先行審査プラントの記載との比較表
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

先行審査プラントの記載との比較表
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
6．基準規則で規定される施設•設備の整理	補足－40－6 基漼規則で規定される施設•設備の整理	補足－200－6 基準規則で規定される施設•設備の整理	
7．原子炉格納容器内に使用されるテフロン®材の事故時環境下 における影響について 1．概要 2．テフロンの特性 3．健全性評価対象となるテフロン材使用機器 4．テフロン材使用機器の健全性 4． 1 テフロン使用機器の設置場所と環境条件 4． 2 テフロン材使用機器の放射線による劣化に対する健全性 5．結論	補足－40－9 原子炉格納容器内に使用されるテフロン®材の事故時環境下における影響について 1．概要 2．テフロンの特性 3．健全性評価対象となるテフロン材使用機器 4．テフロン材使用機器の健全性 4． 1 テフロン使用機器の設置場所と環境条件 4.2 テフロン材使用機器の放射線による劣化に対する健全性 5．結論	補足－200－7 原子炉格納容器内に使用されるテフロン®材の事故時環境下における影響について 1．概要 2．テフロンの特性 3．健全性評価対象となるテフロン材使用機器 4．テフロン材使用機器の健全性 4． 1 テフロン使用機器の設置場所と環境条件 4． 2 テフロン材使用機器の放射線による劣化に対する健全性 5．結論	
8．「実用発電用原子炉及びその附属施設の技術基準に関する規則」の第 54 条及び第 59 条から第 77 条に基づく主要な重大事故等対処設備一覧表 添付資料 1 原子炉圧力容器の支持構造物，原子炉冷却材圧力バ ウンダリ構成部等の重大事故等時における設計上の考慮について 添付資料 2 設計基準事故対処設備等の個数と設置場所について	補足－40－10 「実用発電用原子炉及びその附属施設の技術基準に関する規則」の第 54 条及び第 59 条から 77 条に基づく主要な重大事故等対処設備一覧表 添付資料 1 原子炉圧力容器の支持構造物，原子炉冷却材圧力バ ウンダリ構成部等の重大事故等時における設計上の考慮について 添付資料 2 設計基準事故対処設備としての計装設備の個数と設置場所について	補足－200－8 「実用発電用原子炉及びその附属施設の技術基準に関する規則」の第 54 条及び第 59 条から 77 条に基づく主要な重大事故等対処設備一覧表 添付資料 1 原子炉圧力容器の支持構造物，原子炉冷却材圧力バ ウンダリ構成部等の重大事故等時における設計上の考慮について 添付資料 2 設計基淮事故対処設備等の個数と設置場所について	記載表現の差異（女川では，使用済燃料プールの監視設備が含まれている ため設計基準事故対処設備等と表現）
9．主蒸気逃がし安全弁の環境条件の設定について 1．はじめに 2．様々なシーケンスを想定した場合の SRV（自動減圧機能） の環境条件について 3．まとめ	補足－40－11 逃がし安全弁の環境条件の設定について 1．はじめに 2．様々なシーケンスを想定した場合の SRV（自動減圧機能） の環境条件について 3．まとめ	補足－200－9 主蒸気逃がし安全弁の環境条件の設定について 1．はじめに 2．様々なシーケンスを想定した場合の SRV（自動減圧機能） の環境条件について 3．まとめ	設備名称の差異
添付資料（1）高温環境下での主蒸気逃がし安全弁の開保持機能維持について 1．はじめに 2．評価方法 3．評価条件 4．評価結果 5．本体部の温度上昇による影響	参考資料（1）高温環境下での逃がし安全开の開保持機能維持につ いて 1．はじめに 2．評価方法 3．評価条件 4．評価結果 5．本体部の温度上昇による影響	添付資料（1）高温環境下での主蒸気逃がし安全弁の開保持機能維持について 1．はじめに 2．評価方法 3．評価条件 4．評価結果 5．本体部の温度上昇による影響	設備名称の差異

先行審査プラントの記載との比較表
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
参考 1 MAAP コードによる原子炉圧力容器内平均温度評価につ いて 1．MAAP コードによる解析 2．スタンドパイプ／セパレータへの伝熱を考慮した簡易計算 3．SRV の 3 次元熱流動解析にて使用する原子炉圧力容器内気相平均温度について	参考1 MAAP コードによる原子炉圧力容器内平均温度評価につ いて 1．MAAP コードによる解析 2．スタンドパイプ／セパレータへの伝熱を考慮した簡易計算 3．SRV の 3 次元熱流動解析にて使用する原子炉圧力容器内気相平均温度について 参考 2 MAAP コードにおける下部プレナムでの溶融炉心の挙動 について	参考 1 MAAP コードによる原子炉圧力容器内平均温度評価につ いて 1．MAAP コードによる解析 2．スタンドパイプ／セパレータへの伝熱を考慮した簡易計算 3．SRV（自動減圧機能）の 3 次元熱流動解析にて使用する原子炉圧力容器内気相平均温度について 参考 2 MAAP コードにおける下部プレナムでの溶融炉心の挙動 について	設備名称の差異
添付資料（2）主蒸気逃がし安全弁用アクチュエータの耐環境性能向上について 1．概要 2．耐環境性能向上を目的とした SRV 用シリンダーの改良内容 3．信頼性確認試験 4．格納容器限界温度•圧力環境下における検証試験 5．今後の方針	参考資料（2）逃がし安全弁用アクチュエータの耐環境性能向上に ついて 1．概要 2．健全性確認試験 3．今後の方針	添付資料（2）主蒸気逃がし安全弁用アクチュエータの耐環境性能向上について 1．概要 2．耐環境性能向上を目的とした空気シリンダの改良内容 3．信頼性確認試験 4．原子炉格納容器限界温度•圧力環境下における検証試験 5．今後の方針	設備名称の差異 設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加項目番号の差異
添付資料（3）SRV 用電磁弁の耐環境性能向上について 1．概要 2．耐環境性能向上を目的とした SRV 用電磁弁の改良内容 3．信頼性確認試験 4．格納容器限界温度•圧力環境下における検証試験 5．今後の方針	参考資料（3）SRV 用電磁弁の耐環境性能向上について （1）目的 （2）概要	添付資料（3）主蒸気逃がし安全弁用電磁弁の耐擐境性能向上について 1．概要 2．耐環境性能向上を目的とした SRV 用電磁弁の改良内容 3．信頼性確認試験 4．原子炉格納容器限界温度•圧力環境下における検証試験 5．今後の方針 参考 3 改良空気シリンダ及び改良電磁升の蒸気暴露試験条件設定について	設備名称の差異 資料構成の差異 項目番号の差異 設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加設計進捗による詳細設計の記載追加

先行審査プラントの記載との比較表
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
10．安全設備及び重大事故等対処設備の環境条件の設定につい て 1．はじめに 2．安全施設の環境条件について 2.1 一律で設定する環境条件の考慮事項 2.2 個別で設定する環境条件の考慮事項 3．重大事故等対処設備の環境条件について 3.1 一律で設定する環境条件の考慮事項 3.2 個別で設定する環境条件の考慮事項 3.3 非常用ガス処理系の水素爆発防止対策について 3.4 原子炉格納容器内の重大事故環境下で機能が要求される計装機器ケーブルについて 4．添付資料	補足－40－12 安全設備及び重大事故等対処設備の環境条件の設定について 1．はじめに 2．安全施設の環境条件について 2.1 一律で設定する環境条件の考慮事項 2.2 安全施設の個別で設定する環境条件の考慮事項 3．重大事故等対処設備の環境条件について 3.1 一律で設定する環境条件の考慮事項 3.2 重大事故等対処設備の個別で設定する環境条件の考慮事項 4．添付資料	補足－200－10 安全設備及び重大事故等対処設備の環境条件の設定について 1．はじめに 2．安全施設の環境条件について 2.1 一律で設定する環境条件の考慮事項 2.2 個別で設定する環境条件の考慮事項 3．重大事故等対処設備の環境条件について 3.1 一律で設定する環境条件の考慮事項 3.2 個別で設定する環境条件の考慮事項 3.3 非常用ガス処理系の水素爆発防止対策について 3． 4 原子炉格納容器内の重大事故環境下で機能が要求される計装機器ケーブルについて 4．添付資料	記載表現の相違 記載表現の相違 資料構成の差異（東海第二の SGTS は水素排出設備として，原子炬格納施設の補足説明資料に整理） 審査進捗に伴ら差異（NRA 技術報告に対する対応を本項にて説明）
添付資料 1 環境放射線の設定方法について （参考資料）重大事故時における放射線環境条件設定の保守性	添付資料1環境放射線の設定方法について （参考資料）重大事故時における放射線環境条件設定の保守性	添付資料1環境放射線の設定方法について （参考資料1）重大事故時における放射線環境条件設定の保守性 （参考資料 2）スロッシングによる使用済燃料プール水位低下の影響について	項目番号の差異 資料構成の差異（原子炉建屋原子炉棟内の放射線量設定に関して，使用済燃料プールのスロッシングによる水位低下の放射線影響が小さいこと を参考資料 2 に整理）
添付資料2 主蒸気管破断事故起因の重大事故等時を考慮した場合の環境条件について 1．主蒸気管破断事故（以下「MSLBA」という。）のPRA 及び有効性評価における取扱いについて 2．MSLBA に伴ら環境条件への影響について 3．MSLBA 起因の重大事故等時の事象進展及び期待する主な設備について 4．MSLBA 起因の重大事故等時の環境条件について	添付資料 3 主蒸気管破断事故起因の重大事故等時を考慮した場合の環境条件について 1．主蒸気管破断事故（以下「MSLBA」という。）のPRA 及び有効性評価における取扱いについて 2．MSLBA に伴う環境条件への影響について 3．MSLBA 起因の重大事故等時の事象進展及び期待する主な設備について 4．MSLBA 起因の重大事故等時の環境条件について	添付資料2 主蒸気管破断事故起因の重大事故等時を考慮した場合の環境条件について 1．主蒸気管破断事故（以下「MSLBA」という。）のPRA 及び有効性評価における取扱いについて 2．MSLBA に伴う環境条件への影響について 3．MSLBA 起因の重大事故等時の事象進展及び期待する主な設備について 4．MSLBA 起因の重大事故等時の環境条件について	項目番号の差異
添付資料 9 格納容器内雰囲気放射線モニタの環境条件の設定方法について 1．はじめに	添付資料5格納容器雰囲気放射線モニタの環境条件の設定方法 について 1．はじめに	添付資料 3 格納容器内雰囲気放射線モニタの環境条件の設定方法について	項目番号，設備名称の差異 記載表現の相違

先行審査プラントの記載との比較表
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
添付資料 3 熱収支等により環境条件を設定するエリアの設定方法について a．隣接エリアの温度条件 b．内部発熱量 c．空調設備	添付資料 6 熱収支等により環境温度を設定するエリアの設定方法について a．隣接エリアの温度条件 b．内部発熱量 c．空調設備	添付資料4熱収支等により環境温度を設定するエリアの設定方法について a．隣接エリアの温度条件 b．内部発熱量 c．空調設備	項目番号の差異
参考 1 原子炉建屋原子炉区域での SFP や PCV の温度上昇に伴う影響 参考 2 熱収支等による環境温度評価（熱バランスによる簡易計算） 参考 3 格納容器圧力逃がし装置格納槽の室温評価について	参考 1 格納容器圧力逃がし装置格納槽の室温評価について	参考 1 熱収支等による環境温度評価（熱バランスによる簡易計算）	＜柏崎との比較＞ 女川は，原則一律条件にて評価のた め作成不要（東海第二同様） 説明方針の差異（女川は，一律温度を超過しているエリアについて，室温評価結果を例示している） 説明方針の差異（女川の当該設備設置エリアは，一律温度を超過してい ないため作成不要）
		添付資料5格納容器内雰囲気酸素濃度の冷却装置について	設備構成の差異（女川は，格納容器内雰囲気酸素濃度の環境改善のため，専用の冷却装置を設置している）
添付資料 4 原子炉格納容器外の建屋内（原子炉建屋原子炉区域内）において個別に放射線環境条件を設定するエリア の設定方法について	添付資料9原子炉格納容器外の建屋内（原子炉建屋原子炉棟内） において個別に放射線環境条件を設定するエリアの設定方法について	添付資料 6 原子炉建屋原子炉棟内において個別に放射線環境条件を設定するエリアの設定方法について	項目番号，エリア名称，記載表現の差異
添付資料5 原子炉建屋原子炉区域外及びその他の建屋内におい て個別に放射線環境条件を設定するエリアの設定方法について	添付資料 11 原子炉格納容器外の建屋内（原子炉建屋の原子炉棟外及びその他の建屋内）において個別に放射線環境条件を設定するエリアの設定方法について	添付資料7原子炉建屋付属棟内及びその他の建屋内において個別に放射線環境条件を設定するエリアの設定方法に ついて	項目番号，エリア名称，記載表現の差異
添付資料7 ほう酸水注入系の放射線環境条件設定	添付資料 12 ほら酸水注入系の放射線環境条件設定	添付資料8ほら酸水注入系の放射線環境条件設定	項目番号の相違
添付資料 10 非常用ガス処理系の水素爆発防止対策について 1．概要 2．非常用ガス処理系系統内での水素爆発防止 （参考評価）枝管における水素滞留評価について		添付資料 9 非常用ガス処理系の水素爆発防止対策について 1．概要 2．非常用ガス処理系系統内での水素爆発防止 （参考評価）枝管における水素滞留評価について	資料構成の差異（東海第二のSGTS は水素排出設備として，原子炉格納施設の補足説明資料に整理）
添付資料 11 原子炉格納容器内の重大事故環境下で機能が要求 される計装機器ケーブルについて 1．概要 2．対象計装機器とケーブル種別 3．健全性評価結果		添付資料 10 原子炉格納容器内の重大事故環境下で機能が要求さ れる計装機器ケーブルについて 1．概要 2．対象計装機器ケーブル種別 3．健全性評価結果	審査進捗に伴う差異（NRA 技術報告に対する対応を当該資料にて説明）
	添付資料2耐火壁の溢水防止機能について		設備構成の差異（女川は当該設備へ先行記載の機能を期待していない）

先行審査プラントの記載との比較表

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
	添付資料 4 その他建屋の環境条件について		評価結果の差異（東海第二は，その他 建屋に一律の環境条件を設定してい るものの，屋外と同じ環境条件の設 定（常設代替高圧電源装置置場（地上 階）等）や機器からの発熱を考慮して 条件を設定（格納容器圧力逃がし装 置格納槽等）しているエリアがある ことから添付資料にて整理している が，女川は，その他建屋である制御建 屋，緊急時対策建屋，緊急用電気品建 屋（地下階）に一律の環境条件を設定 してお作成不要）
	添付資料 7 主蒸気管破断事故起因の重大事故等時に期待する設備への対応について		説明方針の差異（女川は，MSLBA 時の健全性が確保できることを添付資料 2 にて説明している）
	添付資料 8 格納容器内雾囲気ガスサンプリング装置，非常用室素供給系高圧窒素ボンベ及び非常用逃がし安全弁駆動系高圧窒素ボンべの空調について		設備構成の差異（女川は，機器付きの空調にて健全性を確保する設備はな いため作成不要）
	添付資料 10 原子炉建屋原子炉棟内の計装設備（伝送器）の遮蔽設計及び環境放射線について		設備構成の差異（女川は，他社記載設備による対策は不要のため作成不要）
添付資料 6 屋外において個別に放射線環境条件を設定するエリ アの設定方法について			＜柏崎との比較＞ 説明方針の差異（女川は，一律の放射 線条件を超過しないため作成不要）
添付資料 8 使用済燃料貯蔵プール監視カメラの放射線環境条件設定	添付資料 13 使用済燃料プール監視カメラの放射線環境条件設定		評価結果の差異（女川の使用済燃料プ ール監視カメラは，カメラと一体の冷却装置により泠却することで耐環境性向上を図る設計としており，一律条件にて健全性を確認しているため作成不要）

先行審査プラントの記載との比較表
補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
11．自主対策設備の悪影響方止について 1．はじめに 2．想定される悪影響について （1）直接的な影響に対する考慮 （2）間接的な影響に対する考慮 （3）発電所における運用リソースに対する考慮 3．自主対策設備の悪影響防止 3.1 自主対策設備の悪影響防止に対する基本的方針 3.2 格納容器 pH 制御設備 （1）設備概要 （2）他の設備への悪影響について 3.3 格納容器頂部注水系 （1）設備概要 （2）他の設備への悪影響について 3．4 バックアップシール材 （1）設備概要 （2）他の設備への悪影響について	補足－40－13 自主対策設備の悪影響防止について 1．はじめに 2．想定される悪影響について （1）直接的な影響に対する考慮 （2）間接的な影響に対する考慮 （3）発電所における運用リソースに対する考慮 3．自主対策設備の悪影響防止 3.1 自主対策設備の悪影響防止に対する基本的方針 3.2 サプレッション・プール水 pH 制御設備 （1）設備概要 （2）他の設備への悪影響について 3.3 格納容器頂部注水系 （1）設備概要 （2）他の設備への悪影響について 3.4 バックアップシール材 （1）設備概要 （2）他の設備への悪影響について	補足－200－11 自主対策設備の悪影響防止について 1．はじめに 2．想定される悪影響について 2． 1 直接的な影響に対する考慮 2．2間接的な影響に対する考慮 2.3 発電所における運用リソースに対する考慮 3．自主対策設備の悪影響防止 3.1 自主対策設備の悪影響防止に対する基本的方針 3.2 原子炉格納容器 pH 調整系 （1）設備概要 （2）他の設備への悪影響について 3.3 原子炉格納容器頂部注水系 （1）設備概要 （2）他の設備への悪影響について 3.4 コリウムシールド （1）設備概要 （2）他の設備への悪影響について 3.5 コリウムバッファー （1）設備概要 （2）他の設備への悪影響について	項目番号の差異 項目番号の差異 項目番号の差異 設備名称の差異 設備名称の差異 設備構成の差異（女川は，フランジ部 は改良 EPDM 製のシール材を用いるこ とで原子炉格納容器のシール機能を維持できることから当該設備は用い ない） 設備構成の差異（女川は，更なる安全性向上のために自主対策設備として コリウムシールドを設置している）設備構成の差異（女川は，更なる安全性向上のために自主対策設備として コリウムバッファーを設置している）
添付資料1原子炉格納容器 pH 制御による原子炉格納容器への影響の確認について 1．設備概要 2．原子炉格納容器バウンダリに対する影響について 3．水素ガスの発生について 3.1 アルミニウムによる水素ガス発生量 3.2 亜鉛による水素ガス発生量 3.3 水素ガス発生による影響について	添付資料1原子炉格納容器pH制御による原子炉格納容器への影響の確認について 1．設備概要 2．原子炉格納容器バウンダリの腐食に対する影響について 3．水素の発生について 3.1 アルミニウムによる水素発生量 3.2 亜鉛による水素発生量 3.3 水素発生による影響について 3． 3.1 水素発生による圧力上昇 3．3．2 水素発生による燃焼リスク	添付資料 1 原子炉格納容器 pH 調整系による原子炉格納容器への影響の確認について 1．設備概要 2．原子炉格納容器バウンダリに対する影響について 3．水素の発生について 3.1 アルミニウムによる水素発生量 3.2 亜鉛による水素発生量 3.3 水素発生による影響について	表現の差異 表現の差異（腐食以外についても記載しているため） 資料構成上の差異（女川は，3．3 で説明）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
参考資料 1 凝縮槽水張り装置について 1．設備概要		添付資料2 コリウムバッファー設置による有効性評価への影響 について 1．はじめに 2．コリウムバッファーの構造 3．コリウムバッファーを設置することによる有効性評価への影響 4．まとめ	設備構成の差異（コリウムバッファー の構造及びコリウムバッファー設置 による有効性評価への影響について説明） ＜柏崎との差異＞ 女川は，凝縮槽へ水張りする設備は設置しない
2．重大事故等対処設備の事故後 8 日以降の放射線に対する評価について	補足－40－14 重大事故等対処設備の事故後 8 日以降の放射線に対する評価について	補足－200－12 重大事故等対処設備の事故後 8 日以降の放射線に対する評価について	
1．概要	1．概要	1．概要	
2．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定方法	2．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定方法	2．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定方法	
3．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	3．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	3．事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	
4．事故後 8 日以降の放射線に対する評価	4．事故後8日以降の放射線に対する評価	4．事故後8日以降の放射線に対する評価	
（1）ドライウェル雰囲気温度	（1）ドライウェル雰囲気温度	（1）ドライウェル温度	設備名称の差異
（2）格納容器下部水位	（2）格納容器下部水位	（2）ドライウェル水位	設備名称の差異
添付 12－1 事故後8日以降に期待する機能の整理	添付 14－1 事故後8日以降に期待する機能の整理	添付 12－1 事故後8日以降に期待する機能の整理	項目番号の差異
添付 12－2 評価対象設備の選定フロー	添付 14－2 評価対象設備の選定フロー	添付 12－2 評価対象設備の選定フロー	項目番号の差異
添付 12－3 事故後 8 日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	添付 14－3 事故後8日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	添付 12－3 事故後8日以降の放射線に対する評価を実施する重大事故等対処設備の選定結果	項目番号の差異
添付 12－4 「4．事故後 8 日以降の放射線に対する評価」で抽出されたパラメータ	添付 14－4 「4．事故後8日以降の放射線に対する評価」で抽出されたパラメータ	添付 12－4 「4．事故後8日以降の放射線に対する評価」で抽出されたパラメータ	項目番号の差異
添付 12－5 ドライウェル雰囲気温度及びその代替パラメータの配置図	添付14－5 ドライウェル雰囲気温度及びその代替パラメータの配置図	添付 12－5 ドライウェル温度及び代替パラメータの配置図	項目番号，設備名称の差異
添付 12－6 ドライウェル雰囲気温度の構造イメージ図	添付 14－6 ドライウェル雰囲気温度の構造イメージ図	添付 12－6 ドライウェル温度の構造イメージ図	項目番号，設備名称の差異
添付 12－7 格納容器下部水位及びその代替パラメータの配置図	添付 14－7 格納容器下部水位及びその代替パラメータの配置図	添付 12－7 ドライウェル水位と代替パラメータの配置図	項目番号，設備名称の差異
添付 12－8 格納容器下部水位の構造イメージ図	添付 14－8 格納容器下部水位の構造イメージ図	添付 12－8 ドライウェル水位の構造イメージ図	項目番号，設備名称の差異
添付 12－9 ドライウェル雰囲気温度及び格納容器下部水位の耐放射線性について	添付 14－9 ドライウェル雰囲気温度及び格納容器下部水位の耐放射線性について	添付 12－9 ドライウェル温度及びドライウェル水位の耐放射線性について	項目番号，設備名称の差異

（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
参考 1 重大事故等時の条件として考慮した原子炉格納容器内の積算線量について 参考2 主パラメータである計器（ドライウェル雰囲気温度及び格納容器下部水位）の事故時の健全性や計測する上での代表性及 び使っている有機材料及びその耐熱温度について 参考 3 ドライウェル雰囲気温度及び格納容器下部水位の配置に ついて 参考 4 一部の部位が原子炉格納容器内にある計装設備の系統構成，設置場所及び個数について 参考5 原子炉建屋原子炉区域内の伝送器の耐放射線性及び事故時の線量率について 参考 6 原子炉格納容器外の計装設備（伝送器）の耐放射線性に ついて	参考 1 重大事故等時の条件として考慮した原子炉格納容器内の積算線量の事故条件について 参考 2 主パラメータである計器（ドライウェル雰囲気温度及び格納容器下部水位）の事故時の健全性や計測する上での代表性及 び使っている有機材料及びその耐熱温度について 参考 3 ドライウェル雰囲気温度及び格納容器下部水位の配置に ついて 参考 4 一部の部位が原子炬格納容器内にある計装設備の系統構成，設置場所及び個数について 参考5 原子炉建屋原子炉棟内の伝送器の耐放射線性及び事故時 の線量率について	参考 1 重大事故等時の条件として考慮した原子炉格納容器内の積算線量の事故条件について 参考 2 主パラメータである計器（ドライウェル温度及びドライ ウェル水位）の使っている有機材料及びその耐熱温度について 参考 3 ドライウェル温度及びドライウェル水位の配置について 参考 4 一部の部位が原子炬格納容器内にある計装設備の系統構成，設置場所及び個数について 参考5 原子炉建屋原子炉棟内の伝送器の耐放射線性及び事故時 の線量率について 参考 6 原子炉格納容器外の計装設備（伝送器）の耐放射線性に ついて	設備名称，記載表現の差異 設備名称の差異 説明方針の差異（女川では，放射線耐性を個別に確認しており，確認内容 について参考 6 で説明）
3．重大事故等時における現場操作の成立性について 1．はじめに 2．操作性•操作環境 （1）操作時間 （2）操作環境 （a）温度•湿度 （b）放射線環境 （c）照明 （d）その他（アクセスルート等） （3）連絡手段 （4）操作性 3．添付資料 添付 1 重大事故等対策の有効性評価における作業ごとの成立性確認結果について 添付 2 インターフェイスシステム LOCA 発生時の破断面積及び現場環境等について	補足－40－15 重大事故等時における現場操作の成立性について 1．はじめに 2．操作性•操作環境 （1）操作時間 （2）操作環境 （a）温度•湿度 （b）放射線環境 （c）照明 （d）その他（アクセスルート等） （3）連絡手段 （4）操作性 3．添付資料 添付 1 重大事故等対策の有効性評価における作業毎の成立性確認結果について 添付 2 インターフェイスシステム LOCA 発生時の破断面積及び現場環境等について 添付 3 水源の補給準備•補給作業及び燃料の給油準備•給油作業における放射線量等の影響について 添付 4 非常用母線接続作業時の被ばく評価について	補足－200－13 重大事故等時における現場操作の成立性について 1．はじめに 2．操作性•作業環境 （1）操作時間 （2）作業環境 （a）温度•湿度 （b）放射線環境 （c）照明 （d）アクセス性 （3）連絡手段 （4）操作性 3．添付資料 添付 1 重大事故等対策の有効性評価における作業毎の成立性確認結果について 添付 2 インターフェイスシステム LOCA 発生時の破断面積及び現場環境について	記載表現の差異 記載表現の差異 記載表現の差異 評価結果の差異（エリア毎における最大被ばくを受ける現場作業の差異）

先行審査プラントの記載との比較表
補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
添付 3 ベント実施に伴う現場作業の被ばく評価について添付 4 別紙 給油等の現場作業の線量影響について	添付 5 ベント実施に伴うベント操作時の作業員の被ばく評価	添付 3 ベント実施に伴う作業等の作業員の被ばく評価	記載表現の差異 ＜柏崎との差異＞ 評価結果の差異（エリア毎における最 大被ばくを受ける現場作業の差異）
資料 No． 3 核物質防護設備の安全施設及び重大事故等対処設備 への波及的影響の防止について 1．概要 2．基本方針 2．1波及的影響の防止について 2．1．1 地震 2．1．2 火災 2．1．3 溢水 2．1． 4 竜巻 2．1． 5 津波 2．1．6 積雪•火山 添付－1 核物質防護設備の波及的影響の防止について	補足－40－8 核物質防護設備の安全施設及び重大事故等対処設備 への波及的影響の防止について 1．はじめに 2．波及的影響評価について （1）地震 （2）火災 （3）溢水 （4）竜巻 （5）津波 （6）積雪•火山 添付 -1 核物質防護設備の波及的影響評価について	補足－200－15 核物質防護設備の安全施設及び重大事故等対処設備への波及的影響の防止について 1．概要 2．基本方針 2． 1 波及的影響の防止について 2．1．1 地震 2．1．2 火災 2．1．3 溢水 2．1． 4 竜巻 2．1． 5 津波 2． 1.6 積雪•火山 添付－1 核物質防護設備の波及的影響の防止について	記載表現の差異 項目番号，記載表現の差異 項目番号，記載表現の差異 項目番号の差異 項目番号の差異 項目番号の差異 項目番号の差異 項目番号の差異 項目番号の差異 記載表現の差異
資料 No． 2 可搬型重大事故等対処設備の保管場所及びアクセス ルート	補足－40－7 可搬型重大事故等対処設備の保管場所及びアクセス ルートについて	補足－200－14 可搬型重大事故等対処設備の保管場所及びアクセ スルートについて	別途ヒアリング実施
資料 No． 4 ブローアウトパネル関連設備の設計方針	補足－40－16 ブローアウトパネル関連設備の設計方針	補足－200－16 ブローアウトパネル関連設備の設計方針	別途ヒアリング実施

（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

先行審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
l				添付資料（2）主蒸気逃がし安全弁用アクチュエータの耐環境性能向上について	
P． 25	3．（1）試験条件			改良空気シリンダの信頼性碓認試験として，下記の表 1 に示す環境劣化処置を実施したのちに，SRV（自動減圧機能）に機能を期待する有効性評価の事故シーケンスにおける原子炉格納容器の温度及び圧力を包絡する試験条件にて蒸気暴露試験を実施する。	設計進捗に伴う差異（女川は更なる安全性向上対策の改良空気シリンダに対し，一連 の環境劣化処置を施した信頼性確認試験を記載している。）
				表1 改良シリンダの環境劣化処置	
				機械劣化処傹	
				放时綵方化処晖＊	
				䓡劣化処澵＊	
				加匡劣化処湎	
				地震劣化处隕	
P． 27	$\begin{aligned} & \text { 4. (1) } \\ & \text { 試験条件 } \end{aligned}$			原子炉格納容器限界温度•圧力環境下において改良空気シリン ダにおけるシール材の検証として，事故時放射線照射処置を施し たのち，原子炉格納容器限界温度•圧力環境である $200{ }^{\circ} \mathrm{C} / 0.854$ MPa を満足する試験条件にて蒸気暴露試験（試験条件：表3）を実施し，シール性に影響がないかっ確認する。	設計進捗に伴ら差異（女川は原子炉格納容器限界温度•圧力環境下における改良空気 シリンダの検証試験を記載している。）
P． 27	5.今後の方針			空気シリンダの改良は，設計基準事故時のSRV 動作に影響を与 える変更となることから，信頼性碓認試験を実施し，空気シリンダ の改良がプラント運転に影響を与えないことを確認した。また，更 なる安全性向上を目的とした重大事故等での原子炉格納容器限界温度•圧力環境下における空気シリンダのシール機能に対する検証試験の結果，作動状態及び開保持における供給窒素の無漏えい を碓認したことから，限界温度•圧力環境下でも空気シリンダのシ ール部の健全性が保たれることを確認した。 今後，プラント起動前までに改良空気シリンダに交換する。	設計進捗に伴ら差異（女川は信頼性確認試験及び原子炉格納容器限界温度•圧力環境下における検証試験を実施した旨を記載し ている。） ＜柏崎との比較＞ 改良方針の相違（女川は最新の試験結果を踏まえて「原子炉格納容器限界温度•圧力環境下」におけるシール機能を確保できて いるバックシート改良案を導入する計画と している。一方，プラントメーカが相違す る柏崎は複数の改良案を比較し，検討を進 めることにしている。）

補足－200 先行審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
				添付資料（3）主蒸気逃がし安全弁用電磁弁の耐環境性能向上について	
P． 28	1．概要			原子炉冷却材圧カバウンダリを減圧するために必要な重大事故等対処設備として，代替高圧窒素ガス供給系（以下「AHPIN系」と いら。）を設ける設計としている。AHPIN 系は，高圧窒素ガス供給系（以下「HPIN系」といら。）と独立した高圧窒素ガスボンベ，配管及び弁類から構成し，主蒸気逃がし安全弁（以下「SRV」といら。）用電磁弁の排気ラインに高圧窒素ガスボンべの窒素を供給するこ とにより，電磁升操作を不要とした SRV 開操作が可能な設計とす る。	記載表現の差異（女川はAHPIN 系の系統概要を記載している。） ＜柏崎との比較＞ 設計方針の差異（女川は，原子炉格納容器限界温度•圧力環境下において HPIN 系に機能を期待しないため，電磁升操作不要な重大事故等対処設備としてAHPIN 系を位置付 けている。柏崎は自主対策設備として位置付けている。）
P． 28	1．概要			SRV 用電磁弁については，高温蒸気環境下における HPIN 系及び AHPIN 系により寜素を供給する経路のシール性能を碓保するため，電磁㚏の作動性能に影響を与えないシール部を従来のフッ素ゴム より高温耐性が優れた改良 EPDM 材に変更する。	記載表現の差異
				上記のSRV 用電磁弁に対して，信頼性確認試験及び原子炉格納容器限界温度•圧力環境下におけるシール性能を試験により碓認 する。	設計進捗に伴ら差異（女川は更なる安全性向上対策の改良電磁弁に対し，信頼性確認試験及び原子炉格納容器限界温度•圧力環境下における検証試験を記載している。） ＜柏崎との比較＞ プラントメーカの差異（開発経緯の違いに より，女川は改良 EPDM 材に変更した改良電磁升に対し，信頼性確認試験と原子炉格納容器限界温度•圧力環境下におけるシール性能確認を実施している。柏崎は新規開発電磁升に対し，同様の試験を実施してい る。）

（補足－200 安全設借及び審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
P． 30	2．耐環境性能向上を目的と した SRV 用電磁弁の改良内容				プラントメーカの差異（女川の改良電磁弁 は従来のフッ素ゴムを用いておらず，重大事故等環境下に適した素材を選定してい る。）
				図 2－1 改良電磁弁の概要図	
					＜柏崎との比較＞ プラントメーカの差異（開発経緯の違いに より，女川は改良電磁升に対して検討をし ている。柏崎は改良電磁弁，新規開発電磁弁と段階的に検討している。）
P． 31	3．（1）試験条件			改良電磁弁シール部の信頼性確認試験として，図 4 に示す試験手順により蒸気暴露試験（試験装置：図5，試験条件：表 1 及び図 6 参照）を実施し，シール機能に対して影響がないことの確認を実施した。	設計進捗に伴う差異（女川は信頼性確認試験を記載している。） ＜柏崎との比較＞ 試験条件の差異（女川は改良電磁并に対し て詞験しており，柏崎は改良電磁弁と新規開発電磁弁に対して試験している。）
P． 33	3．（1）試験条件				設計進捗に伴う差異（女川は信頼性確認試験を記載している。） ＜柏崎との比較＞ 試験条件の差異（女川の改良電磁弁と柏崎 の改良電磁弁は，試験温度と試験圧力の差異はあるが，どちらも重大事故等時環境下 を满足する試験条件という観点で差異はな い。）

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
P． 34	4．（1）試験条件			原子炉格納容器限界温度•圧力環境下における改良電磁弁シー ル部の検証試験として，事故時放射線照射処理を施したのち，原子炬格納容器限界温度•圧力環境である $200{ }^{\circ} \mathrm{C} / 0.854 \mathrm{MPa}$ を满足 する試験条件にて蒸烡暴露試験（試験条件：表2参照）を実施し， シール性能に対して影響がないことの確認を実施した。	設計進捗に伴う差異（女川は原子炉格納容器限界温度•圧力環境下における改良電磁升シール部の検証試験を記載している。） ＜柏崎との比較＞ 試験条件の差異（女川は改良電磁弁に対し て試験しており，柏崎は新規開発電磁升に対して詞験している。）
P． 34	4．（2）試験結果			原子炉格納容器限界温度•圧力環境下における蒸気暴露試験の結果，改良電磁卉は，蒸気暴露試験中において漏えいかなく，SRV駆動部へ窒素を供給するAHPIN 系により窒素を供給する経路のシ ール性能が発揮され耐噮境性が向上していることを確認した。	設計進捗に伴う差異（女川は原子炉格納容器限界温度•圧力環境下における改良電磁弁シール部の検証試験を記載している。） ＜柏崎との比較＞ 設計方針の差異（女川は原子炉格納容器限界温度•圧力環境下において HPIN 系に期待 していないため，AHPIN 系のシール性能を満足することを確認した記載としている。）
P． 34	5．今後の方針			改良電磁弁に対して信頼性確認試験及び原子炉格納容器限界温度•圧力環境下における検証試験を実施した結果，AHPIN 系により窒素を供給する経路のシール性能が発揮されていることが確認さ れたことから，AHPIN 系に用いるSRV 用電磁弁 4 個を改良電磁弁へ交換する。 さらに，信頼性確認試験の結果を踏まえ，従来の設計基準事故環境下に比べ高温蒸気に対して，より長時間にわたつてシール性能 が発揮されていることを確認したことから，AHPIN 系に用いる電磁弁以外の 7 個についても，プラント起動前までに改良電磁升に交換する。	設計進捗に伴ら差異（女川は具体的に今後 の方針を記載している。） ＜柏崎との比較＞ プラントメーカの差異（開発経緯の違いに より，女川は AHPIN 系の経路に対して信頼性確認試験と原子炉格納容器限界温度•圧力環境下におけるシール性能を確認した改良電磁升に交換することを記載している。柏崎は改良電磁弁，新規開発電磁亣と段階的に実機導入に向けた準備を進めている。）

$\begin{array}{ll}\text {（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）} \\ \text { 䉓 } \\ \text { 電所第 } 7 \text { 号機 } & \text { 東海第二発電所 }\end{array}$
備考計進捗に伴う差異（女）川は蒸気暴露試験実施していることから試験条件について己載している。）
＜柏崎との比較＞
記載表現の差異（女川は蒸気暴露試験条件設定の考え方を具体的に記載している。）
主蒸気逃がし安全弁（自動減圧機能）に機能を期待する有効性評価の事故シーケンスのうち，最も原子炬格納容器温度及び厂力任の婁故
高くなる事故シーケンスの温度及び圧力の推移を図 1－1，図 $1-2$ ，図 2－1 及び㒺 2－2 に示す（図 1－1 及び図 1－2 は炬心損傷防止対筑 として「LOCA時注水機能喪失」の温度及び圧力の推移，図2 1 及び図 $2-2$ は格納容器破損防止対策として「高圧溶融物放出／格納容器雰囲気直接加熱」の温度及び圧力の推移を示$\square{ }^{\circ} \mathrm{C}$ を上回るものの，主蒸気逃がし安全弁（自動减圧機能）に機能を期待す る期間（約 4.3 時間）において，表 1 の蒸気暴露試験条件が上回 っている。

。 ，表 1 は主蒸気逃がし安全弁（自動減圧機能）に機能期待する重大事故等時環境下における原子炉格納容器温度及び圧力を上回っていることから，蒸気暴露試験条件として設定してい
（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

補足－200 先行審査プラント諎及び重大事故等対処設記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
$\begin{aligned} & \text { 東二 } \\ & \text { P. } 8 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 3.2 \quad \text { (2) } \\ \text { 温度 } \end{array}$			－	設備構成の差異（女川は，MSLBA 起因のSA時の蒸気流路上の設備について健全性を確認しており，耐性担保のための対策は不要 であることから記載しない。）
P． 8	$\begin{array}{\|l\|} \hline 3.2 \\ \hline \text { 湿度 } \end{array}$			パターン1 原子炉建屋原子炉棟内は，原則として一律 100% を設定するが，当該重大事故等対処設備を設置するエリアが重大事故等時に空調設備により管理されており，湿度が上昇する原因がなく，重大事故等時の湿度を確認したものは，確認した値を環境湿度として設定する。	設備構成の差異（女川は，原子炉建屋原子炬楝内において，空調設備により湿度を管理するエリアが存在することから，パター ン1として記載している。）
$\begin{aligned} & \text { 東二 } \\ & \text { P. } 8 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.2 \quad \text { (3) } \\ \text { 湿度 } \end{array}$			－	設備構成の差異（女川は，原子炬建屋付属棟及びその他の建屋内において，一律条件 である 90% を超過するエリアは空調設備に より管理するエリア（女川のパターン 2）以外にないことから記載しない。）
$\begin{aligned} & \hline \text { 東二 } \\ & \text { P. } 9 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.2 \\ \hline \text { (3) } \\ \text { 湿度 } \end{array}$			－	設備構成の差異（女川は，MSLBA 起因のSA時の蒸気流路上の設備について健全性を確認しており，耐性担保のための対策は不要 であることから記載しない。）
P． 9	$\begin{array}{l\|} \hline 3.2 \quad \text { (4) } \end{array}$ 放射線			パターン4 原子炉建屋付属棟及びその他の建屋内は，原則として一律 10Gy を設定するが，当該重大事故緩和設備を設置するエリアが放射線源付近であり，重大事故等時に10Gyを超えるおそれのあるもの は個別に確認した値を環境放射線として設定する（添付資料 7）。	＜柏崎との比較＞ 設備構成の差異（女川は，当該エリアに対 し，遮蔽壁による線量減衰を考慮していな いことから上段について記載しない。）
$\begin{aligned} & \text { 柏崎 } \\ & \text { P. } 10 \end{aligned}$	$\begin{array}{ll} \hline 3.2 \quad \text { (4) } \end{array}$ 放射線			－	設備構成の差異（女川は，屋外の一律条件 である 10Gy を超過するエリアが存在しな いことから記載しない。）
$\begin{aligned} & \hline \text { 柏崎 } \\ & \text { P. } 10 \\ & \text { 東二 } \\ & \text { P. } 10 \end{aligned}$	$\begin{array}{l\|l\|} \hline 3.2 \quad \text { (4) } \\ \text { 放射線 } \end{array}$			－	考慮事項の差異（女川は，燃料取替床の線量値が原子炬建屋原子炉棟内の一律条件を下回るため個別設定不要であり記載しな い。）

ページ	項目	《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
P．9， 10	$\begin{array}{\|l\|} \hline 3.2 \text { (4) } \\ \text { 放射線 } \end{array}$			原子炉建屋原子炬棟内は，原則として一律 460 Gy を設定する が，生体遮蔽の内側で原子炬格納容器からの放射線影響を受ける ことにより 460Gyを超えるおそれのあるエリアは，保守的に，原子炉格納容器内の放射線量である 300 kGy を噮境放射線として設定する（添付資料 3）。	設僙䊩成の差異（女川の生体选敬の内側で原子炻からの放射線泉響を受ける対奌設備 は格納容器内雰囲気放身舶モニタ（ドライ ウェル側）であり，個別に滪境放射線を設定していることから，パターン6として記載している。
P． 23	3.3 非常用力 ス処理系の水素爆発防止対策について			非常用ガス処理系は，重大事故時に原子炻格納容器から原子灲建屋内に放射性物質を含むがスが漏えいした場合において，ガス中の放射性物質を，排気筒を経由して原子炉建屋外に排気するこ とで，中央制御室の運転員等の被ばくを低減することを目的とし て設置するものである。 当該系統は，原子炉建屋原子炬棟3階（然料取替床）加ら吸気 する系統構成となっており，重大事故時に系䖻に流入するガスに水素が含まれることから影響評価が必要である。 評価した結果，女川原子力発電所第2号機では，非常用ガス処理系使用時における）原子炬建屋原子炉棟3階（燃料取替床）の水素瀑度が可燃限界末満であること及び流入する水素がス量を保守的な評価条件にて評価した場合においても水素爆発に対して，問	整理の差異（東海第二はSGTS を水素浱度低減設備として整理しており，原子炉格納施設の説明書に当該資料を添付しているが，女川ではSGTS を水素濃度低減設備として整理していないため，同資料を嘸境条件に関する資料として整理し，健全性の説明書 に紐付けている。）
P． 23	3.4 原子炉格納容器内の重大事故環境下 で機能が要求 される計装機器ケーブルに ついて			いて，蒸気暴露中のケーブルの絶縁低下かか計器誤差に与える影響 について報告されている。これに対して，MI ケーブルは重大事故舞境を模擬した蒸気暴露試験にあれて試験中に実測した絶絽抵抗値は $3.0 \times 10^{8} \Omega \mathrm{~m}$ 以上あることを碓認しておうり，ケーブル長約 100 m の場合におわいても $10^{6} \Omega$ オーダーの絶縁抵抗を满足することから， さく，問題ないことかか碓認されている。 女川原子力発電所第 2 号機においては，原子炉格納容器内の重 でに全てMI ケーブルに交換することとしている。また，ケーブル長は最長で約 $\square_{\text {mであり，その時の絶椂抵抗值は } 10^{6} \Omega \text { オーダー }}$ であることから，計器詋差に与える影響は小さいことを磼認して いる。 以上より，原子炉格納容器内の重大事故買境下で機能が要求さ れる計装機器ケーブルは，原子炉格納容器内の重大事故亜境下で計器語差に与える影響は小さく，閏題ないことを確認している（添付資料 10 ）。	審查進捗に伴ら差異（NRA 技術報告に対す る対応を本項にて説明するため差異となっ ている。）

（補足－200 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係る補足説明資料）

ページ	項目	《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
				添付資料 1 環境放射線の設定方法について	
P． 26	図			（2）原子炉格納容器内への放射性物質の放出 （希がス，よう素及びセシウムム等の高揮発性核種の放出について は，MAAP コードの解析結果を用いるものとする。 その他の中••低撜発性の核㮔については，MAAP 解析の結果から得られたCs の放出割合，希ガスグループの放出割合及びNUREG－ 1465 の Table3． 12 の知見を利用し，放出割合を評価する＊1。） ＊1：「重大事故等対処設備について（禣足説明資料）59 条 原子炉制御室の居住性に係る被ばく評侕について」と同に様の手法を用 いた評価（59－9－添 $2-3$ 核分裂生成物の放出割合について）	放射性物質の放出の考え方の差異（女川は，注記にあるように設置許可時の被ばく評価 と同様，MAAP 解析結果を用いている。東海第二については各放射性物質が PCV 内に全量放出されているものとして評価してい る。） なお，女川は評価においても P． 32 の参考資料で示すとおり，全体的な評価の保守性は碓保されている。 （柏崎と同様の考え方）
P． 28	図2			（3）原子炉格納容器から原子炉建屋原子炉棟内への放射性物質の移行量及び積算放射能量の算出 （2）で算出した原子炉格納容器気相部への移行量に対して，原子炉格納容器内の圧力に応じて原子炉格納容器の漏えい率として $0.9 \sim 1.3 \% /$ 日＊に相当する漏えい孔を MAAP コードの解析モデル で設定し，原子炉格納容器の圧力に応じて気相中の放射性物質が原子炉建屋原子炉棟内纪移行する量を MAAP コードにて解析す る。また，積算放射能量の算出に当たっては，事故後 7 日間の時間减衰を考慮して算出する。 希がス及び有機よう素について，SGTS 稼働時に換気率 0.5 回／日に応じて，原子炉建屋原子炉棟内から賽境への放出を考慮す る。ただし，その他の核種については保守的にSGTS 楾働の有無 によらず，原子炉建屋原子炉棟内に留まるものとする（原子炉建屋原子炻楝内から環境への放出なし）。） ＊：開口面積を原子炉格納容器の圧力に応じ設定。MAAP 解析上 で，原子炉格納容器の圧力に応じ漏えい率が変化するものとす る。開口面積は 1 Pd 以下で $0.9 \% /$ 日， $1 P d \sim 1.5 P d$ で $1.1 \% /$ 日， 1．5Pd～2．0Pd で $1.3 \% /$ 日に相当する漏えい孔を設定。【有効性評価 添付資料 3．1．2． 8 参照1	放射性物質の放出の考え方の差異（女川は，注記にあるように設置許可時と同様，原子炉建屋原子炉棟内への移行については PCV の漏えい率に相当する漏えい孔を MAAP コ ードの解析モデルとして設定して評価して いる。また，実態を踏まえ SGTS 稼働時には SGTS の効果を考慮している。東海第二につ いては一律一定の漏えい率を設定して評価 を実施している。） （柏崎と同様の考え方）
$\begin{array}{\|l\|} \hline \text { P. } 33, \\ 34 \\ \hline \end{array}$	（全内容）			（参考資料 2）スロッシングによる使用済然料プール水位低下の影響について	資料構成の差異（原子炉建屋原子炣棟内の放射線量設定に関して，使用済燃料プールのスロッシングによる水位低下の放射線影響が小さいこと を参考資料 2 に整理）

先行審査プラントの記載との比較表

先行審査プラントの記載との比較表

（補足－200
先行番査プラントの記載との比較表
《参考》柏崎刈羽原子力発電所第 7 号機
東海第二発電所
備考

女川原子力発電所第2号機	備考
添付資料 6 原子炉建屋原子炉棟内において個別に放射線環境条件を設定するエリアの設定方法について	
図1（2）原子炉格納容器（サプレッションプール）内への放射性物質の放出 （代替循環冷却系の水源であるサプレッションプールへの放出過程については，MAAP コードの解析結果を包絡するよう，よう素及 びセシウムは炉内内蔵量の全量がサプレッションプール内に放出 されるものとし，その他の核種については NUREG－1465 に基づく放出割合を参照して設定する。） （3）各核種に応じたエネルギを有するため，エネルギ範囲ごとに代表エネルギとしてグルーピングし，代表エネルギごとに7日間での積算線源強度を算出 （積算線源強度計算については，代替循環冷却系の放射性物質に よるガンマ線エネルギをエネルギ範囲によって区分する。） （4）代替循環冷却系を使用する場合の原子炉建屋原子炉棟内の評価点での線量を評価するため，下図のようにモデル化し，QAD－ CGGP2R コードにて積算線量を算出	記載方針の差異（実質的な差異なし。）
図1（5）設備と代替循環佮却系の最も近い距離等を算出 （離隔距離は設備図書等から算出した。なお，保守的に配管及び機器表面の放射線影響を設定すること等により，離隔距離の算出 を省略できるものとする。）	記㦳方針の差異（女川は，各設備に対して線源との離隔距離をそれぞれ算出し，距離 による減衰効果を考慮した線量を設定して いる旨を記載。）
－	遮蔽設計の差異（女川は，鉛の遮蔽材なし で健全性を碓保している。）
図 2 （4）設備と格納容器内雰囲気ガスサンプリング配管の最も近い距離等を算出 （離隔距離は設備図書等から算出した。なお，保守的に配管表面 の放射線影響を設定すること等により，離隔跲雒の算出を省略で きるものとする。）	記载方針の差異（女川は，各設備に対して線源との離隔距離をそれぞれ算出し，距離 による減衰効果を考慮した線量を設定して いる旨を記載。）
図 3 （6）設備と非常用ガス処理系フィルタ装置の最も近い距離等を算出 （離隔距離は設備図書等から算出した。なわ，保守的にフィルタ表面の放射線影響を設定すること等により，離隔距離の算出を省略できるものとする。）	記载方針の差異（女川は，各設備に対して線源との離隔距離をそれぞれ算出し，距離 による減衰効果を考慮した線量を設定して いる旨を記載。）
図4 重大事故時における原子炉建屋原子炬棟内の線源（原子炉格納容器フィルタベント系フィルタ装置）付近の重大事故等対処設備に対する環境条件設定のフロー図	掲載箇所の差異（原子炉格納容器フィルタ ベント系フィルタ装置の設置場所が異なる ため，東海第二は添付書類 11 に，柏崎では添付書類6に記載している。）

べーシ	項目	《参考》㮩崎め1羽羽原子力発電所第7号機	東海第二発龟所	女川原子力発電所第 2 号幾	備考
P． 92	図5				による減表察奻果を考慮した䋎量を設定して いる旨を記載。
P． 92	図5			 	遮蔵設神の差異（女川は，鉛の遮開材なし で梃全性を碓保している。）
$\begin{aligned} & \text { P. } 9,9, \\ & 9.9, \\ & 9, \end{aligned}$	図 6				
P． 97	表4				
$\begin{aligned} & \text { P. } 9,9, \\ & \frac{102}{} \end{aligned}$	$\begin{aligned} & \text { 図 } 7, \text { 図 } 8 \text {, 図 } \\ & 9, \text {, } 10 \end{aligned}$				\| 効果について図に記載している。)
$\begin{aligned} & \text { P. } 103 \\ & 100 \end{aligned}$	表7			表て器	 して記載している。東海第二は表の記載な

先行審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
				添付資料7原子炬建屋付属棟内及びその他の建屋内に おいて個別に放射線環境条件を設定するエリアの設定方法について	
P． 110	評価対象			－放射線環境条件を設定する上で代表性のある事故シナリオを想定し，原子炬建屋付属棟内及びその他の建屋内における放射線源 （代替循睘冷却系，中央制御室再循環フィルタ装置，緊急時対策所非常用フィルタ装置）の線量評価を行い，評価結果以上の線量 を当該エリアにおける環境条件として設定する。	設備構成の差異（個別線源として考慮する設備の差異）
P． 116	図3，図4			図3 中央制御室再循環フィルタ装置表面からのの距離と線量 図4緊急時対策所非常用フィルタ装置表面からの距離と線量	記载方針の差異（女川は，距離による減裏効果について図に記载している。）
P． 117	表 3			表3参照	記載方針の差異（女川は，距離による減衰 を考慮して設定した放射線噮境条件を表と して記載している。柏崎，東海第二は表の記載なし）

表3 放射線源からの距離等を考慮して放射線環境条件を定める設備

No．	対象設㒐	機嘘番号	空間 ${ }^{11}$	代替祥環椧却系 ${ }^{2}$			中央制新室 		緊刍時対策所非帯用フィルタタ䒾寘 ${ }^{224}$		合計 ［kGy］
			［kGy］	距維 $[\mathrm{cm}]^{+3}$	線源種疑	［kGy］		［kGy］	距維 $[\mathrm{cm}]{ }^{3}$	［kGy］	
1		E11－0002	0.01	0	250A配管	57.7	－	－	－	－	57.7
2	中央制首室椎里機	v30－c002A	0.01	－	－	－	0	0.1	－	－	0.2
		v30－ccoez	0.01	－	－	－	60	0.1	－	－	0.2
3		v30－c003A	0.01	－	\cdots	－	0	0.1	－	－	0.2
		v30－c0038	0.01	－	－	－	60	0.1	－	－	0.2
4		v30－D201	0.01	－	－	－	0	0.1	－	－	0.2
5	霉免洔対策所這藏	－	0.01	－	－	－	－	－	0	1.0	1.0
6		v83－ccous	0.01	－	－	－	－	－	0	1.0	1.0
		v83－c003B	0.01	＊	\cdot	\cdot	－	，	0	1.0	1.0
7		v83－D002A	0.01	－	\cdot	－	－	\cdot	0	1.0	1.0
		V83－D002B	0.01	－	－	－	－	－	0	1.0	1.0

先行審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
	1			添付資料 9 非常用ガス処理系の水素爆発防止対策につ いて	
$\begin{aligned} & \text { P. } 122 \\ & \sim 129 \end{aligned}$	全体構成			補足－200「安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書に係わる補足説明資料」のら ち，補足－200－10「安全設備及び重大事故等対処設備の環境条件 の設定について 添付資料 10 非常用ガス処理系の水素爆発防止対策について」	東海第二は 68 条（原子炬建屋等の損傷を防止するための水素漫度低減設備）として原子炉建屋がス处理系を使用しているため補足－270－5「原子炉格納施設の水素渂度低減性能に関する説明書に係る補足説明資料」 の参考資料として原子炉建屋ガス処理系の水素爆発防止対策について説明している。 －方，女川の非常用ガス処理系は 74 条 （運転員の被ばくを低減するための設備）の みであり， 68 条設備として期待していない ことから，「原子炉格納施設の水素浱度低減性能に関する説明書に係る補足説明資料」 の参考資料として整理しない。 女川として本資料は水素噮境下における機器の健全性に係わる内容であることか ら，健全性に関する説明書の補足説明資料 として整理した。 なお女川の資料構成，説明内容が東海第二の補足－270－5「原子炬格納施設の水素浱度低減性能に関する説明書に係る補足説明資料のらち参考 1 原子炬建屋がス処理系 の水素爆発防止対策について」と類似構成 であるため，参考として比較を実施。
P． 122	1．概要 1.1 概要 1．2設置目的 1.3 設備概要			非常用ガス処理系（以下「SGTS」といら。）の目的，設備概要を記載	同上
P． 123	2．非常用ガス処理系系統内 での水素爆発防止 2.1 水素流入 の影響につい て （2）系統停止時 の影響評価			非常用ガス処理系は，系統を起動させた後，耐圧強化ベント系の使用が必要になった場合には，停止操作を実施する。また，原子炉建屋原子炉梀 3 階（燃料取替床）の水素漫度が上昇し， 1．3vol\％（※）に到達した場合にも非常用ガス処理系の停止操作 を行う。	停止運用の差異 （東海第二は禣足－270－5．「原子炬格納施設の水素節度低滅性能に關する説明書に保当補足説明資料」のらち「参考 1 原子炬建屋ガス処理系の水素爆発防止対策につい て」より引用）

先行審査プラントの記載との比較表

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
P． 125	図2 非常用 ガス処理系分岐配管				設備構成の違いによる評価箇所の差異（評価方法については同様） （柬海第二は補足－270－5．「原子炉格納施設の水素淡度低減性能に関する說明書に保尚補足説明凃料」のらち「参考 1 原子炬建屋が不処理系の水素爆発防止対策につい て」より引用）
P． 126	図 3 非常用ガ又処理系分岐部				水素滞留評価を実施する評価部位の仕様の差異（評価方法については同様） （東海第二ば補足－270－5．「原子炬格納施設 の水素湄度低減性能に関する説明書に係る補足説明資料」のらち「参考 1 原子炬建屋 ガス処理系の水素爆発防止対策について」 より引用）
	7			添付資料 10 原子炉格納容器内の重大事故環境下で機能 が要求される計装機器ケーブルについて	
$\begin{array}{\|r} \hline \text { P. } 130 \\ 131 \\ \hline \end{array}$	全ページ			添付資料 10 の全内容	審査進抄に伴ら差異（NRA 技術報告に対す る対応を当該資料で説明）

ページ	項目	《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	備考
				補足－200－11 自主対策設備の悪影響防止について	
P． 3	3．自主対策設備の悪影響防止			自主対策設備の悪影響防止の方針について分類結果を表 1 ，各自主対策設備に関する悪影響の検討結果を表2に示す。Eに分類され る以下の設備については，他の設備への影響が多岐に渡ることか ら，他の設備への影響について評価した結果を次項以降に示す。	
				- 原子炉格納容器 pH 調整系 - 原子炉格納容器頂部注水系	
				- コリウムシールド －コリウムバッファー	設備構成の差異（女川は，バックアップシ ール材は使用しないこととしている。また，更なる安全性向上のために自主対策設備と してコリウムシールド，コリウムバッファ ーを設置する。）
東二 P． 8 柏崎 P． 7	$\begin{aligned} & 3.4 \text { バック } \\ & \text { アップシール } \\ & \text { 材 } \end{aligned}$			－	同上
P． 6	$\begin{aligned} & 3.4 \text { コリウ } \\ & \text { ムシールド } \end{aligned}$			全内容	同上
P． 9	$\begin{aligned} & 3.5 \text { コリウ } \\ & \text { ムバッファー } \end{aligned}$			全内容	同上

先行審査ブラントの記載との比較表

起先審査プラントの記載との比僌表

先行審査プラントの記載との比較表

－－\％	項目	《参考》㮩崎凶1羽原子力発䉓所第7号機	東海第二発筺所	女川川原子力発䉓所第2号機	項目番号の差異 記載表現の差異 設備の相違 プラント固有条件の差異（女川は供用期間中に発生する規模を考慮し，敷地に遡上す る津波は考慮不要と整理している。） プラント固有条件の差異（女川は供用期間中に発生する規模を考慮し，敷地に遡上す る津波は考慮不要と整理している。）
P． 2	2．1．5 津波			2．1．5 津波	

