本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料			
資料番号	02-工-B-19-0210_改 0			
提出年月日	2021年6月24日			

VI-2-6-3-1 制御棒駆動機構の耐震性についての計算書

2021年 6月 東北電力株式会社

目次

1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
2.2 評価方針	• • 3
2.3 適用 <mark>規格・基準等</mark> ····································	4
2.4 記号の説明	5
2.5 計算精度と数値の丸め方	6
3. 評価部位	• • 7
4. 構造強度評価	
4.1 構造強度評価方法	
4.2 荷重の組合せ及び許容応力	• • • 9
4.2.1 荷重の組合せ及び許容応力状態	
4.2.2 許容応力	9
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4.3 固有周期 ·····	•• 12
4.4 設計用地震力	•• 13
4.5 計算方法 ·····	·· 14
4.5.1 応力の計算方法	•• 14
4.6 計算条件	16
4.6.1 制御棒駆動機構の応力計算条件	
4.6.2 運転条件	• 17
4.7 応力の評価	18
4.7.1 管の応力評価	18
5. 評価結果	18
5.1 設計基準対象施設としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
5.2 重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、制御棒駆動機構が設計用地震力に対して十分な構造強度を有していることを説明するものである。

制御棒駆動機構は,設計基準対象施設においては S クラス施設に,重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下,設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

制御棒駆動機構の構造計画を表 2-1 に示す。

表 2-1 構造計画	四年等	(%,叫什,儿,)															
)概要	主体構造	ラッチ機構を備えた	水圧ピストンシリン	ダ構造。水圧ピスト	ンシリンダは, ピス	トンチューブ,イン	デックスチューブ,	シリンダチューブ等	から構成される。ま	た, ラッチ機構は,	コレットフィンガ,	コレットスプリング	等から構成される。			
	計画の概要	基礎・支持構造	制御棒駆動機構は,	圧力容器下部から延	長している制御棒駆	動機構ハウジング内	に収容する一体構造	物で,制御棒駆動機	構ハウジングの下端	フランジに締付ボル	トで接合される。						

枠囲みの内容は商業機密の観点から公開できません。

2.2 評価方針

制御棒駆動機構の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す制御棒駆動機構の部位を踏まえ「3. 評価部位」にて設定する箇所において、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づく発生荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。

制御棒駆動機構の耐震評価フローを図 2-1 に示す。

注記*:発生荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における原子炉本体地震応答解析より得られる値。

図 2-1 制御棒駆動機構の耐震評価フロー

2.3 適用<mark>規格・基準等</mark>

本評価において適用する適用<mark>規格・基準等</mark>を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG 4 6 0 1 · 補-1984
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版
- (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格(以下「設計・建設規格」という)

2.4 記号の説明

記号	記号の説明	単位
В 1, В 2	設計・建設規格 PPB-3810 に規定する応力係数	_
	(一次応力の計算に使用するもの)	
C 2	設計・建設規格 PPB-3810 に規定する応力係数	_
	(一次+二次応力の計算に使用するもの)	
Do	管の外径	mm
E	設計・建設規格 付録材料図表 Part6 表1に規定する縦弾性係数	MPa
F _m	鉛直方向に作用する荷重	N
F _w	制御棒駆動機構の自重	N
F s c r	スクラム反力により制御棒駆動機構に生じる荷重	N
F _v	鉛直方向震度により制御棒駆動機構に生じる地震荷重	N
K 2	設計・建設規格 PPB-3810 に規定する応力係数	_
	(ピーク応力の計算に使用するもの)	
K e	繰返しピーク応力強さ係数	
$ m M_{e}$	管に作用するモーメント(鉛直方向に作用する荷重を曲げモーメントに	N•mm
	換算したもの)	
$M_{\mathrm{h}\mathrm{s}\mathrm{g}}$	水平方向震度により制御棒駆動機構ハウジングに生じるモーメント	N•mm
$M_{\mathrm{i}\mathrm{p}}$	管の機械的荷重(地震による慣性力を含む。)により生じるモーメント	N•mm
M_{is}	管の地震動の慣性力と相対変位により生じるモーメントの全振幅	N•mm
n i	繰返し荷重 i の実際の繰返し回数	□
$N_{\ i}$	設計・建設規格 PPB-3534による繰返し荷重iの許容繰返し回数	口
Р	地震と組合わせるべき運転状態における圧力	MPa
S _ℓ	繰返しピーク応力強さ	MPa
S _m	設計・建設規格 付録材料図表 Part5 表 1 に規定する材料の設計応	MPa
	力強さ	
S _n	一次+二次応力	MPa
S p	ピーク応力	MPa
Sprm	一次応力	MPa
t	管の厚さ	mm
U	疲労累積係数	_
Z i	管の断面係数	mm^3

2.5 計算精度と数値の丸め方 精度は有効数字 6 桁以上を確保する。 表示する数値の丸め方は表 2-2 に示すとおりである。

表 2-2 表示する数値の丸め方

			女 2-2 衣示する剱胆の丸	W) /J	
数位	値の種類	単位	処理桁	処理方法	表示桁
縦弾性係	数	MPa	小数点以下第1位	四捨五入	整数位
断面係数	断面係数		有効数字 5 桁目	四捨五入	有効数字4桁*1
力		N	有効数字 5 桁目	四捨五入	有効数字4桁*1
モーメント		N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*1
計算応力		MPa	小数点以下第1位	切上げ	整数位
許容応力*2		MPa	小数点以下第1位	切捨て	整数位
震度		_	小数点以下第3位	切上げ	小数点以下第2位
圧力		MPa	小数点以下第3位	四捨五入	小数点以下第2位
下記以外の長さ		mm	小数点以下第2位	四捨五入	小数点以下第1位
長さ	計算上必要 な厚さ	mm	小数点以下第2位	切上げ	小数点以下第1位
最小厚さ		mm	小数点以下第2位	切捨て	小数点以下第1位
温度		$^{\circ}\!\mathbb{C}$	小数点以下第1位	四捨五入	整数位
疲労累積	 係数	_	小数点以下第5位	切上げ	小数点以下第4位

注記*1:絶対値が1000以上のときは、べき数表示とする。

*2: 設計・建設規格 付録材料図表に記載された温度の中間における応力強さ及び降伏点は,比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

3. 評価部位

制御棒駆動機構の要求機能は、クラス1の耐圧バウンダリとスクラム機能である。本計算書では、クラス1の耐圧バウンダリであり、耐震評価上厳しくなるフランジについて、「4.1 構造強度評価方法」に示す条件に基づき耐震計算を実施する。制御棒駆動機構の耐震評価部位については、表 2-1 の概略構造図に示す。また、スクラム機能の耐震評価については、添付書類「VI-2-6-2-1 制御棒の耐震性についての計算書」にて確認している。

4. 構造強度評価

4.1 構造強度評価方法

- (1) 制御棒駆動機構は、制御棒駆動機構ハウジング下端に固定される。
- (2) 制御棒駆動機構ハウジングの下端フランジとの接合部品である制御棒駆動機構フランジを 評価部位とし、フランジの最小板厚部を管とみなし、添付書類「VI-2-1-13-6 管の耐震性に ついての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。
- (3) 地震荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」で求めた制御棒駆動機構ハウジング下端のフランジ部分の値に基づき設定する。
- (4) 耐震計算に用いる寸法は、公称値を使用する。
- (5) 耐震評価は、設計基準対象施設と重大事故等対処設備の包絡条件で実施する。

図 4-1 評価モデル

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

制御棒駆動機構の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

制御棒駆動機構の許容応力は,添付書類「VI-2-1-9 機能維持の基本方針」に基づき表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

制御棒駆動機構の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4-4 に、重大事故等対処設備の評価に用いるものを表 4-5 に示す。

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

	許容応力状態	Π_{AS}	,	IVAS				
	荷重の組合せ	D+P+M+Sd*	D+P+M+Ss	$D + P_L + M_L + S d *$				
	機器等の区分		 * 					
	耐震重要度分類	S						
H = 1 + 1 ()	機器名称	制御棒駆動機構						
	. 設区分		制御材駆動装置					
	施設		計測制御制系統施設					

注記*1:クラス1管の荷重の組合せ及び許容応力を適用する。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

許容応力状態		$V_{ m A}S^{-*3}$				
荷重の組合せ	D + P + M + S s	$D + P_L + M_L + S d *$	*3			
機器等の区分		% * 				
設備分類*1	常設耐震/防止					
機器名称	制御棒駆動機構					
玄分		制御材駆動	水			
施設区分		計測制御 亥纮 <mark>临郭</mark>	75 が L <mark>が B D X</mark>			

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*2: 重大事故等クラス2管(クラス1管)の荷重の組合せ及び許容応力を適用する。

*3:原子炉冷却材圧力バウンダリ範囲は重大事故等発生時の使用条件が設計条件(圧力・温度等)を超える時間が短期(10-2年未満)で あるため、運転状態VにおいてSd ZはSs地震力との組合せは考慮不要とする。

表 4-3 許容応力 (クラス1管及び重大事故等クラス2管であってクラス1管)

並添付七字館		許容限界	
はインシンが語	一次応力	一次+二次応力	一次+二次+ピーク応力
${ m I\hspace{1em}I}_{ m A}{ m S}$	2. 25 S m	3Sm 3Sm 3 フック・ファーマ	S d 文は S s 地震動のみによる疲労累積 6巻 b 活起事的 I II アナシンス 広が用達
IV_AS	3 S m	od Ataos 地検製のみによる 応力振幅について評価する。	

表 4-4 使用材料の許容応力評価条件(設計基準対象施設)

材料	最高使用温度	S _m	S y	Su	S_h
47 科	(℃)	(MPa)	(MPa)	(MPa)	(MPa)
SUSF304	302	114	_	_	_

表 4-5 使用材料の許容応力評価条件(重大事故等対処設備)

材料	最高使用温度	S _m	S y	Su	S_h
初 杆	(°C)	(MPa)	(MPa)	(MPa)	(MPa)
SUSF304	302	114	-	_	_

4.3 固有周期

表 2-1 の概略構造図に示すように、制御棒駆動機構は制御棒駆動機構ハウジングに据付部材を介さずに、締付ボルトにて直接接続される構造である。したがって、固有周期は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における原子炉本体地震応答解析により確認している。

4.4 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。

評価に用いる設計用地震力を表 4-6 及び表 4-7 に示す。

弾性設計用地震動Sd又は 据付場所 基準地震動 S s 静的震度 及び 床面高さ 水平方向 鉛直方向 水平方向 鉛直方向 設計震度 設計震度 設計震度 設計震度 (m)原子炉建屋 __*2 __ *2 $C_{V} = 0.77$ $C_{V} = 1.32$ 0. P. 3. 258*1

表 4-6 設計用地震力(設計基準対象施設)

注記*1:基準床レベル(制御棒駆動機構ハウジング下端フランジの取付面のレベル)を示す。

*2:水平方向震度により発生する荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器 及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき得られる値。

据付場所 及び		震動Sd又は 1震度	基準地類	震動Ss
床面高さ (m)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 0. P. 3. 258*1	_	-	*2	$C_{V} = 1.32$

表 4-7 設計用地震力(重大事故等対処設備)

注記*1:基準床レベル(制御棒駆動機構ハウジング下端フランジの取付面のレベル)を示す。

*2:水平方向震度により発生する荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器 及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき得られる値。

4.5 計算方法

- 4.5.1 応力の計算方法
 - (1) 管の計算方法

地震荷重として制御棒駆動機構ハウジングの応答の最大値が作用するものとして実施する。

耐震評価モデルを図4-2に示す。

図 4-2 耐震評価モデル

- a. 管に作用するモーメント
 - (a) 管の機械的荷重(地震による慣性力を含む)により生じるモーメント 機械的荷重として自重とスクラム反力による荷重,地震による慣性力として地震 動による鉛直荷重と応答モーメントを考量すると以下となる。

$$M_{ip} = M_{hsg} + M_{e}$$

$$= M_{hsg} + \frac{D_{o}^{2} + (D_{o} - 2 \cdot t)^{2}}{8 \cdot D_{o}} \cdot F_{m}$$
• • • • • (4.5.1)

ここで,

$$F_{m} = F_{w} + F_{s c r} + F_{v}^{*}$$
 (4.5.2)

注記*: F_v は、表 4-6 及び 4-7 に示す鉛直方向設計震度 Cv より算出する鉛直

方向地震荷重

枠囲みの内容は商業機密の観点から公開できません。

(b) 管の地震動の慣性力と相対変位により生じるモーメントの全振幅 相対変位は生じないことから、地震動の慣性力として地震動による鉛直荷重と応答 モーメントを考慮すると以下となる。

$$M_{i s} = \left\{ M_{h s g} + \frac{D_{o}^{2} + (D_{o} - 2 \cdot t)^{2}}{8 \cdot D_{o}} \cdot F_{v} \right\} \times 2 \qquad (4.5.3)$$

- b. 耐震性についての計算
- (a) 一次応力

$$S_{prm} = \frac{B_1 \cdot P \cdot D_o}{2 \cdot t} + \frac{B_2 \cdot M_{ip}}{Z_i}$$
 (4.5.4)

ここで,

$$Z_{i} = \frac{\pi}{32} \cdot \frac{D_{o}^{4} - (D_{o} - 2 \cdot t)^{4}}{D_{o}}$$
 (4. 5. 5)

とする。

(b) 一次十二次応力

$$S_{n} = \frac{C_{2} \cdot M_{is}}{Z_{i}} \qquad (4.5.6)$$

(c) ピーク応力

$$S_{p} = \frac{K_{2} \cdot C_{2} \cdot M_{i s}}{Z_{s}} \qquad (4.5.7)$$

(d) 繰返しピーク応力強さ

$$S_{\ell} = \frac{K_{e} \cdot S_{p}}{2} \qquad (4.5.8)$$

(e) 疲労累積係数

$$\Sigma \frac{n_{i}}{N_{i}} \le 1.0 \qquad (4.5.9)$$

4.6 計算条件

4.6.1 制御棒駆動機構の応力計算条件

応力計算に用いる計算条件は、表 4-8 及び本計算書の【制御棒駆動機構の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-8 計算条件

		ı	T
項目	記号	単位	数值等
材料	_	_	
設計・建設規格 PPB-3810 に規定する応力係数	В 1	_	
設計・建設規格 PPB-3810 に規定する応力係数	В 2	_	
設計・建設規格 PPB-3810 に規定する応力係数	C 2	_	
管の外径	Do	mm	
使用温度における材料の縦弾性係数	E	MPa	
自重	F _w	N	
スクラム反力により生じる荷重	Fscr	N	
鉛直方向震度 (Sd) により生じる地震荷重*1	F _v	N	
鉛直方向震度 (Ss) により生じる地震荷重*1	F _v	N	
設計・建設規格 PPB-3810 に規定する応力係数	K 2	_	
繰返しピーク応力強さ係数	K e	_	
水平方向震度(Sd又は静的震度)により制御棒駆動	$M_{\mathrm{h}\mathrm{s}\mathrm{g}}$	N • mm	
機構ハウジングに生じるモーメントの最大値*2			
水平方向震度(Ss)により制御棒駆動機構ハウジン	M_{hsg}	N • mm	
グに生じるモーメントの最大値*2			
地震と組合わせるべき運転状態における圧力	Р	MPa	
管の厚さ	t	mm	

注記*1:添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器 及び原子炉本体の基礎の地震応答計算書」の原子炉本体地震応答解析により得られる応答 軸力と鉛直方向設計震度より算出する鉛直方向荷重のうち大きい方の値。

注記*2:添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器 及び原子炉本体の基礎の地震応答計算書」の原子炉本体地震応答解析により得られた値。

4.6.2 運転条件

制御棒駆動機構の応力計算に用いる運転条件は、表 4-9 に示すとおりである。

4.7 応力の評価

4.7.1 管の応力評価

4.5.1項で求めた応力が許容応力以下であること。許容応力は4.2.2項 表4-3による。

5. 評価結果

5.1 設計基準対象施設としての評価結果

制御棒駆動機構の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

制御棒駆動機構の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【制御棒駆動機構の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

49 4 品 料	耐震重要度	据付場所及び	田大田田	海性設計用地震動 S の 文法静的震度	p	基準地震	s S 種養	最高使用温度	周囲環境温度
\$ T	分類	ひ E E E	E	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(₀ ,)	(C _o)
制御棒駆動機構	ω		* 	°° *	$C_{v} = 0.77$	* 	C v=1.32	302	I

注記*1:制御棒駆動機構ハウジングの取付面のレベルを示す。

*2:固有周期は,添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」によるものとする。 *3:水平方向震度により発生する荷重は,添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき得られ

る値。

* H 田 平

	n _i (国)	
	P (MPa)	
(N) ^ .	基準地震動 S s	
Fv	弾性設計用 地震動 S d 又は静的震度	
	F s c r (N)	
	F _w (N)	
(N•mm)	基準地震動 S s	
$ m M_{h~s~g}$ (弾性設計用 地震動Sd 又は静的震度	
	t (mm)	
	Do (mm)	
	部材	

統弾性係数 E (MPa)	
S _m (MPa)	
K.	
K_{2}	
C_2	
B_{2}	
B 1	
\sum_{i} (mm ³)	
部材	ンドレ

を加えた回数 注記*1:運転条件の回数に一律に設定する等価繰返し回数

*2:最高使用温度で算出

1.3 計算数値

許容繰返し	し回数					
- - - -	N) ^d S	MPa)	S (MPa)	Pa)) i N	(国)
#3M	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s

1.4 結論 1.4.1 応力

1. I. I. // //							
			-%	一次応力評価 (MPa)	一次十二次応	一次+二次応力評価 (MPa)	疲労評価
許容応力状態	最大応力評価点	最大応力区分	一秋応力 Sprm (Sd) Sprm (Ss)	許容応力 2.25·S _m 3·S _m	ー次+二次応力 S _n (S d) S _n (S s)	許容応力 3·S _m 3·S _m	疲労累積係数 U+U sd U+U s s
Ш _A S		S p r m (S d)	27	258	I	I	I
SVⅢ		(ps) "s	ı	ı	25	344	ı
Ш _A S	ンドン	^р	I	ı	I	I	0.0000
IV_AS	最小断面	S p r m (S s)	42	344	_	_	1
IV_AS		S _n (S _s)	_	_	54	344	1
IV_AS		$_{\mathrm{S}\mathrm{s}}$	I	_	-	-	0.0000

すべて許容応力以下である。

M-2-6-3-1 R 0 (1) 0 2

2. 重大事故等対処設備 2.1 数卦条件 2

7.1 双凹米汗									
45 夕 田 ※	HW ノンギリスポ	据付場所及び	田大田田(二)	弾性設計用: 又は静	地震動Sd 的震度	基準地	震動Ss	最高使用温度	周囲環境温度
净	≣	E (E)	Ē Ē	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(S _e)	(O _o)
制御棒駆動機構	常設耐震/防止		% *	I	I	-*3	$C_v = 1.32$	302	I

注記*1:制御棒駆動機構ハウジングの取付面のレベルを示す。 *2:固有周期は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」によるものとする。 *3:水平方向震度により発生する荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に

基づき得られる値。

n Ē P (MPa) 基準地震動 S $F_{v}(N)$ 弾性設計用 地震動Sd 又は静的震度 F s c r E L 基準地震動 S $M_{h~s~g}~(N \cdot mm)$ 弾性設計用 地震動Sd 又は静的震度 t (mm) D_o 機器要目 フランジ 部村 2.2

統弾性係数 E (MPa)	175840*2
S _m (MPa)	114
$ m K_e$	
${ m K}_2$	
C_2	
B 2	
B 1	
Z_{i} (mm 3)	
部材	ジンドレ

注記*1:運転条件の回数に一律に設定する等価繰返し回数

*2:最高使用温度で算出

2.3 計算数値

管に作用するモーメント

				N _i (国)	基準地震動 S s
				Z	弾性設計用地震動 S d 又は静的震度
(N·mm)	基準地震動 S s			MPa)	基準地震動 S s
$M_{i s}$ (N·mm)	弾性設計用地震動 Sd又は静的震度	-		S_{ϱ} (MPa)	弾性設計用地震動 Sd又は静的震度
N·mm)	基準地震動 S s			MPa)	基準地震動 S s
$M_{i p} (N \cdot mm)$	弾性設計用地震動 S d 又は静的震度	ı	一回数	S _p (MPa)	弾性設計用地震動 S d 又は静的震度
	部	ブランジ	許容繰返し回数		器

フランジ

2.4 結論 2.4.1 応力

	1	: : :	→ (X)	一次応力評価 (MPa)	一次十二次応力評価(MPa)	力評価 (MPa)	疲労評価
許容応力状態	最大応力評価点	最大応力区分	一次応力 S _{prm} (Ss)	許容応力 3·S _m	- 次+二次応力 S _n (S _s)	許容応力 3·S _m	疲労累積係数 U+Us,
IV_AS		S _{prm} (Ss)	42	344	1	1	ı
IV_AS	フランジ最小断面	S _n (S _s)	I	1	54	344	I
IV_AS		$U + U_{S,s}$	I	ı	ı	1	0.0000

すべて許容応力以下である。