライン | 通常閉の弁を介して接続 されている |
| E035 | 原子炉補機冷却海水系ストレーナ | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E036 | 原子炬補機冷却海水系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \hline \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | 試料採取系ライン | 通常閉の弁を介して接続 されている |
| E037 | 高圧炉心スブレイ補機冷却水系熱交換器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E038 | 高圧炬心スプレイ補機冷却水ポンブ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \hline \text { メカニカルシールリーク } \\ & \text { ドレンライン } \\ & \hline \end{aligned}$ |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{array}{\|l\|l\|} \hline \text { ベアリングブラケットド } \\ \text { レンライン } \end{array}$ |  |

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（4／9）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有: } 0 \text {, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E039 | 高圧炉心スプレイ補機冷却水サージタシク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 補給水ライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 燃料プール補給水系ライ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 大気開放ライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E040 | 高圧炉心スプレイ補機冷却水系配管 | Sクラス SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | 防食剤添加タンクライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E041 | 高圧炬心スプレイ補機冷却海水系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 試料採取系ライン | $\begin{array}{\|l} \hline \text { 通常閉の弁を介して接続 } \\ \text { されている } \\ \hline \end{array}$ |
| E042 | 原子炉冷却材浄化系配管 | Sクラス SA施設 | R／B | $\bigcirc$ | $\times$ | ろ過脱塩装置ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | ドレンライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
| E043 | 制御棒駆動機構 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E044 | 水圧制御ユニット | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 制御棒駆動水圧系ライン | 通常閉の弁および逆止弁 を介して接続されている |
| E045 | 制御棒駆動水圧系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | ベントライン | 通常閉の弁を介して接続 されている |
| E046 | ほう酸水注入系ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \text { グランドパッキンリーク } \\ & \text { ドレンライン } \end{aligned}$ |  |
| E047 | ほう酸水注入系貯蔵タンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 補給水ライン |  |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 大気開放ライン |  |
|  |  |  |  |  | $\times$ | サンプリングライン | 通常閉の弁を介して接続 されている |
| E048 | ほう酸水注入系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 補給水ライン | 通常閉の弁および逆止弁 を介して接続されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \begin{array}{l} \text { 補給水ライン (バイパ } \\ \text { ス) } \end{array} \\ & \hline \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストタンクライン | $\begin{array}{\|l} \hline \text { 通常閉の弁を介して接続 } \\ \text { されている } \\ \hline \end{array}$ |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E049 | 放射性ドレン移送系配管 | Sクラス | R／B | $\times$ | － |  |  |
| E050 | 燃料プール冷却浄化系ポンプ | SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ブラケットドレンライン |  |
| E051 | 燃料プール泠却浄化系熱交換器 | SA施設 | R／B | $\times$ | － |  |  |
| E052 | 燃料プール泠却浄化系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\times$ | 燃料プール補給水系ライ ン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 残留熱除去系戻りライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 原子炉ウェル注水ライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 原子炉ウェル戻りライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | ろ過脱塩装置ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E053 | 換気空調補機常用冷却水系配管 | Sクラス | R／B | $\times$ | － |  |  |
| E054 | 換気空調補機非常用泠却水系配管 | Sクラス | $\begin{aligned} & \mathrm{R} / \mathrm{B} \\ & \mathrm{C} / \mathrm{B} \end{aligned}$ | $\bigcirc$ | $\times$ | 冷媒回収ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \hline \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | 防食剤添加タンクライン | 通常閉の弁を介して接続 されている |

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（5／9）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続 }{ }^{* 1} \\ \text { (有 : O, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E055 | 補給水系配管 | Sクラス <br> SA施設 | R／B | （1） | $\bigcirc$ | 制御棒駆動水圧系給水ラ イン |  |
|  |  |  |  |  | $\times$ | 万過水系ライン | $\begin{aligned} & \hline \text { 通常閉の弁および逆止弁 } \\ & \text { を介して接続されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | タービン建屋供給ライン | 通常閉の弁を介して接続 <br> されている |
|  |  |  |  |  | $\times$ | ECCS系封水ライン | 通常閉の弁および逆止弁 を介して接続されている |
|  |  |  |  |  | $\times$ | 除染用給水ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | プール／原子炉ウェル水張りライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\times$ | スキマサージタンク補給水 | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | 純水補給水系ライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\bigcirc$ | 試料採取系ライン |  |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E056 | 高圧窒素ガス供給系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 常用系ライン |  |
|  |  |  |  |  | $\times$ | 安全弁排気ライン | $\begin{aligned} & \text { 安全弁 (通常閉) を介し } \\ & \text { て接続されている } \end{aligned}$ |
| E057 | 所内用圧縮空気系配管 | Sクラス | R／B | $\times$ | － |  |  |
| E058 | 計装用圧縮空気系配管 | Sクラス | R／B | $\times$ | － |  |  |
| E059 | サンプリング配管 | Sクラス | R／B | $\times$ | － |  |  |
| E060 | 高圧窒素ガス供給系窒素ガスボンベ ラック | Sクラス | R／B | $\times$ | － |  |  |
| E061 | 中央制御室送風機 | Sクラス <br> SA施設 | C／B | $\times$ | － |  |  |
| E062 | 中央制御室排風機 | Sクラス SA施設 | C／B | $\times$ | － |  |  |
| E063 | 中央制御室再看環送風機 | Sクラス SA施設 | C／B | $\times$ | － |  |  |
| E064 | 中央制御室再循環フィルタ装置 | Sクラス SA施設 | C／B | $\times$ | － |  |  |
| E065 | ドライウェル | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E066 | ドライウェルベント開口部 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E067 | サブレッションチェンバ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E068 | ボックスサポート | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E069 | 機器搬出入用ハッチ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E070 | 逃がし安全弁搬出入口 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E071 | 制御棒駆動機構搬出入口 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E072 | 所員用エアロック | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E073 | 原子炬格納容器配管貫通部 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E074 | 原子炉格納容器電気配線貫通部 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | $\times$ | － |  |  |
| E075 | ダウンカマ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E076 | ベント管 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E077 | ベント管ベローズ | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E078 | ベントヘッダ | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E079 | 真空破壊装置 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E080 | サプレッションチェンバスプレイ管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E081 | ドライウェルスプレイ管 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E082 | 原子炉格納容器スタビライザ | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E083 | 原子炬格納容器調気系配管 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 室素ガス供給ライン |  |
|  |  |  |  |  | $\times$ | 建屋空調系ライン | $\begin{aligned} & \left\lvert\, \begin{array}{l} \text { 通常閉の弁を介して接続 } \\ \text { されている } \end{array}\right. \end{aligned}$ |
|  |  |  |  |  | $\times$ | パージ用窒素供給ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |
|  |  |  |  |  | $\times$ | テストライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$ |

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（6／9）

| 整理 <br> 番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : O, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E084 | 非常用ガス処理系排風機 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E085 | 非常用ガス処理系空気乾燥装置 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\bigcirc$ | $\times$ | ドレンライン | 逆止弁を介して接続され ている |
| E086 | 非常用ガス処理系フィルタ装置 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E087 | 非常用ガス処理系配管 | Sクラス SA施設 | R／B | $\bigcirc$ | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E088 | 可燃性ガス濃度制御系再結合装置ブロ ワ | Sクラス | R／B | $\times$ | － |  |  |
| E089 | 可燃性ガス濃度制御系再結合装置 | Sクラス | R／B | $\times$ | － |  |  |
| E090 | 可燃性ガス濃度制御系配管 | Sクラス | R／B | $\bigcirc$ | $\times$ | 復水補給水系ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E091 | 非常用ディーゼル発電設備ディーゼル機関 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 吸気ライン |  |
|  |  |  |  |  | $\bigcirc$ | 排気ライン |  |
|  |  |  |  |  | $\bigcirc$ | 燃料油ドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
|  |  |  |  |  | $\bigcirc$ | 泪滑油ドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | 吸気ドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{aligned} & \left\lvert\, \begin{array}{l} \text { 機関付清水ポンプシール } \\ \text { リークードレンライン } \end{array}\right. \\ & \hline \end{aligned}$ |  |
|  |  |  |  |  | $\times$ | 冷却水ベントライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E092 | 非常用ディーゼル発電設備空気だめ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E093 | 非常用ディーゼル発電設備燃料デイタ ンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 燃料油ドレンユニットラ イン |  |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | $\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
| E094 | $\begin{array}{\|l\|} \hline \text { 非常用ディーゼル発電設備ディーゼル } \\ \text { 発電機 } \end{array}$ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E095 | 非常用ディーゼル発電設備清水膨張夕 ンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 補給水ライン |  |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 大気開放ライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E096 | 非常用ディーゼル発電設備清水加熱器 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E097 | 非常用ディーゼル発電設備清水泠却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E098 | 非常用ディーゼル発電設備潤滑油加熱器 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E099 | 非常用ディーゼル発電設備清水加熱器 ポンブ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{array}{\|l\|} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \\ \hline \end{array}$ |  |
| E100 | 非常用ディーゼル発電設備泪滑油プラ イミングポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\bigcirc$ | $\bigcirc$ | オイルパンドレンライン |  |
| E101 | 非常用ディーゼル発電設備潤滑油サン プタンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 給油ライン |  |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E102 | 非常用ディーゼル発電設備潤滑油泠却器 | Sクラス SA施設 | R／B | $\times$ | － |  |  |
| E103 | 非常用ディーゼル発電設備泪滑油フィ ルタ | Sクラス SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ドレンライン |  |
| E104 | 非常用ディーゼル発電設備燃料油フィ ルタ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E105 | 非常用ディーゼル発電設備燃料移送ポ ンプ | Sクラス SA施設 | 軽油タンク室 | $\times$ | － |  |  |
| E106 | 非常用ディーゼル発電設備燃料移送系配管 | Sクラス <br> SA施設 | R／B <br> 軽油タンク室 | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | タイライン | 通常閉の弁を介して接続 されている |

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（7／9）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : }{ }^{*} \text {, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E107 | 高圧炉心スブレイ系ディーゼル発電設備ディーゼル機関 | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 吸気ライン |  |
|  |  |  |  |  | $\bigcirc$ | 排気ライン |  |
|  |  |  |  |  | $\bigcirc$ | 泪滑油補給ライン |  |
|  |  |  |  |  | $\times$ | 眭滑油ドレンライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\bigcirc$ | 燃料油ドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
|  |  |  |  |  | $\bigcirc$ | 吸気ドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | 機関付清水ポンプシール リークドレンライン |  |
|  |  |  |  |  | $\times$ | 冷却水ベントライン | 通常閉の弁を介して接続 されている |
| E108 | 高圧炉心スプレイ系ディーゼル発電設備空気だめ | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E109 | 高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 燃料油ドレンユニットラ イン |  |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
| E110 | 高圧炉心スプレイ系ディーゼル発電設備ディーゼル発電機 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E111 | 高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | 補給水ライン |  |
|  |  |  |  |  | $\bigcirc$ | オーバーフローライン |  |
|  |  |  |  |  | $\bigcirc$ | 大気開放ライン |  |
|  |  |  |  |  | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E112 | 高圧炉心スプレイ系ディーゼル発電設備清水加熱器 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E113 | 高圧炉心スプレイ系ディーゼル発電設備清水冷却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E114 | 高圧炉心スプレイ系ディーゼル発電設備潤滑油加熱器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E115 | 高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{array}{\|l\|} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \\ \hline \end{array}$ |  |
| E116 | 高圧炉心スブレイ系ディーゼル発電設備潤滑油プライミングポンプ | Sクラス <br> SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | オイルパンドレンライン |  |
| E117 | 高圧炉心スプレイ系ディーゼル発電設備潤滑油冷却器 | Sクラス <br> SA施設 | R／B | $\times$ | － |  |  |
| E118 | 高圧炉心スプレイ系ディーゼル発電設備燃料油フィルタ | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | $\times$ | － |  |  |
| E119 | 高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンブ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 軽油タンク室 | $\times$ | － |  |  |
| E120 | 高圧炉心スプレイ系ディーゼル発電設備発電機軸受潤滑油冷却器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | $\times$ | － |  |  |
| E121 | 高圧炉心スブレイ系ディーゼル発電設備燃料移送系配管 | Sクラス <br> SA施設 | $\begin{gathered} \text { R/B } \\ \text { 軽油タンク室 } \end{gathered}$ | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | タイライン | $\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$ |
| E122 | 軽油タンク | Sクラス <br> SA施設 | 軽油タンク室 | $\bigcirc$ | $\bigcirc$ | 給油ライン |  |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
|  |  |  |  |  | $\bigcirc$ | 軽油タンク戻りライン |  |
| E123 | SGTS室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E124 | FCS室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E125 | CAMS室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E126 | FPCポンプ室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E127 | LPCSポンプ室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E128 | HPCSポンプ室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E129 | RHRポンプ室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E130 | D／G室非常用給気ケーシング | Sクラス | R／B | $\times$ | － |  |  |
| E131 | $\begin{array}{\|l\|} \hline \text { 換気空調補機非常用冷却水系冷水ポン } \\ \hline \end{array}$ | Sクラス | R／B | $\times$ | － |  |  |

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（8／9）

| 整理 <br> 番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : ○, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E132 | 換気空調補機非常用泠却水系冷涑機 | Sクラス | R／B | $\times$ | － |  |  |
| E133 | 原子炉補機（ $A$ ）室送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E134 | 原子炉補機（A）室給気ケーシング | Sクラス | R／B | $\times$ | － |  |  |
| E135 | 原子炉補機（HPCS）室送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E136 | 原子炉補機（HPCS）室排風機 | Sクラス | R／B | $\times$ | － |  |  |
| E137 | 原子炉補機（HPCS）室給気ケーシング | Sクラス | R／B | $\times$ | － |  |  |
| E138 | 原子炉補機（B）室送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E139 | 原子炉補機（B）室給気ケーシング | Sクラス | R／B | $\times$ | － |  |  |
| E140 | D／G（A）室非常用送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E141 | D／G（HPCS）室非常用送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E142 | D／G（B）室非常用送風機 | Sクラス | R／B | $\times$ | － |  |  |
| E143 | 原子炉補機（ $A$ ）室排風機 | Sクラス | R／B | $\times$ | － |  |  |
| E144 | 原子炉補機（ B ）室排風機 | Sクラス | R／B | $\times$ | － |  |  |
| E145 | RCWポンプ（A）室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E146 | RCWポンプ（B）室空調機 | Sクラス | R／B | $\times$ | － |  |  |
| E147 | 中央制御室給気ケーシング | Sクラス | C／B | $\times$ | － |  |  |
| E148 | 計測制御電源室給気ケーシング | Sクラス | C／B | $\times$ | － |  |  |
| E149 | 計測制御電源（A）室送風機 | Sクラス | C／B | $\times$ | － |  |  |
| E150 | 計測制御電源（A）室排風機 | Sクラス | C／B | $\times$ | － |  |  |
| E151 | 計測制御電源（B）室送風機 | Sクラス | C／B | $\times$ | － |  |  |
| E152 | 計測制御電源（B）室排風機 | Sクラス | C／B | $\times$ | － |  |  |
| E153 | 中央制御室換気空調系ダクト | Sクラス SA施設 | C／B | $\bigcirc$ | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E154 | 計測制御電源（A）室換気空調系ダクト | Sクラス | C／B | $\bigcirc$ | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E155 | 計測制御電源（B）室換気空調系ダクト | Sクラス | C／B | $\bigcirc$ | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E156 | スキマサージタンク | SA施設 | R／B | $\times$ | － |  |  |
| E157 | 高圧代替注水系ポンプ | SA施設 | R／B | $\times$ | － |  |  |
| E158 | 高圧代替注水系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | 蒸気ドレンライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\bigcirc$ | 主復水器ライン（蒸気） |  |
|  |  |  |  |  | $\times$ | 主復水器ライン（水） | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 建屋内開放ライン | ラプチャディスクを介し て接続されている |
|  |  |  |  |  | $\bigcirc$ | 燃料プール補給水系ライ |  |
|  |  |  |  |  | $\times$ | $\begin{array}{\|l\|} \hline \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E159 | 代替高圧窒素ガス供給系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | テストライン | 通常閉の弁を介して接続 されている |
| E160 | 復水移送ポンプ | SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | グランドドレンライン |  |
| E161 | 原子炉格納容器フィルタベント系フィ ルタ装置 | SA施設 | R／B | $\bigcirc$ | $\times$ | ドレンライン | 通常閉の弁を介して接続 されている |
| E162 | 原子炉格納容器フィルタベント系フィ ルタ装置出口側圧力開放板 | SA施設 | R／B | $\times$ | － |  |  |
| E163 | 原子炉格納容器フィルタベント系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | 格納容器調気系補給用窒素供給ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 純水補給水系ライン | 逆止弁を介して接続され ている |
|  |  |  |  |  | $\times$ | $\begin{array}{\|l\|} \hline \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}$ | 通常閉の弁を介して接続 されている |
| E164 | 静的触媒式水素再結合装置 | SA施設 | R／B | $\times$ | － |  |  |
| E165 | ガスタービン発電機 | SA施設 | 緊急用電気品建屋 | $\times$ | － |  |  |

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（9／9）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置場所 | $\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : ○, 無: } \times \text { ) } \\ \hline \end{gathered}$ | 評価対象 | 接続配管等 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E166 | ガスタービン発電設備軽油タンク | SA施設 | ガスタービン発電設備軽油タンク室 | $\bigcirc$ | $\bigcirc$ | 給油ライン |  |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
|  |  |  |  |  | $\bigcirc$ | 軽油タンク戻りライン |  |
| E167 | ガスタービン発電設備燃料移送系配管 | SA施設 | ガスタービン発電設備軽油タンク室緊急用電気品建屋 | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | 軽油タンク戻りライン | 通常閉の弁を介して接続 されている |
| E168 | ガスタービン発電設備燃料小出槽 | SA施設 | 緊急用電気品建屋 | $\times$ | － |  |  |
| E169 | 中央制御室しやへい壁 | Sクラス <br> SA施設 | C／B | $\times$ | － |  |  |
| E170 | 中央制御室待避所遮蔽 | SA施設 | C／B | $\times$ | － |  |  |
| E171 | 中央制御室待避所加圧設備 | SA施設 | C／B | $\times$ | － |  |  |
| E172 | 緊急時対策所遮蔽 | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E173 | 緊急時対策所非常用送風機 | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E174 | 緊急時対策所非常用フィルタ装置 | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E175 | 緊急時対策所加圧設備 | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E176 | 緊急時対策所換気空調系ダクト | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E177 | 緊急時対策所軽油タンク | SA施設 | 緊急時対策建屋 | $\bigcirc$ | $\times$ | 給油ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\bigcirc$ | ミスト管 |  |
| E178 | 緊急時対策所燃料移送系配管 | SA施設 | 緊急時対策建屋 | $\times$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E179 | 代替循環冷却ポンプ | SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | ブラケットドレンライン |  |
|  |  |  |  |  | $\bigcirc$ | $\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$ |  |
| E180 | 原子炉建屋ブローアウトパネル | SA施設 | R／B | $\times$ | － |  |  |
| E181 | 原子炬建屋ブローアウトパネル閉止装置 | SA施設 | R／B | $\times$ | － |  |  |
| E182 | 直流駆動低圧注水系ポンプ | SA施設 | R／B | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \\ & \hline \end{aligned}$ |  |
| E183 | 直流駆動低圧注水系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | 純水補給水系ライン | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E184 | 遠隔手動弁操作設備 | SA施設 | R／B | $\times$ | － |  |  |
| E185 | 緊急時対策所非常用給排気配管 | SA施設 | 緊急時対策建屋 | $\times$ | － |  |  |
| E186 | 原子炉棟換気空調系ダクト （二次格納施設バウンダリ） | Sクラス | R／B | $\bigcirc$ | $\bigcirc$ | 換気空調系ダクト |  |
| E187 | 燃料プール代替注水系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}\right. \\ \hline \end{array}$ | 通常閉の弁を介して接続 されている |
| E188 | 燃料プールスプレイ系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E189 | 原子炉補機代替冷却水系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E190 | 原子炉格納容器下部注水系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E191 | 原子炉格納容器代替スブレイ泠却系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \hline \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E192 | 代替循環冷却系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
| E193 | 可搬型窒素ガス供給系配管 | SA施設 | R／B | $\bigcirc$ | $\times$ | $\begin{aligned} & \text { ドレンライン, バントラ } \\ & \text { イン } \end{aligned}$ | 通常閉の弁を介して接続 されている |
|  |  |  |  |  | $\times$ | テストライン | 通常閉の弁を介して接続 されている |

＊ 1 Sクラス施設等と重要 SA 施設との接続部は上位クラス同士であるため，上位クラス施設と下位クラス施設との接続部として抽出しない。
第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果 $(1 / 11)$

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 原子炉補機冷却海水ポンプ | グランドドレンライン【 C 】 | グランドドレンラインとは，ポンプのグランド部（軸封部）から排出 される少量の海水を排水するための，小口径のドレンラインであり， ポンプのバウンダリと直接接続しているものではない。したがって， グランドドレンラインが破損した場合でも，グランド部から排出する ごく少量の海水が，破損した部分から漏出するだけであり，グランド部を含む上位クラス機能（ポンプ機能）に直接影響を及ぼさないため，上位クラス施設へ影響を与えない。 | － |
| 高圧炉心スプレイ補機冷却海水ポンプ | グランドドレンライン【 C 】 | 原子炉補機冷却海水ポンプと同様に，グランドドレンラインが破損し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。 | － |
| 復水貯蔵タンク | オーバーフローライン【C】 | オーバーフローラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
|  | 復水補給水戻りライン【C】 | 復水補給水戻りラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
| 原子炬再循環ポンプ | シールキャビティ圧力制御流量ライ <br> ン【B】 | 原子炉再循環ポンプは地震スクラム後には動作機能要求がなく，原子炉冷却材圧力バウンダリとしての機能のみが要求される。シールキャ ビティ圧力制御流量ラインが破損した場合でも，原子炉冷却材圧力バ ウンダリに影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（2／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 主蒸気系配管 | 主蒸気ライン【 B 】 | 主蒸気第二隔離弁の下流側で地震によって主蒸気系配管が破断した場合，破断口から冷却材が外部に流出する。しかし，冷却材の流出流量 は原子炉圧力容器ノズルに設置されている流量制限器により，破断し た配管の本数に係わらず定格主蒸気流量の $200 \%$ に制限される。その際 に，主蒸気流量大信号発生により主蒸気隔離弁が 5 秒で全閉し流出が停止する。流出流量 $200 \%$ による事故解析は，設置許可の安全解析にお いて実施されており，水位低下によって炉心が露出しないことを確認 しているため，地震時に原子炉格納容器外で主蒸気系配管が破断した場合でもその影響が防止される設計となっている。 | － |
|  | 主蒸気ドレンライン【B】 | 主蒸気ドレンライン第二隔離升は主蒸気隔離弁の信号による同弁閉動作のインターロックを設置しているため，地震スクラム時には同弁で下位クラス側と隔離されることから，上位クラスの系統機能へ影響を与えない。 | － |
| 残留熱除去系ポンプ | ペデスタルドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
| 高圧炬心スプレイ系ポンプ | ペデスタルドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（3／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 高圧炉心スプレイ系配管 | 燃料プール補給水ライン【B】 | SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。 | － |
| 低圧炬心スプレイ系ポンプ | ペデスタルドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
| 原子炉隔離時冷却系ポンプ | ブラケットドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
| 原子炉隔離時冷却系配管 | 主復水器ライン【 ${ }^{\text {a }}$ 】 | RCIC 系統運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラスの系統機能へ影響を及ぼさない。 | － |
| 原子炉補機冷却水ポンプ | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { ベアリングブラケットドレンライン } \\ & \text { 【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。 | － |

第6．2－2 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（4／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 原子炬補機冷却水サージタンク | 補給水ライン【C】 | 補給水ラインは原子炬補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。 | － |
|  | オーバーフローライン【C】 | オーバーフローラインは原子炉補機冷却水サージタンクの通常水位よ り上部に接続しており，損傷した場合でも，上位クラス施設（タンク） の機能に影響を与えない。 | － |
|  | 大気開放ライン【C】 | 大気開放ラインは原子炬補機冷却水サージタンクの通常水位より上部 に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 原子炉補機冷却水系配管 | 常用系ライン【C】 | 下位クラスの損傷により系統水位が低下すると，系統水位低のインタ ーロックによって隔離弁が閉動作し，下位クラス側と隔離されるため上位クラスの系統機能へ影響を及ぼさない。 | － |
|  | 燃料プール補給水ポンプ軸受泠却ラ イン【В】 | 小口径配管のため，損傷しても影響は軽微であることから，上位クラ ス施設（原子灲補機冷却水系配管）への影響はない。 | － |
| 高圧炉心スプレイ補機冷却水ポンプ | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { ベアリングブラケットドレンライン } \\ & \text { 【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。 | － |
| 高圧炬心スプレイ補機冷却水サージタンク | オーバーフローライン【C】 | オーバーフローラインは高圧灲心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | 大気開放ライン【C】 | 大気開放ラインは高圧灯心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タ ンク）の機能に影響を与えない。 | － |

第6．2－2 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（5／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| ほう酸水注入系ポンプ | $\begin{aligned} & \text { グランドパッキンリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，グランドパッキンリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
| ほう酸水注入系貯蔵タンク | 補給水ライン【C】 | 補給水ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続 しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | オーバーフローライン【 C 】 | オーバーフローラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | 大気開放ライン【C】 | 大気開放ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 燃料プール冷却浄化系ポンプ | ブラケットドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
| 復水補給水系配管 | 制御棒駆動水圧系給水ライン【 $\mathrm{B}^{\text {¢ }}$ 】 | SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。 | － |
|  | 試料採取系ライン【C】 | SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。 | － |
| 高圧窒素ガス供給系配管 | 常用系ライン【C】 | 下位クラスの損傷により常用系の圧力が低下すると，インターロック によって隔離弁が閉動作し下位クラス側と隔離されるため上位クラス の系統機能へ影響を及ぼさない。 | － |
| 原子炉格納容器調気系配管 | 窒素ガス供給ライン【C】 | 下位クラスの損傷が発生した場合には，隔離弁を閉操作し隔離するこ とから，上位クラスの系統機能へ影響を及ぼさない。 | － |

第6．2－2表 女川2号機 上位クラス施設と下位クラス施設との接続部の評価結果（6／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 非常用ディーゼル発電設備非常用ディーゼル機関 | 吸気ライン【C】 | 当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 排気ライン【C】 | 当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 燃料油ドレンライン【く】 | 原子炉補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |
|  | ミスト管【C】 | ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 潤滑油ドレンライン【く】 | 原子炉補機冷却海水ポンプと同様に，潤滑油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 吸気ドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |
|  | 機関付清水ポンプシールリークドレ ンライン【C】 | 原子炉補機冷却海水ポンプと同様に，機関付清水ポンプシールリーク ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼ さないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（7／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 非常用ディーゼル発電設備燃料デイタンク | 燃料油ドレンユニットライン【C】 | 燃料油ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。 | － |
|  | オーバーフローライン【 C 】 | オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
|  | ミスト管【C】 | ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 非常用ディーゼル発電設備清水膨張タンク | 補給水ライン【C】 | 補給水ラインは清水膨張タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。 | － |
|  | オーバーフローライン【く】 | オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
|  | 大気開放ライン【C】 | 大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。 | － |
| 非常用ディーゼル発電設備清水加熱器ポン プ | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設の機能に影響を与えない。 | － |
| 非常用ディーゼル発電設備泪滑油プライミ ングポンプ | オイルパンドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（8／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 非常用ディーゼル発電設備潤滑油サンプタ ンク | 給油ライン【C】 | 給油ラインは潤滑油サンプタンクの通常油面より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。 | － |
|  | ミスト管【C】 | ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 発電用ディーゼル発電設備潤滑油フィルタ | ドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。 | － |
| 高圧炉心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関 | 吸気ライン【C】 | 当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 排気ライン【C】 | 当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 潤滑油補給ライン【C】 | 当該配管が損傷した場合でも，機関付潤滑油ポンプによってオイルパ ンからディーゼル機関へ潤滑油が補給されるため，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 燃料油ドレンライン【く】 | 原子炉補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |
|  | ミスト管【C】 | ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。 | － |
|  | 吸気ドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（9／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 高圧烼心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関 | 機関付清水ポンプシールリークドレ ンライン【C】 | 原子炬補機冷却海水ポンプと同様に，機関付清水ポンプシールリーク ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼ さないため，上位クラス施設（ディーゼル機関）へ影響を与えない。 | － |
| 高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク | 燃料油ドレンユニットライン【C】 | 燃料ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | オーバーフローライン【C】 | オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
|  | ミスト管【C】 | ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク | 補給水ライン【C】 | ```補給水ラインは清水膨張タンクの通常水位より上部に接続しており, 損傷した場合でも, 上位クラス施設(タンク) の機能に影響を与えな い。``` | － |
|  | オーバーフローライン【C】 | オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。 | － |
|  | 大気開放ライン【C】 | 大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。 | － |
| 高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設（ポンプ）へ影響を与えない。 | － |
| 高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ | オイルパンドレンライン【C】 | 原子炬補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（10／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 軽油タンク | 給油ライン【C】 | 給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | ミスト管【C】 | ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | 燃料油戻りライン【C】 | 燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。 | － |
| 原子炉棟換気空調系ダクト <br> （二次格納施設バウンダリ） | 換気空調系ダクト【C】 | 下位クラスの換気空調系ダクトが損傷した場合でも，隔離弁により二次格納施設が隔離されるため，バウンダリ機能に影響を与えない。 | － |
| 高圧代替注水系配管 | 主復水器ライン（蒸気）【 $B$ 】 | SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。 | － |
|  | 燃料プール補給水系ライン【B】 | SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。 | － |
| 復水移送ポンプ | グランドドレンライン【B】 | 原子炉補機冷却海水ポンプと同様に，グランドドレンラインが損傷し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。 | － |
| ガスタービン発電設備軽油タンク | 給油ライン【C】 | 給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | ミスト管【C】 | ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
|  | 燃料油戻りライン【C】 | 燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。 | － |

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（11／11）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 緊急時対策所軽油タンク | ミスト管【C】 | ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。 | － |
| 代替循環冷却ポンプ | ブラケットドレンライン【C】 | 原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。 | － |
|  | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炬補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |
| 直流駆動低圧注水系ポンプ | $\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$ | 原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。 | － |

## 6． 3 建屋内における施設の損傷，転倒，落下等による影響検討結果

6．3．1 抽出手順
机上検討及び現地調査を基に，建屋内上位クラス施設に対して，損傷，転倒，落下等により影響を及ぼすおそれのある下位クラス施設を抽出する。

建屋内上位クラス施設の配置図を第6．3－1図に示す（配置図上のエリア番号 は第 4－2 表の設置場所に該当する）。原子炉建屋クレーンの位置関係概要図を第 6．3－2 図に，燃料交換機の位置関係概要図を第6．3－3 図に，制御棒貯蔵ハンガ，制御棒貯蔵ラック及び燃料チャンネル着脱機の位置関係概要図を第6．3－4 図に，原子炉ウェルカバー及び原子炉しやへい壁の位置関係概要図を第6．3－5 図に示 す。

6．3．2 下位クラス施設の抽出結果
第5．3－1図のフローの a に基づいて，上位クラス施設に波及的影響を及ぼす おそれのある下位クラス施設を抽出した結果を第6．3－1表に示す。

## 6．3．3 耐震評価結果

6．3．2 項で抽出した建屋内下位クラス施設の評価結果について，第6．3－2 表 に示す。

PPN

(2)

(1)

$\stackrel{3}{6}$



|  | 䟚 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |



8










PPN


女川 2 号機 原子炉建屋クレーン位置関係概要図
第6．3－2 図
${ }^{\circ}$

第6．3－3 図 女川 2 号機 燃料交換機位置関係概要図
$\stackrel{8}{0}$
$\theta$ -



第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（1／18）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{array}{\|c\|} \hline \text { 波及的影響のおそれ } \\ (\text { ( : 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \end{array}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E001 | 燃料集合体 | Sクラス | R／B | － | $\times$ | ＊ 1 |
| E002 | 原子炬圧力容器 | Sクラス <br> SA施設 | R／B | 原子炉しやへい壁 | $\bigcirc$ | ＊2 |
| E003 | 炬心支持構造物 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ | ＊ 1 |
| E004 | 原子炉圧力容器支持構造物 | Sクラス | R／B | － | $\times$ | ＊3 |
| E005 | 原子炉圧力容器付属構造物 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ | ＊3 |
| E006 | 原子炉圧力容器内部構造物 | Sクラス <br> SA施設 | R／B | － | $\times$ | ＊ 1 |
| E007 | 使用済燃料プール | Sクラス <br> SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 燃料交換機 | $\bigcirc$ |  |
| E008 | 使用済燃料貯蔵ラック | Sクラス <br> SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 燃料交換機 | $\bigcirc$ |  |
|  |  |  |  | 制御棒貯蔵ハンガ | $\bigcirc$ | ＊ 4 |
|  |  |  |  | 制御棒貯蔵ラック | $\bigcirc$ | ＊ 4 |
|  |  |  |  | 燃料チャンネル着脱機 | $\bigcirc$ | ＊ 4 |
| E009 | 制御棒•破損燃料貯蔵ラック | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 燃料交換機 | $\bigcirc$ |  |
| E010 | 原子炉再循環ポンプ | Sクラス | R／B | － | $\times$ |  |
| E011 | 原子炉再循環系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E012 | 主蒸気逃がし安全弁逃がし弁機能用ア キュムータ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E013 | 主蒸気逃がし安全弁自動減圧機能用ア キュムレータ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E014 | 主蒸気第一隔離弁用アキュムレータ | Sクラス | R／B | － | $\times$ |  |
| E015 | 主蒸気第二隔離弁用アキュムレータ | Sクラス | R／B | － | $\times$ |  |
| E016 | 主蒸気系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E017 | 復水給水系配管 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E018 | 残留熱除去系熱交換器 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E019 | 残留熱除去系ポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E020 | 残留熱除去系ストレーナ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E021 | 残留熱除去系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E022 | 高圧炉心スプレイ系ポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E023 | 高圧炉心スプレイ系ストレーナ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E024 | 高圧炉心スプレイ系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E025 | 低圧炉心スプレイ系ポンプ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E026 | 低圧炉心スプレイ系ストレーナ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E027 | 低圧炉心スプレイ系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E028 | 原子炉隔離時冷却系ポンプ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E029 | 原子炬隔離時冷却系ポンプ駆動用タービ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E030 | 原子炉隔離時冷却系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（2／18）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ <br> （○：有，$\times:$ 無） <br> 損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E031 | 原子炉補機冷却水系熱交換器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E032 | 原子炉補機冷却水ポンプ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E033 | 原子炬補機冷却水サージタンク | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E034 | 原子炉補機冷却水系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E035 | 原子炬補機冷却海水系ストレーナ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E036 | 原子炉補機冷却海水系配管 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E037 | 高圧炉心スプレイ補機冷却水系熱交換器 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E038 | 高圧炉心スプレイ補機冷却水ポンプ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E039 | 高圧炉心スプレイ補機冷却水サージタン ク | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E040 | 高圧炉心スプレイ補機冷却水系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E041 | 高圧炉心スプレイ補機冷却海水系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E042 | 原子炉泠却材浄化系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E043 | 制御棒駆動機構 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E044 | 水圧制御ユニット | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E045 | 制御棒駆動水圧系配管 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E046 | ほら酸水注入系ポンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E047 | ほら酸水注入系貯蔵タンク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E048 | ほう酸水注入系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E049 | 放射性ドレン移送系配管 | Sクラス | R／B | － | $\times$ |  |
| E050 | 燃料プール泠却浄化系ポンプ | SA施設 | R／B | － | $\times$ |  |
| E051 | 燃料プール泠却浄化系熱交換器 | SA施設 | R／B | － | $\times$ |  |
| E052 | 燃料プール | Sクラス | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
| E052 |  | SA施設 | R／B | 燃料交換機 | $\bigcirc$ |  |
| E053 | 換気空調補機常用泠却水系配管 | Sクラス | R／B | － | $\times$ |  |
| E054 | 換気空調補機非常用泠却水系配管 | Sクラス | $\begin{aligned} & \hline \text { R/B } \\ & C / B \end{aligned}$ | － | $\times$ |  |
| E055 | 補給水系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E056 | 高圧窒素ガス供給系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E057 | 所内用圧縮空気系配管 | Sクラス | R／B | － | $\times$ |  |
| E058 | 計装用圧縮空気系配管 | Sクラス | R／B | － | $\times$ |  |
| E059 | サンプリング配管 | Sクラス | R／B | － | $\times$ |  |
| E060 | 高圧窒素ガス供給系窒素ガスボンベラッ | Sクラス | R／B | － | $\times$ |  |
| E061 | 中央制御室送風機 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | － | $\times$ |  |
| E062 | 中央制御室排風機 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | － | $\times$ |  |
| E063 | 中央制御室再循環送風機 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | C／B | － | $\times$ |  |
| E064 | 中央制御室再循環フィルタ装置 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | C／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（3／18）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E065 | ドライウェル | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | 原子炉ウェルカバー | $\bigcirc$ | ＊2 |
| E066 | ドライウェルベント開口部 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E067 | サプレッションチェンバ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E068 | ボックスサポート | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E069 | 機器搬出入用ハッチ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E070 | 逃がし安全弁搬出入口 | Sクラス SA施設 | R／B | － | $\times$ |  |
| E071 | 制御棒駆動機構搬出入口 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E072 | 所員用エアロック | Sクラス SA施設 | R／B | － | $\times$ |  |
| E073 | 原子炉格納容器配管貫通部 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E074 | 原子炬格納容器電気配線貫通部 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E075 | ダウンカマ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E076 | ベント管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E077 | ベント管ベローズ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E078 | ベントヘッダ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E079 | 真空破壊装置 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E080 | サプレッションチェンバスプレイ管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E081 | ドライウェルスプレイ管 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E082 | 原子炉格納容器スタビライザ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E083 | 原子炉格納容器調気系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E084 | 非常用ガス処理系排風機 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E085 | 非常用ガス処理系空気乾燥装置 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E086 | 非常用ガス処理系フィルタ装置 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E087 | 非常用ガス処理系配管 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E088 | 可燃性ガス濃度制御系再結合装置ブロワ | Sクラス | R／B | － | $\times$ |  |
| E089 | 可燃性ガス濃度制御系再結合装置 | Sクラス | R／B | － | $\times$ |  |
| E090 | 可燃性ガス濃度制御系配管 | Sクラス | R／B | － | $\times$ |  |
| E091 | 非常用ディーゼル発電設備非常用ディー ゼル機関 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E092 | 非常用ディーゼル発電設備空気だめ | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E093 | 非常用ディーゼル発電設備燃料デイタン | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E094 | 非常用ディーゼル発電設備非常用ディー ゼル発電機 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E095 | 非常用ディーゼル発電設備清水膨張タン ク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E096 | 非常用ディーゼル発電設備清水加熱器 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E097 | 非常用ディーゼル発電設備清水泠却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E098 | 非常用ディーゼル発電設備潤滑油加熱器 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| E099 | 非常用ディーゼル発電設備清水加熱器ポ ンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E100 | 非常用ディーゼル発電設備潤滑油プライ ミングポンプ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（4／18）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ （ $\circ$ ：有，$\times$ ：無）損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E101 | 非常用ディーゼル発電設備潤滑油サンプ タンク | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E102 | 非常用ディーゼル発電設備潤滑油冷却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E103 | 非常用ディーゼル発電設備潤滑油フィル夕 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E104 | 非常用ディーゼル発電設備燃料油フィル夕 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E105 | 非常用ディーゼル発電設備燃料移送ポン プ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 軽油タンク室 | － | $\times$ |  |
| E106 | 非常用ディーゼル発電設備燃料移送系配管 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R/B <br> 軽油タンク室 | － | $\times$ |  |
| E107 | 高圧炉心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E108 | 高圧炉心スプレイ系ディーゼル発電設備空気だめ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E109 | 高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E110 | 高圧炉心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル発電機 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E111 | 高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| E112 | 高圧炉心スプレイ系ディーゼル発電設備清水加熱器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E113 | 高圧炉心スプレイ系ディーゼル発電設備清水冷却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E114 | 高圧炉心スプレイ系ディーゼル発電設備潤滑油加熱器 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E115 | 高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E116 | 高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| E117 | 高圧炉心スプレイ系ディーゼル発電設備潤滑油椧却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E118 | 高圧炉心スプレイ系ディーゼル発電設備燃料油フィルタ | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| E119 | 高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | 軽油タンク室 | － | $\times$ |  |
| E120 | 高圧炉心スプレイ系ディーゼル発電設備発電機軸受潤滑油椧却器 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| E121 | 高圧炉心スプレイ系ディーゼル発電設備燃料移送系配管 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | $\mathrm{R} / \mathrm{B}$ <br> 軽油タンク室 | － | $\times$ |  |
| E122 | 軽油タンク | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 軽油タンク室 | － | $\times$ |  |
| E123 | SGTS室空調機 | Sクラス | R／B | － | $\times$ |  |
| E124 | FCS室空調機 | Sクラス | R／B | － | $\times$ |  |
| E125 | CAMS室空調機 | Sクラス | R／B | － | $\times$ |  |
| E126 | FPCポンプ室空調機 | Sクラス | R／B | － | $\times$ |  |
| E127 | LPCSポンプ室空調機 | Sクラス | R／B | － | $\times$ |  |
| E128 | HPCSポンプ室空調機 | Sクラス | R／B | － | $\times$ |  |
| E129 | RHRポンプ室空調機 | Sクラス | R／B | － | $\times$ |  |
| E130 | D／G室非常用給気ケーシング | Sクラス | R／B | － | $\times$ |  |
| E131 | 換気空調補機非常用泠却水系泠水ポンプ | Sクラス | R／B | － | $\times$ |  |
| E132 | 換気空調補機非常用泠却水系冷凍機 | Sクラス | R／B | － | $\times$ |  |
| E133 | 原子炬補機（ A ）室送風機 | Sクラス | R／B | － | $\times$ |  |
| E134 | 原子炉補機（A）室給気ケーシング | Sクラス | R／B | － | $\times$ |  |
| E135 | 原子炬補機（HPCS）室送風機 | Sクラス | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（5／18）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\left.\begin{array}{\|c}\text { 波及的影響のおそれ } \\ (○: \text { 有，} \times: \text { 無）}\end{array}\right]$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E136 | 原子炬補機（HPCS）室排風機 | Sクラス | R／B | － | $\times$ |  |
| E137 | 原子炉補機（HPCS）室給気ケーシング | Sクラス | R／B | － | $\times$ |  |
| E138 | 原子炉補機（B）室送風機 | Sクラス | R／B | － | $\times$ |  |
| E139 | 原子炉補機（B）室給気ケーシング | Sクラス | R／B | － | $\times$ |  |
| E140 | D／G（A）室非常用送風機 | Sクラス | R／B | － | $\times$ |  |
| E141 | D／G（HPCS）室非常用送風機 | Sクラス | R／B | － | $\times$ |  |
| E142 | D／G（B）室非常用送風機 | Sクラス | R／B | － | $\times$ |  |
| E143 | 原子炉補機（ $A$ ）室排風機 | Sクラス | R／B | － | $\times$ |  |
| E144 | 原子炉補機（B）室排風機 | Sクラス | R／B | － | $\times$ |  |
| E145 | RCWポンプ（A）室空調機 | Sクラス | R／B | － | $\times$ |  |
| E146 | RCWポンプ（B）室空調機 | Sクラス | R／B | － | $\times$ |  |
| E147 | 中央制御室給気ケーシング | Sクラス | C／B | － | $\times$ |  |
| E148 | 計測制御電源室給気ケーシング | Sクラス | C／B | － | $\times$ |  |
| E149 | 計測制御電源（A）室送風機 | Sクラス | C／B | － | $\times$ |  |
| E150 | 計測制御電源（A）室排風機 | Sクラス | C／B | － | $\times$ |  |
| E151 | 計測制御電源（B）室送風機 | Sクラス | C／B | － | $\times$ |  |
| E152 | 計測制御電源（B）室排風機 | Sクラス | C／B | － | $\times$ |  |
| E153 | 中央制御室換気空調系ダクト | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | － | $\times$ |  |
| E154 | 計測制御電源（A）室換気空調系ダクト | Sクラス | C／B | － | $\times$ |  |
| E155 | 計測制御電源（B）室換気空調系ダクト | Sクラス | C／B | － | $\times$ |  |
| E156 | スキマサージタンク | SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ | ＊5 |
| E157 | 高圧代替注水系タービンポンプ | SA施設 | R／B | － | $\times$ |  |
| E158 | 高圧代替注水系配管 | SA施設 | R／B | － | $\times$ |  |
| E159 | 代替高圧窒素ガス供給系配管 | SA施設 | R／B | － | $\times$ |  |
| E160 | 復水移送ポンプ | SA施設 | R／B | － | $\times$ |  |
| E161 | 原子炉格納容器フィルタベント系フィル夕装置 | SA施設 | R／B | － | $\times$ |  |
| E162 | $\begin{aligned} & \text { 原子炉格納容器フィルタベント系フィル } \\ & \text { 夕装置出口側圧力開放板 } \end{aligned}$ | SA施設 | R／B | － | $\times$ |  |
| E163 | 原子炉格納容器フィルタベント系配管 | SA施設 | R／B | － | $\times$ |  |
| E164 | 静的触媒式水素再結合装置 | SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
| E165 | ガスタービン発電機 | SA施設 | 緊急用電気品建屋 | － | $\times$ |  |
| E166 | ガスタービン発電設備軽油タンク | SA施設 | ガスタービン発電設備軽油タンク室 | － | $\times$ |  |
| E167 | ガスタービン発電設備燃料移送系配管 | SA施設 | ガスタービン発電設備軽油タンク室緊急用電気品建屋 | － | $\times$ |  |
| E168 | ガスタービン発電設備燃料小出槽 | SA施設 | 緊急用電気品建屋 | － | $\times$ |  |
| E169 | 中央制御室しやへい壁 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（6／18）

| 整理番号 | 建屋内上位クラス施設（機器•配管） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ $\qquad$ <br> 損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E170 | 中央制御室待避所遮蔽 | SA施設 | C／B | － | $\times$ |  |
| E171 | 中央制御室待避所加圧設備 | SA施設 | C／B | － | $\times$ |  |
| E172 | 緊急時対策所遮蔽 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E173 | 緊急時対策所非常用送風機 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E174 | 緊急時対策所非常用フィルタ装置 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E175 | 緊急時対策所加圧設備 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E176 | 緊急時対策所換気空調系ダクト | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E177 | 緊急時対策所軽油タンク | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E178 | 緊急時対策所燃料移送系配管 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E179 | 代替循環冷却ポンプ | SA施設 | R／B | － | $\times$ |  |
| E180 | 原子炉建屋ブローアウトパネル | SA施設 | R／B | － | $\times$ |  |
| E181 | 原子炉建屋ブローアウトパネル閉止装置 | SA施設 | R／B | － | $\times$ |  |
| E182 | 直流駆動低圧注水系ポンプ | SA施設 | R／B | － | $\times$ |  |
| E183 | 直流駆動低圧注水系配管 | SA施設 | R／B | － | $\times$ |  |
| E184 | 遠隔手動弁操作設備 | SA施設 | R／B | － | $\times$ |  |
| E185 | 緊急時対策所非常用給排気配管 | SA施設 | 緊急時対策建屋 | － | $\times$ |  |
| E186 | 原子炉棟換気空調系ダクト （二次格納施設バウンダリ） | Sクラス | R／B | － | $\times$ |  |
| E187 | 燃料プール代替注水系配管 | SA施設 | R／B | － | $\times$ |  |
| E188 | 燃料プールスプレイ系配管 | SA施設 | R／B | － | $\times$ |  |
| E189 | 原子炉補機代替冷却水系配管 | SA施設 | R／B | － | $\times$ |  |
| E190 | 原子炉格納容器下部注水系配管 | SA施設 | R／B | － | $\times$ |  |
| E191 | 原子炉格納容器代替スプレイ泠却系配管 | SA施設 | R／B | － | $\times$ |  |
| E192 | 代替循環冷却系配管 | SA施設 | R／B | － | $\times$ |  |
| E193 | 可搬型窒素ガス供給系配管 | SA施設 | R／B | － | $\times$ |  |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（7／18）

| 整理番号 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{array}{\|c\|} \hline \text { 波及的影響のおそれ } \\ (\text { ○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{array}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V001 | 主蒸気逃がし安全弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V002 | 主蒸気第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V003 | 主蒸気第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V004 | 主蒸気ドレンライン第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V005 | 主蒸気ドレンライン第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V006 | 原子炉給水逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V007 | FDW第二隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V008 | FDW第一隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V009 | SLCタンク出口弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V010 | SLC注入電動弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V011 | RHRポンプS／C吸込开 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V012 | RHRポンプ吐出逆止弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V013 | RHR熱交換器バイパス升 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V014 | RHR LPCI注入隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V015 | RHR LPCI注入試験可能逆止弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V016 | RHR熱交換器出口弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V017 | RHR格納容器スプレイ流量調節弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V018 | RHR格納容器スプレイ隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V019 | RHR S／Cスプレイ隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V020 | RHR停止時冷却吸込第一隔離弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| V021 | RHR停止時冷却吸込第二隔離弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V022 | RHRポンプ停止時冷却吸込弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V023 | RHR停止時冷却注入隔離弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V024 | RHR停止時冷却試験可能逆止弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V025 | RHRヘッドスプレイ注入隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V026 | RHRヘッドスプレイ注入逆止弁 | Sクラス | R／B | － | $\times$ | ＊3 |
| V027 | RHRポンプミニマムフロー逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V028 | RHRポンプミニマムフロー弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V029 | LPCSポンプS／C吸込弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V030 | LPCSポンプ吐出逆止弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V031 | LPCS注入隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V032 | LPCS注入ライン試験可能逆止弁 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V033 | LPCSポンプミニマムフロー逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V034 | LPCSポンプミニマムフロー弁 | Sクラス | R／B | － | $\times$ |  |
| V035 | HPCSポンプCST吸込弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（8／18）

| 整理 番号 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ <br> （○：有，$\times:$ 無） <br> 損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V036 | HPCSポンプCST吸込逆止升 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| V037 | HPCS注入隔離弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| V038 | HPCS注入ライン試験可能逆止弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| V039 | HPCSポンプS／C吸込弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V040 | HPCSポンプS／C吸込逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V041 | HPCSポンプCST側ミニマムフロー第一弁 | Sクラス | R／B | － | $\times$ |  |
| V042 | HPCSポンプS／C側ミニマムフロー弁 | Sクラス | R／B | － | $\times$ |  |
| V043 | RCICポンプCST吸込弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V044 | RCICポンプCST吸込逆止升 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V045 | RCIC注入弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V046 | RCIC注入ライン試験可能逆止弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| V047 | RCICポンプS／C吸込弁 | Sクラス | R／B | － | $\times$ |  |
| V048 | RCICポンプS／C吸込逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V049 | RCICタービン入口蒸気ライン第一隔離升 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V050 | RCICタービン入口蒸気ライン第二隔離升 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V051 | RCICタービン止め升 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V052 | RCICタービン排気ライン逆止弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V053 | RCICタービン排気ライン隔離弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V054 | RCICポンプミニマムフロー逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V055 | RCICポンプミニマムフロー弁 | Sクラス | R／B | － | $\times$ |  |
| V056 | RCIC冷却水ライン止め弁 | Sクラス | R／B | － | $\times$ |  |
| V057 | RCIC泠却水ライン圧力調整弁 | Sクラス | R／B | － | $\times$ |  |
| V058 | RCIC真空ポンプ吐出ライン逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V059 | RCIC真空ポンプ吐出ライン隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V060 | CUW入ロライン第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V061 | CUW入ロライン第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V062 | CUW注入ライン逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V063 | FPC燃料プール再循環逆止弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
|  |  | Sクラス |  | 原子炬建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 燃料交換機 | $\bigcirc$ |  |
| V065 | D／W LCWサンプ第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V066 | D／W LCWサンプ第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V067 | D／W HCWサンプ第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V068 | D／W HCWサンプ第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V069 | FPMUW燃料プール注入弁 | Sクラス | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（9／18）

| 整理番号 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V070 | HNCW供給ライン第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V071 | HNCW戻りライン第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V072 | HNCW戻りライン第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V073 | 中央制御室給気冷却コイル温度調節弁 | Sクラス | R／B | － | $\times$ |  |
| V074 | HECW往還差圧調節弁 | Sクラス | R／B | － | $\times$ |  |
| V075 | 計測制御電源室給気泠却コイル温度調節弁 | Sクラス | R／B | － | $\times$ |  |
| V076 | 原子炉補機室給気冷却コイル温度調節弁 | Sクラス | R／B | － | $\times$ |  |
| V077 | RCWポンプ吐出逆止弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V078 | RCW熱交換器冷却水出口升 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V079 | RCW泠却水供給温度熱交換器調節弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V080 | RCW冷却水供給温度調節弁後弁 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V081 | RCW冷却水供給温度ポンプ調節弁 | Sクラス | R／B | － | $\times$ |  |
| V082 | RHR熱交換器泠却水出口升 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V083 | RCWサージタンク非常用補給水弁 | Sクラス | R／B | － | $\times$ |  |
| V084 | 非常用D／G冷却水出口弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V085 | RCW常用冷却水緊急しや断弁 | Sクラス | R／B | － | $\times$ |  |
| V086 | RCW常用泠却水供給側分離弁 | Sクラス | R／B | － | $\times$ |  |
| V087 | RCW 常用泠却水戻り側分離弁 | Sクラス | R／B | － | $\times$ |  |
| V088 | RCW常用泠却水戻り側逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V089 | RCW供給側第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V090 | RCW供給側第一隔離逆止弁 | Sクラス | R／B | － | $\times$ |  |
| V091 | RCW戻り側第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V092 | RCW戻り側第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V093 | 原子炉補機冷却海水系ストレーナ旋回弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| V094 | RSWストレーナブロー弁 | Sクラス | R／B | － | $\times$ |  |
| V095 | HPCWサージタンク非常用補給水弁 | Sクラス | R／B | － | $\times$ |  |
| V096 | HPIN非常用窒素ガス入口弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V097 | HPIN常用非常用窒素ガス連絡弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V098 | 非常用ガス処理系入口弁 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V099 | 非常用ガス処理系空気乾燥装置入口弁 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V100 | 非常用ガス処理系フィルタ装置出口弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V101 | パージ用空気供給側隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V102 | D／Wパージ用入口隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V103 | S／Cパージ用入口隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V104 | 格納容器外真空逃がし逆止隔離弁 | Sクラス | R／B | － | $\times$ |  |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（10／18）

| 整理番号 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V105 | 格納容器外真空逃がし隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V106 | 補給用窒素ガス供給側第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V107 | D／W補給用窒素ガス供給用第一隔離弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| V108 | S／C補給用室素ガス供給用第一隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V109 | パージ用窒素ガス供給側第二隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V110 | D／Wベント用出口隔離弁 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| V111 | ベント用SGTS側隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V112 | ベント用HVAC側隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V113 | S／Cベント用出口隔離升 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V114 | D／Wバント用出口隔離弁バイパス弁 | Sクラス | R／B | － | $\times$ |  |
| V115 | S／Cベント用出口隔離弁バイパス弁 | Sクラス | R／B | － | $\times$ |  |
| V116 | PCV耐圧強化ベント用連絡配管隔離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V117 | PCV耐圧強化ベント用連絡配管止め弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V118 | FCS入口隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V119 | FCS出口隔離弁 | Sクラス | R／B | － | $\times$ |  |
| V120 | RCICタービン入口蒸気ドレンライン第一弁 | Sクラス | R／B | － | $\times$ |  |
| V121 | RHRヘッドスプレイライン洗浄流量調節弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V122 | RHR B系格納容器冷却ライン洗浄流量調節 弁 | SA施設 | R／B | － | $\times$ |  |
| V123 | 原子炉再循環ポンプ吐出弁 | Sクラス | R／B | － | $\times$ |  |
| V124 | RHR試験用調整弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V125 | CRD復水入口弁 | SA施設 | R／B | － | $\times$ |  |
| V126 | MUWCサンプリング取出止め弁 | SA施設 | R／B | － | $\times$ |  |
| V127 | 復水貯蔵タンク常用，非常用給水管連絡 ライン止め弁 | SA施設 | R／B | － | $\times$ |  |
| V128 | FPMUWポンプ吸込弁 | SA施設 | R／B | － | $\times$ |  |
| V129 | 復水貯蔵タンク常用，非常用給水管連絡 ライン逆止弁 | SA施設 | R／B | － | $\times$ |  |
| V130 | R／B 1F 緊急時隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V131 | 緊急時原子炉北側外部注水入口弁 | SA施設 | R／B | － | $\times$ |  |
| V132 | T／B 緊急時隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V133 | 緊急時原子炬東側外部注水入口弁 | SA施設 | R／B | － | $\times$ |  |
| V134 | FCVSベントライン隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V135 | FCVS窒素供給ライン止め弁 | SA施設 | R／B | － | $\times$ |  |
| V136 | FCVS側PSA窒素供給ライン元弁 | SA施設 | R／B | － | $\times$ |  |
| V137 | S／C側PSA窒素供給ライン第一隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V138 | FPC熱交換器入口弁 | SA施設 | R／B | － | $\times$ |  |
| V139 | FPCろ過脱塩装置バイパス弁 | SA施設 | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（11／18）

| 整理 <br> 番号 | 建屋内上位クラス施設（弁） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ <br> （○：有，$\times$ ：無） <br> 損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V140 | FPCろ過脱塩装置出口弁 | SA施設 | R／B | － | $\times$ |  |
| V141 | FPCろ過脱塩装置入口第一弁 | SA施設 | R／B | － | $\times$ |  |
| V142 | FPCろ過脱塩装置入口第二弁 | SA施設 | R／B | － | $\times$ |  |
| V143 | 中央制御室換気空調系ダンパ | Sクラス <br> SA施設 | C／B | － | $\times$ |  |
| V144 | HPAC注入弁 | SA施設 | R／B | － | $\times$ |  |
| V145 | HPACタービン止め弁 | SA施設 | R／B | － | $\times$ |  |
| V146 | RCIC蒸気供給ライン分離弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V147 | FPC熱交換器冷却水出口弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V148 | HECW冷凍機冷却水圧力調節弁 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| V149 | RCW代替冷却システム用電動仕切弁 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| V150 | FCVS排水移送ライン第二隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V151 | FCVS排水移送ライン第一隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V152 | 原子炉格納容器下部注水用復水流量調整弁 | SA施設 | R／B | － | $\times$ |  |
| V153 | 原子炉格納容器下部注水用復水仕切弁 | SA施設 | R／B | － | $\times$ |  |
| V154 | 代替制御棒挿入機能用電磁弁 | SA施設 | R／B | － | $\times$ |  |
| V155 | HPAC蒸気供給ライン分離弁 | SA施設 | R／B | － | $\times$ |  |
| V156 | 代替HPIN窒素排気出口弁 | SA施設 | R／B | － | $\times$ |  |
| V157 | 代替HPIN第一隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V158 | DCLIポンプ吸込弁 | SA施設 | R／B | － | $\times$ |  |
| V159 | DCLI注入流量調整弁 | SA施設 | R／B | － | $\times$ |  |
| V160 | R／B B1F 緊急時隔離弁 | SA施設 | R／B | － | $\times$ |  |
| V161 | RCW代替冷却水不要負荷分離弁 | SA施設 | R／B | － | $\times$ |  |
| V162 | RHR格納容器代替スプレイ注入元弁 | SA施設 | R／B | － | $\times$ |  |
| V163 | 代替循環冷却ポンプ吸込弁 | SA施設 | R／B | － | $\times$ |  |
| V164 | 代替循環冷却ポンプ流量調整弁 | SA施設 | R／B | － | $\times$ |  |
| V165 | 代替循環冷却ポンプバイパス弁 | SA施設 | R／B | － | $\times$ |  |
| V166 | RHR MUWC連絡第一弁 | SA施設 | R／B | － | $\times$ |  |
| V167 | RHR MUWC連絡第二弁 | SA施設 | R／B | － | $\times$ |  |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（12／18）

| 整理番号 | 建屋内上位クラス施設（電気盤等） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times: \text { 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B001 | 460V制御建屋モータコントロールセンタ | Sクラス <br> SA施設 | C／B | － | $\times$ |  |
| B002 | 125V蓄電池 | Sクラス <br> SA施設 | $\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$ | － | $\times$ |  |
| B003 | 125V直流受電パワーセンタ | Sクラス <br> SA施設 | C／B | － | $\times$ |  |
| B004 | 125V充電器盤 | Sクラス <br> SA施設 | $\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$ | － | $\times$ |  |
| B005 | 125 V 直流主母線盤 | Sクラス <br> SA施設 | $\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$ | － | $\times$ |  |
| B006 | 125V直流分電盤 | Sクラス <br> SA施設 | $\begin{aligned} & \hline C / B \\ & R / B \end{aligned}$ | － | $\times$ |  |
| B007 | 無停電交流電源用静止型無停電電源装置 | Sクラス | C／B | － | $\times$ |  |
| B008 | 交流 120 V 無停電交流分電盤 | Sクラス | C／B | － | $\times$ |  |
| B009 | 中央制御室用電源切替盤 | Sクラス <br> SA施設 | C／B | － | $\times$ |  |
| B010 | 中央制御室120V交流分電盤 | Sクラス <br> SA施設 | C／B | － | $\times$ |  |
| B011 | 6． 9 kV メタクラ | Sクラス <br> SA施設 | $\begin{gathered} \mathrm{R} / \mathrm{B} \\ \hline \text { 緊急用電気品 } \\ \text { 緊急時対策建屋 } \\ \hline \end{gathered}$ | － | $\times$ |  |
| B012 | 460Vパワーセンタ | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| B013 | $\begin{array}{\|l} \text { 460V原子炉建屋モータコントロールセン } \\ \text { 夕 } \end{array}$ | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| B014 | 125V直流RCICモータコントロールセンタ | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| B015 | 高圧炉心スプレイ系120V交流分電盤2H | Sクラス | R／B | － | $\times$ |  |
| B016 | 原子炉冷却制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B017 | 原子炬制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B018 | 原子炉補機制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B019 | 原子炉保護系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B020 | 原子炉保護系試験盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B021 | 原子炉系プロセス計装盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B022 | 残留熱除去系（A）•低圧炉心スプレイ系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B023 | 残留熱除去系（ $\mathrm{B} \cdot \mathrm{C}$ ）盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B024 | 高圧炉心スプレイ系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B025 | 原子炉隔離時冷却系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B026 | 格納容器第一隔離弃盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B027 | 格納容器第二隔離升盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B028 | 自動減圧系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B029 | FPC•FPMUW•SLC•MUWC•MUWP•FW制御盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B030 | トリップチャンネル盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B031 | FCS－SGTS盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B032 | サプレッションプール水温度記録監視盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B033 | 格納容器計装配管隔離弁盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B034 | 所内補機制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B035 | タービン発電機制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（13／18）

| 整理番号 | 建屋内上位クラス施設（電気盤等） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ $\frac{(\bigcirc: \text { 有, } \times: \text { 無) }}{\text { 損傷•転倒•落下 }}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B036 | 所内電源制御盤 | $\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B037 | 非常用換気空調系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B038 | HPCS系非常用換気空調系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B039 | RCW•RSW盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B040 | RCICタービン制御盤 | Sクラス | C／B | － | $\times$ |  |
| B041 | 漏えい検出系盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B042 | 計算機バッファ補助リレー盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B043 | M／C補助継電器盤 | Sクラス <br> SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B044 | AM制御盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B045 | 中央制御室外原子炉停止装置盤 | Sクラス | C／B | 耐火隔壁 | $\bigcirc$ |  |
| B046 | FCS SCR盤 | Sクラス | R／B | － | $\times$ |  |
| B047 | 中央制御室端子盤 | Sクラス | C／B | － | $\times$ |  |
| B048 | 非常用ディーゼル発電機制御盤 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| B049 | 非常用ディーゼル発電機補機制御盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| B050 | 非常用ディーゼル発電機シリコン整流器盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B051 | 非常用ディーゼル発電機界磁調整器盤 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| B052 | 非常用ディーゼル発電機自動電圧調整器盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$ | R／B | － | $\times$ |  |
| B053 | 非常用ディーゼル発電機 NGR盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B054 | 非常用ディーゼル発電機 SCT盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B055 | 非常用ディーゼル発電機 PPT盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B056 | 非常用ディーゼル発電機 PT－CT盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B057 | 高圧灲心スプレイ系ディーゼル発電機制御盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B058 | 高圧炉心スプレイ系ディーゼル発電機補機制御盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B059 | 高圧炉心スプレイ系ディーゼル発電機シ リコン整流器盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B060 | 高圧灲心スプレイ系ディーゼル発電機界磁調整器盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B061 | 高圧炉心スプレイ系ディーゼル発電機自動電圧調整器盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B062 | 高圧炉心スプレイ系ディーゼル発電機 NGR盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B063 | 高圧炉心スプレイ系ディーゼル発電機 SCT盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B064 | 高圧炉心スプレイ系ディーゼル発電機 PPT盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B065 | 高圧炉心スプレイ系ディーゼル発電機 PT－CT盤 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| B066 | スクラム電磁弁ヒューズ盤 | Sクラス | R／B | － | $\times$ |  |
| B067 | PLRポンプ停止検出用不足電圧継電器盤 | Sクラス | R／B | － | $\times$ |  |
| B068 | 換気空調補機非常用泠却水系泠涷機制御盤 | Sクラス | R／B | － | $\times$ |  |
| B069 | HPCS交流分電盤2H用変圧器 | Sクラス | R／B | － | $\times$ |  |
| B070 | 動力変圧器 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |

第6．3－1表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（14／18）

| 整理 <br> 番号 | 建屋内上位クラス施設（電気盤等） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ （○：有，$\times$ ：無）損傷•転倒•落下 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B071 | 起動領域モニタ・安全系プロセス放射線 モニタ盤 | Sクラス <br> SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B072 | 出力領域モニタ盤 | Sクラス <br> SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B073 | 出力領域モニタ補助盤 | Sクラス <br> SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B074 | TIP制御盤 | Sクラス | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B075 | 格納容器内雰囲気モニタ盤 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B076 | SRNM前置増幅器盤 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| B077 | 安全系プロセス放射線モニタ多重伝送現場盤 | Sクラス | R／B | － | $\times$ |  |
| B078 | RSS盤用変圧器 | Sクラス | C／B | － | $\times$ |  |
| B079 | 125V代替蓄電池 | SA施設 | C／B | － | $\times$ |  |
| B080 | 125V代替充電器盤 | SA施設 | C／B | － | $\times$ |  |
| B081 | ガスタービン発電機接続盤 | SA施設 | 緊急用電気品建屋 | － | $\times$ |  |
| B082 | 250V蓄電池 | SA施設 | C／B | － | $\times$ |  |
| B083 | 代替原子炉再循環ポンプトリップ遮断器 | SA施設 | C／B | － | $\times$ |  |
| B084 | HPAC制御盤 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B085 | 代替注水制御盤 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B086 | DCLI制御盤 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B087 | フィルタベント系制御盤 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B088 | 250 V 充電器盤 | SA施設 | C／B | － | $\times$ |  |
| B089 | 125 V 直流電源切替盤 | SA施設 | R／B | － | $\times$ |  |
| B090 | 460V原子炉建屋交流電源切替盤 | SA施設 | R／B | － | $\times$ |  |
| B091 | 250V直流主母線盤 | SA施設 | C／B | － | $\times$ |  |
| B092 | 緊急用電源切替操作盤 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| B093 | ガスタービン発電設備制御盤 | SA施設 | 緊急用電気品建屋 | － | $\times$ |  |
| B094 | ガスタービン発電設備燃料移送ポンプ接続盤 | SA施設 | 緊急用電気品建屋 | － | $\times$ |  |
| B095 | モータコントロールセンタ（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B096 | 105V交流電源切替盤（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B097 | 105V交流分電盤（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B098 | 120V交流分電盤（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B099 | 210V交流分電盤（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B100 | 125V直流主母線盤（緊急時対策所用） | SA施設 | 緊急時対策所 | － | $\times$ |  |
| B101 | 250V直流受電パワーセンタ | SA施設 | C／B | － | $\times$ |  |
| B102 | 120 V 原子炉建屋交流電源切替盤 | SA施設 | C／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（15／18）

| 整理 番号 | 建屋内上位クラス施設（計装） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \text { 波及的影響のおそれ } \\ \text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1001 | 低圧炬心スプレイ系計装ラック | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| 1002 | 原子炉系（広域水位）計装ラック | Sクラス <br> SA施設 | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1003 | 原子炉系（狭域水位）計装ラック | Sクラス <br> SA施設 | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1004 | ドライウェル圧力計装ラック | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1005 | ジェットポンプ計装ラック | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | － | $\times$ |  |
| 1006 | 高圧炬心スプレイ系計装ラック | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1007 | 主蒸気流量計装ラック | Sクラス | R／B | － | $\times$ |  |
| 1008 | RHR－RCICエルボメータ計装ラック | Sクラス | R／B | － | $\times$ |  |
| 1009 | RCICポンプ計器架台 | Sクラス SA施設 | R／B | － | $\times$ |  |
| 1010 | 原子炉隔離時冷却系タービン計装ラック | Sクラス | R／B | － | $\times$ |  |
| 1011 | 残留熱除去系計装ラック | Sクラス <br> SA施設 | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1012 | RHR C 系計器架台 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1013 | RCW系統流量計器架台 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$ | R／B | － | $\times$ |  |
| 1014 | RCW常用系入口流量計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1015 | HPCWポンプ計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1016 | RCICタービン排気ダイアフラム圧力 II 系計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1017 | CRDスクラム排出容器水位計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1018 | S／C圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台 | Sクラス | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1019 | ほう酸水注入系計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1020 | RCICタービン計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1021 | 原子炉圧力（SA） | SA施設 | R／B | － | $\times$ |  |
| 1022 | 原子师水位（SA広帯域） | SA施設 | R／B | － | $\times$ |  |
| 1023 | 原子炉水位（SA燃料域） | SA施設 | R／B | － | $\times$ |  |
| 1024 | 原子炉圧力容器温度 | SA施設 | R／B | － | $\times$ |  |
| 1025 | サプレッションプール水温度 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| 1026 | サプレッションプール水位 | Sクラス | R／B | － | $\times$ |  |
| 1027 | 圧力抑制室水位 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1028 | 原子炉建屋外気間差圧 | Sクラス | R／B | － | $\times$ |  |
| 1029 | 格納容器内雰囲気モニタサンプリング ラック | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1030 | 格納容器内雰囲気モニタ校正ラック | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| 1031 | 格納容器内雰囲気モニタヒータ制御盤 | Sクラス | R／B | － | $\times$ |  |
| 1032 | 格納容器内雰囲気水素濃度 | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| 1033 | 格納容器内雰囲気酸素濃度 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1034 | 格納容器内雰囲気放射線モニタ（D／W） | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1035 | 格納容器内雰囲気放射線モニタ（S／C） | Sクラス <br> SA施設 | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（16／18）

| $\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$ | 建屋内上位クラス施設（計装） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | 波及的影響のおそれ （○：有，$\times:$ 無） | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1036 | 静的触媒式水素再結合装置動作監視装置 | SA施設 | R／B | 原子炬建屋クレーン | $\bigcirc$ |  |
| 1037 | SLCポンプ潤滑油圧力 | Sクラス | R／B | － | $\times$ |  |
| 1038 | RCWサージタンク水位 | Sクラス | R／B | 耐火隔壁 | $\bigcirc$ |  |
| 1039 | RCWサージタンク降水管水位 | Sクラス | R／B | － | $\times$ |  |
| 1040 | HPCWサージタンク水位 | Sクラス | R／B | － | $\times$ |  |
| 1041 | HPCWサージタンク降水管水位 | Sクラス | R／B | － | $\times$ |  |
| 1042 | RSWストレーナ差圧 | Sクラス | R／B | － | $\times$ |  |
| 1043 | SGTSトレイン出口流量 | Sクラス | R／B | － | $\times$ |  |
| 1044 | フィルタ装置チャコールエアフィルタ入口温度 | Sクラス | R／B | － | $\times$ |  |
| 1045 | フィルタ装置チャコールエアフィルタ温度 | Sクラス | R／B | － | $\times$ |  |
| 1046 | フィルタ装置チャコールエアフィルタ出口温度 | Sクラス | R／B | － | $\times$ |  |
| 1047 | 非常用D／G計装ラック | Sクラス | R／B | － | $\times$ |  |
| 1048 | 非常用D／G二次泠却水差圧計器架台 | Sクラス | R／B | － | $\times$ |  |
| 1049 | HPCS D／G計装ラック | Sクラス | R／B | － | $\times$ |  |
| 1050 | 燃料デイタンク油面 | Sクラス | R／B | － | $\times$ |  |
| 1051 | オイルパン油面 | Sクラス | R／B | － | $\times$ |  |
| 1052 | D／G室温度 | Sクラス | R／B | － | $\times$ |  |
| 1053 | D／G速度 | Sクラス | R／B | － | $\times$ |  |
| 1054 | RCW冷却水供給温度 | Sクラス | R／B | － | $\times$ |  |
| 1055 | FCS入口ガス流量 | Sクラス | R／B | － | $\times$ |  |
| 1056 | FCSブロワ入口圧力 | Sクラス | R／B | － | $\times$ |  |
| 1057 | FCSブロワ入口流量 | Sクラス | R／B | － | $\times$ |  |
| 1058 | FCSブロワ入口温度 | Sクラス | R／B | － | $\times$ |  |
| 1059 | FCS加熱管内ガス温度 | Sクラス | R／B | － | $\times$ |  |
| 1060 | FCS加熱管出口ガス温度 | Sクラス | R／B | － | $\times$ |  |
| 1061 | FCS加熱管表面温度 | Sクラス | R／B | － | $\times$ |  |
| 1062 | FCS再結合器表面温度 | Sクラス | R／B | － | $\times$ |  |
| 1063 | FCS冷却器出口ガス温度 | Sクラス | R／B | － | $\times$ |  |
| 1064 | HECW泠水往還差圧 | Sクラス | R／B | － | $\times$ |  |
| 1065 | HECW冷水還温度 | Sクラス | R／B | － | $\times$ |  |
| 1066 | HECW冷谏機冷水出口流量 | Sクラス | R／B | － | $\times$ |  |
| 1067 | 原子炉補機室給気温度 | Sクラス | R／B | － | $\times$ |  |
| 1068 | R／B主蒸気管漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1069 | R／B主蒸気管漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| 1070 | R／B主蒸気管漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（17／18）

| 整理番号 | 建屋内上位クラス施設（計装） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{C} \text { : 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1071 | RHR熱交室漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1072 | RHRポンプ室漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1073 | RHR熱交室漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| 1074 | RHRポンプ室漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| I075 | RHR熱交室漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |
| 1076 | RHRポンプ室漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |
| 1077 | RCIC機器室漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1078 | RCIC機器室漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| 1079 | RCIC機器室漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |
| 1080 | CUW非再生熱交室漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1081 | CUW再生熱交室漏えい検出（周囲温度） | Sクラス | R／B | － | $\times$ |  |
| 1082 | CUW非再生熱交室漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| 1083 | CUW再生熱交室漏えい検出（給気温度） | Sクラス | R／B | － | $\times$ |  |
| 1084 | CUW非再生熱交室漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |
| 1085 | CUW再生熱交室漏えい検出（排気温度） | Sクラス | R／B | － | $\times$ |  |
| 1086 | 計測制御電源室給気温度 | Sクラス | C／B | － | $\times$ |  |
| 1087 | 中央制御室還気温度 | Sクラス | C／B | － | $\times$ |  |
| 1088 | 格納容器内雾囲気モニタプリアンプ収納箱 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| 1089 | 高圧代替注水系ポンプ出口流量 | SA施設 | R／B | － | $\times$ |  |
| 1090 | 高圧代替注水系ポンプ出口圧力 | SA施設 | R／B | － | $\times$ |  |
| 1091 | 残留熱除去系洗浄ライン流量 | SA施設 | R／B | － | $\times$ |  |
| 1092 | 残留熱除去系熱交換器入口温度 | SA施設 | R／B | － | $\times$ |  |
| 1093 | 残留熱除去系熱交換器出口温度 | SA施設 | R／B | － | $\times$ |  |
| 1094 | ほう酸水注入系ポンプ出口圧力 | Sクラス | R／B | $\begin{aligned} & \text { ほう酸水注入系テスト } \\ & \text { タンク } \end{aligned}$ | $\bigcirc$ |  |
| 1095 | 原子炉格納容器下部注水流量 | SA施設 | R／B | － | $\times$ |  |
| 1096 | 原子炉格納容器代替スプレイ流量 | SA施設 | R／B | － | $\times$ |  |
| 1097 | ドライウェル温度 | Sクラス <br> SA施設 | R／B | － | $\times$ |  |
| 1098 | 圧力抑制室内空気温度 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| 1099 | 圧力抑制室圧力 | SA施設 | R／B | － | $\times$ |  |
| I100 | 原子炉格納容器下部水位 | SA施設 | R／B | CRD自動交換機 | $\bigcirc$ |  |
| I101 | ドライウェル水位 | SA施設 | R／B | － | $\times$ |  |
| I102 | 格納容器内水素濃度（D／W） | SA施設 | R／B | － | $\times$ |  |
| I103 | 格納容器内水素濃度（S／C） | SA施設 | R／B | － | $\times$ |  |
| I104 | 起動領域モニタ | $\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ | ＊ 1 |
| I105 | 出力領域モニタ | Sクラス SA施設 | R／B | － | $\times$ | ＊ 1 |

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（18／18）

| 整理番号 | 建屋内上位クラス施設（計装） | 区分 | 設置建屋 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{C}: \text { 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I106 | フィルタ装置入口圧力（広帯域） | SA施設 | R／B | － | $\times$ |  |
| I107 | フィルタ装置出口圧力（広帯域） | SA施設 | R／B | － | $\times$ |  |
| I108 | フィルタ装置水位（広帯域） | SA施設 | R／B | － | $\times$ |  |
| I109 | フィルタ装置水温度 | SA施設 | R／B | － | $\times$ |  |
| I110 | フィルタ装置出口水素濃度 | SA施設 | R／B | － | $\times$ |  |
| I111 | フィルタ装置出口放射線モニタ | SA施設 | R／B | － | $\times$ |  |
| I112 | 残留熱除去系熱交換器冷却水入口流量 | SA施設 | R／B | － | $\times$ |  |
| I113 | 原子炉建屋内水素濃度 | SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  |  | 燃料交換機 | $\bigcirc$ |  |
| I115 | 使用済燃料プール上部空間放射線モニタ （高線量，低線量） | SA施設 | R／B | 原子炬建屋クレーン | $\bigcirc$ |  |
| 1116 | 使用済燃料プール監視カメラ | SA施設 | R／B | 原子炉建屋クレーン | $\bigcirc$ |  |
|  |  |  | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
|  |  |  | 緊急時対策建屋 | － | $\times$ |  |
|  |  |  | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
|  |  |  | 緊急時対策建屋 | － | $\times$ |  |
| I119 | 統合原子力防災ネットワークに接続する通信連絡設備 | SA施設 | 緊急時対策建屋 | －－ | $\times$ |  |
|  |  |  | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
|  |  |  | 緊急時対策建屋 | － | $\times$ |  |
| I121 | データ表示装置 | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
| I122 | 代替循環冷却ポンプ出口流量 | SA施設 | R／B | － | $\times$ |  |
| I123 | 代替循環冷却ポンプ出口圧力 | SA施設 | R／B | － | $\times$ |  |
| I124 | HPIN ADS入口圧力 | $\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$ | R／B | － | $\times$ |  |
| I125 | 直流駆動低圧注水系ポンプ出口流量 | SA施設 | R／B | － | $\times$ |  |
| I126 | 直流駆動低圧注水系ポンプ出口圧力 | SA施設 | R／B | － | $\times$ |  |
| 1127 | 原子炉格納容器下部温度 | SA施設 | R／B | CRD自動交換機 | $\bigcirc$ |  |
| 1128 | 耐圧強化ベント系放射線モニタ | SA施設 | R／B | － | $\times$ |  |
| I129 | 代替HPIN窒素ガス供給止め弁入口圧力 | SA施設 | R／B | － | $\times$ |  |
| I130 | 復水移送ポンプ出口圧力 | SA施設 | R／B | － | $\times$ |  |
| I131 | 無線連絡設備（固定型） | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
|  |  |  | 緊急時対策建屋 | － | $\times$ |  |
| I132 | 衛星電話設備（固定型） | SA施設 | C／B | 中央制御室天井照明 | $\bigcirc$ |  |
|  |  |  | 緊急時対策建屋 | － | $\times$ |  |

＊ 1 機器の内部に設置された内部構造物のため机上検討のみ
＊2 大型施設のため小型の仮置物品や照明等の影響を受けないため机上検討のみ
＊3 狭暗部に設置される施設のため机上検討のみ
＊4 プール内に設置された施設のため机上検討のみ
＊5 地下に設置される又はコンクリート埋設施設のため机上検討のみ
第6．3－2表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（ $1 / 6$ ）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれのあ る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 原子炬圧力容器 | 原子炉しやへい壁 | 基準地震動 S s に対する構造健全性評価に より，原子炬しゃへい壁が損傷及び転倒し ないことを確認した。 | 「VI－2－11－2－10 原子炉しやへい壁の耐震性についての計算書」参照 |
| 使用済燃料プール <br> 使用済燃料貯蔵ラック <br> 制御棒•破損燃料貯蔵ラック <br> 燃料プール泠却浄化系配管 スキマサージタンク <br> 静的触媒式水素再結合装置 <br> FPC 燃料プール注入逆止弁 <br> 静的触媒式水素再結合装置動作監視装置 <br> 原子炉建屋内水素濃度使用済燃料プール水位／温度使用済燃料プール上部空間放射線モニタ（高線量，低線量）使用済燃料プール監視カメラ | 原子炉建屋クレーン | 基準地震動 S s に対する構造健全性評価に より，原子炉建屋クレーンが転倒及び落下 しないことを確認した。 | 「VI－2－11－2－8 原子炉建屋クレ ーンの耐震性についての計算書」及び「補足－600－28 原子炉建屋ク レーンの耐震性についての計算書 に関する補足説明資料」参照 |

第6．3－2表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（2／6）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれのあ る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 使用済燃料プール <br> 使用済燃料貯蔵ラック <br> 制御棒•破損燃料貯蔵ラック <br> 燃料プール泠却浄化系配管 スキマサージタンク <br> FPC 燃料プール注入逆止弁 <br> 使用済燃料プール水位／温度 | 燃料交換機 | 基準地震動 S s に対する構造健全性評価に より，燃料交換機が転倒及び落下しないこ とを確認した。 | 「VI－2－11－2－9 燃料交換機の耐震性についての計算書」及び「補足－600－29 燃料交換機の耐震性 についての計算書に関する補足説明資料」参照 |
| 使用済燃料貯蔵ラック | 制御棒貯蔵ハンガ（その 1 ） | 基準地震動 S s に対する構造健全性評価に より，制御棒貯蔵ハンガが転倒しないこと を確認した。 | 「VI－2－11－2－14 制御棒貯蔵ハン がの耐震性についての計算書」及 び「補足－600－31 制御棒貯蔵ハン ガの耐震性についての計算書に関 する補足説明資料」参照 |
|  | 制御棒貯蔵ラック | 基準地震動S s に対する構造健全性評価に より，制御棒貯蔵ラックが転倒しないこと を確認した。 | VI－2－11－2－13「制御棒貯蔵ラック の耐震性についての計算書」及び <br> 「補足－600－30 制御棒貯蔵ラッ クの耐震性についての計算書に関 する補足説明資料」参照 |
|  | 燃料チャンネル着脱機 | 基準地震動S s に対する構造健全性評価に より，燃料チャンネル着脱機が転倒しない ことを確認した。 | 「VI－2－11－2－22 燃料チャンネル着脱機の耐震性についての計算書」参照 |

第6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（3／6）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれのあ <br> る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| ドライウェル | 原子炉ウェルカバー | 基準地震動S s に対する構造健全性評価に より，原子炉ウェルカバーが落下しないこ とを確認した。 | 「VI－2－11－2－11 原子炉ウェルカ バーの耐震性についての計算書」参照 |
| 原子炉冷却制御盤 <br> 原子炉制御盤 <br> 原子炉補機制御盤 <br> 原子炉保護系盤 <br> 原子炉保護系試験盤 <br> 原子炉系プロセス計装盤 <br> 残留熱除去系（A）•低圧炉心ス <br> プレイ系盤 <br> 残留熱除去系（B•C）盤 <br> 高圧炉心スプレイ系盤 <br> 原子炉隔離時冷却系盤 <br> 格納容器第一隔離弁盤 <br> 格納容器第二隔離弁盤 <br> 自動減圧系盤 <br> FPC $\cdot$ FPMUW $\cdot \mathrm{SLC} \cdot \mathrm{MUWC} \cdot \mathrm{MUWP} \cdot \mathrm{FW}$制御盤 <br> トリップチャンネル盤 <br> FCS•SGTS 盤 | 中央制御室天井照明 | 基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。 | 「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」参照 |

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（4／6）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれのあ る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| サプレッションプール水温度記録監視盤 <br> 格納容器計装配管隔離弁盤所内補機制御盤 <br> タービン発電機制御盤 <br> 所内電源制御盤 <br> 非常用換気空調系盤 <br> HPCS 系非常用換気空調系盤 <br> RCW•RSW 盤 <br> 漏えい検出系盤 <br> 計算機バッファ補助リレー盤 <br> $M / C$ 補助継電器盤 <br> AM制御盤 <br> 起動領域モニタ・安全系プロセ <br> ス放射線モニタ盤 <br> 出力領域モニタ盤 <br> 出力領域モニタ補助盤 <br> TIP 制御盤 <br> 格納容器内雰囲気モニタ盤 <br> HPAC 制御盤 <br> 代替注水制御盤 <br> DCLI 制御盤 | 中央制御室天井照明 | 基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。 | 「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」 <br> 参照 |

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（5／6）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| フィルタベント系制御盤 <br> 緊急用電源切替操作盤 <br> 差圧計 <br> 安全パラメータ表示システム <br> （SPDS） <br> データ伝送設備 <br> データ表示装置 <br> 無線連絡設備（固定型） <br> 衛星電話設備（固定型） | 中央制御室天井照明 | 基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。 | 「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」 <br> 参照 |
| ほう酸水注入系ポンプ出口圧力 | ほう酸水注入系テストタンク | 基準地震動 S s による構造健全性評価によ り，ほう酸水注入系テストタンクが損傷及 び転倒しないことを確認した。 | 「VI－2－11－2－6 ほら酸水注入系 テストタンクの耐震性についての計算書」参照 |
| 中央制御室外原子炉停止装置盤原子炉系（広域水位）計装ラック原子炉系（狭域水位）計装ラック残留熱除去系計装ラック $S / C$ 圧力，$S / C-R / B$ 差圧計器架台圧力抑制室水位 RCW サージタンク水位 | 耐火隔壁 | 基準地震動 S s による構造健全性評価によ り，耐火隔壁が損傷及び転倒しないことを確認した。 | 「VI－2－11－2－12 耐火隔壁の耐震性についての計算書」参照 |

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（6／6）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれのあ る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 原子炉格納容器下部水位原子炉格納容器下部温度 | CRD 自動交換機 | 基準地震動 S s に対する構造健全性評価に より，CRD 自動交換機が転倒及び落下しな いことを確認した。 | 「VI－2－11－2－22 CRD 自動交換機 の耐震性についての計算書」及び「補足－600－37 CRD 自動交換機の耐震性についての計算書に関する補足説明資料」参照 |

## 6． 4 建屋外における施設の損傷，転倒，落下等による影響検討結果

6．4．1 抽出手順
机上検討及び現地調査を基に，建屋外上位クラス施設及び建屋外上位クラス施設の間接支持構造物である建物•構築物に対して，損傷，転倒，落下等によ り影響を及ぼすおそれのある下位クラス施設を抽出する。

6．4．2 下位クラス施設の抽出結果
第5．4－1図のフローのaに基づいて，波及的影響を及ぼすおそれのある下位 クラス施設を抽出した結果を第6．4－1図，第6．4－2図，第6．4－3図及び第6．4－1表に示す。

なお，液状化による影響のうち側方流動については，0．P．＋ 14.8 m 盤では地表面が傾斜していないことから，上位クラス施設へ影響を及ぼさない。また，高台側には下位クラス施設が存在せず，海側の下位クラス施設は前面護岸を除き，液状化対象層に接していない（岩盤やセメント改良土に囲まれている）ため，上位クラス施設へ影響を及ぼさない。前面護岸については，次項6．4．3におい て，評価結果を示す。その他の液状化の影響として浮き上がりについては，設計用地下水位を設定した評価結果を示す。

6．4．3 耐震評価結果
6．4．2 項で抽出した建屋外下位クラス施設の評価結果について，第6．4－2 表 に示す。

第6．4－2 図 女川 2 号機 損傷，転倒，落下等に係る建屋外上位クラス施設配置図（高台側）
枠囲みの内容は防護上の観点から公開できません。

第6．4－3 図 女川 2 号機 損傷，転倒，落下等に係る建屋外上位クラス施設配置図（海水ポンプ室）

第6．4－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（ $1 / 3$ ）

| 整理番号 | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \text { 波及的影響のおそれ } \\ \text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 | 原子炬補機冷却海水ポンプ | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0002 | 原子炉補機冷却海水系配管 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0003 | RSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0004 | RSWポンプ吐出弁 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0005 | RSWポンプ吐出連絡管止め弁 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0006 | 高圧炉心スプレイ補機冷却海水ポンプ | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0007 | 高圧炉心スプレイ補機冷却海水系ストレーナ | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0008 | 高圧炉心スプレイ補機冷却海水系配管 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0009 | HPSWポンプ吐出逆止弁 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0010 | HPSWポンプ吐出弁 | Sクラス <br> SA施設 | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0011 | 非常用がス処理系配管 | Sクラス <br> SA施設 | － | $\times$ |  |
| 0012 | 原子炉格納容器下部注水系配管 | SA施設 | － | $\times$ |  |
| 0013 | 原子炉補機代替泠却水系配管 | SA施設 | － | $\times$ |  |
| 0014 | 原子炉格納容器代替スプレイ椧却系配管 | SA施設 | － | $\times$ |  |
| 0015 | 可搬型窒素ガス供給系配管 | SA施設 | － | $\times$ |  |
| 0016 | 燃料プール代替注水系配管 | SA施設 | － | $\times$ |  |
| 0017 | 原子炉格納容器フィルタベント系配管 | SA施設 | － | $\times$ |  |
| 0018 | ガスタービン発電設備燃料移送ポンプ | SA施設 | － | $\times$ |  |
| 0019 | ガスタービン発電設備燃料移送系配管 | SA施設 | － | $\times$ |  |
| 0020 | 復水貯蔵タンク外部注水入口弁 | SA施設 | － | $\times$ |  |
| 0021 | 復水貯蔵タンク | SA施設 | － | $\times$ |  |
| 0022 | 復水貯蔵タンク水位計器架台 | SA施設 | － | $\times$ |  |
| 0023 | RSWポンプ出口圧力計器架台 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |

第6．4－1 表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（2／3）

| 整理番号 | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \text { 波及的影響のおそれ } \\ (\text { (○: 有, ×: 無) } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0024 | HPSWポンプ出口圧力計器架台 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0025 | 排気筒 | Sクラス SA施設 | 第1号機排気筒 | $\bigcirc$ |  |
| 0026 | 防潮堤 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 第1号機取水路 | $\bigcirc$ |  |
|  |  |  | 放水路 | $\bigcirc$ |  |
|  |  |  | 第3号機取水路 | $\bigcirc$ |  |
|  |  |  | 第3号機放水路 | $\bigcirc$ |  |
|  |  |  | 北側排水路 | $\bigcirc$ |  |
|  |  |  | 南側排水路 | $\bigcirc$ |  |
|  |  |  |  | $\bigcirc$ |  |
| 0027 | 防潮壁 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 放水路 | $\bigcirc$ |  |
|  |  |  | 第3号機放水路 | $\bigcirc$ |  |
|  |  |  | タービン建屋 | $\bigcirc$ |  |
|  |  |  | 第3号機ガスボンべ庫 | $\bigcirc$ |  |
|  |  |  | 第3号機除塵装置電源室 | $\bigcirc$ |  |
| 0028 | 逆流防止設備 | Sクラス | タービン建屋 | $\bigcirc$ |  |
| 0029 | 水密扉 | Sクラス | － | $\times$ |  |
| 0030 | 浸水防止蓋 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
| 0031 | 逆止弁付ファンネル | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0032 | 貫通部止水処置 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
|  |  |  | タービン建屋 | $\bigcirc$ |  |
| 0033 | 津波監視カメラ | Sクラス | － | $\times$ |  |
| 0034 | 取水ピット水位計 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
|  |  |  | 竜巻防護ネット | $\bigcirc$ |  |
| 0035 | 原子炉建屋 | Sクラス <br> 間接支持構造物 SA施設 | タービン建屋 | $\bigcirc$ |  |
| 0036 | 制御建屋 | 間接支持構造物 | タービン建屋 | $\bigcirc$ |  |
|  |  |  | 補助ボイラー建屋 | $\bigcirc$ |  |
|  |  |  | 第1号機制御建屋 | $\bigcirc$ |  |
| 0037 | 海水ポンプ室 | 屋外重要土木構造物間接支持構造物 SA施設 | － | $\times$ |  |

第6．4－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（3／3）

| 整理 番号 | 建屋外上位クラス施設 | 区分 | 波及的影響を及ぼすおそれ のある下位クラス施設 | $\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O} \text { : 有, } \times \text { : 無) } \end{gathered}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0038 | 軽油タンク室 | 屋外重要土木構造物間接支持構造物 | － | $\times$ | ＊ 1 |
| 0039 | 復水貯蔵タンク基礎 | SA施設間接支持構造物 | － | $\times$ | ＊ 1 |
| 0040 | 軽油タンク連絡ダクト | 屋外重要土木構造物間接文持構造物 | － | $\times$ | ＊ 1 |
| 0041 | 排気筒連絡ダクト | 屋外重要土木構造物間接支持構造物 | － | $\times$ | ＊ 1 |
| 0042 | 原子炉機器冷却海水配管ダクト | 屋外重要土木構造物間接支持構造物 | － | $\times$ | ＊ 1 |
| 0043 | 緊急用電気品建屋 | SA施設間接支持構造物 | － | $\times$ |  |
| 0044 | ガスタービン発電設備軽油タンク室 | SA施設間接支持構造物 | － | $\times$ |  |
| 0045 | 緊急時対策建屋 | SA施設間接支持構造物 | － | $\times$ |  |
| 0046 | 取水口 | 屋外重要土木構造物 SA施設 | 前面護岸 | $\bigcirc$ | ＊ 1 |
| 0047 | 取水路 | 屋外重要土木構造物 SA施設 | － | $\times$ | ＊ 1 |
| 0048 | 第3号機海水熱交換器建屋 | 間接支持構造物 | － | $\times$ |  |
| 0049 | 無線連絡設備（屋外アンテナ） | SA施設 | － | $\times$ |  |
| 0050 | 衛星電話設備（屋外アンテナ） | SA施設 | － | $\times$ |  |
| 0051 | 無線通信装置 | SA施設 | － | $\times$ |  |
| 0052 | 取放水路流路縮小工 | Sクラス | － | $\times$ |  |
| 0053 | 浸水防止壁 | Sクラス | 海水ポンプ室門型クレーン | $\bigcirc$ |  |
| 0054 | 揚水井戸 | 間接支持構造物 | － | $\times$ |  |
| 0055 | 第3号機補機冷却海水系放水ピット | 間接支持構造物 | － | $\times$ |  |
| 0056 | 第3号機海水ポンプ室 | 間接支持構造物 | － | $\times$ |  |
| 0057 | 貯留堰 | $\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$ | 前面護岸 | $\bigcirc$ | ＊ 1 |
| 0058 | 衛星通信装置 | SA施設 | － | $\times$ |  |
| 0059 | 復水貯蔵タンク水位 | Sクラス | － | $\times$ |  |

＊1 地下に設置される又はコンクリート埋設施設のため机上検討のみ
第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（ $1 / 6$ ）

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれの <br> ある下位クラス施設 | 評価結果 | 備 |
| :---: | :---: | :---: | :---: |
| 原子炉補機冷却海水ポンプ <br> 原子炬補機冷却海水系配管 <br> RSW ポンプ吐出逆止弁 <br> RSW ポンプ吐出弁 <br> RSW ポンプ吐出連絡管止め弁 <br> 高圧炉心スプレイ補機冷却海水 ポンプ <br> 高圧炉心スプレイ補機冷却海水系配管 <br> 高圧炉心スプレイ補機冷却海水系ストレーナ <br> HPSW ポンプ吐出逆止弁 <br> HPSW ポンプ吐出弁 <br> RSW ポンプ出口圧力計器架台 <br> HPSW ポンプ出口圧力計器架台 <br> 防潮堤 <br> 防潮壁 <br> 浸水防止蓋 <br> 逆止弁付ファンネル <br> 貫通部止水処置 <br> 取水ピット水位計 <br> 浸水防止壁 | 水ポンプ室門型クレ | 基準地震動 S s に対する構造健全性評価により，海水ポンプ室門型クレーンが転倒及び落下しな いことを確認した。 また，海水ポンプ室門型クレーン及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。 | 「VI－2－11－2－1 海水ポン プ室門型クレーンの耐震性 についての計算書」及び「補足－600－27 海水ポンプ室門型クレーンの耐震性につ いての計算書に関する補足説明資料」参照 |

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（2／6）

| 建屋外上位クラス施設 | $\begin{array}{c}\text { 波及的影響を及ぼすおそれの } \\ \text { ある下位クラス施設 }\end{array}$ |  | 評価結果 |
| :--- | :--- | :--- | :--- |$]$ 備考

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（ $3 / 6$ ）

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれのあ る下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 防潮堤 | 第1号機取水路 | 基準地震動 S s に対する構造健全性評価により，第 1 号機取水路が損傷しないことを確認した。 <br> なお，第 1 号機取水路（トンネル部）について は，C 級の硬質な岩盤に設置されたトンネルで あり，構造物上面から杭下端までの離隔が十分確保されていることから，損傷等による防潮堤への影響はない。 | 「VI－2－11－2－17 第1号機取水路の耐震性についての計算書」，添付資料 7 及び「補足 －600－33 第1号機取水路の耐震性についての計算書に関 する補足説明資料」参照 |
| 防潮堤 <br> 防潮壁（放水立坑） | 放水路 | C $\mathrm{C}_{\mathrm{H}}$ 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保 されていることから，損傷等による防潮堤及び防潮壁への影響はない。 | 添付資料7参照 |
| 防潮堤 | 第3号機取水路 | 基準地震動 S s に対する構造健全性評価により，第 3 号機取水路が損傷しないことを確認した。 | VI－2－11－2－18「第3号機取水路の耐震性についての計算書」及び「補足－600－34 第3号機取水路の耐震性について の計算書に関する補足説明資 <br> 料」参照 |
| 防潮堤 <br> 防潮壁（第3号機放水立坑） | 第3号機放水路 | C $C_{H}$ 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保 されていることから，損傷等による防潮塇及び防潮壁への影響はない。 | 添付資料7参照 |

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（4／6）

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれの <br> ある下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 防潮堤 | 北側排水路 | 基準地震動S s に対する構造健全性評価により，北側排水路が損傷しないことを確認した。 | 「VI－2－11－2－19 北側排水路の耐震性についての計算書」及び「補足－600－35 北側排水路の耐震性について の計算書に関する補足説明資料」参照 |
| 防潮堤 | 南側排水路 | CM1級の硬質な岩盤及びMMR内に設置された高密度ポリエチレン製波付管による排水路であり，南側排水路が損傷した場合でも周辺のMMRの応力状態には影響せず，防潮堤への影響はない。 | － |
| 防潮堤 | アクセスルート（防潮塇（盛土堤防）） | アクセスルート（防潮堤（盛土堤防））と上位ク ラス施設である防潮堤（盛土堤防）を一体とした構造での基準地震動S s に対する構造健全性評価により，アクセスルート（防潮堤（盛土堤防）） が損傷しないことを碓認した。 | 「VI－2－11－2－20 アクセス ルート（防潮堤（盛土堤防）） の耐震性についての計算書」及び「補足－600－36 ア クセスルート（防潮堤（盛土堤防））の耐震性について の計算書に関する補足説明資料」参照 |

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（5／6）

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれの <br> ある下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 防潮壁 <br> 逆流防止設備貫通部止水処置原子炉建屋制御建屋 | タービン建屋 | 基準地震動 S s に対する構造健全性評価により， タービン建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 <br> また，タービン建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持 していることを確認した。 | 「VI－2－11－2－3 タービン建屋の耐震性についての計算書」及び添付資料 3 参照 |
| 防潮壁 | 第 3 号機ガスボン心゙庫第 3 号機除塵装置電源室 | 下位クラス施設が地震により損傷，転倒し防潮壁 へ衝突した場合でも，防潮壁の構造健全性に影響 がないことを確認した。 | 添付資料 8 参照 |
| 制御建屋 | 補助ボイラー建屋 | 基準地震動 S s に対する構造健全性評価により，補助ボイラー建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 <br> また，補助ボイラー建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。 | 「VI－2－11－2－4 補助ボイ ラー建屋の耐震性について の計算書」及び添付資料 3参照 |
| 制御建屋 | 第1号機制御建屋 | 基準地震動 S s に対する構造健全性評価により，第 1 号機制御建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 <br> また，第1号機制御建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。 | 「VI－2－11－2－5 第1号機制御建屋の耐震性についての計算書」及び添付資料 3 参照 |

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（6／6）

| 建屋外上位クラス施設 | 波及的影響を及ぼすおそれの ある下位クラス施設 | 評価結果 | 備考 |
| :---: | :---: | :---: | :---: |
| 排気筒 | 第1号機排気筒 | 基準地震動 S s に対する構造健全性評価により，第 1 号機排気筒が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 <br> また，基準地震動 S s に対する斜面の安定性評価 により，斜面が崩壊しないことを確認した。 | 「VI－2－11－2－15 第1号機排気筒の耐震性についての計算書」及び「補足－610－18第 1 号機排気筒の耐震性に ついての計算書に関する補足説明資料」参照 |
| 取水口貯留堰 | 前面護岸 | 取水口の側面（護岸背面）を地盤改良しているが，非改良部の土砂が流出しても取水口が閉塞しな いことを碓認した。 <br> 地盤改良（高圧噴射攪汼工法）は根入れされてお り，地震時の安定性が確保されている。 <br> 地盤改良（置換工）の地震時の安定性について確認した。 | 「VI－2－11－2－16 前面護岸 の耐震性についての計算書」，添付資料 6 及び「補足 －600－32 前面護岸の耐震性についての計算書に関す る補足説明資料」参照 |

## 防潮壁への小規模建屋倒壊による波及的影響の検討について

## 1．概要

第3号機除塵装置電源室及び第3号機ガスボンベ庫（以下「小規模建屋」という。） は，津波防護施設として取放水路からの敷地への津波の溢水を防止するために第 3 号機海水ポンプ室及び第 3 号機放水立坑の周囲に設置する防潮壁（上位クラス施設）に対して，地震時に波及的影響を及ぼす可能性があることから，建屋の転倒時に防潮壁 の健全性が損なわれないことを確認する。

防潮壁と小規模建屋の全体位置図を添付 8－1 図に示す。


添付 8－1 図 全体位置図

2．構造諸元
評価対象となる防潮壁の構造概要を添付 8－2 図に示す。また，小規模建屋の諸元を添付 8－1 表に，構造図を添付 8－3 図に，建屋と防潮壁の配置概要を添付 8－4 図に示す。


（1）部 詳細
（鋼板詳細，鋼板－鋼製支柱接合部，M型ジョイント取付部）

（2）部 詳細
（M型ジョイント－$\Omega$ 型ジヨイント取付部）

（
（ $\Omega$ 型ジョイントト部）
（津波作用方向より俯瞰）

[^1]

添付 8－2 図（2）防潮壁（鋼板形式）の構造概要
（鋼板部断面（2）の例）

（平面図）


添付 8－3 図（1）小規模建屋の構造概要（第 3 号機除塵装置電源室）

（平面図）


添付 8－3 図（2）小規模建屋の構造概要（第3号機ガスボンべ庫建屋）

添付 8－1 表 小規模建屋の諸元

| 小規模建屋 | 隣接する防潮壁 | 建屋諸元 |  |  | 単位幅当たりの建屋重量（kN／m） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 重量 (kN) | 高さ <br> （m） | $\begin{gathered} \text { 幅*2 } \\ (\mathrm{m}) \end{gathered}$ |  |
| 第 3 号機除塵装置電源室 | 第3号機海水ポ ンプ室防潮壁＊1 | 1，582 | 4.8 | 12.0 | 131.9 |
| 第 3 号機 ガスボンベ庫 | 第 3 号機放水立坑防潮壁 | 1，500 | 4.4 | 16． 4 | 91.5 |

注記 $* 1$ ：防潮壁（第 3 号機海水ポンプ室）と第 3 号機除塵装置電源室間は，
建屋高さ以上の離隔が確保される計画だが，保守的に評価対象とする。
＊2：隣接する防潮壁と並行方向の建屋幅

（第3号機除塵装置電源室）

（第3号機ガスボンベ庫）

添付 8－4 図 建屋と防潮壁の配置概要

## 3．評価方針

影響評価は，小規模建屋が地震によって健全性を失い，隣接する防潮壁へ転倒した場合の防潮壁への影響を確認する。

小規模建屋が隣接する防潮壁は鋼製遮水壁（鋼板）形式であり，その構造上，小規模建屋が転倒した際には，建屋が鋼製支柱にもたれ掛かる状態となる。その際の鋼製支柱の変形モードは，地震時の変形モードと同じく弱軸方向である津波作用方向 （壁軸直交方向）であり，鋼製支柱に伝達された荷重により，鋼製支柱がフーチング に固定された片持ち梁のように弱軸方向に変形し，さらに鋼製支柱の津波作用面側に取りつく鋼板に変形が生じる変形モードとなる。

よって，建屋による転倒荷重を受けた場合の影響評価においては，鋼製支柱及び鋼板を評価対象部位とする。なお，地震時応答のピークと建屋の転倒荷重の作用が同時 に起こる可能性は低いと考えられるが，保守的に重畳した場合を想定して評価する。

添付 8－5 図に，小規模建屋の地震時の転倒イメージを示す。


添付 8－5 図 小規模建屋の地震時の転倒イメージ

4．評価対象
前述のとおり評価対象部位は鋼製支柱及び鋼板とする。評価に用いる断面は，建屋衝突時の鋼製支柱の変形モードが，地震時の変形モードが同方向であることから，添付書類「VI－2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性について の計算書」において，耐震評価の観点で選定した評価対象断面の中から，今回の建屋 の衝突が想定される範囲と鋼製支柱他の上部工の仕様が同一となる断面を選定する。

第3号機除塵装置電源室に対しては，建屋が作用する断面と同仕様である鋼製遮水壁（鋼板）I 区間の評価対象断面のうち近接する断面（2）を，第3号機ガスボンベ庫に対しては建屋が作用する断面と同仕様であるV区間の評価対象断面である断面（8）を評価用断面として選定する。

評価対象建屋と評価に用いる断面（2）•8）の位置関係を添付 8－6 図に示す。
ここで，評価対象断面の妥当性を以下に示す。
前述のとおり，地震によって発生する可能性のある建屋衝突を想定した場合に おける，防潮壁の変形モードは，地震時と同様に弱軸方向への変形モードとな ることから，地震時の影響の観点で選定した断面において，建屋衝突を想定し た場合の評価を行うことは妥当である。
断面（2）•8）と実配置上の断面における構造仕様の比較を添付 8－2 表に示す。こ
こで，比較する構造仕様は，後述する評価方法のとおり，鋼製支柱のスパン長当たりの建屋荷重を集中荷重として考慮するため，評価上，影響が大きい支柱 スパン長で整理した。添付 8－2 表に示すとおり，評価用断面と実配置断面の支柱スパン長は同等もしくは大きいため，この評価用断面（2）•88を用いて建屋衝突評価を行うことは妥当である。最大スパン長位置は添付 8－7 図に示す。


添付 8－6 図 影響評価に用いる断面位置と各建屋の位置関係

添付 8－2 表 評価用断面と実配置断面における支柱最大スパン長の比較

| 評価対象建屋 | 支柱最大スパン長（m） （1本当たりの荷重最大分担幅） |  |  |
| :---: | :---: | :---: | :---: |
|  | 評価用断面 |  | 実断面 |
| 3 号機除塵装置電源室 | 断面（2） | 2.675 | 2． 675 |
| 3 号機ガスボンべ庫 | 断面（8） | 2． 675 | 2． 550 |


（第3号機除塵装置電源室）

（第3号機ガスボン心゙庫）

添付8－7図 実配置断面の支柱最大スパン長位置

## 5．評価条件

（1）解析条件
解析モデル及び諸元並びに許容限界等は，「VI－2－10－2－3－1 杭基礎構造防潮壁鋼製遮水壁（鋼板）の耐震性についての計算書」の「3．5 解析モデル及び諸元」，「3．7 許容限界」と同様とする。各断面の解析モデルを添付 8－8 図に示す。


添付8－8（1）図 鋼製遮水壁（鋼板）の解析モデル（断面（2））


添付 8－8（2）図 鋼製遮水壁（鋼板）の解析モデル（断面（8）

## （2）荷重の組合せ

評価に用いる荷重は，防潮壁の固定荷重，地震荷重，積雪荷重，風荷重，衝突荷重を考慮する。なお，衝突荷重は地震荷重等を打ち消す方向に作用する可能性があ ることから，a．～d．については別途実施する地震応答解析において考慮し，e． についてのみを考慮した静的解析を別途行い，それぞれの解析で発生する応力を足 し合わせることで荷重の組合せを考慮する。
a．固定荷重
固定荷重として，躯体自重を考慮する。
b．地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
c．積雪荷重（Ps）
積雪荷重については，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm に平均的な積雪荷重を与える ための係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮し，保守

## 的に $0.98 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。

d．風荷重
風荷重については，設計基準風速を $30 \mathrm{~m} / \mathrm{s}$ とし，建築基準法に基づき算定す る。
e．衝突荷重
影響確認は，基準地震動 S s 時における地表面の最大応答加速度応答値を参考に，保守的に加速度 $1 G$ かつ水平方向に建屋の高さ位置で，実配置断面におけ る最大スパン長における分担荷重が一律で作用すると想定する。

添付 8－3 表に影響評価に用いる建屋の作用荷重を示す。

添付 8－3 表 影響評価に用いる建屋衝突荷重

| 評価対象 <br> 建屋 | 評価 <br> 断面 | 地表面最大応答 <br> 加速度＊1 <br> $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$ | 単位幅当り <br> 作用荷重＊2 <br> $(\mathrm{kN} / \mathrm{m})$ | 支柱スパン長＊3 <br> $(1$ 本当たりの <br> 荷重最大分担幅） <br> $(\mathrm{m})$ | 衝突荷重 <br> $(\mathrm{kN} /$ 本） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 第3号機除塵 <br> 装置電源室 | 断面 <br> （2） | 572.9 | 131.9 | 2.675 | 352.9 |
| 第3号機ガス <br> ボンベ庫 | 断面 <br> 8 | 590.5 | 91.5 | 2.550 | 233.4 |

注記 $~$ 1：基準地震動 S s（全 7 波）における最大応答加速度
＊2：各建屋の単位幅あたりの重量（設計水平震度 $1 \mathrm{G}\left(\times 980.665 \mathrm{~cm} / \mathrm{sec}^{2}\right)$ として算定）
＊3：実際の配置断面における鋼製支柱の最大スパン長
（3）照査方法
前述のとおり，（1）に示す解析モデルを用い，建屋転倒荷重を用いた静的解析を行い，求めた応力と地震時の発生応力の合成応力に対して，評価対象部材が許容限界以下であることを確認する。

地震時の発生応力は，添付書類「VI－2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性についての計算書」における全地震波ケースの中の最大値とし て，以下に示す検討ケースの値を用いる。
（鋼製支柱）
曲げ軸力
－断面（2）「S s－N $1(++)$ ，解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（8）「S s－N 1 （ -+ ），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
せん断力照査
－断面（2）「S s－N 1（＋＋），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（8）「S s－N $1(-+)$ ，解析ケース 1 ）：地盤物性のばらつきを考慮し ないケース」
（鋼板）
曲げ軸力
－断面（2）「S s－N $1(++)$ ，解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（8）「S s－N 1 （ -+ ），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
せん断力照査
－断面（2）「S s－N 1（＋＋），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（8）「S s－N 1 （ -+ ），解析ケース 1 ）：地盤物性のばらつきを考慮し ないケース」
（4）解析ケース
小規模建屋の衝突荷重については，建屋天端高さの鋼製支柱節点に添付 8－2 表に示す最大作用荷重を作用させる。載荷パターンは，配置状況を踏まえ以下の 2 パタ ーンについて実施する。解析ケースのイメージを添付 8－9 図に，荷重の載荷イメー図を添付 8－10 図に示す。
－鋼製遮水壁（鋼板） 1 ブロックの鋼製支柱の全数に衝突荷重作用するケース （ケース1）
－鋼製遮水壁（鋼板）1 ブロックの端部の鋼製支柱のみに荷重が作用するケース （ケース2）


添付 8－9 図 解析ケースのイメージ図
（第3号機除塵装置電源室の例）


添付 8－10（1）図 鋼製遮水壁（鋼板）の解析モデルへの

（ケース 1：鋼製支柱全数に荷重を作用）

（ケース 2：端部の鋼製支柱のみに荷重を作用）

添付 8－10（2）図 鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図（正面図）
8.5 評価結果

建屋転倒荷重を鋼製支柱全数に考慮した場合（ケース1）及び端部の鋼製支柱 1 本 に考慮した場合（ケース2）における，各部位の照査結果として，第3号機除塵装置電源室による断面（2）～の影響についての照査値を添付8－4表～添付8－5表に，第3号機ガ スボンベ庫による断面（8～の影響についての照査値を添付8－6表～添付8－7表に示す。

鋼製支柱についてはケース 1 が，鋼板についてはケース 2 が，それぞれ照査値が大きくなるが，いずれの建屋においても，建屋が転倒し防潮壁側に荷重が作用した場合でも，防潮壁への影響が想定される部位が許容限界以下となり，防潮壁の健全性が損なわれないことを確認した。

添付 8－4（1）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（曲げ・軸力系の破壊に対する照査値）

| 部位 | 項目 | 発生断面力 |  | 応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ <br> （a） | 許容限界 <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 <br> （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ | 軸力 <br> （kN） |  |  |  |
| 鋼製支柱 | 建屋転倒荷重作用時 | 1086 | 2195 | 175 | 277 | 0.64 |
|  | 基準地震動 S s 時 | 447 | 940 | 73 |  | 0.27 |
|  | 上記荷重を合成 | 1533 | 3135 | 248 |  | 0.90 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} M y: 5 \\ M z: 30 \end{gathered}$ | 62 | 69 | 345 | 0.20 |
|  | 基準地震動 S s 時 | $\begin{gathered} \mathrm{My}: 8 \\ \mathrm{Mz}: 13 \end{gathered}$ | 25 | 33 |  | 0.10 |
|  | 上記荷重を合成 | $\begin{aligned} & \mathrm{My}: 13 \\ & \mathrm{Mz}: 43 \end{aligned}$ | 87 | 102 |  | 0.30 |

添付8－4（2）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を鋼製支柱全数に考慮した場合（ケース1）の照査値 （せん断破壊に対する照査値）

| 部位 | 項目 | 発生断面力 | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 <br> （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | せん断力（kN） |  |  |  |
| 鋼製支柱 | 建屋転倒荷重作用時 | 351 | 33 | 157 | 0． 22 |
|  | 基準地震動 S s 時 | 189 | 18 |  | 0.12 |
|  | 上記荷重を合成 | 540 | 51 |  | 0.33 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} \text { Sy:123 } \\ \text { Sz:3 } \end{gathered}$ | 10 | 217 | 0.05 |
|  | 基準地震動 S s 時 | $\begin{aligned} & \text { Sy: }: 54 \\ & \text { Sz: } 15 \end{aligned}$ | 7 |  | 0． 04 |
|  | 上記荷重を合成 | $\begin{gathered} \mathrm{Sy}: 177 \\ \mathrm{Sz}: 18 \end{gathered}$ | 17 |  | 0.08 |

添付8－5（1）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を端部の鋼製支柱 1 本に考慮した場合（ケース2）の照査値
（曲げ・軸力系の破壊に対する照査値）

| 部位 | 項目 | 発生断面力 |  | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値(a/b) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ | 軸力 <br> （kN） |  |  |  |
| 鋼製支柱 | 建屋転倒荷重作用時 | 785 | 1652 | 128 | 277 | 0． 46 |
|  | 基準地震動 S s 時 | 447 | 940 | 73 |  | 0． 27 |
|  | 上記荷重を合成 | 1232 | 2592 | 201 |  | 0.73 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} M y: 46 \\ M z: 2 \end{gathered}$ | 15 | 83 | 345 | 0． 25 |
|  | 基準地震動 S s 時 | $\begin{gathered} M y: 8 \\ M z: 13 \end{gathered}$ | 25 | 33 |  | 0． 10 |
|  | 上記荷重を合成 | $\begin{aligned} & M y: 54 \\ & M z: 15 \end{aligned}$ | 40 | 116 |  | 0． 34 |

添付8－5（2）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を端部の鋼製支柱 1 本に考慮した場合（ケース2）の照査値 （せん断破壊に対する照査値）

| 部位 | 項目 | 発生断面力 | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 <br> （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | せん断力（kN） |  |  |  |
| 鋼製 <br> 支柱 | 建屋転倒荷重作用時 | 282 | 27 | 157 | 0． 18 |
|  | 基準地震動 S s 時 | 189 | 18 |  | 0.12 |
|  | 上記荷重を合成 | 471 | 45 |  | 0． 29 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{aligned} & \text { Sy: }: 96 \\ & S_{z}: 35 \end{aligned}$ | 12 | 217 | 0． 06 |
|  | 基準地震動 S s 時 | $\begin{aligned} & \text { Sy: }: 54 \\ & \text { Sz: } 15 \end{aligned}$ | 7 |  | 0.04 |
|  | 上記荷重を合成 | $\begin{gathered} \text { Sy: } 150 \\ S z_{z}: 50 \end{gathered}$ | 19 |  | 0． 09 |

添付8－6（1）表 断面 8 に における建屋荷重（第3号機ガスボンベ庫）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（曲げ・軸力系の破壊に対する照査値）

| 部位 | 項目 | 発生断面力 |  | 応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ <br> （a） | 許容限界 <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ | 軸力 <br> （kN） |  |  |  |
| 鋼製支柱 | 建屋転倒荷重作用時 | 663 | 1330 | 107 | 277 | 0.39 |
|  | 基準地震動 S s 時 | 271 | 559 | 44 |  | 0.16 |
|  | 上記荷重を合成 | 934 | 1889 | 151 |  | 0.55 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} \text { My: } 1 \\ M z: 16 \end{gathered}$ | 33 | 36 | 345 | 0.11 |
|  | 基準地震動 S s 時 | $\begin{aligned} & M y: 8 \\ & M z: 8 \end{aligned}$ | 14 | 22 |  | 0.07 |
|  | 上記荷重を合成 | $\begin{gathered} \mathrm{My}: 9 \\ \mathrm{Mz}: 24 \end{gathered}$ | 47 | 58 |  | 0.17 |

添付8－6（2）表 断面 8 に における建屋荷重（第 3 号機ガスボンベ庫）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（せん断破壊に対する照査値）

| 部位 | 項目 | 発生断面力 | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 <br> （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | せん断力（kN） |  |  |  |
| 鋼製 <br> 支柱 | 建屋転倒荷重作用時 | 233 | 22 | 157 | 0.15 |
|  | 基準地震動 S s 時 | 137 | 13 |  | 0.09 |
|  | 上記荷重を合成 | 370 | 35 |  | 0． 23 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} \text { Sy:61 } \\ \text { Sz:2 } \end{gathered}$ | 5 | 217 | 0.03 |
|  | 基準地震動 S s 時 | $\begin{aligned} & \text { Sy: }: 31 \\ & \mathrm{Sz}: 12 \end{aligned}$ | 4 |  | 0． 02 |
|  | 上記荷重を合成 | $\begin{aligned} & \text { Sy:92 } \\ & \text { Sz:14 } \end{aligned}$ | 9 |  | 0.05 |

添付8－7（1）表 断面 8 に における建屋荷重（第3号機ガスボンベ庫）を端部の鋼製支柱 1 本に考慮した場合（ケース2）の照査値
（曲げ・軸力系の破壊に対する照査値）

| 部位 | 項目 | 発生断面力 |  | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値(a/b) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ | 軸力 <br> （kN） |  |  |  |
| 鋼製 <br> 支柱 | 建屋転倒荷重作用時 | 509 | 1070 | 83 | 277 | 0． 30 |
|  | 基準地震動 S s 時 | 271 | 559 | 44 |  | 0.16 |
|  | 上記荷重を合成 | 780 | 1629 | 127 |  | 0． 46 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{gathered} M y: 33 \\ M z: 2 \end{gathered}$ | 15 | 60 | 345 | 0.18 |
|  | 基準地震動 S s 時 | $\begin{aligned} & M y: 8 \\ & M z: 8 \end{aligned}$ | 14 | 22 |  | 0． 07 |
|  | 上記荷重を合成 | $\begin{aligned} & M y: 41 \\ & M z: 10 \end{aligned}$ | 29 | 82 |  | 0． 24 |

添付8－7（2）表 断面（8）における建屋荷重（第3号機ガスボンベ庫）を端部の鋼製支柱 1 本に考慮した場合（ケース 2）の照査値
（せん断破壊に対する照査値）

| 部位 | 項目 | 発生断面力 | 応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （a） | 許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> （b） | 照査値 <br> （a／b） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | せん断力（kN） |  |  |  |
| 鋼製支柱 | 建屋転倒荷重作用時 | 208 | 20 | 157 | 0.13 |
|  | 基準地震動 S s 時 | 137 | 13 |  | 0.09 |
|  | 上記荷重を合成 | 345 | 33 |  | 0． 22 |
| 鋼板 | 建屋転倒荷重作用時 | $\begin{aligned} & \text { Sy }: 40 \\ & \text { Sz: } 22 \end{aligned}$ | 8 | 217 | 0.04 |
|  | 基準地震動 S s 時 | $\begin{aligned} & \text { Sy: }: 31 \\ & S z: 12 \end{aligned}$ | 4 |  | 0.02 |
|  | 上記荷重を合成 | $\begin{aligned} & \text { Sy:71 } \\ & \text { Sz: } \end{aligned}$ | 12 |  | 0.06 |

## 下位クラス施設の損傷による機械的荷重等の影響について

1．はじめに
下位クラス機器が損傷した場合の上位クラス機器への波及的影響については，上位 クラス施設と下位クラス施設との接続部における相互影響がないこと及び建屋内外 における下位クラス施設の損傷，転倒及び落下等による上位クラス施設への影響がな いことを確認している。本資料では，下位クラス施設の損傷を想定する場合の機械的荷重及び破断時の環境に及ぼす影響について検討する。

## 2．機械的荷重の影響

耐震評価においては，地震時に発生する機械的荷重を考慮した評価を実施している が，本検討においては，耐震計算書における機械的荷重の設定よりも保守的な条件と して，下位クラス配管の破損を仮定した場合においても，上位クラス配管と下位クラ ス配管との境界サポート及び境界弁が強度上問題ないことを確認する。

上位クラスの機器•配管系に要求される支持機能，隔離機能への影響確認として，境界サポートに対して配管破損による反力（以下「配管破損反力」という。）を踏ま えた構造強度評価を実施するとともに，境界弁に対して配管破損時に弁体前後に生じ る圧力差による荷重を踏まえた構造強度評価を実施する。添付9－1図に検討方針の概念図を示す。


添付 9－1 図 概念図

## 2.1 影響検討対象設備

影響検討対象設備の抽出は添付 9－2 図に示すフローに基づき行い，具体的には本文「4．上位クラス施設の確認」第4－1表，第4－2表にて抽出した上位クラス施設を対象として以下のとおり行っている。
－電気設備及び計測制御設備は，その破損により有意な機械的荷重が発生しない と考えられることから，影響検討の対象外とする。

- 下位クラス施設との接続部がある機器•配管系を抽出する。
- 上位クラスに接続される下位クラス配管部について，破損により生じる荷重と相関関係がある圧力が大きいものかつ配管径が大きいものを抽出する。ここで，圧力及び配管径は，溢水ガイドの高エネルギー配管の分類を参考に 1.9 MPa を超える且つ 25 Aを超えるものとする。
－添付書類「VI－2－別添 2－2 溢水源としない耐震 B，C クラス機器の耐震性につ いての計算書」において，下位クラス配管の基準地震動 S s に対する健全性が確認されているものは影響検討対象から除外する。


添付 9－2 図 影響検討対象の抽出フロー

## 2.2 影響検討方針

添付 9－3 図に下位クラス施設の損傷に伴ら機械的荷重の影響検討フローを示す。添付9－2図のフローにより抽出された影響検討対象設備における上位クラス配管の境界サポート及び境界弁に対して，下記（1）～③の評価により下位クラス配管破損時 の荷重に対する検討を実施する。
（1）下位クラス配管及びサポートが基準地震動 S s により破損しないことを確認す ることで，破損時の荷重が発生しないことを確認する。
（2）基準地震動 S s による地震荷重＋配管破損反力が作用した場合でも境界サポ ートが健全であることを確認する。
（3）基準地震動 S s による地震荷重＋圧力差が作用した場合でも境界弁が健全であ ることを確認する。

②の評価において，地震による下位クラス配管の破損を想定する箇所は，下位ク ラス配管の耐震重要度分類に応じた耐震性評価における最小裕度部位とする。

既往知見＊において，許容応力の 4 倍以上となる条件の加振試験を実施した場合 であっても配管の崩壊現象やき裂貫通は生じず，配管本体に過大応答が発生するよ うな試験体を用いた場合にのみ，振動台加振限界相当の条件による繰返し加振によ ってき裂貫通が生じたことが確認されている。また，影響検討対象（2．2 項にて後述）の下位側の耐震重要度分類は全てBクラスであり，基準地震動S s の $1 / 4$ 程度 である $1 / 2 \mathrm{~S} \mathrm{~d}$ に対して設計されている。以上より，Bクラス配管において基準地震動 S s 地震発生時に崩壊現象やき裂貫通は生じないと考えられるが，本評価を実施 するにあたっては貫通クラックを仮定し検討を行う。

貫通クラックの面積は「原子力発電所の内部溢水影響評価ガイド（原子力規制委員会，令和 2 年 3 月 31 日改訂）」（以下「溢水ガイド」という。）を参考に $1 / 2 \cdot D$（配管内径）$\times 1 / 2 \cdot t$（配管肉厚）として算定する。これは，既往知見＊において高エ ネルギー配管に該当する圧力 1.9 MPa を大きく超える 10.7 MPa を付加した試験体を用 いた加振試験においても，配管の破損モードは崩壊現象ではなく，き裂貫通が生じ るのみであったことを踏まえて，損傷モードとしては貫通クラックを想定し，その面積は溢水ガイドを参考にして算定しているものである。

なお，基準地震動 S s による地震力が作用した場合，規格•基準に基づく許容値 を下回る下位クラスサポートや，許容値を上回るもののある程度の拘束効果が期待 できる下位クラスサポートがあると想定されるが，配管破損反力を算定する際は，下位クラスサポートによる拘束が無い状態を仮定する。
＊：「平成 14 年度 原子力発電施設耐震信頼性実証に関する報告書 その 1 配管系終局強度（（財）原子力発電技術機構，平成 15 年 3 月）」の実規模配管系試験

③の検討を実施する系統の境界弁に対して，地震時における弁の隔離機能に対す る健全性評価を行う。具体的には，配管破損時に弁体前後に生じる圧力差による荷重を考慮して，地震力と組み合わせた強度評価を実施し，地震時に下位クラス配管破損を想定した場合でも境界弁の構造強度に問題がないことを確認する。

弁体の構造強度評価は，添付書類「VI－3－2－3 クラス1弁の強度計算方法」に記載されるとおり，発電用原子力設備規格（J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格）VVB－3380の解説式を適用しているが，VVB－3380 の解説式は強度＋地震を同時に評価する規格式ではないことから，VVB－3380の解説式を準用し，最高使用圧力（P）の項を評価用圧力（ ${ }^{\prime}$ ’＝P（最高使用圧力）＋W（地震荷重により弁体に加わる圧力））として評価を実施する。

影響検討対象の抽出結果及び検討内容を添付 9－1 表に示す。影響検討対象として，添付9－3図の検討フローにおける（1）の対象は抽出されず，（2）（3）を適用する主蒸気系配管のみが選定されている。なお，女川原子力発電所第 2 号機においては，溢水対策として多数の配管系に対してS s 機能維持の耐震設計を行っているため，対象設備が主蒸気系配管のみとなっているものである。


添付 9－3 図 下位クラス施設損傷に伴ら機械的荷重の影響検討フロー

添付 9－1 表 影響検討対象の抽出結果及び検討内容

| No | 系統 | 境界弁 | 圧力（MPa） | 口径（A） | 検討内容 |
| :--- | :---: | :---: | :--- | :--- | :--- |
| 1 | 主蒸気系 | B21－F003A，B，C，D | 8.62 | 600 | （2）（3） |

注：主配管を代表して示す。

## 2． 3 評価結果

添付 9－1 表で検討内容（2）（3）にて示した主蒸気系配管の評価結果を示す。
配管モデルを添付 9－4 図に示す。 4 つの境界弁は同一モデル上に存在し，境界サ ポートはそれぞれ 4 つの境界弁から耐震 B クラス側で，最も境界弁に近いアンカサ ポートである。なお，境界弁である原子炉格納容器外側主蒸気隔離弁から主蒸気止 め弁までは，耐震 B クラスではあるが，弾性設計用地震動 S d に対し破損しない設計としている。
（1）境界サポートの評価
a．破損を想定する箇所の特定
対象の主蒸気系配管は耐震 B クラス設備であり， $1 / 2 \mathrm{~S} \mathrm{~d}$ に対する耐震評価を実施していることから，この結果を用いて地震時に破損を想定する箇所を特定 する。

配管解析に用いた設計条件を添付 9－2 表に，設計用地震力の算出に用いる設計用床応答曲線を添付 9－3 表，添付 9－5 図に示す。なお，設計用床応答曲線は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき全ての位置の床応答曲線を包絡して作成したものを用いる。また，減衰定数は添付書類「VI －2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

添付 9－2 表 設計条件

| 最高使用圧力 （MPa） | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> （mm） | 厚さ <br> （mm） |
| :---: | :---: | :---: | :---: |
| 8.62 | 302 | 762.0 | 60.0 |
|  |  | 711.2 | 34.6 |
|  |  | 609.6 | 31.0 |
|  |  | 590.0 | 44.2 |
|  |  | 558.8 | 28.6 |
|  |  | 530.0 | 37.2 |
|  |  | 508.0 | 28.6 |
|  |  | 508.0 | 26． 2 |
|  |  | 480.0 | 58.2 |
|  |  | 406． 4 | 21.4 |
|  |  | 350.0 | 33.15 |
|  |  | 318.5 | 17． 4 |

添付 9－3 表 設計用床応答として適用する配管設置位置一覧

| 建物•構築物 | 標高（m） | 減衰定数（\％） |
| :---: | :---: | :---: |
| 原子炉建屋 | 0．P．＋22．50 | 3.0 |
|  | 0．P．＋15．00 |  |
|  | 0．P．＋6．00 |  |
| タービン建屋 | 0．P．＋24．80 |  |
|  | 0．P．＋15．00 |  |
|  | 0．P．＋7．60 |  |
| T／Gペデスタル | 0．P．＋22． 75 |  |
|  | 0．P．＋13．75 |  |

注：上記設計用床応答曲線を包絡している
（水平方向）

（鉛直方向）


添付 9－5 図 設計用床応答曲線（ $1 / 2 \mathrm{~S} d$ 応答）
$1 / 2$ S d に対して水平 2 方向及び鉛直 1 方向を考慮した評価結果を添付 9－4表に示す。地震時に破損を想定する箇所として，評価範囲の疲労累積係数が最大となっている評価点 R04（蒸気加減弁（3）出口と配管との溶接線，添付 9－4図参照）とした。

なお，添付 9－4 表に記載の疲労評価については，弾性設計用地震動 S d の疲労評価に適用するものとして一律に設定した等価繰返し回数である590回を適用している。590回の設定は保守性を考慮して大きく設定しているものである ことから，本評価点における疲労累積係数が比較的大きな值になっているもの と考えられる。

添付 9－4表 1／2Sdに対する評価結果

| 評価点 | 一次応力 |  |  | 一次＋二次応力 |  |  | 疲労評価 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 発生応力 <br> （MPa） | 許容応力 <br> （MPa） | 裕度 | 発生応力 <br> （MPa） | 許容応力 <br> （MPa） | 裕度 | 等価繰返 <br> ᄂ回数 | 疲労累積係数 |
| R04 | 116 | 198 | 1． 70 | 189 | 396 | 2.09 | 590 | 0． 6527 |

注：疲労累積係数が最も大きい評価部位を記載
b．貫通クラックの面積の算定
貫通クラックの面積 A は溢水ガイドを参考に下記のとおり算定した。

```
\(\mathrm{A}=1 / 2 \cdot \mathrm{D} \times 1 / 2 \cdot \mathrm{t}\)
    \(=1 / 2 \times(609.6-31.0 \times 2) \times 1 / 2 \times 31.0 \fallingdotseq 4244\left(\mathrm{~mm}^{2}\right)\)
    D: 配管内径 (mm)
    t : 配管肉厚 (mm)
```

        注: 破損を想定した箇所の値を使用
    c．貫通クラックによる荷重の算定
貫通クラックによる荷重Fは「design basis for protection of light water nuclear power plants against the effects of postulated pipe rupture ANSI／ANS－58．2－1988」を参考に下記のとおり算定した。

$$
\begin{align*}
\mathrm{F} & =\mathrm{DLF} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{P} \times \mathrm{A} \\
& =2 \times 1.26 \times 8.62 \times 4244 \fallingdotseq 93 \times 10^{3} \tag{N}
\end{align*}
$$

DLF：ダイナミックロードファクタ（＝2＊）
$\mathrm{C}_{\mathrm{T}}$ ：定常スラスト係数 $\left(=1.26^{*}\right)$
P：最高使用圧力（MPa）
注記 $*$ ：「design basis for protection of light water nuclear power plants against the effects of postulated pipe rupture ANSI／ANS－58．2－1988」 より

## d．配管破損反力の算定

配管破損反力を算定するために使用した配管モデルを添付 9－6 図に示す。下位 クラスサポートについては，保守的に拘束が無い状態を仮定するため，配管モデ ルから削除している。破損を想定する箇所に貫通クラックによる荷重FをX方向， Y 方向，Z 方向にそれぞれ載荷し，境界サポート及び配管貫通部の配管破損反力を算定した。添付 9－5 表に基準地震動 S s による地震荷重等と配管破損反力を合計 した最大値を示す。

添付 9－5 表 境界サポートの荷重

| 支持構造物番号 | 反力 $(\mathrm{kN}) *$ |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m}) *$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{~F}_{\mathrm{X}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{Z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{Z}$ |
| MS－001－43 | 133 | 70 | 463 | 1251 | 1135 | 302 |
| MS－002－43 | 121 | 64 | 423 | 1202 | 1107 | 384 |
| MS－003－49 | 115 | 63 | 427 | 1164 | 1128 | 400 |
| MS－004－46 | 145 | 68 | 476 | 1158 | 1243 | 254 |

注：座標軸は添付 9－6 図に示す。
注記＊：荷重は配管破損反力に基準地震動S s による地震荷重等を合計した最大値
e．配管破損反力を踏まえた評価
境界サポート及び配管貫通部について，地震荷重＋配管破損反力に対する評価結果を添付 9－6 表に示す。全て計算値が許容値以下であり，地震荷重＋配管破損反力に対して健全であることを確認した。なお，既往知見より，B クラス配管において基準地震動S s 地震発生時に崩壊現象やき裂貫通は生じないと考えられるが，保守的に貫通クラック を仮定した評価を実施していることから境界サポートの許容応力にはSu 値を採用した。

添付 9－6 表 境界サポートの評価結果

| 種類 | 型式 | 応力分類 | 計算応力 <br> $(\mathrm{MPa})$ | 許容応力 <br> $(\mathrm{MPa})$ | 裕度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| アンカ | 架構 | 組合せ | 155 | 391 | 2.52 |

注：最も裕度が小さい評価部位を記載
（2）境界弁の評価
主蒸気系配管の境界弁（B21－F003A，B，C，D）の評価結果を添付 9－7 表に示す。弁体の評価 は添付書類「VI－3－2－3 クラス 1 弁の強度計算方法」を準用する。最高使用圧力の項［P］ は，強度＋地震を同時に評価する式ではないことから，評価用圧力［P’ $=P$（最高使用圧力） ＋W（地震荷重により弁体に加わる圧力）」として評価を実施した。
$\sigma_{\mathrm{D}} \leqq 1.5 \cdot \mathrm{~S}_{\mathrm{m}}$ であり弁体強度は十分である。

添付9－7表 弁体の評価結果

| 材料 | SFVC2B |
| :---: | :---: |
| 形式 | G2 |
| P（ MPa ） | 8.62 |
| $\mathrm{P}^{\prime}$（ MPa ） |  |
| $\mathrm{P}_{1}$（N） | $2.641 \times 10^{5}$ |
| $\mathrm{P}_{2}$（N） | － |
| $\mathrm{h}_{1}$（mm） |  |
| $\mathrm{h}_{2}$（mm） |  |
| a（mm） |  |
| $\mathrm{a}_{1}$（mm） |  |
| b（mm） |  |
| M（kg） | 470 |
| r（mm） |  |
| $\alpha_{1}$（G） | 15.0 |
| 計算応力 $\sigma_{\mathrm{D}}$（ MPa ） | 107 |
| 許容応力 $1.5 \cdot \mathrm{~S}_{\mathrm{m}}$（ MPa ） | 188 |


（「VI－3－2－3 クラス 1 弁の強度計算方法」より抜粋）

評価用圧力 P＇は以下のとおり

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{P}+\mathrm{W} \\
& =\mathrm{P}+\frac{\mathrm{M} \times g \times \alpha_{1}}{\pi \times \mathrm{r}^{2}} \\
& =8.62+\frac{470 \times 9.80665 \times 15.0}{\pi \times \square} \fallingdotseq \square
\end{aligned}
$$

ここで，添付書類「VI－3－2－3 クラス 1 弁の強度計算方法」に記載のない記号の説明を下記に示す。

> M : 弁体の質量 (kg)
$r:$ 弁体の半径（mm）
$\alpha_{1}$ ：評価用応答加速度（G）

枠囲みの内容は商業機密の観点から公開できません。

構造図を添付 9－7 図に示す。弁体は $45^{\circ}$ の角度で設置されていることから，評価用応答加速度は水平方向と鉛直方向を合成した値とする。弁体に考慮する評価用応答加速度は，添付 9－8 表のとおり，基準地震動 S s による応答加速度を上回る値として機能確認済加速度を用いた。

なお，女川原子力発電所第 2 号機において主蒸気隔離弁に適用する機能碓認済加速度は合成加速度で $15 G$ としており，詳細は補足説明資料「補足－600－14－1 動的機能維持の詳細評価について（新たな検討又は詳細検討が必要な設備の機能維持評価について）」に示す。


添付 9－7 図 主蒸気系境界弁構造図

添付 9－8 表 各弁に対する応答加速度と機能確認済加速度

| 弁番号 | 水平•鉛直合成値 |  |
| :---: | :---: | :---: |
|  | 応答加速度（G）＊ | 機能確認済加速度（G） |
| B21－F003A | 13.7 | 15.0 |
| B21－F003B | 13.7 | 15.0 |
| B21－F003C | 14.6 | 15.0 |
| B21－F003D | 14.9 | 15.0 |

注記＊：基準地震動 S s による応答加速度

## 3．環境に及ぼす影響

下位クラス設備が損傷した場合に環境に及ぼす影響として内部流体の流出に伴ら環境温度へ の影響が考えられることから， 2 項での検討内容を参考に環境温度の変化が上位クラス設備へ及ぼす影響について検討する。

配管破断発生時に環境温度に影響を及ぼす高エネルギー配管のうち，地震時に損傷の可能性 がある配管については 2 項で検討されている境界弁「B21－F003A，B，C，D」より下流の「主蒸気系配管」となる。損傷可能性がある主蒸気系配管ラインが設置されている範囲のらち，上位クラ ス設備（機器配管系は主蒸気系の最高使用温度で設計されているため除外）が設置されている エリアはMS トンネル室となる。

MS トンネル室に設置されている上位クラス設備は漏えい検出系の温度計となるが，本温度計 は主蒸気系配管の破断又は漏えいを検知し，MS ラインの隔離信号を発することを目的とした設備であるため，高温蒸気環境（ $171^{\circ} \mathrm{C}$ ）への耐性を有する計器を使用しており，配管破断によっ て機能に影響を及ぼすおそれはない。

4．まとめ
地震により下位クラス配管の破損を仮定した場合における，上位クラス配管と下位クラス配管の境界サポート及び境界弁の影響及び上位クラス設備への環境温度変化の影響について検討 した結果，上位クラス施設へ影響がないことを確認した。


[^0]:    ＊フロー中の（1），（2），（5）～（8）の数字は第2．1－1図中の（1），（2），（5）～⑧に対応する。

[^1]:    添付 8－2 図（1）防潮壁（鋼板形式）の構造概要

