本資料のうち、枠囲みの内容は商業機密の観点から 公開できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-17-0031_改 1
提出年月日	2021年6月18日

VI-2-別添 1-4 ガスボンベ設備の耐震性についての計算書

2021 年 6 月 東北電力株式会社

目次

1.	概	.要	1
2.	_	般事項	1
2. 1	l	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	古	有値 <mark>確認</mark> 及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.]	l	固有値 <mark>確認</mark> 及び構造強度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3. 2	2	荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3. 3	}	解析モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.4	1	固有周期	· 10
3. 5	5	設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 13
4.	機	能維持評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 14
4.	l	動的機能維持評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 14
5.	評	. 価結果	15

1. 概要

本計算書は、添付書類「VI-2-別添 1-1 火災防護設備の耐震計算の方針」(以下「別添 1-1」という。)に示すとおり、ガスボンベ設備が基準地震動 S s による地震力に対して十分な構造強度及び動的機能を有しており、火災を早期に消火する機能を維持することを確認するものである。

評価結果は、裕度(許容値/発生値)が最小となるものを代表として記載する。

2. 一般事項

2.1 構造計画

ガスボンベ設備の構造計画を表2-1,表2-2に,ガスボンベ設備及び容器弁の外観図を図2-1,図2-2に示す。

また、ガスボンベ設備は、火災が発生している火災区域又は火災区画からの火災の 火炎及び熱による直接的な影響のみならず、煙、流出流体、爆発等の二次的影響を受 けず、火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさないように 設置する。

表2-1 ガスボンベ設備 (ハロンガス消火設備) の構造計画

計画の概要		説明図
基礎・支持構造	主体構造	就 岁 凶
容器弁は、ガスボンベにねじ込み固定する。 ガスボンベはボンベラックに固定し、基礎ボル トによりボンベラックを建屋床のコンクリート 躯体に据え付ける。	ガスボンベ及び 容器弁 (直立型)	図 2-1

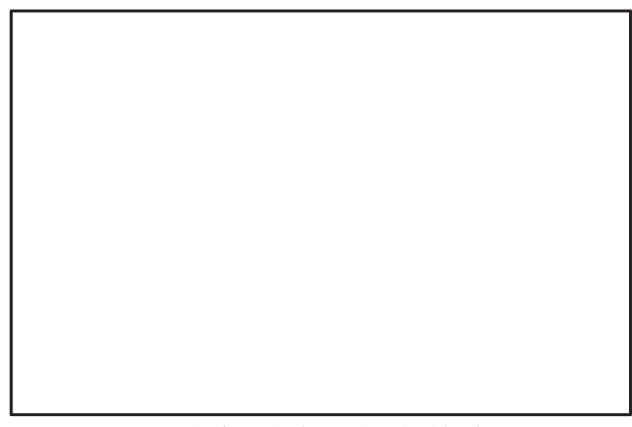
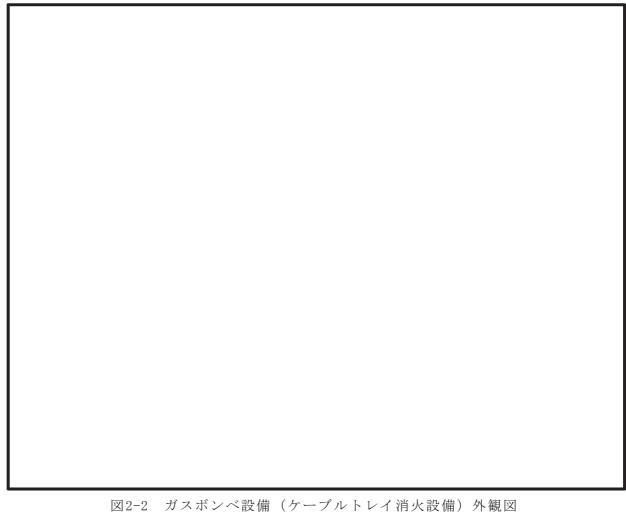



図2-1 ガスボンベ設備 (ハロンガス消火設備) 外観図

表2-2 ガスボンベ設備 (ケーブルトレイ消火設備) の構造計画

計画の概要		説明図
基礎・支持構造	主体構造	就的区
容器弁は、ガスボンベにねじ込み固定する。 ガスボンベはボンベラックに固定し、基礎ボル トによりボンベラックを建屋床のコンクリート 躯体に据え付ける。	ガスボンベ及び 容器弁 (直立型)	図 2-2

3. 固有値<mark>確認</mark>及び構造強度評価

ガスボンベ設備の固有周期及び構造強度評価は,添付書類「別添1-1」の「4. 固有周期」 及び「5.1 構造強度評価方法」に示す評価方針に基づき,3次元FEMモデルによる解析 又は正弦波掃引試験により固有周期及び構造強度を評価する。

- 3.1 固有値<mark>確認</mark>及び構造強度評価方法
- 3.1.1 固有值確認方法
 - (1) ガスボンベ設備 (ハロンガス消火設備)
 - ① ボンベラックの<mark>確認</mark>方法 対象部位であるボンベラックについて、3次元FEMモデルによる解析を実施 する。
 - ② 容器弁の<mark>確認</mark>方法 容器弁は,正弦波掃引試験を実施する。
 - (2) ガスボンベ設備 (ケーブルトレイ消火設備)
 - ① ボンベラックの<mark>確認</mark>方法 対象部位であるボンベラックについて,正弦波掃引試験を実施する。
 - ② 容器弁の<mark>確認</mark>方法 容器弁は,正弦波掃引試験を実施する。

3.1.2 構造強度評価方法

ガスボンベ設備の構造強度評価は、添付書類「別添1-1」の「5.1 構造強度評価 方法」に示す評価方針に従い、構造強度評価を実施する。 $^{\circ}$

3.2 荷重の組合せ及び許容応力

構造強度評価に用いる荷重及び荷重の組合せは、添付書類「別添1-1」の「5.2 荷 重の組合せ及び許容応力」に示す荷重及び荷重の組合せを使用する。

3.2.1 荷重の組合せ及び許容応力状態

構造強度評価に用いる荷重の組合せ及び許容応力状態は、ガスボンベ設備の評価対象部位ごとに設定する。荷重の組合せ及び許容応力状態を表3-1に示す。

3.2.2 許容応力及び許容応力評価条件

ガスボンベ設備における許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき表3-2、表3-3に示す。また、ガスボンベ設備におけるボンベラック及び基礎ボルトの許容応力評価条件を表3-4、表3-5に示す。

VI-2-別添 1-4 R 2 \odot

表3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

	許容応力狀態	$ m IV_AS$	
À.	荷重の組合せ	$\mathrm{D} + \mathrm{P}_{\mathrm{D}} + \mathrm{M}_{\mathrm{D}} + \mathrm{S}_{\mathrm{S}}$	
	機器等の区分	*	
	耐震重要度分類	ガスボンベ設備 C	
	機器名称		
	分	火災防護設備	
	施設区分	その他の発電用原 子炉の附属施設	

注記*:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 3-2 ガスボンベ設備 (ハロンガス消火設備)の許容応力 (その他の支持構造物)

	許容限界*1, *2	許容限界*1, *2	*1, *2
光次十十分给	(部材)	(ボルト等)	(幸)
〒 今 ぶ 乙 久 影	一次応力	一次応力	5.力
	組合せ	引張り	せん断
$\mathrm{IV}_\mathrm{A}\mathrm{S}$	1.5 · f ·*	1.5 • f **	1.5 · f · *

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価 を省略する。

表3-3 ガスボンベ設備(ケーブルトレイ消火設備)の許容応力(その他の支持構造物)

	許容限界*1, *2	(ボルト等)	(応力	せん断	1.5 • f s *
	許容师	(水)	一次応力	引張り	1.5 • f _t *
		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	計争心力決勝		IV_A S

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価

を省略する。

表3-4 ガスボンベ設備(ハロンガス消火設備)許容応力評価条件(設計基準対象施設)

評価対象部位	材料	温度条件 (°C)	S _y (MPa)	S _u (MPa)	F* (MPa)
	STKR400	40 (周囲環境温度)	245	400	087
ボンベラック	SS400 (径≦16 mm)	40 (周囲環境温度)	245	400	087
	SNB7	40 (周囲環境温度)	725	098	709
基礎ボルト	SS400 (径≦16 mm)	40 (周囲環境温度)	245	400	087

表3-5 ガスボンベ設備 (ケーブルトレイ消火設備) 許容応力評価条件 (設計基準対象施設)

/ 当社、 / マンク のの分					ことの同じ入し
評価対象部位	材料	温度条件 (°C)	S _y (MPa)	S u (MPa)	F * (MPa)
基礎ボルト	SS400 (径≤16 mm)	40 (周囲環境温度)	245	400	280

3.3 解析モデル及び諸元

「3.1.1 固有値<mark>確認</mark>方法」に示すガスボンベ設備(ハロンガス消火設備)の解析モデルを図3-1に,解析モデルの諸元を表3-6に,ガスボンベ設備(ハロンガス消火設備)の外観図を図2-1に示す。なお,解析コードについては,「MSC NASTRAN」を使用し,評価に用いる解析コードの検証及び妥当性確認等の概要については,添付書類「VI-5-40 計算機プログラム(解析コード)の概要・MSC NASTRAN」に示す。

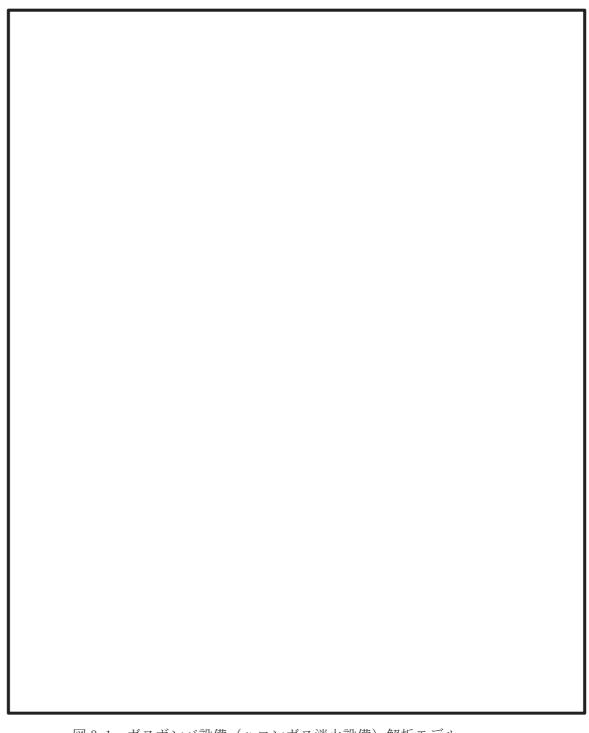


図 3-1 ガスボンベ設備 (ハロンガス消火設備) 解析モデル

縦弾性 断面二次モーメント 諸元 断面積 材料 係数 (mm^4) (数値) (mm^2) (MPa) 弱軸 強軸 2.02×10^{5} 9. 860×10^5 STKR400 1.217×10^3 9. 860×10^5 SS400 2.02×10^{5} 1.190×10^3 1. 880×10^6 2.600×10^{5} ボンベ SS400 2.02×10^5 1.953×10^3 2. 184×10^6 1.091×10^6 ラック 2.02×10^{5} 1.270×10^3 6. 440×10^5 6. 440×10^5 SS400 5. 787×10^5 2.054×10^{5} SS400 2.02×10^{5} 1.044×10^3 2. 01×10^5 1. 798×10^3 1. 798×10^3 SNB7 150.3 基礎ボルト SS400 温度条件 40 $(^{\circ}C)$ 質量 2095 (kg) ポアソン比 0.3

表 3-6 解析モデルの諸元

3.4 固有周期

ガスボンベ設備の固有値<mark>確認</mark>結果を「3.4.1 ガスボンベ設備」に、ガスボンベ設備 の容器弁の固有値<mark>確認</mark>結果を「3.4.2 容器弁」に示す。

3.4.1 ガスボンベ設備

ガスボンベ設備(ハロンガス消火設備)の固有値<mark>確認</mark>結果を表3-7に、振動モード図を図3-2に示す。ガスボンベ設備(ケーブルトレイ消火設備)の固有値<mark>確認</mark>結果を表3-8に示す。固有周期は0.050秒以下であり剛であることを確認した。

3.4.2 容器弁

容器弁(ハロンガス消火設備)の固有値<mark>確認</mark>結果を表3-9,容器弁(ケーブルトレイ消火設備)の固有値<mark>確認</mark>結果を表3-10に示す。固有周期は0.050秒以下であり剛であることを確認した。

表3-7 ガスボンベ設備 (ハロンガス消火設備) の固有周期

機器名称	方向	固有周期 (s)
ガスボンベ設備	水平	
(ハロンガス消火設備)	鉛直	

表3-8 ガスボンベ設備 (ケーブルトレイ消火設備) の固有周期

機器名称	方向	固有周期 <mark>*</mark> (s)
ガスボンベ設備	水平	0.050以下
(ケーブルトレイ消火設備)	鉛直	0.050以下

注記*:正弦波掃引試験により33Hzまで共振周波数がないことを確認。

表3-9 容器弁 (ハロンガス消火設備) の固有周期

機器名称	方向	固有周期 <mark>*</mark> (s)
容器弁	水平	0.050以下
(ハロンガス消火設備)	鉛直	0.050以下

注記*:正弦波掃引試験により33Hzまで共振周波数がないことを確認。

表3-10 容器弁 (ケーブルトレイ消火設備) の固有周期

機器名称	方向	固有周期 <mark>*</mark> (s)
容器弁	水平	0.050以下
(ケーブルトレイ消火設備)	鉛直	0.050以下

注記*:正弦波掃引試験により33Hzまで共振周波数がないことを確認。

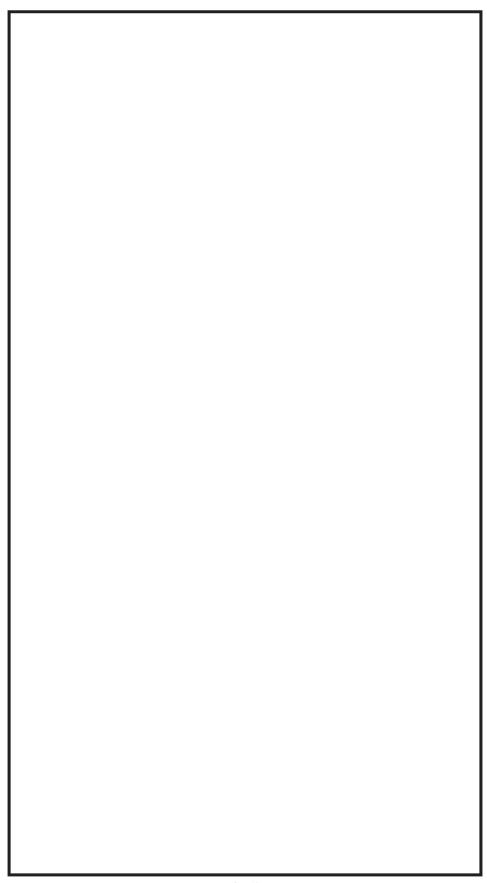


図3-2 振動モード図

枠囲みの内容は商業機密の観点から公開できません。

 \mathcal{O}

3.5 設計用地震力

ガスボンベ設備の耐震計算に用いる設計用地震力については、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づく。

 \mathcal{O}

4. 機能維持評価

4.1 動的機能維持評価方法

ガスボンベ設備は、添付書類「別添1-1」の「6. 機能維持評価」に示す評価方針に従い、機能維持評価を実施する。

なお,機能確認済加速度には,対象機器の加振試験において動的機能の健全性を確認した最大加速度を適用する。

 \mathcal{O}

5. 評価結果

ガスボンベ設備の構造強度評価結果及び機能維持評価結果を以下に示す。なお,発生値は 許容限界を満足しており,設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【ガスボンベ設備(ハロンガス消火設備)の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

	所震重要度	設置場所及び床面	固有周	[類(s)	基準地震動	s S (重	周囲環境温度
機器名称	分類	(II) (II) 地 恒	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	(O _o)
ガスボンベ設備	C	原子炉建屋			01 0 - 0	1 - 2	07
(ハロンガス消火設備))	0.P.22.50*			OH-6.12	$C_{V} - 1.30$	40

注記*:基準床レベルを示す。

1.2 計算数値

(1) ボルトに作用する力

$A_{ m b}~({ m mm}^2)$	201.1
Q_{b} (N)	1. 494×10^4
F _b (N)	1. 416×10^4
部林	基礎ボルト

1.3 結點

固有周期 1.3.1

(東位:s) 水平方向

構造強度評価結果 1.3.2

鉛直方向

(単位: MPa)

$f_{\mathrm{s}\ \mathrm{b}} = 129$		せん断応力	22400	角をなってい	
$f_{\mathrm{t}} = 168^{*}$		引張応力	00755	1、汽子数量	カスボンへ設備(ハロンガス消水設備)
$f_{\rm t} = 280$		組合せ応力	STKR400	ボンベラック	4111 1111 11 11 11 11 11 11 11 11 11 11
許容応力	計算応力	応力分類	材料	評価部位	機器名称

すべて許容応力以下である。

注記*: $f_{t,s}$ =Min[1.4・ $f_{t,o}$ -1.6・ τ_{b} , $f_{t,o}$]より算出

動的機能維持評価結果 1.3.3

(単位:×9.8 m/s²)

			機能確認済加速度との比較	速度との比較	
松阳夕乐	据付場所及び	水 本	<u> </u>	部員	迴
() 中国	米国高 ス (m)	機能維持評価用	*************************************	<mark>機能維持</mark> 評価用	期 书、叶 爻 经 7 27号 粥
		加速度*	域形無部併加速及	加速度*	微能雜酌符加速度
4	属手炉建屋	1 77	00 01	1 90	п С
T447	0. P. 22. 50	1. ((10:00	1: 50	00.0

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度 (1.0ZPA) はすべて機能確認済加速度以下である。

【ガスボンベ設備(ケーブルトレイ消火設備)の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

1	耐震重要度	設置場所及び床面	固有周期	l類(s)	基準地震動S	§動Ss	周囲環境温度
機器名称	分類分	·恒	十 十 五	公古七百	水平方向	鉛直方向	
			国 尺 十 く	如同刀叫	設計震度	設計震度	
ガスボンベ設備	(原子炉建屋	7	7.000		11 11 11 11 11 11 11 11 11 11 11 11 11	, .
(ケーブルトレイ消火設備)	١	0.P. 23.60*1	0. USUAL	J がnen n	CO 7—H)	$C \lor = I$. (1)	40

注記*1:基準床レベルを示す。

*2: 建屋中間階に設置されるため, 設置床上階の<mark>基準地震動 S s により定まる応答加速度</mark>を用いる。

1.2 機器要目

部村	m (kg)	h (mm)	ℓ_1^* (mm)	${ heta_2}^*$ (mm)	d (mm)	n	n *
基礎ボルト							

注記*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、

下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数値

(1) ボルトに作用する力

$A_{ m b}~({ m mm}^2)$	201.1
Q_b (N)	5. 276×10^3
F _b (N)	4. 694×10^3
部材	基礎ボルト

枠囲みの内容は商業機密の観点から公開できません。

1.4.1 固有周期

(第位:s)

R 2 E

③ VI-2-別添 1-4

0 2

水平方向	0.050以下
鉛直方向	0.050以下

構造強度評価結果 1.4.2

(単位: MPa)

其珠光 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	<u></u>
子卷曲	

すべて許容応力以下である。

(単位:×9.8 m/s²)

注記*: f_t 。= $Min[1.4 \cdot f_t$ 。 $-1.6 \cdot \tau$ b, f_t 。] より算出

1.4.3 動的機能維持評価結果

_						
		鉛直	地名第二世里	饿胎惟酌併加烟之		
	速度との比較		機能維持 評価用	加速度*	27	1.47
	機能確認済加速度との比較	水平	垂 其、叶 爻 医 郊 巧 辨	饿 比唯 酌(月/川)还(吳		
			機能維持 評価用	加速度*	0 01	7. 71
		据付場所及び	米国高さ(m)		原子炉建屋	0. P. 23.60
		松阳分子	(以 口/石户)		少品 学	存む井

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度 (1.0ZPA) はすべて機能確認済加速度以下である。