女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-17-0033_改 1
提出年月日	2021年6月18日

VI-2-別添 1-6 制御盤の耐震性についての計算書

2021 年 6 月 東北電力株式会社

目次

1. 概要	·····································	1
2. 一般	ຽ事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.1 構	觜造計画······	1
3. 固有	f周期······	2
3.1 固	固有周期の確認方法・・・・・・・・・・・・・・・・・・・・・・・・・・ :	2
3.2 固	固有周期の確認結果・・・・・・・・・・・・・・・・・・・・・・・・・・・ :	2
3.3 設	设計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4. 構造	造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4.1 構	觜造強度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4.2 荷	苛重の組合せ及び許容応力評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
5. 機能	E維持評価····································	4
5.1 電	a気的機能維持評価方法······	4
6. 評価	튭結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5

1. 概要

本計算書は、添付書類「VI-2-別添 1-1 火災防護設備の耐震計算の方針」(以下「別添 1-1」という。)に示すとおり、制御盤が基準地震動 S s による地震力に対して十分な構造強度及び電気的機能を有しており、火災を早期に消火する機能を維持することを確認するものである。

評価結果は、裕度(許容値/発生値)が最小となるものを代表として記載する。

2. 一般事項

2.1 構造計画

制御盤の構造計画を表2-1に示す。

計画の概要 基礎·支持構 説明図 主体構造 浩 制御盤は,取付 制御盤 正面図 側面図 ボルトにてチ (壁掛型) 750 318 ャンネルベー スに固定する。 チャンネルベ 制御盤 ースは基礎ボ ルトにより基 1300 礎部である壁 に固定する。 基礎ボルト 取付ボルト (メカニカルアンカ) チャンネルベース 床 (単位:mm)

表2-1 制御盤の構造計画

3. 固有周期

3.1 固有周期の確認方法

制御盤の固有周期は、添付書類「別添1-1」の「4. 固有周期」に示す算出方法に基づき、正弦波掃引試験により算出する。

3.2 固有周期の確認結果

固有周期の確認結果を表3-1に示す。測定の結果,固有周期は0.050秒以下であり, 剛であることを確認した。

表3-1 制御盤の固有周期(単位:s)

方向	固有周期 <mark>*</mark>
水平	0.050以下
鉛直	0.050以下

注記*:正弦波掃引試験により33Hzまで共振周波数がないことを確認。

3.3 設計用地震力

制御盤の耐震計算に用いる設計用地震力については、添付書類「VI-2-1-7 設計用 床応答曲線の作成方針」に基づく。

4. 構造強度評価

4.1 構造強度評価方法

制御盤は,添付書類「別添1-1」の「5.1 構造強度評価方法」に示す評価方針に従い, 構造強度評価を実施する。

4.2 荷重の組合せ及び許容応力評価条件

構造強度評価に用いる荷重及び荷重の組合せは、添付書類「別添1-1」の「5.2 荷重の組合せ及び許容応力」に示す荷重及び荷重の組合せを使用する。

4.2.1 荷重の組合せ及び許容応力状態

構造強度評価に用いる荷重の組合せ及び許容応力状態は、制御盤の評価対象部位ごとに設定する。荷重の組合せ及び許容応力状態を表4-1に示す。

4.2.2 許容応力及び許容応力評価条件

制御盤の基礎ボルト及び取付ボルトにおける許容応力は、添付書類「VI-2-1-9機能維持の基本方針」に基づき表4-2に示す。

また、基礎ボルト及び取付ボルトの許容応力評価条件を表4-3に示す。

O2 ③ VI-2-別添1-6 R2

表4-1 荷重の組合せ及び許容応力状態 (設計基準対象施設)

		調	
区分 機器名称 耐震重要度分類 機器等の区分 荷重の組合せ 水災防護設備 制御盤 C -* D+P _D +M _D +S		許容応力狀態	${ m IV}_{ m A}$ S
区分 次 次 放 獲 設 備	À	荷重の組合せ	$\mathrm{D} + \mathrm{P}_{\mathrm{D}} + \mathrm{M}_{\mathrm{D}} + \mathrm{S}_{\mathrm{S}}$
区分 次 次 放 獲 設 備	マニー・コートンとの記述	機器等の区分	
区分 次 次 放 獲 設 備	いることには、このと、	\⊞}	Э
区分人災防護人災防護		機器名称	制御盤
施設区 その他の発電用原 子炉の附属施設	1 14	(分	火災防護設備
		施設区	その他の発電用原子炉の附属施設

注記 *:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表4-2 許容広力 (その他の支持構造物)

		せん断	1.5 • f [*]	
ボルト等)*1, *2	一狹応力	P	1.5	
: (1	の発化	1,5 • f *	
	許容応力状態		IV_AS	

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表 可能である場合は評価を省略する。

表4-3 許容応力評価条件(設計基準対象施設)

評価対象	- - - - - - -	温度条件	Sy	Su	*
部位	<u> </u>	(°C)	(MPa)	(MPa)	(MPa)
1 汽料量	SS400	40	710	008	000
本で 小アト	(径≤16mm)	(周囲環境温度)	745	400	780
一、千十五	SS400	40	о П	400	000
ガンフトト	(径≤16mm)	(周囲環境温度)	C42	400	087

 \circ

5. 機能維持評価

5.1 電気的機能維持評価方法

制御盤は,添付書類「別添1-1」の「6. 機能維持評価」に示す評価方針に従い,機能維持評価を実施する。

なお,機能確認済加速度には,対象機器の加振試験において電気的機能の健全性を確認 した最大加速度を適用する。 \mathcal{O}

6. 評価結果

制御盤の構造強度評価結果及び機能維持評価結果を以下に示す。なお,発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【制御盤の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

			固有周	(s) 旗	單性設計用地震動S d	地震動S d	上 東 東 東 東	s S 編章	1
松明力	世	設置場所及び	Ī	,	又は設計震度	計震度			周囲環境温度
(数合) 在(约)	医里安皮刀	宋面高さ (m)	무구 쓰 ^	外站七百	水平方向	鉛直方向	水平方向	鉛直方向	(D _o)
			7	四日乙川	設計震度	設計震度	設計震度	設計震度	
ኅ	(制御建屋	090 0	0.050			**************************************		Q.
即伸箍		$(0. P. 19. 50^{*1})$	以下	以下		l	CH-2.18	C v — 2. 00	40

注記*1:基準床レベルを示す。

*2:制御盤は壁掛型のため,設置床上階の<mark>基準地震動Ssにより定まる応答加速度</mark>を用いる。

1.2 機器要目

n f H i	2	2	4	4
h f V i	3	3	3	3
n i	Q	0	10	77
$A_{\mathrm{b}\ \mathrm{i}}$	901 1	201.1	110 1	110.1
d _i	16	(M16)	12	(M12)
$\theta_{3 i}^*$	029	550	646	646
${f \ell_{2\ i}}^*$ (mm)	1194	1194	1190	1190
δ _{1 i} * (mm)	1247	1247	1245	1245
h i (mm)	010	516	200	667
m _i (kg)	166	100	110	011
部村	基礎ボルト	(i = 1)	取付ボルト	(i = 2)

方向	基準地震動S s	侧医士马	四日之间	侧医士马	河面刀川
転倒方向	弾性設計用地震動Sd 又は静的震度				
*	r _i (MPa)	086	700	086	700
Ĺ	Гі (MPa)				l
υ	S _{u i} (MPa)	UUV	400	UUV	400
U	S _{y i} (MPa)	245	(径≤16mm)	245	(径≤16mm)
	部林	基礎ボルト	(i = 1)	取付ボルト	(i = 2)

注記*:各ボルトの機器要目における上段は正面方向転倒に対する評価時の要目を示し、下段は側面方向転倒に対する評価時の要目を示す。

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	凡 b i		$Q_{\rm b\ i}$	
部村	弹性設計用地震動 S d	基準地震動	弹性設計用地震動Sd	基準地震動
	又は静的震度	S	又は静的震度	S
基礎ボルト (i=1)	I	2.009×10^{3}	I	6.658×10^{3}
取付ボルト (i=2)	I	1.259×10^3	I	4.412×10^3

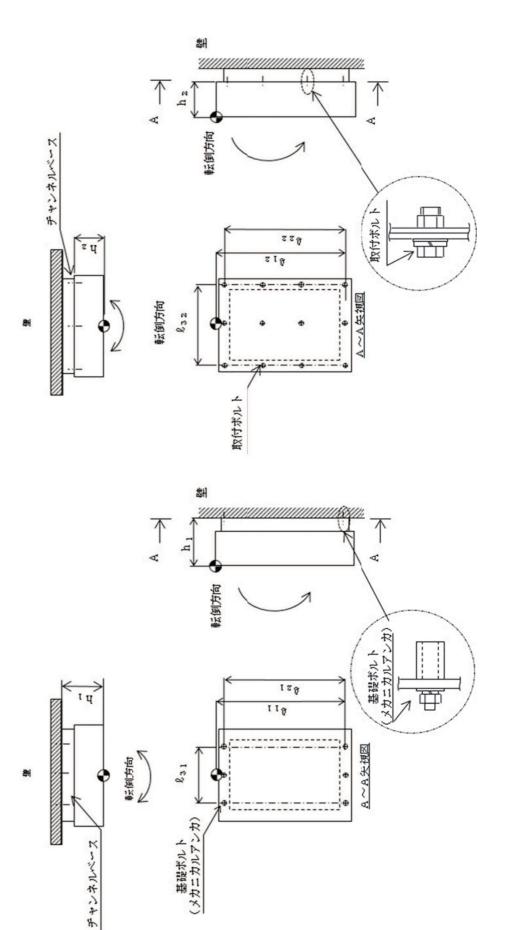
1.4 結論

1.4.1 ボルトの応力

(単位: MPa)

++] 14 14	果ノト十七	弾性設計用地震動Sd又は静的震度	Sd又は静的震度	基準地景	基準地震動Ss
ZVC H	<u></u>	にこれ	算出応力	許容応力	算出応力	許容応力
基礎ボルト	00400	り張り	I	I	$\sigma_{b1}=10$	$f_{t s 1} = 168^*$
(i = 1)	22400	せん断	I	I	$\tau_{b1}=6$	$f_{\rm s\ b\ 1} = 129$
取付ボルト	00133	り張り	I	I	$\sigma_{b2}=12$	$f_{\rm ts2} = 210^*$
(i = 2)	22400	せん断	I	I	$\tau_{b2}=4$	$f_{\rm s\ b2} = 161$

すべて許容応力以下である。


注記 *: $f_{t,s,i} = Min[[1.4 \cdot f_{t,o,i} - 1.6 \cdot \tau_{b,i}, f_{t,o,i}]$ 上り算出

(単位:×9.8 m/s²) 電気的機能維持評価結果 1.4.2

		機能維持評価用加速度*	機能確認済加速度
年1/名145	水平方向	2.32	5.00
三字相	鉛直方向	1.67	3.00

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

