変更前	変更後	変更理由
2.11 使用済燃料プールからの燃料取り出し設備 2.11.1 基本設計	2.11 使用済燃料プールからの燃料取り出し設備 2.11.1 基本設計	
(中略)	(中略)	
 2.11.1.2 要求される機能 (1) 燃料取扱設備 燃料取扱設備は、二重のワイヤなどにより落下防止を図る他、駆動源喪失時にも燃料集合体を落下させない設計とする。 また、遮<u>へい</u>、臨界防止を考慮した設計とする。 (2) 構内用輸送容器 構内用輸送容器は、除熱、密封、遮<u>へい</u>、臨界防止を考慮した設計とする。また、破損燃料集合体を収納して輸送する容器については、燃料集合体の破損形態に応じて輸送中に放射性物質の飛散・拡散を防止できる設計とする。 	 2.11.1.2 要求される機能 (1) 燃料取扱設備 燃料取扱設備は、二重のワイヤなどにより落下防止を図る他、駆動源喪失時にも燃料集合体を落下させない設計とする。 また、遮蔽、臨界防止を考慮した設計とする。 (2) 構内用輸送容器 構内用輸送容器は、除熱、密封、遮蔽、臨界防止を考慮した設計とする。また、破損燃料集合体を収納して輸送する容器については、燃料集合体の破損形態に応じて輸送中に放射性物質の飛散・拡散を防止できる設計とする。 	記載の適正化
(中略)	(中略)	
2.11.1.3 設計方針(1) 燃料取扱設備	2.11.1.3 設計方針(1) 燃料取扱設備	
(中略)	(中略)	
b. 遮 <u>へい</u> 燃料取扱設備は,使用済燃料プールから構内用輸送容器への燃料集合体の収容操作を,燃料の 遮 <u>へい</u> に必要な水深を確保した状態で,水中で行うことができる設計とするか,放射線防護のた めの適切な遮 <u>へい</u> を設けて行う設計とする。	b. 遮 <u>蔽</u> 燃料取扱設備は,使用済燃料プールから構内用輸送容器への燃料集合体の収容操作を,燃料の 遮 <u>蔽</u> に必要な水深を確保した状態で,水中で行うことができる設計とするか,放射線防護のため の適切な遮 <u>蔽</u> を設けて行う設計とする。	記載の適正化
(中略)	(中略)	
(2) 構內用輸送容器	(2) 構內用輸送容器	
(中略)	(中略)	
a. 遮 <u>へい</u> 内部に燃料を入れた場合に放射線障害を防止するため,使用済燃料の放射線を適切に遮 <u>へい</u> す る設計とする。	a. 遮 <u>蔽</u> 内部に燃料を入れた場合に放射線障害を防止するため,使用済燃料の放射線を適切に遮 <u>厳</u> する 設計とする。	記載の適正化
(中略)	(中略)	

変更前	変更後	変更理由
2.11.1.4 供用期間中に確認する項目	2.11.1.4 供用期間中に確認する項目	
(中略) (2)構內用輸送容器	(中略) (2)構內用輸送容器	
構内用輸送容器は, 除熱, 密封, 遮 <u>へい</u> , 臨界防止の安全機能が維持されていること。	構内用輸送容器は,除熱,密封,遮 <u>舱</u> ,臨界防止の安全機能が維持されていること。	記載の適止化
(中略)	(中略)	
2.11.1.5 主要な機器	2.11.1.5 主要な機器	
(中略)	(中略)	
(3)燃料取り出し用カバー 燃料取り出し用カバーは、使用済燃料プールを覆う構造としており、必要により、燃料取扱機支持用架構及びクレーン支持用架構を有する。 また、燃料取り出し用カバーは換気設備及びフィルタユニットを有する。 なお、換気設備の運転状態やフィルタユニット出入口で監視する放射性物質濃度等の監視状態は 現場制御盤及び免震重要棟集中監視室に表示され、異常時は警報を発するなどの管理を行う。	(3)燃料取り出し用カバー 燃料取り出し用カバーは、使用済燃料プールを覆う構造としており、必要により、燃料取扱機支 持用架構及びクレーン支持用架構を有する。 <u>1号機の燃料取り出し用カバーは、大型カバーとその内部に設ける内部カバーで構成する。</u> また、燃料取り出し用カバーは換気設備及びフィルタユニットを有する。 なお、換気設備の運転状態やフィルタユニット出入口で監視する放射性物質濃度等の監視状態は 現場制御盤及び免震重要棟集中監視室に表示され、異常時は警報を発するなどの管理を行う。	1号機大型カバー設置に伴い追 記
(中略)	(中略)	
2.11.2 基本仕様 2.11.2.1 主要仕様	2.11.2 基本仕様 2.11.2.1 主要仕様	
(中略)	(中略)	
 (3)燃料取り出し用カバー(換気設備含む) (3号機及び4号機を除く) 個数 1式 	 (3)燃料取り出し用カバー(換気設備含む) (<u>1 号機</u>, 3 号機及び4 号機を除く) 個数 1 式 	1号機大型カバー設置に伴い追 記
(中略)	(中略)	

変 更 前	変 更 後	変 更 理 由
変更前 2.11.3 添付資料 添付資料-1 燃料取扱設備の設計等に関する説明書 添付資料-1-1 燃料の落下防止,臨界防止に関する説明書**3 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書**3 添付資料-2 構内用輸送容器の設計等に関する説明書**3 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書**3 添付資料-2-3 構内輸送容器に係る安全機能及び構造強度に関する説明書**3 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-3 修送操作中の燃料集合体の落下**3 添付資料-3-3 移送操作中の燃料集合体の落下**3 添付資料-4-4 構造強度及び耐震性に関する説明書 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書**3 添付資料-4-3 燃料取り出し用カバーの構造強度及び耐震性に関する説明書**3	変更後 (1号機) a. 大型カバー 種類 種類 鉄骨造 寸法 約 66n (南北) ×約 56n (東西) ×約 68m (地上高) (作業環境整備区画) 約 66n (南北) ×約 56n (東西) ×約 39m (オペレーテ イングフロア上部高さ) 個数 1個 2.11.3 添付資料 添付資料 - 1 - 1 燃料の落下防止,臨界防止に関する説明書 添付資料 - 1 - 2 放射線モニタリングに関する説明書**3 添付資料 - 2 備内用輸送容器の設計等に関する説明書**3 添付資料 - 2 - 3 燃料の健全性確認及び取り扱いに関する説明書**3 添付資料 - 2 - 3 燃料の健全性確認及び取り扱いに関する説明書**3 添付資料 - 2 - 3 構内輸送容器に係る安全機能及び構造強度に関する説明書**3 添付資料 - 2 - 3 構内輸送容器に係る安全機能及び構造強度に関する説明書**3 添付資料 - 3 - 1 放射性物質の飛散・拡散を防止するための機能に関する説明書**3 添付資料 - 3 - 1 放射性物質の飛散・拡散を防止するための機能に関する説明書**3 添付資料 - 3 - 2 がれき撤去等の手順に関する説明書 添付資料 - 4 - 4 構造強度及び耐震性に関する説明書 添付資料 - 4 - 2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書**3 添付資料 - 4 - 2 燃料取り出し用カバー機造強度及び耐震性に関する説明書**3	変更理由 1号機大型カバー設置に伴い追記 1号機大型カバー設置に伴い記載変更
 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書^{**3} 添付資料-4-2 燃料取り出し用カバー換気設備の構造強度及び耐震性に関する説明書^{**3} 添付資料-5 使用済燃料プールからの燃料取り出し工程表^{**3} 添付資料-6 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書 添付資料-7 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書 添付資料-8 福島第一原子力発電所第1号機原子炉建屋加バー解体について 添付資料-9 福島第一原子力発電所第2号機原子炉建屋直側外壁の開口設置について 添付資料-10 福島第一原子力発電所1号機原子炉建屋オペレーティングフロアのガレキの撤去について 添付資料-10-1 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア北側のガレキの撤去について 添付資料-10-2 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア中央および 南側のガレキの一部撤去について 添付資料-10-3 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア外周鉄骨の 一部撤去について 添付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア床上のガレ 本の一部撤去について ※付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア床上のガレ 本の一部撤去について 	 添付資料-4-1 燃料取扱設備の構造強度及び耐度性に関する説明書^{**0} 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐度性に関する説明書^{**0} 添付資料-4-3 燃料取り出し用カバー換気設備の構造強度及び耐度性に関する説明書^{**3} 添付資料-5 使用済燃料プールからの燃料取り出し工程表^{**3} 添付資料-6 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書 添付資料-7 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書 ※付資料-8 福島第一原子力発電所第1・2号機原子炉建屋加バー解体について 添付資料-9 福島第一原子力発電所第2号機原子炉建屋面側外壁の開口設置について 添付資料-10 福島第一原子力発電所1号機原子炉建屋オペレーティングフロアのガレキの撤去に ついて 添付資料-10-1 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア北側のガレ キの撤去について 添付資料-10-2 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア中央および 南側のガレキの一部撤去について 添付資料-10-3 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア外周鉄骨の 一部撤去について ※付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア床上のガレ ※付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア床上のガレ ※付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア床上のガレ 	1号機大型カバー設置に伴い記 載変更 1号機大型カバー設置に伴い記 載変更

変更前	変更後	変更理由
燃料取り出し用カバーの構造強度及び耐震性に関する説明書	添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
 本説明書の記載範囲 本説明書は、3号機及び4号機燃料取り出し用カバーの構造強度及び耐震性について記載するものである。なお、3号機及び4号機以外については、現地工事開始前までに報告を行い、確認を受けることとする。 	1. 本説明書の記載範囲 本説明書は、 <u>1号機、</u> 3号機及び4号機燃料取り出し用カバーの構造強度及び耐震性について記載す るものである。なお、 <u>1号機、</u> 3号機及び4号機以外については、現地工事開始前までに報告を行い、 確認を受けることとする。	1号機大型カバー設置に伴い追 記
2. 4号機燃料取り出し用カバーの構造強度及び耐震性について	2. 4号機燃料取り出し用カバーの構造強度及び耐震性について	
(中略)	(中略)	
3. 3号機燃料取り出し用カバーの構造強度及び耐震性について	3. 3号機燃料取り出し用カバーの構造強度及び耐震性について	
(中略)	(中略)	
 4. 別添 1 福島第一原子力発電所 3号機燃料取り出し用カバーの構造強度及び耐震性について(東京 電力株式会社,平成25年2月21日,特定原子力施設監視・評価検討会(第4回)資料4) 別添-2 福島第一原子力発電所 3号機燃料取り出し用カバーの構造強度及び耐震性について(コメ ント回客)(東京電力株式会社,平成25年3月8日,特定原子力施設監視・評価検討会(第 6回)資料5) 別添-3 4号機燃料取り出し用カバーに係る確認事項 別添-4 3号機燃料取り出し用カバーに係る確認事項 別添-5 3号機原子炉建屋の躯体状況調査結果を反映した使用済燃料プール等の耐震安全性評価結 累 別添-6 3号機原子炉建屋 遮へい体設置における滑動対策について 		1 号機大型カバー設置に伴い記載位置変更

変更前	変更後	変更理由
(現行記載なし)	5. しち機燃料扱り出し用カバーの構造強度及び耐震性について 5. し数整 5.1.1 一般地図 1. 当機燃料取り出し用カバーに、大型カバーと内部のバーから構成されている。ここでは、大型カバー ごの構造強度及び耐震性について検討を行う。 大型カバーは、原子伊健屋イベレーディングフロアを使う構造としており、屋根部、一般部及び燃料 股級温度支援部から構成され、ホベレーディングフロアとにあるガレキな魔主するガレキ酸素由天地ク ビーンを有する。また、大型カバーの燃料取扱設備(法特取扱設備)(特別取扱想及びタレーン) を支持する。このため、大型カバーの一般部設計上の重要の分類は、燃料取扱設備(法特取扱想及びタレーン) を支持する。このため、大型カバーの一般部庭が予定量。使用法律料プレル及び使用となりレーン 加速支持書造物であることから、B クラス相当とする。 大型カメーの構造強度に本次設計に対応した許者応力に受計を実施する。また、前置性は基準地と燃料 クックに変め的影響を及ぼさないことを確認する。ここで、波及的影響の施設は、大型カバーの海線機 構定率らないことを確認する。図5.1.11に大型カバーのイメージを示す。	1号機大型カバー設置に伴い追記

変更前	変更後	変更理由
	 大型カバーの検討は原則として下記の法規及び基規準類に準拠して行う。 (1) 建築基準法・同施行令及び関連告示 (2) 原子力施設鉄筋コンクリート構造計算規準・同解説(日本建築学会,改定版 2013 年) (3) 鉄筋コンクリート構造計算規準・同解説(日本建築学会,2018 年) (4) 鋼構造設計規準-許容応力度設計法-(日本建築学会,2005 年) (5) 2015 年版 建築物の構造関係技術基準解説書(国土交通省住宅局建築指導課・国土交通省国土技術政策総合研究所・独立行政法人建築研究所・日本建築行政会議,2015 年) (6) 各種合成構造設計指針・同解説(日本建築学会,2010 年) 	
	 <u>また,原子力施設の設計において参照される下記の指針及び規程を参考にして検討を行う。</u> (7)原子力発電所耐震設計技術指針(JEAG 4601-1987)(日本電気協会 電気技術基準調査委員会,昭 和 62 年) (8)原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)(日本電気協会 電気技術基準調査委員 会,平成3年) (9)原子力発電所耐震設計技術規程(JEAC 4601-2015)(日本電気協会 原子力規格委員会,平成27年) 	

変更前	変更後	変 更 理 由
	 5.1.2 構造概要 大型カバーは、東西方向 55.92m、南北方向 65.56m、高さ 67.55m の構造物で、構造形式はトラス構造、 構造種別は鉄骨造である。また、一般部と燃料取扱設備支持部は構造的に分離している。 大型カバーは、水平剛性を高めるため、鋼板による箱桁架構とし、屋根は可動式としている。 大型カバーは、原子炉建屋に支持される構造物である。原子炉建屋との取り合い部においては、アン カーボルトにより接続している。 大型カバーの概要図を図 5.1.2-1 及び図 5.1.2-2 に示す。 	

		変	更	理	由	
部						
一般部						
//////: 鋼板						
'						

	変	更	理	由
;				
屋根部				

	変	更	理	由
キープラン				
∞ ←				
<u> </u>				

変更前	変更後	変更理由
	5.1.3 般計72-1 大型カバーの構造強度及び耐震性の検討フローを図5.1.3-1に示す。検討に当たっては、大型カバーを改要はし、原子伊建度上のガレキを選ましたまた。(以下、「放牛服皮」はしょうとする状態(以下、「放牛服皮」はしょうとすうな洗(以下、「放牛服皮」はしょう)を建築するたち。 5.2 構造強度(一次設計:許容応力度設計) 5.2 構造強度(一次設計:許容応力度設計) 5.2.1 設計力計 6.2.2 大型カバーの構造強度に対する検討 5.2.3 建原取り合い浴の構造強度に対する検討 5.2.4 屈提の構造強度に対する検討 5.2.5 外装材の構造強度に対する検討 5.2.6 大型カバーの構造強度に対する検討 5.2.7 大型カバーの構造強度に対する検討 5.3 耐震性(波及的影響の評価) 5.3.1 検討力針 6.3.2 大型カバーの耐震性に対する検討 5.3.3 耐震性(波及的影響の評価) 5.3.1 検討力針 6.3.3 健康取り合い浴の耐震性に対する検討 5.3.4 原提の副震性に対する検討 5.3.5 原子伊建県の副震性に対する検討 2.5.1.3-1 大型カバーの検討フロー	

変 更 前	変 更 後
	 5.2 構造強度 5.2.1 設計方針 構造強度の検討は、大型カバー、建屋取り合い部、屋根及び外装材について評 る。 (1) 使用材料及び許容応力度 使用材料の物性値及び許容応力度を表 5.2.1-1 に示す。

	変	更	理	由
許容応力度設計を実施す				

変 更 前

示	再	14
15	47	177
\sim	~~	1.2

				変	更後						変	更	理	由	
材料定数		<u>表 5</u>	5.2.1-1 使	用材料	斗の物性値	及び許知	容応力度								
☆₽/÷÷		十十业	el	ヤン	ング係数		ポアソン比		単位	体積重量					
<u> </u>		<u> 11</u> 不	<u>*</u>	<u>E</u> ((N/mm^2)		<u>ν</u>		<u>γ</u>	<u>(kN/m³)</u>					
<u>大型カバー</u>	-	<u>鉄</u> 官	<u>骨 2.05×10⁵</u>				<u>0.3</u>			77.0					
原子炉建屋	<u></u>	ノクリ	リート	<u>2.</u> 5	$57 \times 10^{4*}$		<u>0. 2</u>			<u>24.0</u>					
									<u>* : 実</u> 班	<u> 度に基づく剛性</u>					
<u>コンクリー</u>	トの許容応力	<u>]度</u>							<u>(</u> 単	i <u>位:N/mm²)</u>					
	準強度			<u>長</u>	<u>期</u>			<u>4</u>	<u>豆期</u>						
2	<u>22.1</u>	_	<u> </u>	<u>引</u>	<u>張 1</u>	<u>せん断</u>	<u> </u>	F	引張	<u>せん断</u>					
(2	<u>225) *</u>		<u>7.4</u>	_	_	0. 7 <u>1</u>	<u>14.8</u>		<u> </u>	1.07					
							<u>*:</u> 建設時の	設計基	<u> 年强度(</u>	単 <u>化:kgt/cm²)</u>					
鉄筋の許容に	芯力 <u>度</u>								<u>(详</u>	i <u>位:N/mm²)</u>					
記号	鉄笛径			<u>長</u>	<u>期</u>			<u>矢</u>	<u>豆期</u>						
	<u> </u>		引張及び	<u>王縮</u>	<u>せん</u> 断	補強	<u>引張及び</u>	圧縮	<u>せ</u>	ん断補強					
<u>SD345</u>	<u>D29</u> 未満		<u>215</u>		<u>19</u>	5	<u>345</u>			<u>345</u>					
	DZ9 KL		<u>195</u>												
構造用鋼材の	の許容応力度	F							(详	i位:N/mm²)					
			材料	<u>}</u>		基	準強度 F		許容応	5力度*4					
$\underline{T} \leq 40 mr$	<u>n</u>	<u>SS400, SN400B, STK400</u> <u>235</u>													
<u>T>40mr</u>	<u>n</u>	<u>SN400B</u> 215													
$T \leq 40 mr$	n	SM490A, SN490B, STKN490B 325 建築基準法及び国土													
T < 40mm			<u>STK490, S</u>	<u>500</u>	<u>)R</u>		4.4.0*1	<u>父</u> 進 到 D	<u> 1 </u>	<u>に従い,左</u> りまめる					
$\frac{1 \ge 4000}{T > 40000}$	<u>n</u>		<u>51K18</u> TMCP3	25R			<u>440</u> 395* ²	<u> קר</u> ר	い胆よ	<u>9800</u>					
	<u>11</u>		<u>1101 5</u> S45	<u>C</u>			490* ³	-							
			<u>*1 : 「JIS</u>	<u>-</u> 5 G 3474	4-2008」によ	3									
			<u>*2:国土</u> <u>2,12</u> *3:「JIS	:交通大日 09-2, 平 5 G 4051	五指定書(国 平成 15 年 7 月 └-2005」によ	<u>—</u> 住指第 320 <u>31 日)に</u> <u>る</u>	<u>5-2, 平成14年</u> <u>よる</u>	<u>5月7</u>	日又は国	<u>主指第 1208-</u>					
			<u>*4:於</u> 向	1991度(よう	<u>計谷応力度を</u>	1.1倍と)	<u>10</u>								

	変更後									変	更	理	由		
材料定数		<u>表</u>	5. 2. 1-1 (吏用材料	りの物	性值及	なび許容	容応力度							
		++		ヤン	ノグ係	数		ポアソン比		単位	体積重量				
<u> </u>		<u>材</u>	<u>料</u>	Е ((N/mm^2))		<u>v</u>		γ	(kN/m^3)				
<u>大型カバー</u>		鉄	<u>骨</u>	2.05×10^{5}			<u>0.3</u>	<u>0.3</u> <u>77.0</u>							
原子炉建屋		コンク	リート	<u>2.5</u>	$7 \times 10^{\circ}$	4*		<u>0.2</u>			24.0				
										<u>*:実</u> 強	<u> 渡に基づく剛性</u>				
<u>コンクリー</u>	トの許容	応力度								<u>(肖</u>	<u> 〔位:N/mm²)</u>				
<u>設計基</u>	<u>準強度</u>			<u>長</u>	<u>期</u>	1				<u>短期</u>					
<u>2</u>	<u>2. 1</u>		<u> 圧縮</u>	<u>引</u>	<u>張</u>	<u>せ</u> ,	<u>ん断</u>	<u> </u>		<u>引張</u>	<u>せん断</u>				
(2	25) *		<u>7.4</u>	_	-	<u>0</u> .	71	<u>14. 8</u>		<u> </u>	<u>1.07</u>				
								<u>* : 建設時の</u>	設計書	基準強度(<u>単位:kgf/cm²)</u>				
鉄筋の許容に	芯力度									<u>(単</u>	<u> 绝位:N/mm²)</u>				
記号	鉄箆	径		<u>長</u>	<u>期</u>					<u>短期</u>					
<u></u>	<u>27(1)</u>		<u>引張及び</u>	汪縮	セ/	ん断補	主	<u>引張及び</u>	<u> 王縮</u>	<u>せ</u>	ん断補強				
<u>SD345</u>	<u>D29</u>	<u> </u>	<u>215</u>			<u>195</u>		<u>345</u>			<u>345</u>				
	<u>D29 L</u>	<u>人上</u>	<u>195</u>												
構造用鋼材(の許容応	<u>力度</u>								<u>(</u> 単	〔 <u>位:N/mm²)</u>				
板厚			<u>材</u>	<u>料</u>			<u>基</u>	<u> 準強度 F</u>		許容応	5力度*4				
<u>T≦40mm</u>	1	5	SS400, SN40)0B, ST	K400			<u>235</u>							
<u>T>40mm</u>	<u>1</u>		SN4	<u>00B</u>				<u>215</u>							
$T \leq 40$ mm	1	SM	<u>490A, SN49</u>	<u>0B, STI</u>	<u>{N490B</u> -	<u>3</u>		325 <u>建築基準法及び国土</u> \overline{A} 海客生きに従い、た							
T _ 10	_		<u>STK490,</u>	SNR490	B			4.4.0*1	<u>交</u> i	<u> 电省告</u> 示	<u>に従い, 左</u> りまゆて				
$\underline{\underline{I \ge 40\text{mm}}}_{T \ge 40\text{mm}}$	<u>1</u>		<u>SIN</u>	2050 2050				<u>440¹¹</u> 225*2	<u>百〇</u> 」	F の <u></u> 値よ	<u>り来める</u>				
<u>1 / 401111</u>	1		<u>IMCP</u> S4	<u>5200</u> 50				<u>320 -</u> 100* ³							
			*1 · []	<u>50</u> IS G 3474	-2008+	によろ		1 50							
			<u>*1:13</u> <u>*2:国</u> 2.1	<u>土交通大臣</u> 209-2. 平	<u>2000</u> 」 5指定書 4成 15 年	<u>によう</u> : (国住 ミ7月3	<u>指第 326</u> 1 日)に	<u>i-2, 平成 14 年</u> よる	<u>5月7</u>	日又は国	<u> 生指第 1208-</u>				
			*3 : 「J	IS G 4051	-2005」	による									
			<u>*4:終</u>	局強度は言	午容応力	度を1.	1倍とす	<u>-3</u>							

	変更後									変	更	理	由		
		<u>表</u>	5.2.1-1	吏用材料	斗の物性	生值及	び許須	容応力度							
材料正致				1.5	WH	K7 .		10			山体子目				
部位		材	料	<u>+:</u>	<u>/ク係</u> 3 (N1/mm2)	<u> </u>									
十刑カバー		鉎	冲	<u>E (</u>	(N/Mm^{-})	5		ν γ (KI/m)							
<u>八王///</u> 百子后建屋	<u> </u>	<u> 野</u> コンク	<u>月</u> リート	2.5	$2.57 \times 10^{4*}$			0.2 11.0							
	<u> </u>	/	<u> </u>	2.0	1 × 10			0.2		*: 実強	<u>24.0</u> 渡度に基づく剛性				
<u>コンクリー</u>	トの許容	応力度								 (単	〔位:N/mm²)				
設計基	準強度			長	期					短期					
2	2.1		圧縮	引	張	せん	ノ断	圧縮		引張	せん断				
(2	25) *		<u>7.4</u>	_	_	0.7	71	<u>14. 8</u>		_	<u>1.07</u>				
								<u>* :</u> 建設時の	設計基	基準強度(単位:kgf/cm²)				
鉄筋の許容点	的方面									()	(
	<u> </u>			1年3	期					<u>、</u> 短期	<u>, , , , , , , , , , , , , , , , , , , </u>				
<u>記号</u>	<u>鉄筋</u>	<u>5径</u>	引張及び	· 正縮	<u>せ</u> ん	ん断補	強	引張及び	도縮	せ	ん断補強				
CD0.45	D29 7	た満 しょうしょう しょうしょうしょう しょうしょうしょう しょうしょうしょう しょうしょう しょう	215			105					9.45				
<u>SD345</u>	D29 J	以上	<u>195</u>			<u>195</u>		<u>345</u>			<u>345</u>				
構造用鋼材0	り許容応	力度								(単	ú位:N/mm²)				
板厚			材	*料			基	隼強度 F		許容応	<u></u>				
$\underline{T \leq 40}$ mm	1	S	S400, SN4	00B, ST	`K400			235							
$T\!>\!40$ mm	1		SN4	00 <u>B</u>				215							
T≦40mm	1	<u>SM</u> 4	SM490A, SN490B, STKN49					<u>325</u> <u>建築基準法及び国土</u> 英语少生三に分い、た							
T < 10	-		<u>STK490,</u>	SNR490	<u>)</u> B			4.4.0*1	<u>交</u> i	<u> 电省告</u> 示	<u>:に従い, 左</u> りたはて				
$\underline{1 \ge 40 \text{mm}}$	<u>l</u>		51K	1590 2250				$\frac{440^{11}}{205^{2}}$	<u>ī</u> С.	F の <u></u> 値よ	<u>り来める</u>				
<u>1 / 401111</u>	<u></u>		<u>IMCP</u>	5C				<u>320 -</u> 100* ³							
			<u>-ر</u> *1 ۰ [۱	<u>:50</u> IS-C-3474	I-2008 L 1	にトス		430							
			<u>*1.「」</u> *2:国	<u>15 6 5474</u> 土交通大国	E-2008」 (至指定書	<u>による</u> (国住指	<u> 1第 326</u>	-2, 平成 14 年	<u>5月7</u>	日又は国	主指第 1208-				
			<u>2, 1</u>	<u>209-2, 平</u>	Z <u>成 15 年</u>	7月31	日) に	よる							
			<u>*3:「」</u> *4.終	<u>15 G 4051</u> 局確度けま	<u>2005」(</u> 許宏広力)	<u>による</u> 度を11	倍とす	-7							
			<u>*** , #\$</u>	间现没际	11/11/10/07	2 2 1. 1		<u></u>							
												1			

	変更後										変	更	理	由
材料定数		<u>表</u> ;	5.2.1-1 使用	材料	の物性値	及び許容	容応力度							
<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ارمليمل		ヤン	⁄グ係数		ポアソン比		単位	体積重量				
部位		材		E (N	$N/mm^2)$	ν γ (kN/m ³)								
<u>大型カバー</u>		<u>鉄</u>	<u>骨</u>	2.05×10^{5}			<u>0.3</u>			<u>77.0</u>				
原子炉建屋	コン	ンク	リート	<u>2.57</u>	$7 \times 10^{4*}$		<u>0.2</u>			<u>24. 0</u>				
コンクリート	の許容応ナ	□度							<u>* : 実</u> 強 (译	<u>读に基づく剛性</u> (伝・N/mm ²)				
設計基準	<u></u>	<u>,,,</u>		ɇ	期				<u>、</u>	<u>- 10, 11, 1111 / 11111 / 11111 / 1111 / 1111 / 1111 / 1111 / 1111 / 111</u>				
22.	. 1		圧縮	引引	<u>第</u> 張 せ	ん断	 圧縮		<u>//////</u> 引張	せん断				
(22)	5) *	Ī	7.4		- 0	. 71	14.8		_	1.07				
							*:建設時の	設計表	基準強度(単位:kgf/cm²)				
鉄筋の許容応	力度								(単	〔位:N/mm²)				
				長其	<u>玥</u>				短期					
<u>記号</u>	<u> </u>		引張及び圧得	宿	せん断袖	甫強	引張及び	圧縮	<u>せ</u>	ん断補強				
SD345	<u>D29 未満</u>		<u>215</u>		195		345			345				
50343	<u>D29 以上</u>		<u>195</u>		<u>150</u>		<u>040</u>			<u>949</u>				
構造用鋼材の	許容応力度	F Z							<u>(肖</u>	〔位:N/mm ² 〕				
板厚			<u>材料</u>			<u>基</u>	準強度 F		許容応	5力度*4				
<u>T≦40mm</u>		S	S400, SN400B	<u>400B, STK400</u> <u>235</u>										
$\underline{T > 40 \text{mm}}$		<u>SN400B</u>				215								
<u>T≦40mm</u>	$\underline{T \leq 40 \text{mm}} \qquad \underline{SI}$		<u>190A, SN490B,</u> STK490, SN	<u>STK</u> R490E	<u>N490B</u> B	<u>325</u> <u>建築基準法及び国土</u> 交通省告示に従い,左								
$\underline{T} \leq 40 \mathrm{mm}$			STKT59	<u>)</u>			440^{*1}	<u>記</u>	Fの値よ	り求める				
$\underline{\mathrm{T}}\!>\!\!40\mathrm{mm}$			<u>TMCP325</u>	B			325^{*2}							
<u> </u>			<u>S45C</u>				490^{*3}							
			<u>S45C</u> *1:「JIS G *2:国土交 <u>2,1209</u> *3:「JIS G *4:終局強	<u>3474-</u> 通大臣 <u>2, 平</u> <u>4051-</u> 度は許	-2008」による 活 <u>指定書(国住</u> <u>成 15 年 7 月</u> -2005」による F容応力度を 1	2 <u>活第 326</u> <u>31 日)に</u> 2 .1倍とす	<u>490*3</u> 2, 平成14年 よる -る	5月7	日又は国	住指第 1208-				

変 更 前			変	更後			変 更 理 由
	 (2) 荷重及び荷 設計で考慮す 1) 鉛直荷重(1) 	 (2) 荷重及び荷重組合せ 設計で考慮する荷重を以下に示す。 1) 鉛直荷重 (VL) 					
	<u>大型カハー及び原子炉建屋に作用する鉛直方向の荷重で,固定荷重,機器荷重,配管荷重及び積載荷</u> 重とする。主な鉛直荷重を表 5.2.1-2 及び表 5.2.1-3 に示す。						
		<u>表 5.2.1-</u>	2 大型カバーに	作用する主な鉛直荷重	<u>Í(kN)</u>		
				ガレキ撤去時		斗取り出し時	
	<u>屋根</u>			<u></u>	3800	<u>3800</u>	
	<u>外装材</u>			<u></u>	<u>5800</u>	<u>4360</u>	
	遮蔽体			<u>]</u>	1050	<u>6430</u>	
	ガレキ撤去用天	<u> </u>		<u>_</u>	1200	<u>4200</u>	
	遠隔解体重機			<u> </u>	2600	<u>0</u>	
	<u>配管</u>				<u>500</u>	<u>830</u>	
		<u>表 5. 2. 1-</u>	3 原子炉建屋に	作用する主な鉛直荷重	<u> 〔 (kN)</u>		
				ガレキ撤去時	燃料	斗取り出し時	
	ガレキ			<u>11</u>	2130	<u>0</u>	
	機器等			2	<u>4260</u>	<u>43540</u>	
	遮蔽体				<u>0</u>	<u>21110</u>	
	 <u>積雪荷重(第 積雪荷重は建第 る。</u> <u>なお,国土交i</u> 乗じた積雪荷重 <u>3) 風圧力(WL)</u> <u>風圧力は建築</u> <u>粗度区分Ⅱとし</u> 	<u>SL)</u> 築基準法施行令第 <u> 通省告示 594 号によ</u> を考慮する。 <u> 基準法施行令第 87</u> て算定する。速度[<u>86 条及び福島県 よる多雪区域以外 積雪量:30cm,単 条および建設省 王の算定結果を表</u>	<u>建築基準法施行規則約 の区域における積雪符 単位荷重:20N/m²/cm 告示第1454 号に基づき 5.2.1-4 に示す。</u>	田則に準拠し, 後の降雨を見込 き,基準風速	<u>以下の条件とす</u> <u>込んだ割増係数を</u> を 30m/s, 地表面	
			<u>表 5.2.1-4 速</u>	度圧の算定結果			
	<u>建物高さ*</u>	<u>平均風速の</u> <u>鉛直分布係数</u>	<u>ガスト</u> <u>影響係数</u>	<u>建物高さと粗度</u> 区分による係数	基準風速	速度圧	
	<u>H (m)</u>	Er	Gf	<u>E</u>	Vo(m/s)	<u>q (N/m²)</u>	
	<u>65. 7</u>	<u>1.32</u>	<u>2.00</u>	<u>3. 50</u>	<u>30</u>	<u>1890</u>	
		· · · · · · · · · · · · · · · · · · ·	*:建物高さは,軒高	話さ (63.8m) と最高高さ	(67.55m) の平均	均値とした	

変更前	変更後	
	<u>4) 地震荷重(K)</u>	
	大型カバーに作用させる地震荷重は、G.L.+0.20m(原子炉建園	<u> </u>
	算定結果より設定する。水平地震力は下式より算定し、算定結果	果を表 5.2.1-6
	$\underline{Qi} = \mathbf{n} \cdot \mathbf{Ci} \cdot \mathbf{Wi}$	
	$\underline{Ci} = Z \cdot Rt \cdot Ai \cdot Co$	
	<u>ここで,</u>	
	<u>Qi:層せん断力(kN)</u>	
	<u>n:施設の重要度に応じた係数</u>	
	建築基準法で定める地震力の1.5倍を考慮する。	_
	<u>Ci:地震層せん断力係数</u>	
	<u>Wi:当該部分が支える重量 (kN)</u>	
	ここに、大型カバーの設計で考慮する原子炉建屋の名	<u> </u>
	<u>バー等を新規に設置する影響を考慮した。原子炉建屋</u> の	り全体重量を表
	<u>表 5.2.1-5 原子炉建屋の全体連</u>	<u>重重(kN)</u>
	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	レキ撤去時
	原子炉建屋の全体重量	<u>701430</u>
	ガレキ撤去による軽減重量	<u>0</u>
	大型カバー設置等の付加重量	+82500
	大型カバー設計用原子炉建屋全体重量	<u>783930</u>
	<u>Z:地震地域係数(Z=1.0)</u>	
	<u>Rt:振動特性係数(Rt=0.8)</u>	
	Ai:地震層せん断力係数の高さ方向の分布係数で,原子	「炉建屋の固有作
	<u>法(二乗和平方根法)により求める。</u>	
	<u>Co</u> :標準せん断力係数(Co=0.2)	
	<u>i 層の水半震度 ki は、下式によって算定する。</u>	
	$\frac{P_{i}=Q_{i}-Q_{i-1}}{Q_{i-1}}$	
	$\frac{ki=P_i/w_i}{w_i}$	
	$\frac{\zeta \zeta \zeta}{2}$	
	<u>P1: 当該階とての<u>し</u>下階の水平地長何里の<u></u>左(KN)</u>	
	<u>W1:谷階里重(KN)</u>	

	変	更	理	由
<u>準面とした水平地震力の</u> 及び表 5.2.1-7 に示す。				
レキ撤去の効果と大型カ <u>5.2.1-5 に示す。</u>				
<u>燃料取り出し時</u> <u>701430</u> <u>-12130</u> <u>+143090</u> <u>832390</u>				
<u>直を用いたモーダル解析</u>				

変更前	変更後	変更理由
	 算定した水平地震力を原子炉建屋,大型カバー一般部及び燃料取扱設備支持部の重量比に基づいて分配し,それぞれに作用させる水平地震力を算定する。なお,高さ方向に関しては,原子炉建屋の各階の高さと大型カバーの節点の高さが異なるため,高さ毎に区分けを行った上で重量比を計算する。図 5.2.1-1に大型カバーに作用させる水平地震力の概要図を示す。 <u>Pi2=Pi×(i層の大型カバー(一般部又は燃料取扱設備支持部)の重量/i層の原子炉建屋及び大型カバーの重量)</u> <u>Pi2:当該階とその直下階の大型カバー(一般部又は燃料取扱設備支持部)に作用させる水平地震荷重の差(kN)</u> 	

	 変	更	理	由
• • •				
~~ ~				
· · · · · · · · · · · · · · · · · · ·				
<u>) </u>				

変	更	後
	\sim	

変 更 後								
	<u>表 5.2.1-6(1)</u>	ガレキ撤	去時の水平	地震力の算定	E結果(NS ナ	<u> </u>		
<u>G.L.(m)</u>	<u>各階重量</u> <u>wi(kN)</u>	<u>Wi</u> (kN)	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u> (kN)	<u>Pi</u> (kN)	<u>水平震度</u> <u>ki</u>	
+53.9	<u>24850</u>	<u>)</u> <u> </u>	_	_	<u> </u>	<u>26279</u>	<u>1. 058</u>	
+53.9~+28.9	88990	<u>24850</u>	<u>4. 40</u>	<u>8</u> <u>1.058</u>	<u>26279</u>	<u>12142</u>	<u>0. 136</u>	
+28.9~+21.0	83750	<u>113840</u>	<u>1.40</u>	<u>6</u> <u>0.338</u>	<u>38421</u>	<u>18189</u>	0.217	
+21.0~+15.9	88690	<u>197590</u>	<u>1. 19</u>	<u>0. 287</u>	<u>56610</u>	<u>18109</u>	<u>0.204</u>	
+15.9~+8.7	87240	<u>286280</u>	<u>1. 08</u>	<u>9</u> <u>0.261</u>	<u>74719</u>	<u>14926</u>	<u>0. 171</u>	
<u>+8.7~+0.2</u>	=	<u>373520</u>	<u>1.00</u>	<u>0</u> <u>0.240</u>	<u>89645</u>	_	_	
	表 5.2.1-6(2)	・ ガレキ撤	去時の水平	地震力の算定	『結果(EW J	5向)	<u>.</u>	
<u>G.L.(m)</u>	<u>各階重量</u> wi(kN)	<u>Wi</u> (kN)	<u>Ai</u>	<u>n • Ci</u>	<u>Qi</u> (kN)	<u>Pi</u> (kN)	<u>水平震度</u> <u>ki</u>	
<u>+53. 9</u>	<u>24850</u>	<u>) </u>	_	_	_	<u>26130</u>	<u>1.052</u>	
<u>+53.9~+28.9</u>	<u>8899(</u>	<u>24850</u>	<u>4.38</u>	<u>4</u> <u>1.052</u>	<u>26130</u>	<u>14682</u>	<u>0. 165</u>	
+28.9~+21.0	83750	<u>)</u> <u>113840</u>	<u>1. 49</u>	<u>0.359</u>	<u>40812</u>	<u>17576</u>	<u>0.210</u>	
+21.0~+15.9	88690	<u>)</u> <u>197590</u>	<u>1. 23</u>	<u>0. 296</u>	<u>58388</u>	<u>17190</u>	<u>0. 194</u>	
+15.9~+8.7	87240	<u>286280</u>	<u>1.10</u>	<u>3</u> <u>0.264</u>	75578	<u>14067</u>	<u>0. 161</u>	
<u>+8.7~+0.2</u>	=	373520	<u>1.00</u>	<u>0</u> <u>0.240</u>	<u>89645</u>	_	=	
表	5.2.1-6(3) 力	「レキ撤去時	└時の大型カバーの地震荷重結果(NS・EW 方向)					
	各階重量		<u>NS 方向</u>			<u>EW 方向</u>		
<u>G.L.(m)</u>	<u>wi(kN)</u>	<u>Pi</u> (kN)	<u>一般部</u> Pi ₂ (kN)	<u>然科取扱</u> <u>設備支持</u> <u>部</u> <u>Pi₂(kN)</u>	<u>Pi</u> (kN)	<u>一般部</u> <u>Pi₂(kN)</u>	<u> 然科取扱</u> <u> 設備支持</u> <u> 部</u> <u> Pi₂(kN)</u>	
<u>+53. 9</u>	<u>24850</u>	<u>26400</u>	<u>26400</u>	_	<u>26300</u>	<u>26300</u>	_	
<u>+28. 3</u>	<u>88990</u>	<u>12400</u>	<u>3400</u>	<u>650</u>	<u>14900</u>	<u>4100</u>	<u>750</u>	
<u>+23. 1</u>	83750	18300	<u>1300</u>	<u>350</u>	17700	<u>1300</u>	<u>250</u>	
+18.5			1000	200		<u>1000</u>	200	
		19200			17400	1100	800	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較	跤表(第Ⅱ章	至 2.11	添付 4-	2 燃料取	り出し用え
変更前					変更
		<u>表 5.</u>	2.1-6(1)	ガレキ捕	数去時の水平
		<u>各</u>	階重量	<u>Wi</u>	<u>Ai</u>
	<u>G. L. (m)</u>	<u> </u>	<u>vi (kN)</u>	<u>(kN)</u>	
	+53.9		24850		
	<u>+53.9~+28</u>	<u>8. 9</u>	88990	2485	<u>0</u> <u>4.40</u>
	+28.9~+2	<u>1.0</u>	<u>83750</u>	<u>11384</u>	<u>0</u> <u>1.40</u>
	+21.0~+1	<u>5. 9</u>	<u>88690</u>	<u>19759</u>	<u>0</u> <u>1.19</u>
	+15.9~+8	<u>8. 7</u>	<u>87240</u>	28628	<u>0</u> <u>1.08</u>
	<u>+8.7~+0.</u>	<u>. 2</u>	<u> </u>	<u>37352</u>	<u>0</u> <u>1.00</u>
		表 5.	2.1-6(2)	ガレキ捕	女去時の水平
	G. L. (m)	<u>各</u>	· <u>階重量</u> vi (kN)	<u>Wi</u> (kN)	Ai
	+53.9	- <u>-</u>	24850		
	+53.9~+28	<u>8. 9</u>	<u>88990</u>	2485	<u>0</u> <u>4.38</u>
	+28.9~+2	1.0	83750	11384	<u>0</u> <u>1.49</u>
	+21.0~+1	<u>5. 9</u>	88690	<u>19759</u>	<u>0</u> <u>1.23</u>
	+15.9~+8	<u>3. 7</u>	87240	28628	<u>0</u> <u>1.10</u>
	<u>+8.7~+0.</u>	. 2	_	<u>37352</u>	<u>0</u> <u>1.00</u>
		<u>表 5.2.1-</u>	-6(3) ガ	レキ撤去時	手の大型カバ
		各階重	<u>量</u>		<u>NS 方向</u>
	<u>G. L. (m)</u>	<u>wi(kN</u>	<u>;)</u>	<u>Pi</u> (kN)	<u>一般部</u> <u>Pi₂(kN)</u>
	<u>+53. 9</u>		<u>24850</u>	<u>26400</u>	<u>26400</u>
	<u>+28. 3</u>		<u>88990</u>	<u>12400</u>	<u>3400</u>
	<u>+23. 1</u>		83750	18300	<u>1300</u>
	<u>+18.5</u>				<u>1000</u>
	+14.0		<u>88690</u>	<u>18300</u>	1100

変	更	後
~	へ	

				変 更	後				変	更	理	由
表 5.2.1-7(1) 燃料取り出し時の水平震度の算定結果(NS 方向)												
	<u> 各階</u>	重量	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度				
<u>G.L.(m)</u>	<u>wi(</u>	<u>(N)</u>	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>				
+53.9		<u>24310</u>	_	_			<u>27057</u>	<u>1. 113</u>				
<u>+53.9~+28</u>	<u>8.9</u> 1	37080	<u>2431</u>	<u>0</u> <u>4.63</u>	<u>9</u> <u>1.113</u>	<u>27057</u>	<u>25718</u>	<u>0. 188</u>				
<u>+28.9~+2</u>	<u>1. 0</u>	<u>83750</u>	<u>16139</u>	<u>0</u> <u>1.36</u>	<u>0.327</u>	<u>52775</u>	<u>17825</u>	<u>0. 213</u>				
+21.0~+1	<u>5. 9</u>	<u>88680</u>	<u>24514</u>	<u>0</u> <u>1.20</u>	<u>0. 288</u>	<u>70600</u>	<u>17028</u>	<u>0. 192</u>				
<u>+15.9~+8</u>	<u>3. 7</u>	<u>87810</u>	<u>33382</u>	<u>0</u> <u>1.09</u>	<u>4</u> <u>0.263</u>	87628	<u>13563</u>	<u>0. 154</u>				
<u>+8.7~+0.</u>	.2 _	<u>.</u>	42163	<u>0</u> <u>1.00</u>	<u>0.240</u>	<u>101191</u>	_	_				
	表 5 2	1-7(2)	燃料币	り出し時水平	区電度の質定	結果(FW方	 (由)					
	<u>衣 0.2</u> 各階	<u>1 · (2)</u> 重量	Wi	Ai	n•Ci	Qi	Pi	水平震度				
G.L.(m)	wi (1	<u></u> (N)	(kN)		<u></u>	$\frac{41}{(kN)}$	(kN)	ki				
+53.9	<u> </u>	24310					25197	<u>1.036</u>				
+53.9~+28	<u>8.9</u>	37080	2431	<u>0</u> <u>4.31</u>	<u>9</u> <u>1.037</u>	25197	28788	<u>0. 210</u>				
+28.9~+2]	1.0	83750	16139	<u>0 1.39</u>	<u>6 0.335</u>	53985	<u>18086</u>	0.216				
+21.0~+1	<u>5. 9</u>	88680	24514	<u>0 1.22</u> 4	<u>4</u> <u>0.294</u>	<u>72071</u>	<u>16057</u>	<u>0. 181</u>				
+15.9~+8	<u>3. 7</u>	<u>87810</u>	33382	<u>0 1.10</u>	<u>0.264</u>	88128	<u>13063</u>	0.149				
<u>+8.7~+0.</u>	.2 _		42163	<u>0 1.00</u>	0.240	<u>101191</u>	<u> </u>	_				
	=============	.Labyle		はの上型よい	シーの地帯共	毛仕田 (210						
	<u>表 5.2.1-7(3)</u> <u> 各階重量</u>	<u></u>	<u>r取り直し</u>	<u>NS 方向</u>	、一の地展何	里坦米(NS	<u>• Ew 方向)</u> <u>EW 方向</u>					
<u>G.L. (m)</u>	<u>wi(kN)</u>		<u>Pi</u> (kN)	<u>一般部</u> <u>Pi₂(kN)</u>	<u>燃料取扱</u> 設備支持 <u>部</u> Pi。(kN)	Pi (kN)	<u>一般部</u> Pi ₂ (kN)	<u>燃料取扱</u> 設備支持 部 Pi。(kN)				
+53.9	<u>24</u>	<u>310</u>	<u>27200</u>	<u>27200</u>		<u>25300</u>	<u>25300</u>					
+28.3	<u>137</u>	080	<u>26000</u>	<u>4500</u>	<u>1000</u>	<u>29000</u>	<u>5000</u>	<u>1100</u>				
<u>+23. 1</u>	22	750	18000	<u>1300</u>	<u>350</u>	18150	<u>1300</u>	<u>350</u>				
+18.5				<u>1000</u>	<u>200</u>		<u>900</u>	<u>200</u>				
		<u> </u>	17300	1100	200	16250	1000	300				

福島第一原子力発電所	特定原子力施設に係る実施計画変更比較	較表(第Ⅱ章	E 2.11 添付 4	-2 燃料取	り出し用
変更前					変更
			表 5.2.1-7(1) 燃料取り)出し時の7
			各階重量	<u>Wi</u>	<u>Ai</u>
		<u>G. L. (m)</u>	<u>wi(kN)</u>	<u>(kN)</u>	
		<u>+53. 9</u>	<u>2431</u>	<u>0</u> <u>-</u>	
		+53.9~+28	<u>3. 9</u> <u>13708</u>	<u>2431</u>	<u>.0</u> <u>4.6</u>
		+28.9~+21	0 8375	<u>16139</u>	<u>00</u> <u>1.3</u>
		+21.0~+15	<u>5. 9</u> 8868	<u>24514</u>	<u>1.2</u>
		+15.9~+8	<u>. 7</u> <u>8781</u>	<u>0</u> <u>33382</u>	<u>1. 09</u>
		<u>+8.7~+0.</u>	2 _	<u>42163</u>	<u>1. 00</u>
			<u>表 5.2.1-7(</u>	2) 燃料取	り出し時水
			各階重量	Wi	<u>Ai</u>
		<u>G. L. (m)</u>	<u>wi (kN)</u>	<u>(kN)</u>	
		+53.9	2431	<u> </u>	=
		<u>+53.9~+28</u>	<u>3. 9</u> <u>13708</u>	<u>30</u> <u>2431</u>	<u>0</u> <u>4.3</u>
		+28.9~+21	<u>0</u> <u>8375</u>	<u>16139</u>	<u>1. 39</u>
		+21.0~+15	<u>5. 9</u> 8868	<u>24514</u>	<u>1. 2</u>
		+15.9~+8	.7 8781	<u>0</u> <u>33382</u>	<u>1. 10</u>
		<u>+8.7~+0.</u>	2 _	<u>42163</u>	<u>1.0</u>
			表 5.2.1-7(3) 燃	<u>料取り出し</u>	時の大型カ
			各階重量		<u>NS 方向</u>
		<u>G.L. (m)</u>	wi(kN)	<u>Pi</u> (kN)	<u>一般部</u> Pi ₂ (kN)
		+53.9	<u>24310</u>	<u>27200</u>	27200
		<u>+28.3</u>	<u>137080</u>	<u>26000</u>	4500
		+23.1	93750	18000	<u>1300</u>
		+18.5	<u>03730</u>	10000	<u>1000</u>
		<u>+14.0</u>	<u>88680</u>	<u>17300</u>	<u>1100</u>
			L		

変更前			変更後		変 更 理 由
	5) 荷重組合せ 設計で考慮する荷 ーンの位置を図 5.2 燃料取り出し時にに	<u>けるガレキ撤去用天井クレ</u> <u>*図 5. 2. 1-3 に示す。なお,</u>			
	想定する状態	<u>荷重ケース*1</u>	荷重組合せ内容	許容応力度	
		<u><u>C</u></u>	<u>VL</u>		
	<u>惧当吁</u> 	<u>5</u> w	$\frac{VL+SL}{VI+WI}$		
	<u>茶/武时</u>	<u> </u>	$\frac{VL + WL}{VI + K (+NS)}$	——	
		E2	$\frac{VL+K(-NS)}{VL+K(-NS)}$		
	地震時	E3	VL+K (+EW)		
		<u>E4</u>	VL+K(-EW)		
	<u>*1:ガレキ撤去時は ca</u>	ase1 及び case2,燃料取り	り出し時は case3 及び case4 の状態とする		
	*2:短期事象では地震 が支配的であるこ	時が支配的であることか とから暴風時に対して検	<u>ら,積雪時及び暴風時の検討は省略する。</u> 討を行う	ただし、外装材の検討は暴風時	
			· + i 1	レキ樹土田王サカレーン	
				レイ銀云用人开クレーン	
	case1:プー	ル上部		<u>.</u>	
	o 11. /m/	r	_		
	case2:北側]			
		(南)	(オ	E)	
		図 5.2.1-2	ガレキ撤去用天井クレーンの位置		
			■■■ : 炊 ■■■ : ク	**料取扱機 7 レーン	
	case3:原子	炉建屋内 ————		i	
	case4:燃料	•取扱設備			
	支持	部上			
		(西)	(月	₹)	
			/ / (使用済燃料プール		
	燃料	取扱設備支持部	1 注・燃料版 N 出し時の ガレキ樹土田王井	カレーン位置け北側をする。	
		図 5.2	<u>2.1-3</u> 燃料取扱設備の位置		
		<u></u>			

変 更 前	変更後	変更理由
変更前	変更後 地震時と暴風時の大型カバーの層せん断力について、風荷重の受圧面積が大きい EW 方向で比較した 結果を図 5.2.1-4 に示す。図 5.2.1-4 より、地震時の層せん断力は暴風時の層せん断力を包絡してお り、支配的な荷重である。 ・*80.0 ・*80.0 ・*80.0 ・*1.0 ・*1.0	変更理由
	図 5.2.1-4 地震時と暴風時の層せん断力の比較 (EW 方向)	

変 更 前	変 更 後	変 更 理 由
	(2) 断面検討 <u>1) 柱,梁,水平・鉛直ブレース</u> 部材の応力度比は,「鋼構造設計規準」に従い,軸力に対して下式にて検討を行う。	
	<u>・軸圧縮の場合</u> $\frac{\sigma_c}{f_c} \leq 1$	
	<u>・軸引張の場合</u> $\frac{\sigma_t}{f_t} \leq 1$	
	<u>ここで、σ_c: 圧縮応力度 (N/A) (N/mm²)</u> σ_t : 引張応力度 (T/A) (N/mm ²) N: 圧縮力(N), T: 引張力(N), A: 断面積(mm ²) f_c : 許容圧縮応力度(N/mm ²) f_t : 許容引張応力度(N/mm ²)	
	2) 大型カバー頂部鋼板部 応力度比の検討は、「鋼構造設計規準」に従い、面内力に対し下式にて検討を行う。	
	<u>・組合せ応力の場合</u> $\frac{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3\tau_{xy}^2}{f_t^2} \leq 1$	
	<u>ここで,</u> <u>σ_x:X方向圧縮応力度 (Nx/A) (N/mm²)</u> <u>σ_y:Y方向圧縮応力度 (Ny/A) (N/mm²)</u> <u>Nx:X方向面内力(N), Ny:Y方向面内力(N), A:断面積(mm²)</u> <u>τ_{xy}:せん断応力度 (Nxy/As) (N/mm²)</u> <u>Nxy:面内せん断力(N), As:せん断断面積(mm²)</u> <u><u>f_t:許容引張応力度(N/mm²)</u></u>	

変更前

変	更	後
反	Y.	仅

3)

変更後											更	理	由	
) ガレキ撤去時 表 5.2.2-1 及び表 5.2.2-2 に応力度比が最大となる部位の断面検討結果を示す。 断面検討の結果,全ての部材に対する応力度比が1以下になることを確認した。														
	表 5.2.2-1(1) 断面検討結果(一般部,常時)													
	部位*1	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置) ^{*3}	<u>作</u> 応 <u>(N</u>	作用 許容 応力度 応力度 (N/mm ²) (N/mm ²)			<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>()</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case1)	<u> </u>	<u>89. 6</u>	<u>f</u> c	<u>170. 9</u>	<u>0. 53</u>	<u>O. K.</u>					
<u>2</u>	<u>梁</u>	$\frac{\text{H-588}\times300\times12}{\times20}$	<u>C</u> (case1)	<u> </u>	<u>50. 7</u>	<u>f</u> c	<u>201. 1</u>	<u>0.26</u>	<u>0. K.</u>					
3	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)	<u>C</u> (case1)	<u><u> </u></u>	<u>106. 1</u>	<u>f</u> c	<u>187. 5</u>	<u>0. 57</u>	<u>0. K.</u>					
<u>4</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>C</u> (case1)	<u><u> </u></u>	<u>147. 8</u>	<u>f</u> c	<u>204. 2</u>	<u>0. 73</u>	<u>0. K.</u>					
<u>(</u>	<u>鋼板</u>	<u>PL-16</u> <u><sn400b></sn400b></u>	<u>C</u> (case1)	$\frac{\sigma_x}{\sigma_y}$	<u>4.1</u> <u>8.7</u> <u>34.1</u>	<u>f</u> t	<u>156. 0</u>	<u>0. 39</u>	<u>O. K.</u>					
	表													
	<u>部位*1</u>	<u>部材形状 (mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>作</u> 応 (N	<u>作用</u> 力度 /mm ²)	<u>成</u> (1	<u>許容</u> 5 <u>力度</u> V/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u><u>C</u> (—*4)</u>	<u><u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>13. 1</u>	<u>f</u> c	<u>202. 7</u>	<u>0. 07</u>	<u>O. K.</u>					
<u>(7)</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14}{\times26}$	<u><u>C</u> (—*4)</u>	<u> </u>	<u>20. 2</u>	<u>f</u> c	<u>175. 8</u>	<u>0. 12</u>	<u>O. K.</u>					
8	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> <u>+2PL-28×91)</u>	<u><u>C</u> (—*4)</u>	<u><u></u><u></u><u></u><u></u><u></u></u>	<u>40. 7</u>	<u>f</u> t	<u>216. 6</u>	<u>0. 19</u>	<u>O. K.</u>					
<u>9</u>	<u>鉛直</u> ブレース	$\phi = 355.6 \times 7.9$	<u><u>C</u> (—*4)</u>	<u><u> </u></u>	<u>58. 7</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>207. 7</u>	<u>0. 29</u>	<u>O. K.</u>					
	*1:①~③の符号は図 5.2.2-2 の応力検討箇所を示す *2:各部材の使用材料は,特記なき限り,鋼管:STKN490B,その他 SN490B *3:図 5.2.1-2 にガレキ撤去用天井クレーンの位置を示す *4:ガレキ撤去用天井クレーンの位置によらない													

変更後											更	理	由	
<u></u>														
	表 5.2.2-1(1) 断面検討結果(一般部,常時)													
	<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置) ^{*3}	<u>化</u> 応 (N/	作用 許容 応力度 応力度 (N/mm ²) (N/mm ²)			<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>D</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case1)	<u><u> </u></u>	<u>89. 6</u>	<u>f</u> c	<u>170. 9</u>	<u>0. 53</u>	<u>0. K.</u>					
2	<u>梁</u>	$\frac{\text{H-588} \times 300 \times 12}{\times 20}$	<u>C</u> (case1)	<u> </u>	<u>50. 7</u>	<u>f</u> c	<u>201. 1</u>	<u>0.26</u>	<u>O. K.</u>					
<u>3</u>	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> +2PL-28×91)	<u>C</u> (case1)	<u><u> </u></u>	<u>106. 1</u>	<u>f</u> c	<u>187. 5</u>	<u>0. 57</u>	<u>O. K.</u>					
<u>4</u>)	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>C</u> (case1)	<u><u> </u></u>	<u>147. 8</u>	<u>f</u> c	<u>204. 2</u>	<u>0. 73</u>	<u>0. K.</u>					
<u>5)</u>	<u>鋼板</u>	<u>PL-16</u> < <u>SN400B></u>	<u>C</u> (case1)	$\frac{\sigma_x}{\sigma_y}$	<u>4.1</u> <u>8.7</u> <u>34.1</u>	<u>f</u> t	<u>156. 0</u>	<u>0. 39</u>	<u>O. K.</u>					
	表 5. 2. 2-1(2) 断面検討結果(燃料取扱設備支持部,常時)													
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)*3	了 <u>応</u> (N	<u>作用</u> 力度 /mm ²)	<u>応</u> (1	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6)</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u><u>C</u> (-*4)</u>	<u><u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>13. 1</u>	<u>f</u> c	<u>202. 7</u>	<u>0. 07</u>	<u>O. K.</u>					
<u>7</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14}{\times26}$	<u><u>C</u> (—*4)</u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>20. 2</u>	<u>f</u> c	<u>175. 8</u>	<u>0. 12</u>	<u>O. K.</u>					
<u>8)</u>	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)_	<u><u>C</u> (—*4)</u>	<u><u> </u></u>	<u>40. 7</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>216. 6</u>	<u>0. 19</u>	<u>0. K.</u>					
<u>9</u>	<u>鉛直</u> ブレース	<u>φ-355.6×7.9</u>	<u><u>C</u> (—*4)</u>	<u><u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>58. 7</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>207. 7</u>	<u>0. 29</u>	<u>O. K.</u>					
	*1:①~⑨の符号は図 5.2.2-2 の応力検討箇所を示す *2:各部材の使用材料は,特記なき限り,鋼管:STKN490B,その他 SN490B *3:図 5.2.1-2 にガレキ撤去用天井クレーンの位置を示す *4:ガレキ撤去用天井クレーンの位置によらない													

	変	更	理	由
5.力度比位置 ローボルト最大耐力比位置 3.最大応力度比位置				
の力度比位置 カーボルト最大耐力比位置 部最大応力度比位置				
9				
13				
常時)				

	変更後										更	理	由	
		<u>表 5.2.2-2(1)</u>	断面検討結果	艮(一舟	<u> </u>	<u> 震時)</u>	_							
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u> </u>	<u>作用</u> 力度 /mm ²)	<u>成</u> (1	<u>許容</u> 5力度 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>()</u>	柱	$\frac{\text{H}-428\times407\times20}{\times35}$	<u>E2</u> (case1)	<u><u> </u></u>	<u>171. 8</u>	<u>f</u> c	<u>305.6</u>	<u>0. 57</u>	<u>O. K.</u>					
<u>2</u>	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>E4</u> (case1)	<u><u> </u></u>	<u>132. 2</u>	<u>f</u> c	<u>301. 6</u>	<u>0. 44</u>	<u>O. K.</u>					
<u>③</u>	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)	<u>E4</u> (case1)	<u><u> </u></u>	<u>276. 9</u>	<u>f</u> c	<u>284. 6</u>	<u>0. 98</u>	<u>O. K.</u>					
<u>(4)</u>	<u>鉛直</u> ブレース	<u> </u>	<u>E1</u> (case2)	<u><u> </u></u>	<u>301. 1</u>	$\underline{\mathbf{f}}_{\underline{t}}$	<u>325. 0</u>	<u>0. 93</u>	<u>O. K.</u>					
<u>(5)</u>	鋼板	<u>PL-16</u> <sn400b></sn400b>	<u>E4</u> (case2)	$\frac{\sigma_x}{\sigma_y}$	<u>34.5</u> <u>8.0</u> <u>53.1</u>	<u>f</u> t	<u>235. 0</u>	<u>0. 42</u>	<u>O. K.</u>					
	<u>表</u>	5.2.2-2(2) 断面	<u> </u>	斗取扱詞	没備支持	部,地	<u>1震時)</u>							
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>1</u> 応 (N	<u>作用</u> 力度 /mm ²)	<u>元</u> (1	<u>許容</u> 5.力度 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	$\frac{\underline{E1}}{(-^{*4})}$	<u><u></u> <u></u><u></u><u></u></u>	<u>7. 0</u>	<u>f</u> c	<u>304. 1</u>	<u>0. 03</u>	<u>O. K.</u>					
<u>(7)</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14}{\times26}$	$\underline{\underline{E4}}_{(-*4)}$	<u>σ</u> _c	<u>24. 3</u>	<u>f</u> c	<u>263. 7</u>	<u>0. 10</u>	<u>O. K.</u>					
<u>(8)</u>	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)	$\frac{E1}{(-^{*4})}$	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>58. 8</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 19</u>	<u>O. K.</u>					
<u>9</u>	<u>鉛直</u> <u>ブレース</u>	<u> </u>	$\frac{\underline{E1}}{(-^{*4})}$	<u> </u>	<u>69. 5</u>	<u>f</u> c	<u>311. 5</u>	<u>0. 23</u>	<u>O. K.</u>					
		<u>*1:①</u> ~⑤の <u>*2:各部材の</u> <u>*3:図5.2.1-</u> <u>*4:ガレキ撤</u>	付亏(は図 5.2.2~、 使用材料は,特 3 2 にガレキ撤去F 去用天井クレーン	3	(<u>快</u> 前) (<u></u>) ((たよらな) (た	<u>を小り</u> : STKN 位置を: ハ	<u>490B, その</u> 示 <u>す</u>	<u>他 SN490B</u>						

	変更後										更	理	由	
		<u>表 5.2.2-2(1)</u>	断面検討結果	艮(一舟	<u> </u>	震時)	_							
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u> </u>	<u>作用</u> <u>力度</u> /mm ²)	<u>成</u> (1	<u>許容</u> 5力度 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>()</u>	<u>柱</u>	$\frac{\text{H-428} \times 407 \times 20}{\times 35}$	<u>E2</u> (case1)	<u><u> </u></u>	<u>171. 8</u>	<u>f</u> c	<u>305.6</u>	<u>0. 57</u>	<u>O. K.</u>					
<u>②</u>	<u>梁</u>	$\frac{\text{H-588}\times300\times12}{\times20}$	<u>E4</u> (case1)	<u> </u>	<u>132. 2</u>	<u>f</u> c	<u>301. 6</u>	<u>0. 44</u>	<u>O. K.</u>					
<u>3</u>	<u>水平</u> <u>ブレース</u>	$\frac{+ \div PL}{(PL-28 \times 210)}$ $\frac{+ 2PL-28 \times 91)}{+ 2PL-28 \times 91)}$	<u>E4</u> (case1)	<u><u> </u></u>	<u>276. 9</u>	<u>f</u> c	<u>284. 6</u>	<u>0. 98</u>	<u>O. K.</u>					
<u>4</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>E1</u> (case2)	<u><u></u> <u></u></u>	<u>301. 1</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>325. 0</u>	<u>0. 93</u>	<u>O. K.</u>					
<u>(5)</u>	鋼板	<u>PL-16</u> <sn400b></sn400b>	<u>E4</u> (case2)	$\frac{\sigma_x}{\sigma_y}$	<u>34.5</u> <u>8.0</u> <u>53.1</u>	<u>f</u> t	<u>235. 0</u>	<u>0. 42</u>	<u>O. K.</u>					
	<u>表</u>	<u>5.2.2-2(2) 断面</u> 材	<u> </u>	和取扱言	没備支持	部,地	1震時)							
	<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>1</u> 応 (N	<u>乍用</u> <u>力度</u> /mm ²)	<u>尻</u> (1	<u>許容</u> 5 <u>力度</u> V/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	$\frac{\underline{E1}}{(-^{*4})}$	<u><u></u> <u></u><u></u><u></u></u>	<u>7. 0</u>	<u>f</u> c	<u>304. 1</u>	<u>0. 03</u>	<u>O. K.</u>					
<u>(7)</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14}{\times26}$	$(\underline{\underline{E4}})$	<u><u> </u></u>	<u>24. 3</u>	<u>f</u> c	<u>263. 7</u>	<u>0. 10</u>	<u>O. K.</u>					
<u>8</u>	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> <u>+2PL-28×91)</u>	$\frac{\underline{E1}}{(-^{*4})}$	<u><u> </u></u>	<u>58. 8</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 19</u>	<u>O. K.</u>					
<u>9</u>	<u>鉛直</u> <u>ブレース</u>	<u></u>	$\frac{\underline{E1}}{(-^{*4})}$	<u> </u>	<u>69. 5</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>311. 5</u>	<u>0. 23</u>	<u>O. K.</u>					
		<u>*1:①</u> ~⑤の <u>*2:各部材の</u> <u>*3:図5.2.1-</u> <u>*4:ガレキ撤</u>	付亏(は図 5.2.2~、 使用材料は,特 2 にガレキ撤去F 去用天井クレーン	3	(<u>快</u> 前) (<u></u>) ((たよらな) (た	<u>を小り</u> : STKN 立置を: <u>ハ</u>	<u>190B, その</u> 示 <u>す</u>	<u>他 SN490B</u>						

 福島第一原子	子力発電所	特定原子力加	施設に係る実	施計画変更比較	較表	(第Ⅱ章 2.11	添付 4-2 燃料耳	反り出し
	変更前							変
							<u>表 5.2.2-2(1)</u>	断面格
						<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷</u> <u>ケー</u> (位置
					<u>()</u>	<u>柱</u>	$\frac{\text{H-428} \times 407 \times 20}{\times 35}$	<u>E:</u> (cas
					2	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>E</u> 4 (cas
					<u>3</u>	<u>水平</u> <u>ブレース</u>	$\frac{\underline{+ \div PL}}{(PL-28 \times 210)}$ +2PL-28 × 91)	<u>E4</u> (cas
					<u>4</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>E</u> (cas
					5	<u>鋼板</u>	<u>PL-16</u> < <u>SN400B></u>	<u>E4</u> (cas
						<u>表</u>	5.2.2-2(2) 断面材	<u> </u>
						<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷</u> <u>ケー</u> (位置
					<u>6</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E</u> (—
					<u>(7)</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14}{\times26}$	<u>E</u> (—
					8	<u>水平</u> ブレース	$\frac{+ \not \supseteq PL}{(PL-28 \times 210)}$ $\frac{+ 2PL-28 \times 91)}{(PL-28 \times 91)}$	<u>E</u> (—
					<u>9</u>	<u>鉛直</u> <u>ブレース</u>	<u> </u>	<u>E</u> (—
							*1 : ①~⑨の *2 : 各部材の *3 : 図 5.2.1- *4 : ガレキ撤:	<u>符号は図</u> <u>使用材料</u> <u>2</u> にガレ 去用天井

	変	更	理	由
5力度比位置 ローボルト最大耐力比位置 3最大応力度比位置				
応力度比位置 カーボルト最大耐力比位置 部最大応力度比位置				
- 9				
, 13 I				
<u>也震時)</u>				

変更前

4)	燃料取り出し時	
1/		

	変更後											理	由	
<u>)</u> 麦 断	<u>然料取り出し時</u> 5. 2. 2-3 及び表 5. 面検討の結果,全													
		表 5.2.2-3(1)	断面検討結	果(一	<u>般部, 常</u>	<u> (時)</u>								
	<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>作</u> 応 (N/	<u> </u>	<u>応</u> (N	<u>許容</u> 5力度 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>()</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case3)	<u><u> </u></u>	<u>91. 3</u>	<u>f</u> c	<u>202. 7</u>	<u>0. 46</u>	<u>0. K.</u>					
<u>2</u>	<u>梁</u>	$\frac{\text{H-350}\times350\times12}{\times19}$	<u>C</u> (case3)	<u> </u>	<u>49.6</u>	<u>f</u> c	<u>183. 8</u>	<u>0. 27</u>	<u>0. K.</u>					
<u>3</u>	<u>水平</u> ブレース	<u>十字 PL</u> (PL-28×210 +2PL-28×91)	<u>C</u> (case3)	<u> </u>	<u>91. 1</u>	<u>f</u> c	<u>187. 5</u>	<u>0. 49</u>	<u>O. K.</u>					
<u>4</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>C</u> (case3)	<u> </u>	<u>127. 8</u>	<u>f</u> c	<u>204. 2</u>	<u>0.63</u>	<u>0. K.</u>					
5	<u>鋼板</u>	<u>PL-16</u> <sn400b></sn400b>	<u>C</u> (case3)	$\frac{\sigma_x}{\sigma_y}$	$ \frac{1.7}{5.5} 14.2 $	<u>f</u> t	<u>156. 0</u>	<u>0. 17</u>	<u>O. K.</u>					
	<u></u> 妻	€5.2.2-3(2) 断面	検討結果(燃	料取扱	設備支持	序部, (常時)							
	<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>化</u> 応 (N/	<u>作用</u> 力度 /mm ²)	<u>床</u> (1	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case4)	<u><u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>17. 3</u>	<u>f</u> c	<u>202. 7</u>	<u>0. 09</u>	<u>0. K.</u>					
7	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>C</u> (case4)	<u><u></u> <u></u> </u>	<u>7. 6</u>	$\underline{\mathbf{f}}_{t}$	<u>216. 6</u>	<u>0. 04</u>	<u>O. K.</u>					
8	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)_	<u>C</u> (case4)	<u><u> </u></u>	<u>46. 6</u>	<u>f</u> t	<u>216. 6</u>	<u>0. 22</u>	<u>0. K.</u>					
9	<u>鉛直</u> ブレース	<u> </u>	<u>C</u> (case4)	<u><u> </u></u>	<u>99. 8</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>207. 7</u>	<u>0. 49</u>	<u>0. K.</u>					
		*1 : ①~⑨の7 *2 : 各部材のf *3 : 図 5.2.1-:	符号は図 5. 2. 2 吏用材料は,特請 3 に燃料取扱設∉	<u>4 の応力</u> 12なき限 備の位置	<u>検討箇所;</u> り,鋼管 <u>を示す</u>	を示す :STKN	490B, その	他 SN490B						

	変更後											理	由	
<u>)</u> 表 断	<u>燃料取り出し時</u> 5. 2. 2-3 及び表 5. 面検討の結果,全													
		表 5.2.2-3(1)	断面検討結	果(一	般部,常	<u>(時)</u>								
	<u>部位*1</u>	<u>部材形状(mm)</u> <u>〈使用材料*2〉</u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>作</u> 応 <u>(N</u> /	<u>=用</u> 力度 (mm ²)	<u>応</u> (<u>)</u>	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>(]</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case3)	<u><u> </u></u>	<u>91. 3</u>	<u>f</u> c	<u>202. 7</u>	<u>0. 46</u>	<u>0. K.</u>					
<u>②</u>	<u>梁</u>	$\frac{\text{H-350}\times350\times12}{\times19}$	<u>C</u> (case3)	<u><u> </u></u>	<u>49.6</u>	<u>f</u> c	<u>183. 8</u>	<u>0. 27</u>	<u>0. K.</u>					
<u>3</u>	<u>水平</u> ブレース	<u>十字 PL</u> (PL-28×210 +2PL-28×91)	<u>C</u> (case3)	<u> </u>	<u>91. 1</u>	<u>f</u> c	<u>187. 5</u>	<u>0. 49</u>	<u>O. K.</u>					
<u>4</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>C</u> (case3)	<u> </u>	<u>127. 8</u>	<u>f</u> c	<u>204. 2</u>	<u>0.63</u>	<u>O. K.</u>					
5	鋼板	<u>PL-16</u> < <u>SN400B></u>	<u>C</u> (case3)	$\frac{\sigma_x}{\sigma_y}$		<u>f</u> t	<u>156. 0</u>	<u>0. 17</u>	<u>O. K.</u>					
	表	€5.2.2-3(2) 断面	検討結果(燃	料取扱	設備支持	部,(常時)							
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>作</u> <u>応</u> (N/	<u> </u>	<u>成</u> (1	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>					
<u>6</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>C</u> (case4)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>17. 3</u>	<u>f</u> c	<u>202. 7</u>	<u>0.09</u>	<u>O. K.</u>					
<u>(7)</u>	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>C</u> (case4)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>7. 6</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>216. 6</u>	<u>0. 04</u>	<u>0. K.</u>					
8	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> <u>+2PL-28×91)</u>	<u>C</u> (case4)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>46. 6</u>	$\underline{\mathbf{f}}_{\underline{t}}$	<u>216. 6</u>	<u>0. 22</u>	<u>0. K.</u>					
<u>9</u>	<u>鉛直</u> ブレース	<u>φ-355.6×7.9</u>	<u>C</u> (case4)	<u><u> </u></u>	<u>99. 8</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>207. 7</u>	<u>0. 49</u>	<u>0. K.</u>					
		<u>*1 : ①~⑨の4</u> <u>*2 : 各部材の4</u> <u>*3 : 図 5.2.1-</u>	守号は図 5.2.2 吏用材料は,特 調に燃料取扱設(4 の応力 己なき限 備の位置	<u>検討箇所</u> り,鋼管 <u>を示す</u>	<u>を示す</u> : STKN4	190B, その	也 SN490B						

	変	更	理	由
な力度比位置 カーボルト最大耐力比位置 邪最大応力度比位置				
芯力度比位置 カーボルト最大耐力比位置 部最大応力度比位置				
9				
)				
<u>常時)</u>				

			変更理由							
		<u>表 5.2.2-4(1)</u>	断面検討結果	<u> </u>	<u> </u>	震時)	_			
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u> </u>	<u>作用</u> <u>力度</u> /mm ²)	<u>成</u> (1	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
<u>()</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E1</u> (case3)	<u><u> </u></u>	<u>171. 8</u>	<u>f</u> c	<u>304. 1</u>	<u>0. 57</u>	<u>O. K.</u>	
<u>2</u>	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>E1</u> (case3)	<u><u> </u></u>	<u>136. 3</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 42</u>	<u>O. K.</u>	
<u>③</u>	<u>水平</u> <u>ブレース</u>	<u>十字 PL</u> <u>(PL-28×210</u> +2PL-28×91)	<u>E3</u> (case3)	<u><u></u><u></u><u></u><u></u><u></u></u>	<u>299. 2</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 93</u>	<u>O. K.</u>	
<u>4</u>	<u>鉛直</u> <u>ブレース</u>	<u> </u>	<u>E1</u> (case3)	<u><u> </u></u>	<u>295. 4</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>325. 0</u>	<u>0. 91</u>	<u>O. K.</u>	
<u>(5)</u>	鋼板	<u>PL-16</u> <sn400b></sn400b>	<u>E4</u> (case3)	$\frac{\sigma_x}{\sigma_y}$	<u>34.2</u> <u>8.0</u> <u>52.2</u>	<u>f</u> t	<u>235. 0</u>	<u>0. 41</u>	<u>O. K.</u>	
	<u>表</u>	5.2.2-4(2) 断面相	<u> </u>	斗取扱言	没備支持	部,地	1震時)			
	<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>1</u> 応 (N	<u>作用</u> 力度 /mm ²)	<u>后</u> (1	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
<u>6</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E4</u> (case4)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>19. 9</u>	<u>f</u> c	<u>304. 1</u>	<u>0. 07</u>	<u>O. K.</u>	
<u>(7)</u>	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>E1</u> (case4)	<u><u></u> <u></u> </u>	<u>11. 3</u>	<u>f</u> t	<u>325. 0</u>	<u>0.04</u>	<u>O. K.</u>	
<u>(8)</u>	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> <u>+2PL-28×91)</u>	<u>E1</u> (case4)	<u><u> </u></u>	<u>68. 0</u>	$\underline{\mathbf{f}}_{\underline{t}}$	<u>325. 0</u>	<u>0. 21</u>	<u>O. K.</u>	
<u>9</u>	<u>鉛直</u> <u>ブレース</u>	<u>φ-355.6×7.9</u>	<u>E1</u> (case4)	<u> </u>	<u>113. 9</u>	<u>f</u> c	<u>311. 5</u>	<u>0. 37</u>	<u>O. K.</u>	
		<u>*1 : ①~⑨の</u> / <u>*2 : 各部材の</u> *3 : 図 5.2.1-	符号は図 5.2.2-{ 使用材料は,特訂 3 に燃料取扱設備	<u>5 の応力</u> 記なき限 備の位置	検討箇所 り,鋼管 を示す	<u>を示す</u> : STKN4	490B, その [,]	他 SN490B		

			変	更理	₫ 由								
		<u>表 5.2.2-4(1)</u>	断面検討結果	<u> </u>	<u> </u>	 喪時)	_						
	<u>部位*1</u>	<u>部材形状(mm)</u> <使用材料 ^{*2>}	<u>荷重</u> <u>ケース</u> (位置)* ³	<u> </u>	<u>作用</u> <u>力度</u> /mm ²)	<u>杭</u> ()	<u>許容</u> 5 <u>力度</u> 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>				
<u>()</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E1</u> (case3)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>171. 8</u>	<u>f</u> _	<u>304. 1</u>	<u>0. 57</u>	<u>O. K.</u>				
2	<u>梁</u>	$\frac{\text{H-588}\times300\times12}{\times20}$	<u>E1</u> (case3)	<u><u> </u></u>	<u>136. 3</u>	$\underline{f}_{\underline{t}}$	<u>325. 0</u>	<u>0. 42</u>	<u>O. K.</u>				
<u>3</u>	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> <u>+2PL-28×91)</u>	<u>E3</u> (case3)	<u><u> </u></u>	<u>299. 2</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 93</u>	<u>O. K.</u>				
<u>(4)</u>	<u>鉛直</u> ブレース	<u>φ-267.4×6.6</u>	<u>E1</u> (case3)	<u><u> </u></u>	<u>295. 4</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 91</u>	<u>O. K.</u>				
<u>5</u>	鋼板	<u>PL-16</u> < <u>SN400B></u>	<u>E4</u> (case3)	$\frac{\sigma_x}{\sigma_y}$	<u>34.2</u> <u>8.0</u> <u>52.2</u>	<u>f</u> t	<u>235. 0</u>	<u>0. 41</u>	<u>O. K.</u>				
	<u>表</u>	<u>5.2.2-4(2) 断面</u> 材	<u> </u>	斗取扱詞	设備支持	部,地	<u>1震時)</u>						
	<u>部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³	<u>1</u> 応 (N	<u>作用</u> 力度 /mm ²)	<u>后</u> (1	<u>許容</u> 5力度 1/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>				
<u>6</u>	柱	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E4</u> (case4)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>19.9</u>	<u>f</u> c	<u>304. 1</u>	<u>0. 07</u>	<u>O. K.</u>				
<u>(7)</u>	<u>梁</u>	$\frac{\text{H}-588\times300\times12}{\times20}$	<u>E1</u> (case4)	<u><u></u> <u></u> </u>	<u>11. 3</u>	$\underline{\mathbf{f}}_{t}$	<u>325. 0</u>	<u>0. 04</u>	<u>O. K.</u>				
<u>(8)</u>	<u>水平</u> ブレース	<u>十字 PL</u> (PL-28×210 +2PL-28×91)	<u>E1</u> (case4)	<u><u> </u></u>	<u>68. 0</u>	<u>f</u> t	<u>325. 0</u>	<u>0. 21</u>	<u>O. K.</u>				
<u>9</u>	<u>鉛直</u> <u>ブレース</u>	<u> </u>	<u>E1</u> (case4)	<u>σ</u>	<u>113. 9</u>	<u>f</u> c	<u>311. 5</u>	<u>0. 37</u>	<u>O. K.</u>				
		<u>*1 : ①~⑨の⁄</u> <u>*2 : 各部材の</u> *3 : 図 5.2.1-	<u>符号は図 5.2.2-</u> 使用材料は,特訂 3 に燃料取扱設値	<u>5 の応力</u> 記なき限 備の位置	検討箇所 り,鋼管 を示す	<u>を示す</u> : STKN4	<u>490B, その</u>	<u>他 SN490B</u>					

福島第一原子力発電所	特定原子力施設に係る実施計画変更比較	較表	(第Ⅱ章 2.11	添付 4-2 燃料即	友り出し用
変更前					変更
				表 5.2.2-4(1)	断面検討約
			<u> </u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>荷重</u> <u>ケース</u> (位置)* ³
		<u>①</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E1</u> (case3)
		<u>②</u>	<u>梁</u>	$\frac{\text{H-588}\times300\times12}{\times20}$	<u>E1</u> (case3)
		<u>3</u>	<u>水平</u> <u>ブレース</u>	$\frac{\underline{+2PL}}{\underline{(PL-28\times210)}}$	<u>E3</u> (case3)
		<u>4</u>	<u>鉛直</u> <u>ブレース</u>	<u>φ-267.4×6.6</u>	<u>E1</u> (case3)
		<u>(5)</u>	鋼板	<u>PL-16</u> < <u>SN400B></u>	<u>E4</u> (case3)
			<u>表</u>	5.2.2-4(2) 断面材	<u> </u>
			<u>部位*1</u>	<u>部材形状 (mm)</u> <使用材料 ^{*2>}	<u>荷重</u> <u>ケース</u> (位置)* ³
		<u>6</u>	<u>柱</u>	$\frac{\text{H-400}\times400\times13}{\times21}$	<u>E4</u> (case4)
		<u>(7)</u>	<u>梁</u>	$\frac{\text{H-588}\times300\times12}{\times20}$	<u>E1</u> (case4)
		<u>(8)</u>	<u>水平</u> ブレース	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)	<u>E1</u> (case4)
		<u>(9)</u>	<u>鉛直</u> ブレース	$\phi = 355.6 \times 7.9$	<u>E1</u> (case4)
				<u>*1 : ①~⑨の</u> <u>*2 : 各部材の</u> *3 : 図 5. 2. 1-	<u>等号は図 5.2.</u> 吏用材料は, 3 に燃料取扱詞

	変	更	理	由	
芯力度比位置 カーボルト最大耐力比位置 邪最大応力度比位置					
応力度比位置 カーボルト最大耐力比位置 部最大応力度比位置					
9					
也震時)					

変 更 前			変更理由							
	<u>5.2.3</u> 建屋] (1) アンカ・ 大型カバー (SNR490B) (0 人日本建築を 強度を用いて 標準図を示す									
	<u>表 5.2.3-1 接着系アンカーボルトの許容耐力</u>									
			1-777-2/444	<u>GL+13.7</u>	<u>GL+27.9</u>					
		<u>817</u>	<u>標準</u>	<u>標準</u>						
		鋼材種類	<u>M33</u> SNR490B	<u>M33</u> SNR490B	<u>M33</u> SNR490B					
		<u>埋め込み長さ (mm)</u>	375	375	<u>450</u>					
		_ アンカーボルト間隔 (mm)	<u>400</u>	<u>400</u>	<u>400</u>					
	E #1	<u>許容引張力(paL) (kN/本)</u>	<u>83</u>	<u>118</u>	<u>90</u>					
	<u> </u>	<u>許容せん断力(qa_l) (kN/本)</u>	<u>76</u>	<u>76</u>	<u>76</u>					
	毎期	<u>許容引張力(pas) (kN/本)</u>	<u>166</u>	<u>236</u>	<u>180</u>					
		<u>許容せん断力(qas) (kN/本)</u>	<u>152</u>	<u>152</u>	<u>152</u>					

	変更前	変更後	変更理由
Image: state		アンカーボルトの検討は、建屋取り合い部に生じる最大支点反力に対し、下式にて検討を行う。 $\frac{P}{P_a} \leq 1$ $Pa: T > D = \pi / N + 0$ 許容引張耐力 (kN) $\frac{Q}{Q_a} \leq 1$ $Qa: T > D = \pi / N + 0$ 許容せん断耐力 (kN) $\frac{Q}{Q_a} \leq 1$ $P: T > D = \pi / N + 0$ 引張力 (kN) $\left(\frac{P}{P_a}\right)^2 + \left(\frac{Q}{Q_a}\right)^2 \leq 1$	
		アンカーボルト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

変更前	変更後	変更理由
	 1) ガレキ撤去時 表 5.2.3-2 に耐力比が最大となる部位の検討結果を示す。 検討の結果,アンカーボルトの最大耐力比は1以下になることを確認した。 	
	部位*1 (アンカー本 数)荷重 ケース (位置)*2作用応力 日 生ん断力 (kN)許容耐力 許容 日 引張力 月 (kN)前日 生ん断力 月 (kN)前日 生ん断力 (上N)利日 中 (上N)判定	
	$ \underbrace{10}_{(12)} \begin{array}{c c} \hline \hline r \lor h \\ \hline \hline r \lor h \\ \hline \hline (12) \end{array} \begin{array}{c c} \hline \underline{C} \\ \hline \underline{C} \\ \hline \underline{C} \\ \underline$	
	<u>表 5.2.3-2(2) アンカーボルトの検討結果(燃料取扱設備支持部,常時)</u>	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	*1:図 5.2.2-2 に応力検討固加を示す *2:図 5.2.1-2 にガレキ撤去用天井クレーンの位置を示す *3:ガレキ撤去用天井クレーンの位置によらない	

変 更 前

変更後								変	更現	運 由		
		表 5.2.3-2(3)	アンカー	・ボルトの検言	寸結果(一舟	_{役部,} 地震時))					
	部位*1	<u>荷重</u>	荷重 作用応力		<u>許</u> 容	<u>译耐力</u>						
	<u>アンカー本</u> <u>数)</u>	<u>ケース</u> <u>(位置)*2</u>	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>				
<u>10</u>	<u>アンカー</u> <u>ボルト</u> <u>(34)</u>	<u>E3</u> (case1)	<u>0</u>	<u>3288</u>	<u>5644</u>	<u>5168</u>	<u>0. 64</u>	<u>0. K.</u>				
	<u>表 5.2</u>	3-2(4) アン	<u>、カーボルト</u>	の検討結果	(燃料取扱言	没備支持部,	地震時)					
	部位*1	荷重	<u>作</u> 月	<u>]応力</u>	<u>許</u> 容	<u> </u>						
_()	<u>アンカー本</u> <u>数)</u>	<u>ケース</u> (位置)*2	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa (kN)</u>	耐力比	<u>判定</u>				
<u>(1)</u>	<u>アンカー</u> <u>ボルト</u> <u>(12)</u>	$\frac{E1}{(-^{*3})}$	<u>0</u>	<u>487</u>	<u>2832</u>	<u>1824</u>	<u>0. 27</u>	<u>0. K.</u>				
				<u>*2 : 図 5, 2, 1-2</u> <u>*3 : ガレキ撤</u> ∃	<u>2 に</u> 万 二 二 二 二 二 二 二 二 二 二 二 二 二	<u> </u>	<u>・シの位置を刃 らない</u>	<u>~7</u>				

変更後								変	更理	由		
	<u>表 5.2.3-2(3) アンカーボルトの検討結果(一般部,地震時)</u>											
			荷重 作用応力 許容耐力 対定 利定									
		<u> </u>	<u>クース</u> (位置)* ²	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> Q <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>		刊建			
	<u>10</u>	<u>アンカー</u> <u>ボルト</u> _(34)	<u>E3</u> (case1)	<u>0</u>	<u>3288</u>	<u>5644</u>	<u>5168</u>	<u>0. 64</u>	<u>O. K.</u>			
		<u>表 5.2</u> .	. 3-2(4) アン	·カーボルト	、の検討結果	(燃料取扱詞	設備支持部,	地震時)				
	<u> </u>	位*1	荷重	<u>作月</u>	<u>用応力</u>	<u>許</u> 2	<u>客耐力</u>					
	<u>(アン</u> <u>業</u>	<u><カー本</u> <u>女)</u>	<u>ケース</u> (位置)* ²	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>			
	<u>(1)</u>	アンカー <u>ボルト</u> <u>(12)</u>	$\frac{\underline{E1}}{(-^{*3})}$	<u>0</u>	<u>487</u>	<u>2832</u>	<u>1824</u>	<u>0. 27</u>	<u>0. K.</u>			
					<u>*1:図5.2.2-</u> <u>*2:図5.2.1-</u> *3:ガレキ物=	<u>3 に応力検討</u> 2 にガレキ撤 5 田天共クレ	<u>箇所を示す</u> 去用天井クレー ーンの位置に上	·ンの位置を表 らない	テす_			
					<u>-0.700 (jht</u>)							

32

変更前	<u> 近天秋(カルキ 4.11</u> がりまる旅行取り山しカルバーの神垣及い間長性に関する説明者) 変更後								変更理由		
2) 燃料取り出し時 表 5.2.3-3 に耐力比が最大となる部位の検討結果を示す。 検討の結果,アンカーボルトの最大耐力比は1以下になることを確認した。											
		<u>表 5.2.3-3(</u>	<u>1) アンカ</u>	ーボルトの検	討結果(一	般部,常時)	_				
	<u>部位*1</u>	<u>荷重</u>	作用応力		<u>許容</u>	<u>译耐力</u>					
	<u>(アンカー本</u> <u>数)</u>	<u>ケース</u> (位置)* ²	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>			
	$ \underbrace{\begin{array}{c} \underline{m} \\ \underline{m} \\$	<u>C</u> (case3)	<u>0</u>	<u>747</u>	<u>996</u>	<u>912</u>	<u>0. 82</u>	<u>0. K.</u>			
	<u>表 5.</u>	2.3-3(2) 7	ンカーボル	トの検討結果	(燃料取扱	設備支持部,	<u>常時)</u>				
	<u>部位*1</u>	<u>荷重</u>	<u>作</u> 月	<u>用応力</u>	<u>許容</u>	<u> </u>					
	<u>(アンカー本</u> 数)	<u>ケース</u> (位置)*2	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa(kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>			
	$ \begin{array}{c} \underline{1}\\ \underline{1}$	<u>C</u> (case4)	<u>1206</u>	<u>1136</u>	<u>1980</u>	<u>1672</u>	<u>0. 84</u>	<u>0. K.</u>			
				<u>*1:図 5.2.</u> <u>*2:図 5.2.</u>	<u>2-4</u> に応刀検 1-3 に燃料取:	<u>討箇所を示す</u> 扱設備の位置を	·示す				
		変 更 理 由									
-----------------------	--	----------------------------------	---------------------------------------	--	---	---	--------------	--------------	--		
		表 5.2.3-3(3)	・ アンカー	・ボルトの検診	<u> 対結果(一般</u>	₂ 部,地震時)				
<u>部位*1</u> (アンカー本		<u>荷重</u>	作用応力		許容耐力						
	<u>アンカー本</u> <u>数)</u>	<u>ケース</u> (位置)* ²	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa (kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>			
<u>10</u>	<u>アンカー</u> <u>ボルト</u> <u>(36)</u>	<u>E2</u> (case3)	<u>0</u>	<u>3503</u>	<u>5976</u>	<u>5472</u>	<u>0. 65</u>	<u>O. K.</u>			
	<u>表 5.2</u>	. 3-3(4) アン	·カーボルト	の検討結果	(燃料取扱言	<u> 段備支持部,</u>	<u>地震時)</u>				
	部位*1	荷重	<u>作月</u>	<u>]応力</u>	<u>許容</u>	<u> 耐力</u>					
_()	<u>アンカー本</u> <u>数)</u>	<u>ケース</u> (位置)*2	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>許容</u> <u>引張力</u> <u>Pa (kN)</u>	<u>許容</u> <u>せん断力</u> <u>Qa(kN)</u>	耐力比	<u>判定</u>			
<u>(11)</u>	<u>アンカー</u> <u>ボルト</u> <u>(12)</u>	<u>E1</u> (case4)	<u>0</u>	<u>748</u>	<u>2832</u>	<u>1824</u>	<u>0. 42</u>	<u>0. K.</u>			
				<u>*1 : ⊠ 5.2.</u> *2 : ⊠ 5.2.	2-5 に応力検 1-3 に燃料取	<u>討箇所を示す</u> 扱設備の位置を	<u>:示す</u>				

表5.2.3-3(3) アンカーボルトの検討結果(一般部,地震時) 部位*1 荷重 作用応力 許容耐力 (アンカー本 グース 引張力 社心断力 許容 火 月 セん断力 許容 一 (位置)*2 月 セん断力 許容 日本 (位置)*2 月 1 1 1 (位置)*2 1 1 1 1 (位置)*2 1 1 1 1 1 (位置)*2 1 1 1 1 1 1 (位置)*2 1 1 1 1 1 1 1 (1) 1 1 1 1 1 1 1 1 (1) 1 1 1 1 1 1 1 1 (2) 1 </th <th>Ξ</th>	Ξ
部位*1 (アンカー本 数)荷重 ケース (位置)*2作用応力許容 引張力 り Q 	
数) (位置)*2 月 Q 引張力 世ん断力 ① アンカー E2 Q 3503 5976 5472 0.65 0. K. ③ 素 5. 2. 3-3(4) アンカーボルトの検討結果 (燃料取扱設備支持部, 地震時)	
① <u>ボルト</u> E2 (case3) 0 3503 5976 5472 0.65 0.K. 表 5. 2. 3-3(4) アンカーボルトの検討結果 (燃料取扱設備支持部, 地震時)	
<u>表 5.2.3-3(4) アンカーボルトの検討結果(燃料取扱設備支持部,地震時)</u>	
$\underbrace{1}_{(12)} \begin{array}{c c} \hline \hline$	
<u>*1:図 5.2.2−5 に応力検討箇所を示す</u> <u>*2:図 5.2.1−3 に燃料取扱設備の位置を示す</u>	

変更前	変 更 後	変更理由
	(2) 照子伊建園外壁部に生じる最大片縮反力に対し、下式にて検討を行う。 図5.2.3・2 にペースプレート標準図を示す。 <u>ポ</u> ≤1 <u>ここで、σ、: 片線に力度 (V/ar)</u> <u>1</u> : 許容応力度 (V/ar) <u>い</u> : 圧縮力(0), A: ペースプレート面積 (0×B) (am?) <u>「」</u> <u>「」</u> <u>「」</u> <u>「」</u> <u>「」</u> <u>「」</u> <u>」 <u>「」 </u> <u>「」 <u>」 </u> <u>」 <u>」 </u> <u> <u> </u> <u> </u></u></u></u></u></u></u></u></u></u></u></u>	

変更前	変更後		変更理由
	1) ガレキ撤去時 表 5.2.3-4 及び表 5.2.3-5 に応力度比が最大となる部位の検討結果を 検討の結果,原子炉建屋外壁部の最大応力度比は1以下になることを	<u>示す。</u> 確認した。_	
	表 5.2.3-4(1) 外壁部の検討結果(一般部,常	常時)	
	部位*1荷重ケース (位置)*2作用応力度 (N/mm²)許容応力度 (N/mm²)	<u>応力度比</u> <u>判定</u>	
	<u>(12)</u> <u>外壁</u> <u>C</u> <u>0.3</u> <u>7.4</u>	<u>0.05</u> <u>0.K.</u>	
	<u>表 5.2.3-4(2)</u> 外壁部の検討結果(燃料取扱設備支持	<u>寺部,常時)</u>	
	部位*1荷重ケース (位置)*2作用応力度 (N/mm²)許容応力度 (N/mm²)	· <u>応力度比</u> <u>判定</u>	
	① <u>外壁</u> <u>C</u> ($-^{*3}$) <u>0.3</u> <u>7.4</u>	<u>0.05</u> <u>0.K.</u>	
	<u>*1:図 5.2.2-2 に応力検討箇</u> <u>*2:図 5.2.1-2 にガレキ撤去</u> <u>*3:ガレキ撤去用天井クレー</u>	<u>所を示す</u> <u>用天井クレーンの位置を示す</u> <u>シの位置によらない</u>	
	<u>表 5.2.3-5(1) 外壁部の検討結果(一般部,地</u>	<u>震時)</u>	
	部位*1 (位置)*2 (N/mm2) (N/mm2)	<u>応力度比</u> <u>判定</u>	
	① <u>外壁 ^{E4} (case1)</u> <u>0.5</u> <u>14.8</u>	<u>0.04</u> <u>0. K.</u>	
	表 5.2.3-5(2) 外壁部の検討結果(燃料取扱設備支持	<u>部,地震時)</u>	
	部位*1荷重ケース (位置)*2作用応力度 (N/mm²)許容応力度 (N/mm²)	· <u>応力度比</u> <u>判定</u>	
	① <u>外壁</u> <u>E2</u> (-*3) 0.3 14.8	<u>0. 03</u> <u>0. K.</u>	
	<u>*1 : 図 5.2.2-3 に応力検討箇</u> <u>*2 : 図 5.2.1-2</u> にガレキ撤去 <u>*3 : ガレキ撤去用天井クレー</u>	<u>所を示す</u> <u>用天井クレーンの位置を示す</u> ·ンの位置によらない	

変更前				変更	後			変 更 理 由
	<u>2) 燃料取</u> <u>表 5.2.3-</u> <u>検討の結</u>	対出し ■-6 及び 時果,原=	<u>寺の検討</u> 表 5. 2. 3-7 に応 子炉建屋外壁部	「力度比が最大となる話 この最大応力度比は1」	部位の検討結果を示す。 以下になることを確認	_ した。_		
			<u>表 5.2.3</u>	3-6(1) 外壁部の検討	結果(一般部,常時)			
	部位*	*1	<u>荷重ケース</u> <u>(位置)*2</u>	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力度比</u>	<u>判定</u>	
	<u>12</u> 2	外壁	<u>C</u> (case3)	<u>0. 3</u>	<u>7.4</u>	<u>0.05</u>	<u>0. K.</u>	
		3	表 5.2.3-6(2)	外壁部の検討結果(燃料取扱設備支持部,	常時)		
	<u>部位*</u> 1	*1	<u>荷重ケース</u> <u>(位置)*2</u>	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	应力度比	<u>判定</u>	
	<u>(13</u> 2	<u>外壁</u>	<u>C</u> (case4)	<u>0. 5</u>	<u>7.4</u>	<u>0.07</u>	<u>0. K.</u>	
				<u>*1:図 5</u> . <u>*2:図 5</u> .	2.2-4 に応力検討箇所を示 2.1-3 に燃料取扱設備の位	<u>示す</u> <u> 泣置を示す</u>		
			<u>表 5. 2. 3</u> -	-7(1) 外壁部の検討約	吉果(一般部,地震時)) <u> </u>		
	部位*	<u>*1</u>	<u>荷重ケース</u> <u>(位置)^{*2}</u>	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力度比</u>	<u>判定</u>	
	<u>12</u> 2	<u>外壁</u>	<u>E2</u> (case3)	<u>0. 5</u>	<u>14. 8</u>	<u>0.04</u>	<u>O. K.</u>	
		<u></u> 表	₹ 5. 2. 3-7(2)	外壁部の検討結果(炊	然料取扱設備支持部,步	地震時)		
	部位*	<u>*1</u>	<u>荷重ケース</u> <u>(位置)*2</u>	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力度比</u>	<u>判定</u>	
	<u>13</u> <u>4</u>	外壁	<u>E2</u> (case4)	<u>0.5</u>	<u>14.8</u>	<u>0.04</u>	<u>O. K.</u>	
				<u>*1:図5</u> . <u>*2:図5</u> .	 2.2-5 に応力検討箇所を 2.1-3 に燃料取扱設備の位 	<u> </u>		

変更前	変更後	変 更 理 由
	5.2.4 歴史の構造独定に対する検討 (1) 健康設置 電報に、東市方包 96.0%。廃北方向 65.6%。廃 5.1.9.6% である。構造形式により2.構造在 つの空 推送されている。図5.2.4 - 1 に開催状態、図5.2.4 - 2.4 に対応でしたである。構造の ないないの、それぞれの架構が可能する構造である。原根と大型カバーは構造的に分積されている。 「「「「「「」」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」 「」」」 「」」	

変更前	変更後	変更理由
	(2) 解析モデル 量換を構成する主要な熱告部材からなる立体発播モデルとする。検討はスパン及び セレルスまく構造しの条件が強しい栄養のを変ままする。図5.2.4 +1 に崩視の解析モデルを示す。住家部は 置にとしている。 (7) 「「「」」」」」」」」」」」」「「」」」」」」」」」」」」 ************************************	

変更前	変更後	変 更 理 由
	(4) 断面検討 <u>1) 弦材,斜材,ブレース</u> 部材の応力度比は,「鋼構造設計規準」に従い,下記にて検討を行う。	
	<u>・軸圧縮の場合</u> $\frac{\sigma_c}{f_c} \leq 1$	
	<u>・軸引張の場合</u> $\frac{\sigma_t}{f_t} \leq 1$	
	<u>ここで, σ_c: 圧縮応力度 (N/A) (N/mm²)</u> <u>σ_t: 引張応力度 (T/A) (N/mm²)</u> <u>N: 圧縮力(N), T: 引張力(N), A: 断面積(mm²)</u> <u>f_c: 許容圧縮応力度(N/mm²)</u> <u>f_t: 許容引張応力度(N/mm²)</u>	
	 2) 検討結果 表 5.2.4-1 に応力度比が最大となる部位の断面検討結果を示す。 断面検討の結果,全ての部材に対する応力度比が1以下になることを確認した。 	

変更後									変	更	理	由	
<u>表 5.2.4-1(1) 断面検討結果(常時)</u>													
	<u>部位*1</u>	<u>部材形状</u> _(mm)_	<u>荷重</u> <u>ケース</u> (位置)*2	<u>1</u> 応 (N	<u>乍用</u> 5 <u>力度</u> /mm ²)	<u>「</u> <u></u> (N	<u>許容</u> 〔 <u>力度</u> [/mm ² 〕	<u>応力</u> <u>度比</u>	<u>判定</u>				
<u>()</u>	<u> 弦材</u>	$\frac{P-216.3 \phi \times 7.0t}{\langle STKT590 \rangle}$	$\underline{\underline{C}}$	<u><u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>16. 6</u>	<u>f</u> c	<u>286. 8</u>	<u>0.06</u>	<u>O. K.</u>				
2	斜材	<u>P-76.3φ×2.8t</u> < <u>STK490></u>	$\frac{\underline{C}}{(-^{*3})}$	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>26. 9</u>	<u>f</u> c	<u>155. 7</u>	<u>0. 18</u>	<u>O. K.</u>				
<u>③</u>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
	<u>*1:①</u> ~③の符号は図 5.2.4-5の応力検討箇所を示す <u>*2:図 5.2.1-2にガレキ撤去用天井クレーンの位置を示す</u>												
			<u>*3:ガ</u>	<u>レキ撤去</u>		ーンの位 		<u></u>	:				
	1												
	- 												
	 			Ø									
				V									
		2)			. 르+	· 古	- -------------					
						取入	加刀皮比位	.JE.					
	L	<u> X 5.</u>	2.4-5	<u> </u>	比位直凶								

<u>()</u>	弦材	$\frac{P-216.3 \phi \times 7.0}{\langle \text{STKT590} \rangle}$	$\underbrace{\underline{Ot}}_{(-^{*3})}$)	<u>_</u>
 <u>②</u>	<u>斜材</u>	$\frac{P-76.3\phi \times 2.8}{\langle \text{STK490} \rangle}$	$\frac{\underline{C}}{(-^{*3})}$)	<u>_</u>
<u>③</u>	ブレース	<u>1-M30</u> < <u>SNR490B></u>	$\frac{\underline{C}}{(-^{*3})}$)	<u>_</u> C
			*1 *2 *3	: ①~ : 図 5 : ガレ	-③ .2. /キ:
			 2 10 12 5. 2. 4-5 		

変更後									変	更理	≞ ⊨		
表 5.2.4-1(2) 断面検討結果(地震時)													
	部位*1	<u>部材形状</u> _(mm)_	<u>荷重</u> <u>ケース</u> (位置)*2	重 作用 許容 二乙 応力度 応力度 応力度 置)*2 (N/mm ²) (N/mm ²) 型定									
<u>()</u>	<u>弦材</u>	$\frac{P-216.3 \phi \times 7.0t}{\langle STKT590 \rangle}$	$\frac{E1, E2}{(-^{*3})}$	<u> </u>	<u>42. 2</u>	<u>f</u> c	<u>417.8</u>	<u>0.11</u>	<u>O. K.</u>				
<u>2</u>	斜材	<u>P-89.1φ×3.2t</u> < <u>STK490></u>	$\frac{E1, E2}{(-^{*3})}$	<u> </u>	<u>65. 7</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>267. 2</u>	<u>0.25</u>	<u>O. K.</u>				
<u>3</u>	ブレース	<u>1-M30</u> < <u>SNR490B></u>	$\frac{E1, E2}{(-^{*3})}$	<u>σ</u> _c	<u>76. 2</u>	$\underline{\mathbf{f}}_{c}$	<u>280. 4</u>	<u>0. 28</u>	<u>O. K.</u>				
	<u> </u>												
-			<u>*3 . X</u>			<u> </u>		<u>. </u>					
				(3								
								*					
					<u> </u>	Y							
	2			Þ	×								
			<u> </u>	*									
						: :	最大応力度比	北位置					
į		図 5	.2.4-6 最	大応力」	度比位置区	<u>]</u>							

4	2	

変更前			変更後		変 更 理 由
	 (2) 設計用荷重 設計用風圧力 地表面粗度区分 風力係数の算定 	(2) 設計用荷重の算定 設計用風圧力は,建築基準法施行令第82条の4及び建設省告示第1458号に基づき,基準風速30m/s, 地表面粗度区分IIとして算定する。速度圧の算定結果を表5.2.5-1に,ピーク風力係数を表5.2.5-2に, 風力係数の算定箇所を図5.2.5-2に示す。			
		表 5. 2. 5-1	1 速度圧の算定結果		
	高さ*	<u>平均風速の高さ方</u> <u>分布を表す係</u>	<u>向の</u> <u>基準風速</u>	平均速度圧	
	<u><u>H</u> (m)</u>	<u>E</u> r	<u>V_0</u> (m/s)	<u>q</u> (N/m ²)	
	<u>49. 9</u>	<u>1.32</u>	<u>30</u>	<u>945</u>	
		*	: 高さは外装材の最頂部の高さと	した	
		<u>表 5. 2. 5-</u>	<u>-2 ピーク風力係数</u>		
				A ┏ (四 A ☆)	
	(m)				
	<u>49.9</u>	<u> </u>	<u>-2.40</u> : 高さは外装材の最頂部の高さと	<u>-3.00</u> いた	
		隅角部 一般部 0.1a a' は平面の短辺の長さとHの (30 を超えるときは、30 と 図 5. 2. 5-2 風)	H H O.1a ['] O.1a ['] D 2 倍の数値のうちいずれか小され する)(単位:m) 力係数の算定箇所のイメージ		

変更前		変 更 後					変更理由
	 (3) 外装材の強 検討は、応力な の間隔は0.6mで 外装材の材料調 断面検討の結果 	 (3) 外装材の強度検討 検討は,応力が厳しくなる部位について行う。ここでは,折板の自重は考慮しないものとする。折板の間隔は 0.6m で単純支持されているものと仮定する。 外装材の材料諸元を表 5.2.5-3 に示す。また,検討結果を表 5.2.5-4 に示す。 断面検討の結果,全ての外装材に対する応力度比が1以下になることを確認した。 					
			<u>表 5.2.5-3</u> 正曲	<u>外装材の材料諸元</u> 1げ方向		げ方向	
	<u>板厚</u>	<u>自重</u>	<u>ーーー</u> 断面2次 モーメント	<u>断面係数</u>	<u>新面 2 次</u> モーメント	<u>断面係数</u>	
	<u>t</u> (mm)	<u>G</u> (N/m ²)	$\frac{\underline{I_x}}{(\mathrm{cm}^4/\mathrm{m})}$	$\frac{\underline{Z_x}}{(\mathrm{cm}^3/\mathrm{m})}$	$\frac{\underline{I_x}}{(cm^4/m)}$	$\frac{\underline{Z_x}}{(\mathrm{cm}^3/\mathrm{m})}$	
	<u>0.6</u>	<u>59</u>	<u>2.31</u>	<u>1.67</u>	<u>2. 31</u>	<u>1.67</u>	
			表 5.2.5-4 応フ	力度に対する検討約	<u>古果</u>		
	部位	<u>作月</u> <u>(</u> [<u>]応力度</u> \/mm ²)	<u>許容</u> <u>応力度*</u> <u>(N/mm²)</u>	<u>応力度比</u>	<u>判定</u>	
	外装材		<u>78</u>	<u>137</u>	<u>0. 57</u>	<u>O. K.</u>	
	<u>壁面</u> w=945> M=(1/ $\sigma_b = M$ σ_b / f_b	$\frac{(-3, 00) = -283}{(8) \times w \times L^2 = (1/8)}$ $\frac{72 = 0.13 \times 10^6}{(72 = 0.13 \times 10^6)}$ $= 78 \times 137 = 0.57$	$\frac{5 (\text{N/m}^2)}{\text{(}) \times (-2835) \times 0.}$ $\frac{7 (1.67 \times 10^3) = 7}{\leq 1.0 0. \text{ K.}}$	$6^2 \times 10^{-3} = -0.13 (k$ $78 (N/mm^2)$	<u>Nm/m)</u>		

変更前	変更後	変更理由
	 5.3 耐震性 5.3.1 検討方針 耐震性の検討は、大型カバー、建屋取り合い部、屋根及び原子炉建屋の健全性について行い、基準地 震動 Ss に対して、これらの応答性状を適切に表現できる地震応答解析を用いて評価する。なお、地震 応答解析は水平方向及び鉛直方向を同時に入力する。 5.3.2 大型カバーの耐震性に対する検討 (1) 解析に用いる入力地震動 検討に用いる地震動は、「福島第一原子力発電所『発電用原子炉施設に関する耐震設計審査指針』の 改訂に伴う耐震安全性評価結果 中間報告書」(東京電力株式会社、平成 20 年 3 月 31 日) にて作成した解放基盤表面で定義される基準地震動 Ss とする。 地震応答解析に用いる入力地震動の概念図を図 5 3 2-1 に示す モデルに入力する地震動け一次示波 	
	<u>動論に基づき,解放基盤表面で定義される基準地震動 Ss</u> に対する地盤の応答として評価する。解放基 <u>盤表面位置(G.L206.0m(震災前0.P196.0m))における基準地震動 Ss-1, Ss-2 及び Ss-3 の加速度</u> 時刻歴波形を図 5.3.2-2 及び図 5.3.2-3 に示す。	

	変	更	理	田
▼G. L. 0m				
層				
建屋底面位置 <u>G. L14</u> . 0m				
持層				
省				
解放其般毒の深さ				
206.0m				
解放基盤表面 ▼G. L206. 0m 災前0. P196. 0m) ↓				
★→ 書準地震動 2E				

	12 · 1 · · · · · · · · · · · · · · · · ·	•				
変 更 前				変更後	:	
	(2) 地位 立 立 立 す 重大特に 一 の し し 一 し 0	震応答解析モデ 「「「「「「」」」 こ答解析モデル化した 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「」	<u>ル</u> <u>は</u> , 曲げ, せん断 <u>た大型カバーを</u> <u>るの質点は炉心(5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>	<u>剛性及び軸剛性を</u> <u> </u>	<u>考慮した原子物 目互作用を考慮 る。解析モデル えす。大型カバ ま表 5.3.2-2~ Dブレースは「 1991 年 3 月) 単性とし,曲げ <u>後</u>電用原子炉施 力株式会社,平 ている手法を参 グばねを,側面</u>	<u>戸建屋の 戸建屋の を 定 図 5.3 2 数 に と 設 に と 数 に と 数 に と 数 に と 数 に と 数 に と 数 に と 数 に と 数 に 、 3.2 型 れ ん 数 示 ん し 数 二 、 3.2 型 れ ん 数 示 た し 、 3.2 型 れ ん 数 示 た し 、 3.2 型 れ ん 数 に 、 む ん 断 す 、 る た し 、 の 、 の 、 3.2 型 れ ん 断 す 、 ん し 数 に 、 む ん 断 す 、 の た し て ん し 、 の 、 の の の ん の 数 一 で し の の の の の の の の の の の の の </u>
			<u>表 5.3.2</u>	<u>-1 地震応答解析</u>	に用いる物性値	<u>直</u>
	<u>材料</u>	<u>キング係数</u> <u>E(N/mm²)</u>	<u>ボアソン比</u> <u>ν</u>	<u>単位体積重量</u> <u>γ(kN/m³)</u>	<u>減表定数</u> <u>h(%)</u>	
	<u>鉄骨</u>	2.05×10^{5}	<u>0. 3</u>	<u>77. 0</u>	<u>2</u>	<u>SS400</u> <u>SN4</u> T

	変	更	理	田
・質点系モデルの質点に, 室-地盤連成系モデルと <u>3.2-4に示す。</u> <u>3.2-4に示す。</u> <u>オ接合部の節点は機器荷</u> <u>2-5に示す諸元とする。</u> <u>型ブレース架構の復元力</u> <u>1ている修正若林モデル</u> <u>「ている修正若林モデル</u> <u>「に「JEAG4601-1991」に</u> <u>する耐震設計審査指針』</u> <u>季3月31日)と同様と</u> <u>て,底面地盤を成層補正</u> Novakの方法により建屋				
<u>備考</u> 0. SN400B, SM490A, 490B, STKN490B, TMCP325B, S45C				

		変	更	理	由
-	──── : 線材要素 □ : 面材要素				
0	<u>G. L. +28, 900</u> <u>G. L. +21, 000</u> <u>G. L. +15, 900</u> <u>G. L. +8, 700</u> <u>G. L. +200</u>				
: mm)	<u>G. L11, 230</u> <u>G. L14, 000</u>				
. +28, 90 . +21, 00					
. +15, 90 . +8, 700 . +200	-				
11, 23 14, 00	0 0				
<u>(単位:</u> 	<u>mm)</u>				

			
巫	目	14	
Z.	X		

変更後						理	由
	<u>表 5. 3. 2-2(1)</u> <u>原</u> -						
<u>G.L.(m)</u>	<u>質点重量*</u>	<u>回転慣性重量</u>	<u>せん断断面積</u>	<u>断面二次モーメント</u>			
+28 90	<u>W (kN)</u> 65430	$\frac{1_{G} (\times 10^{\circ} \text{ kN} \cdot \text{m}^{\circ})}{94 13}$	<u>As (m²)</u>	<u>1 (m²)</u>			
+21,00	75710	109.00	<u>135. 0</u>	<u>16012</u>			
+15, 90	81370	117.08	<u>160. 8</u>	<u>21727</u>			
+8 70	87240	125.59	<u>132. 8</u>	<u>24274</u>			
+0.20	162800	224.21	<u>155. 6</u>	<u>36481</u>			
11.92	185210	266 64	<u>294. 0</u>	<u>52858</u>			
-14.00	62400	200.04	<u>1914. 3</u>	<u>275530</u>			
	02400	<u>09.03</u> ヤング係数 Ec	$2.57 \times 10^{7} (\text{kN/m}^2)$				
<u>合計</u>	<u>720160</u>	<u>せん断弾性係数 G</u>	$\frac{1.07 \times 10^7 (\text{kN/m}^2)}{2.000}$				
		<u>ホアワン比v</u> <u>減衰 h</u>	<u> </u>				
		(b)水平 (EW) ;	方向				
G.L. (m)	<u>質点重量*</u>	回転慣性重量	<u>せん断断面積</u>	断面二次モーメント			
<u>0. I. (m)</u>	<u>W (kN)</u>	$\underline{I_{G}} (\times 10^{5} \text{ kN} \cdot \text{m}^{2})$	<u>As (m²)</u>	<u>I (m⁴)</u>			
+28.90	<u>65430</u>	<u>53. 88</u>	<u>102. 7</u>	9702			
+21.00	75710	<u>62. 32</u>	163.9	13576			
<u>+15.90</u>	<u>81370</u>	<u>66. 97</u>	131.6	14559			
<u>+8.70</u>	87240	<u>125. 59</u>	197.8	36427			
<u>+0.20</u>	<u>162800</u>	<u>234. 31</u>	294_0	52858			
<u>-11.23</u>	<u>185210</u>	<u>327.39</u>	1014.0	<u>32838</u>			
<u>-14.00</u>	62400	<u>110. 32</u>	<u>1914. 3</u>	338428			
<u>合計</u>	720160	<u>ヤング係数 Ec</u> サノ 新聞 州 仮 新 C	$\frac{2.57 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$				
		<u>セん所弾性係数6</u> ポアソン比v	0.20				
<u>*:「Ⅱ.2.6</u> 滞間	<u>留水を貯留している(滞留し</u>	<u>減衰h</u> <u>ている場合を含む)建屋</u> 添(<u>5%</u> 寸資料-2 構造強度及び耐	震性(地下滞留水を考慮した建			
屋の耐震安全評価根部を含む)は含	西)」において用いた各階重量 含まない)_	量に燃料取扱設備支持部重量 7	040kN を考慮した数値(ただ	<u>こし,一般部の重量 63770kN(屋</u>			
	50						

715	田	1.1.
4	. EP	15
×	~	1/2

	変更理由		
<u>表 5.3.2-2(2)</u> ガレキ撤去 原子炉建屋の	時の一般部の地震応答解析モ 地震応答解析モデルの諸元 (c)鉛直方向	デルのうち	
G. L. (m) 質点重量*		軸ばね剛性	
<u>W (kN)</u>	<u>A_N (m²)</u>	$\underline{K_{A}}$ (×10 ⁸ kN/m)	
+28.90 65430	<u>151. 1</u>	4.92	
+21.00 75710	205.0	10. 33	
<u>+15.90</u> <u>81370</u>	221.7	7 91	
<u>+8.70</u> <u>87240</u>	201.0	0.10	
<u>+0. 20</u> <u>162800</u>	<u> </u>	<u>9.10</u>	
<u>-11.23</u> <u>185210</u>	<u>495.7</u>	<u>11.15</u>	
-14.00 62400	<u>1914. 3</u>	<u>177. 61</u>	
<u>合計</u> <u>720160</u>	<u>ヤング係数 Ec</u> せん断弾性係数 G	$\frac{2.57 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$	
屋の耐震安全評価)」において用いた各階重量に燃料取扱言 根部を含む)は含まない)	2備支持部重量 7040kN を考慮した数値	<u>(ただし,一般部の重量 63770kN (屋</u>	

変 更 後						更	理	由
<u>表</u>	<u>5.3.2-3(1) ガレキ</u> <u>原</u> -	撤去時の燃料取扱設備3 子炉建屋の地震応答解析 <u>(</u> a)水平(NS)	支持部の地震応答解析 所モデルの諸元 方向	モデルのうち				
<u>G.L.(m)</u>	<u>質点重量*</u> ₩ (kN)_	<u>回転慣性重量</u> I _G (×10 ⁵ kN·m ²)	<u>せん断断面積</u> <u>As (m²)</u>	<u>断面二次モーメント</u> <u>I (m⁴)</u>				
+28.90	109700	<u>157.81</u>	125_0	16012				
<u>+21.00</u>	<u>80370</u>	<u>115.71</u>	160.8	21727				
<u>+15.90</u>	<u>88940</u>	<u>127. 97</u>	132.8	24274				
<u>+8.70</u>	<u>87470</u>	<u>125. 92</u>	155.6	36481				
<u>+0.20</u>	<u>162800</u>	<u>234. 31</u>	204_0	52959				
<u>-11.23</u>	<u>185210</u>	<u>266. 64</u>	1014 2	275520				
<u>-14.00</u>	<u>62400</u>	<u>89.83</u>	<u>1914. 3</u>	21000				
<u>合計</u>	776890	<u>ヤング係数 Ec</u> せん断弾性係数 G	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$					
		<u>ポアソン比 v</u> <u>減衰 h</u>	<u>0.20</u> <u>5%</u>					
		<u>(b)水平 (EW)</u>	<u>方向</u>					
<u>G.L.(m)</u>	<u>質点重量*</u> <u>₩ (kN)</u>	<u>回転慣性重量</u> I _G (×10 ⁵ kN·m ²)	<u>せん断断面積</u> <u>As (m²)</u>	<u>断面二次モーメント</u> <u>I(m⁴)</u>				
+28.90	<u>109700</u>	<u>90. 34</u>	102 7	0702				
<u>+21.00</u>	<u>80370</u>	<u>66. 16</u>	162.0	12576				
<u>+15.90</u>	<u>88940</u>	<u>73. 20</u>	131.6	14559				
<u>+8.70</u>	<u>87470</u>	<u>125. 92</u>	197.8	36427				
<u>+0.20</u>	<u>162800</u>	<u>234. 31</u>	294_0	52858				
<u>-11.23</u>	<u>185210</u>	<u>327.39</u>	1914 3	338428				
<u>-14.00</u>	<u>62400</u>	<u>110.32</u>		000120				
<u> 合計</u>	776890	<u>ヤング係数 Ec</u> <u>せん断弾性係数 G</u> ポアソンドゥ	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$					
<u>*:「Ⅱ.2.6</u> 滞留	水を貯留している(滞留し	<u>ハノノノロッ</u> <u>減衰 h</u> ている場合を含む)建屋 添(<u>5%</u> <u>5%</u> 付資料-2 構造強度及び耐	震性(地下滞留水を考慮した建				
<u>屋の耐震安全評価</u> 支持部の重量 704	<u>j)」において用いた各階重</u> 0kN は含まない)_	<u> </u>	<u>kN(屋根部を含む)を考慮し</u>	<u>た数値(ただし,燃料取扱設備</u>				
					L			

	変 更 理 由		
<u>表 5.3.2-3(2) ガレキ撤去時の燃</u> <u>原子炉建屋の</u>	<u>料取扱設備支持部の地震応答</u> 地震応答解析モデルの諸元 (c)鉛直方向	<u>解析モデルのうち</u>	
<u>G.L.(m)</u> <u>質点重量*</u> W (kN)	<u>軸断面積</u> A _N (m ²)	<u>軸ばね剛性</u> K ₄ (×10 ⁸ kN/m)	
<u>+28.90</u> <u>109700</u>	<u> </u>		
+21.00 80370	<u>151. 1</u>	<u>4. 92</u>	
+15.90 88940	<u>205. 0</u>	<u>10. 33</u>	
+8 70 87470	<u> </u>	<u>7. 91</u>	
	<u>301. 0</u>	<u>9.10</u>	
<u>+0.20</u> <u>102000</u>	<u>495. 7</u>	<u>11.15</u>	
<u>-11. 23</u> <u>185210</u>	<u>1914. 3</u>	<u>177.61</u>	
<u>-14.00</u> <u>62400</u>	カンガ灰粉 F -	$9.57 \times 10^{7} (1 - N/m^{2})$	
<u>合計 776890</u>	<u>インク係数 Ec</u> <u>せん断弾性係数 G</u>	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$	
*:「II.2.6 滞留水を貯留している(滞留している場合を 屋の耐震安全評価)」において用いた各階重量に大型カバー 設備支持部の重量 7040kN は含まない)	<u> 阪</u> <u></u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u></u>	<u>20%</u> <u>207耐震性(地下滞留水を考慮した建) を考慮した数値(ただし,燃料取扱</u>	

広	重	裕	
交	史	1友	

		爱 史 仮			爱	更 理	由	
	<u>表 5.3.2-4(1) </u>	<u>*料取り出し時の一般部</u> 子炉建屋の地震応答解析 <u>(a)水平(NS)</u>	の地震応答解析モデル Fモデルの諸元 <u>方向</u>	<u> レのうち</u>				
G.L.(m)	<u>賀点重量*</u>	回転慣性重量	せん断断面積	断面二次モーメント				
	<u>W (kN)</u>	$\underline{I_{G}} (\times 10^{5} \text{ kN} \cdot \text{m}^{2})$	<u>As (m²)</u>	<u>I (m⁴)</u>				
+28.90	114100	<u>164. 14</u>	<u>135. 0</u>	<u>16012</u>				
+21.00	<u>75710</u>	109.00	<u>160. 8</u>	21727				
+15.90	<u>81360</u>	<u>117.07</u>	<u>132. 8</u>	24274				
+8.70	87810	<u>126. 41</u>	155.6	36481				
<u>+0.20</u>	<u>163140</u>	<u>234. 80</u>	294_0	52858				
<u>-11.23</u>	<u>185210</u>	<u>266. 64</u>	101/ 3	275530				
<u>-14.00</u>	<u>62400</u>	<u>89.83</u>	<u>1914. 3</u>	<u>213330</u>				
<u>合計</u>	<u>769730</u>	<u>ヤング係数 Ec</u> せん断弾性係数 G	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$					
		<u>ボアソン比ッ</u> <u>減衰 h</u>	<u>0.20</u> <u>5%</u>					
		<u>(b)水平 (EW)</u>	<u>方向</u>					
<u>G. L. (m)</u>	<u>質点重量*</u> <u>W (kN)</u>	<u>回転慣性重量</u> I _G (×10 ⁵ kN·m ²)	<u>せん断断面積</u> As (m ²)	<u>断面二次モーメント</u> <u>I (m⁴)</u>				
+28.90	<u>114100</u>	<u>93. 95</u>	100 5	0500				
+21.00	<u>75710</u>	<u>62. 32</u>	<u>102.7</u>	9702				
+15.90	<u>81360</u>	<u>66. 96</u>	<u>163. 9</u>	13576				
+8.70	<u>87810</u>	<u>126. 41</u>	<u>131. 6</u>	<u>14559</u>				
+0.20	<u>163140</u>	<u>234. 80</u>	<u>197. 8</u>	36427				
-11.23	<u>185210</u>	<u>327. 39</u>	<u>294. 0</u>	<u>52858</u>				
-14.00	<u>62400</u>	<u>110. 32</u>	<u>1914. 3</u>	338428				
 合計	<u>769730</u>	<u></u> <u>ヤング係数 Ec</u> <u>せん断弾性係数 G</u>	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$					
<u>*:「Ⅱ.2.6</u> 滞留力 <u>屋の耐震安</u> 全評価)	<u> </u>	<u> </u>	<u></u>	<u> 震性(地下滞留水を考慮した建</u> <u> ₹930kN を考慮した</u> 数値(ただ				
し,大型カバー一般	役部の重量 62660kN(屋根	部を含む) は含まない)						

		変更後		変 更 理 由
į	表 5.3.2-4(2) 燃料取り出	し時の一般部の地震応答解析モ	デルのうち	
	<u>床丁炉建産</u> の	(c)鉛直方向		
<u>G.L.(m)</u>	<u>質点重量*</u> <u>W (kN)</u>	<u>軸断面積</u> <u>A_N (m²)</u>	<u>軸ばね剛性</u> <u>K_A (×10⁸ kN/m)</u>	
+28.90	<u>114100</u>			
+21.00	75710	<u> </u>	<u>4. 92</u>	
+15.90	81360	<u>205. 0</u>	<u>10. 33</u>	
+8.70	87810	<u> </u>	<u>7. 91</u>	
+0, 20	163140	<u>301. 0</u>	<u>9. 10</u>	
-11.23	185210	<u>495. 7</u>	<u>11. 15</u>	
14.00	62400	<u>1914. 3</u>	<u>177. 61</u>	
<u>-14.00</u>	02400	ヤング係数 Ec	$2.57 \times 10^7 (kN/m^2)$	
<u>合計</u>	<u>769730</u>	<u>せん断弾性係数 G</u>	$\frac{1.07 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$	
		<u>ホアソン比v</u> <u>減衰h</u>	<u>0.20</u> <u>5%</u>	
*:「Ⅱ.2.6 滞留水を 屋の耐震安全評価)」	と貯留している(滞留している場合を において用いた各階重量にガレキ撤:	:含む)建屋 添付資料-2 構造強度及 去等による重量増減と燃料取扱設備支持	とび耐震性(地下滞留水を考慮した建 部重量 7930kN を考慮した数値(ただ	
<u>し,大型カバー一般</u> 部	阝の <u>重量 62660kN(屋根部を含む)は</u>	<u>含まない)</u>		

-L	<u> </u>		
少	Ħ	<i>1</i> 2	
ター	<u>x</u>	12	

	変 更 理 由	1				
<u>表 [</u>	5.3.2-5(1) 燃料取り <u>原</u>	0 出し時の燃料取扱設備 子炉建屋の地震応答解析 (a)水平(NS) 5	支持部の地震応答解析 <u>Fモデルの諸元</u> 方向	<u> </u>		
<u>G.L.(m)</u>	<u>質点重量*</u> ₩(kN)	<u>回転慣性重量</u> I ₆ (×10 ⁵ kN·m ²)	<u>せん断断面積</u> As (m ²)	<u>断面二次モーメント</u> I (m ⁴)		
+28.90	156400	224.99	135.0	16012		
<u>+21.00</u>	<u>80370</u>	<u>115.71</u>	160.8	21727		
<u>+15.90</u>	<u>88940</u>	<u>127. 97</u>	132.8	24274		
<u>+8.70</u>	<u>88000</u>	<u>126.68</u>	155.6	36481		
<u>+0.20</u>	<u>163140</u>	234.80	294 0	52858		
<u>-11.23</u>	<u>185210</u>	<u>266.64</u>	191/ 3	275530		
<u>-14.00</u>	<u>62400</u>	<u>89.83</u>	<u>1314. 5</u>	210000		
<u>合計</u>	<u>824460</u>	<u>ヤング係数 Ec</u> <u>せん断弾性係数 G</u> ポアソン比 v	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$ 0.20			
		<u>減衰h</u>	5%			
		(b)水平 (EW)	<u> </u>			
<u>G. L. (m)</u>	<u>質点重量*</u> <u>W (kN)</u>	<u>回転慣性重量</u> I _G (×10 ⁵ kN・m ²)	<u>せん断断面積</u> <u>As (m²)</u>	<u>断面二次モーメント</u> <u>I (m⁴)</u>		
<u>+28.90</u>	<u>156400</u>	<u>128. 79</u>	102.7	9702		
+21.00	<u>80370</u>	<u>66.16</u>	163.9	13576		
+15.90	<u>88940</u>	<u>73. 20</u>	131_6	14559		
<u>+8.70</u>	<u>88000</u>	<u>126.68</u>	197.8	36427		
<u>+0.20</u>	<u>163140</u>	<u>234. 80</u>	294_0	52858		
<u>-11.23</u>	<u>185210</u>	<u>327. 39</u>	1914.3	338428		
<u>-14.00</u>	<u>62400</u>	<u>110. 32</u>	<u>1914. 5</u>	030420		
<u>合計</u>	824460	<u>ヤング係数 Ec</u> <u>せん断弾性係数 G</u> ポアソン比 v	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$ 0.20			
<u>*:「Ⅱ.2.6</u> 滞留 屋の研究生会河の	留水を貯留している(滞留し 5)」において用いたタ叱手。	<u>減衰h</u> している場合を含む) 建屋 添(是にガルた敏士等に トス 新具 一	<u>5%</u> 対資料-2 構造強度及び耐 対応にた制ればーーの部のの重	震性(地下滞留水を考慮した建 ■ 626601-N (屋田知な合す。) な考		
<u>産い耐震女主計画</u> <u>慮した数値(たた</u>	ごし,燃料取扱設備支持部の	<u>重にアレイ版ム寺による重重店</u> う <u>重量 7930kN は含まない)</u>		<u>202000kin(</u>) (主体的を古む) とう		

		変更理由		
表	<u>5.3.2-5(2) 燃料取り出し時の燃 原子炉建屋の</u>	<u>然料取扱設備支持部の地震応</u> 地震応答解析モデルの諸元 <u>(c)鉛直方向</u>	<u>答解析モデルのうち</u>	
C I (m)	<u>賀点重量*</u>		軸ばね剛性	
<u>G. L. (III)</u>	<u>W (kN)</u>	<u>A_N (m²)</u>	$\underline{K}_{\underline{A}}$ (×10 ⁸ kN/m)	
+28.90	<u>156400</u>	<u>151. 1</u>	<u>4. 92</u>	
+21.00	80370	<u>205. 0</u>	<u>10. 33</u>	
<u>+15.90</u>	<u>88940</u>	221.7	<u>7. 91</u>	
+8.70	88000	301.0	9.10	
+0.20	<u>163140</u>	495. 7	11. 15	
<u>-11.23</u>	<u>185210</u>	1914_3	177 61	
<u>-14.00</u>	<u>62400</u>	<u>1314. 0</u>	<u>111.01</u>	
<u>合計</u>	<u>824460</u>	<u>ヤング係数 Ec</u> せん断弾性係数 G	$\frac{2.57 \times 10^{7} (\text{kN/m}^{2})}{1.07 \times 10^{7} (\text{kN/m}^{2})}$	
		<u>ポアソン比v</u> 減衰り	<u>0.20</u>	
<u>*:「Ⅱ.2.6</u> 岸の計画な合詞	「留水を貯留している(滞留している場合を 「円」」において用いたを叱ま号におした嫌ま	<u>104-32 11</u> 含む)建屋 添付資料-2 構造強度。	<u> </u>	
<u>産の耐震安全許</u> <u>慮した数値(た</u>	- 「これので用いた各階重重にカレイ服子」 たし、燃料取扱設備支持部の重量 7930kN は	(寺による里里増減と人望ルハーー版計 (含まない)	<u>の車車 62000KN(単依茚を古む)を考</u>	
				L

変 更 後								変	更	理	由			
	<u>表 5.3.2-6 地盤定数の設定結果</u> (a)Ss-1													
<u>G. L.</u> (m)	<u>地質</u>	<u>せん断</u> <u>波速度</u> <u>Vs</u> <u>(m/s)</u>	<u>単位体</u> <u>積</u> <u>重量</u> <u>ソ</u> (kN/m ³)	<u>ポアソン</u> <u>比</u> <u>ν</u>	<u>せん断</u> <u>弾性係数</u> <u>G</u> (×10 ⁵ kN/m ² <u>)</u>	<u>初期せん断 弾性係数</u> <u>Go</u> (×10 ⁵ kN/m ²)	<u>剛性</u> <u>低下率</u> <u>G/G</u> 0	<u>ヤング</u> <u>係数</u> <u>E</u> (×10 ⁵ kN/m ²)	<u>減衰</u> 定数 <u>h</u> <u>(%)</u>	<u>層厚</u> <u>H</u> <u>(m)</u>				
<u>0.0</u>	<u>砂岩</u>	<u>380</u>	<u>17.8</u>	<u>0. 473</u>	<u>2.23</u>	<u>2. 62</u>	<u>0. 85</u>	<u>6. 57</u>	<u>3</u>	<u>8. 1</u>				
<u>-20.0</u>		<u>450</u> <u>500</u>	<u>16.5</u> <u>17.1</u>	<u>0. 464</u> <u>0. 455</u>	<u>2.66</u> <u>3.40</u>	<u>3. 41</u> <u>4. 36</u>	<u>0. 78</u> <u>0. 78</u>	<u>7. 79</u> <u>9. 89</u>	<u>3</u> <u>3</u>	<u>11. 9</u> 70. 0				
-90.0	<u>泥岩</u>	<u>560</u>	<u>17.6</u>	<u>0. 446</u>	<u>4. 39</u>	<u>5. 63</u>	<u>0. 78</u>	<u>12. 70</u>	<u>3</u>	<u>28. 0</u>				
<u>-206. 0</u> —	<u>(解放基盤)</u>	<u>600</u> <u>700</u>	$\frac{17.8}{18.5}$	<u>0. 442</u> <u>0. 421</u>	<u>5.09</u> <u>9.24</u>	<u>6. 53</u> <u>9. 24</u>	<u>0.78</u> <u>1.00</u>	$\frac{14.68}{26.26}$	<u>3</u> _	<u>88. 0</u> =				
		I	1	<u>(b)</u>	<u>Ss-2</u>	I				·				
	<u>地質</u>	<u>せん断</u> 波速度	<u>単位体</u> <u>積</u> 重量	ポアソン <u>比</u>	<u>せん断</u> <u>弾性係数</u>	<u>初期せん断</u> <u>弾性係数</u>	<u>剛性</u> 低下率	<u>ヤング</u> <u>係数</u>	<u>減衰</u> 定数	<u>層厚</u>				
<u>G. L.</u> (m)		$\frac{VS}{(m/s)}$	$\frac{\gamma}{(\text{kN/m}^3)}$	<u>v</u>	$\frac{G}{(\times 10^5 \text{kN/m}^2)}$	$\frac{\underline{G}_0}{(\times 10^5 \text{kN/m}^2)}$	<u>G/G</u> 0	$(\times 10^5 \text{kN/m}^2)$	<u>n</u> (%)	<u>H</u> (m)				
<u> </u>	<u>砂岩</u>	<u>380</u>	<u>17.8</u>	<u>0. 473</u>	<u>2.23</u>	<u>2.62</u>	<u>0.85</u>	<u>6. 57</u>	<u>3</u>	<u>8.1</u>				
<u>-8.1</u> -20.0		<u>450</u>	<u>16.5</u>	<u>0. 464</u>	<u>2.76</u>	<u>3. 41</u>	<u>0. 81</u>	<u>8.08</u>	<u>3</u>	<u>11. 9</u>				
<u>-20.0</u> -90.0	泥岩	<u>500</u>	<u>17. 1</u>	<u>0. 455</u>	<u>3. 53</u>	<u>4. 36</u>	<u>0. 81</u>	<u>10. 27</u>	<u>3</u>	<u>70. 0</u>				
-118.0-		<u>560</u>	<u>17.6</u>	<u>0. 446</u>	<u>4. 56</u>	<u>5. 63</u>	<u>0.81</u>	<u>13. 19</u>	<u>3</u>	<u>28. 0</u>				
-206.0	(解放基盤)	<u>600</u> 700	<u>17.8</u> 18.5	<u>0. 442</u> 0. 421	<u>5.29</u> 9.24	<u>6.53</u> 9.24	<u>0.81</u> 1.00	<u>15.26</u> 26.26	<u>3</u> -	<u>88. 0</u> -				
				(c)	<u> </u>				_					
<u>G. L.</u> (m)	<u>地質</u>	<u>せん断</u> <u>波速度</u> <u>Vs</u> <u>(m/s)</u>	<u>単位体積</u> <u>重量</u> <u>ソ</u> (kN/m ³)	<u>ポアソン</u> <u>比</u> <u>レ</u>	<u>せん断</u> <u>弾性係数</u> <u>G</u> (×10 ⁵ kN/m ²	初期せん <u>弾性係数</u>) (×10 ⁵ kN/m ²	所 <u>剛性</u> <u>低下率</u> <u>G/G</u> 0	<u>ヤング</u> <u>係数</u> $(\times 10^{5} \text{kN/m}^{2})$	<u>減衰</u> 定数 <u>h</u> (%)	<u>層厚</u> <u>H</u> (m)				
<u>0.0</u>	<u>砂岩</u>	<u>380</u>	<u>17.8</u>	<u>0. 473</u>	<u>2.25</u>	<u>2.62</u>	<u>0.86</u>	<u>6.63</u>	<u>3</u>	<u>8.1</u>				
<u>-8.1</u> —		<u>450</u>	<u>16. 5</u>	<u>0. 464</u>	<u>2.66</u>	<u>3. 41</u>	<u>0. 78</u>	<u>7. 79</u>	<u>3</u>	$\frac{11.}{9}$				
<u>-20.0</u>	沪山	<u>500</u>	<u>17.1</u>	<u>0. 455</u>	<u>3. 40</u>	<u>4. 36</u>	<u>0. 78</u>	<u>9.89</u>	<u>3</u>	$\frac{70.}{0}$				
<u>-90.0</u> -118 0_		<u>560</u>	<u>17.6</u>	<u>0. 446</u>	<u>4. 39</u>	<u>5.63</u>	<u>0.78</u>	<u>12. 70</u>	<u>3</u>	<u>28.</u> 0				
<u>-206. 0</u>		<u>600</u>	<u>17.8</u>	0.442	<u>5. 09</u>	<u>6. 53</u>	<u>0. 78</u>	<u>14. 68</u>	<u>3</u>	<u>88.</u> <u>0</u>				
	(解放基盤)	<u>700</u>	<u>18. 5</u>	<u>0. 421</u>	<u>9.24</u>	<u>9.24</u>	<u>1.00</u>	<u>26. 26</u>	=	Ξ				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比	較表(第Ⅱ	章 2.11	添付 4-	-2 燃料王	反り出し
変更前					変
				<u>表 5.3</u>	<u>.2-6</u> 均
	<u>G. L.</u> (m)	<u>地質</u>	<u>せん断</u> <u>波速度</u> <u>Vs</u> <u>(m/s)</u>	<u>単位体</u> 積 <u>重量</u> <u>ソ</u> (kN/m ³)	<u>ポアソ:</u> <u>比</u> <u>ル</u>
	<u>0.0</u> —	砂岩	380	17.8	0 473
	<u>-8.1</u> —		450	16.5	0. 464
	<u>-20. 0</u> —		500	17.1	0.455
	<u>-90. 0</u>	· <u>泥岩</u>	<u>560</u>	<u>17.6</u>	<u>0. 446</u>
	<u>-118.0</u> -		<u>600</u>	<u>17.8</u>	<u>0. 442</u>
	<u>-206. 0</u> —	<u>(解放基盤)</u>	<u>700</u>	<u>18.5</u>	<u>0. 421</u>
					<u>(</u>]
		地質	<u>せん断</u> <u>波速度</u>	<u>単位体</u> 積 重量	ポアソン <u>比</u>
	<u>G. L.</u> (m)		$\frac{Vs}{(m/s)}$	$\frac{\gamma}{(kN/m^3)}$	<u>v</u>
	<u> </u>	砂岩	380	17.8	0. 473
	<u>-8.1</u> —		450	<u>16. 5</u>	0.464
	<u>-20.0</u>		<u>500</u>	<u>17. 1</u>	<u>0. 455</u>
	<u>-90.0</u>	- <u>泥宕</u>	<u>560</u>	<u>17.6</u>	<u>0. 446</u>
	-206.0		<u>600</u>	<u>17.8</u>	<u>0. 442</u>
		(解放基盤)	<u>700</u>	<u>18. 5</u>	<u>0. 421</u>
		1	11-) NRT	光子子母	<u>(</u>
	C I	地質	<u>せん断</u> 波速度	<u>単位体積</u> <u>重量</u>	
	<u>(m)</u>		<u>vs</u> (m/s)	<u>(kN/m³)</u>	<u>v</u>
	<u> </u>	<u>砂岩</u>	<u>380</u>	<u>17.8</u>	<u>0. 47</u>
	<u>-8.1</u>		<u>450</u>	<u>16. 5</u>	<u>0. 46</u>
	<u>-20.0</u> -90.0	泥堤	<u>500</u>	<u>17. 1</u>	<u>0. 45</u>
	-118 0-		<u>560</u>	<u>17.6</u>	<u>0. 44</u>
	-206.0-		<u>600</u>	<u>17.8</u>	<u>0. 44</u>
		(解放基盤)	<u>700</u>	<u>18. 5</u>	<u>0. 42</u>

変更前	変更後
	(3) 地震応答解析結果 1) ガレキ撤去時 ガレキ撤去時の一般部の最大応答加速度分布を 図 5.3.2-5 に,燃料取扱設備支持部の最大応答加 速度分布を図 5.3.2-6 に示す。なお、ガレキ撤去 用天井クレーン位置は casel とする。 NS B 携面
	$\begin{array}{c} +60 \\ +55 \\ +50 \\ +44 \\ +45 \\ +45 \\ +46 \\ +55 \\ +50 \\ +46 \\ +56 \\ +46 \\ +56 \\ +46 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$
	 3,000 10 20 30 40 40

変更前	変更後
	2) 燃料取り出し時の一般部の最大応答加速度分布 を図 5.3.2-7 に、燃料取扱設備支持部最大応答加 速度分布を図 5.3.2-8 に示す。なお、一般部の場 合、燃料取扱設備位置は case3、燃料取扱設備支 持部の場合、燃料取扱設備位置は case4 とする。
	$\begin{array}{c} + 60 \\ + 55 \\ + 50 \\ + 45 \\ + 45 \\ \hline (\underline{\hat{e}} + 40 \\ -\underline{\hat{d}} + 35 \\ + 30 \\ + 25 \\ + 20 \\ + 15 \\ + 10 \end{array}$
	0 1,000 2,000 3.000 4.000 0 1,000 2,000 最大応答加速度(cm/s ²) 最大応答加速度 (a) 水平(NS)成分 (A, B構面) (b) 鉛直(UD)成分 (A, B構面) (a) 水平(NS)成分 (A, B構面) (b) 鉛直(UD)成分 (A, B構面) (c) 水平(NS)成分 (A, B構面) (b) 鉛直(UD)成分 (A, B構面) (c) 水平(NS)成分 (オペフロ) (c) 水平(NS)成分 (オペフロレベル)
	3,000 (75 0) 2,000 (75 0)

変更前	変 更 前 変 更 後									
	(4) 波及的影響の評価 地震応答解析結果が、JSCA性能設計説明書 2017 年版(社団法人日本建築構造技術者協会,2018 年)を 参考に定めたクライテリア(「層間変形角は1/75以下,層の塑性率は4以下,部材の塑性率は5以下」 *を満足することを確認する。なお、大型カバーは立体架構による検討のため、JSCA 性能メニューのうち 層の塑性率の評価を省略する。 また、主要架構(柱,梁)の解析結果が「時刻歴応答解析建築物性能評価業務方法書」(財団法人日本 建築センター、平成19年7月20日)に示されるクライテリア(層間変形角は1/100以下,層の塑性率 は2以下,部材の塑性率は4以下)を超える場合には水平変形に伴う鉛直荷重の付加的影響を考慮した 解析を実施し、安全性を確認する。 *:北村春幸,宮内洋二,浦本弥樹「性能設計における耐震性能判断基準値 に関する研究」,日本建築学会構造系論文集,第604号,2006年6月									
	1) 層間変形角の検討 a) ガレキ撤去時 最大応答層間変形角を表 5.3.2-7 に示す。 検討の結果,最大応答層間変形角は 1/75 以下となりクライテリアを満足することを確認した。									
		<u>表 5.3.2-7</u>	(1) 一般部の最大	応答層間変形角の	D検討結果					
	檢討箇所	<u>地震波</u> (位置)*1	入力方向	応答値	<u> クライテリア</u>	<u>判定</u>				
	南北側	<u>Ss-1</u>	<u>NS</u>	<u>1/111</u>	<u>1/75</u>	<u>O. K.</u>				
	$\frac{G. L. +53.9 (m)}{\sim G. L. +28.3 (m)}$	<u>Ss-2</u>	<u>NS</u>	<u>1/263</u>	<u>1/75</u>	<u>O. K.</u>				
	<u>h=25.6(m)</u>	<u>Ss-3</u>	<u>NS</u>	<u>1/123</u>	<u>1/75</u>	<u>O. K.</u>				
	東西側	<u>Ss-1</u>	<u>EW</u>	<u>1/121</u>	<u>1/75</u>	<u>O. K.</u>				
	$\frac{G. L. +53. 9 (m)}{\sim G. L. +28. 3 (m)}$	<u>Ss-2</u>	<u>EW</u>	<u>1/339</u>	<u>1/75</u>	<u>O. K.</u>				
	<u>h=25.6(m)</u>	<u>Ss-3</u>	<u>EW</u>	<u>1/132</u>	<u>1/75</u>	<u>O. K.</u>				
	*1:特記なき限り case1 であり,図 5.2.1-2 にガレキ撤去用天井クレーンの位置を示す									
	表 5.3.2-7(2) 燃料取扱設備支持部の最大応答層間変形角の検討結果									
	検討箇所	<u>地震波</u> (位置)*1	入力方向	応答値	<u>クライテリア</u>	<u>判定</u>				
	<u>西側</u>	<u>Ss-1</u>	<u>EW</u>	<u>1/632</u>	<u>1/75</u>	<u>O. K.</u>				
	$\frac{\text{G. L. + 28.3 (m)}}{\sim \text{G. L. +14.0 (m)}}$	<u>Ss-2</u>	<u>EW</u>	<u>1/707</u>	<u>1/75</u>	<u>O. K.</u>				
	<u>h=14.3(m)</u>	<u>Ss-3</u>	<u>EW</u>	<u>1/700</u>	<u>1/75</u>	<u>O. K.</u>				
		<u>*1:ガレキ</u> 摘	数去用天井クレーンの位 の	置によらない						

変更前		変更理由							
	b) 燃料取り出し時 最大応答層間変形角を表 5.3.2-8 に示す。 検討の結果,最大応答層間変形角は 1/75 以下となりクライテリアを満足することを確認した。								
	検討箇所	<u>地震波</u> (位置)*1	入力方向	応答値	<u>クライテリア</u>	<u>判定</u>			
	南北側	<u>Ss-1</u>	<u>NS</u>	<u>1/107</u>	<u>1/75</u>	<u>O. K.</u>			
	$\frac{\text{G. L. +53. 9 (m)}}{\sim \text{G. L. +28. 3 (m)}}$	<u>Ss-2</u>	<u>NS</u>	<u>1/238</u>	<u>1/75</u>	<u>O. K.</u>			
	<u>h=25.6(m)</u>	<u>Ss-3</u>	<u>NS</u>	<u>1/115</u>	<u>1/75</u>	<u>O. K.</u>			
	<u>東西側</u>	<u>Ss-1</u>	<u>EW</u>	<u>1/119</u>	<u>1/75</u>	<u>O. K.</u>			
	$\frac{G. L. +53.9 (m)}{\sim G. L. +28.3 (m)}$	<u>Ss-2</u>	<u>EW</u>	<u>1/309</u>	<u>1/75</u>	<u>O. K.</u>			
	<u>h=25.6(m)</u>	<u>Ss-3</u>	<u>EW</u>	<u>1/128</u>	<u>1/75</u>	<u>O. K.</u>			
		<u>*1 : 特記なき</u>	限り case3 であり,図	5.2.1-3 に燃料取払	<u> 扱設備の位置を示す</u>				
	<u>表</u>	5.3.2-8(2) 燃	<u>然料取扱設備支持部</u>	の最大応答層間3	変形角の検討結果				
	<u>検討箇所</u>	<u>地震波</u> (位置) ^{*1}	入力方向	応答値	<u>クライテリア</u>	<u>判定</u>			
	<u>西側</u>	<u>Ss-1</u>	<u>EW</u>	<u>1/406</u>	<u>1/75</u>	<u>O. K.</u>			
	$\frac{G. L. +28.3 (m)}{\sim G. L. +14.0 (m)}$	<u>Ss-2</u>	<u>EW</u>	<u>1/415</u>	<u>1/75</u>	<u>O. K.</u>			
	<u>h=14.3(m)</u>	<u>Ss-3</u>	<u>EW</u>	<u>1/455</u>	<u>1/75</u>	<u>O. K.</u>			
		<u>*1 : 特記なき</u>	限り case4 であり,図	5.2.1-3 に燃料取払	<u> 扱設備の位置を示す</u>				
	2) 断面検討 部材の応答結果か	『塑性化する箇	所があるため,断配	「検討結果は応力	度比または塑性率	率で示す。			
	部材の応力度比に 最大軸力時のひずる	は, 軸力と各許(★を引張耐力マ)	容応力度との比で表 は座屋耐力時のひっ	€される。部材の [™] みで除した値で	<u>塑性率は、引張及</u> 表される 表 5-3	び圧縮に対して 2-9 及び532-			
	10 に断面検討結果	を示す。なお、	各許容応力度,引	長耐力及び座屈而 の11位な用いる	対力算定時の材料	<u>強度は「平成 12</u>			
	平建议有百小弗 240	4 万」に止めら	11に産牢畑皮「旭	の1.1倍を用いる	<u> </u>				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造及び耐震性に関する説明書)										
変更前	変 更 後							変更理由		
	<u>a) カ度日 力度日</u>	ガレキ撤去時 5.3.2−9 に応 とが 1 以下又	<u>き</u> 5力度比が最大となる部 には、塑性率が5以下に	位の断面柄 なることを	食討結果を示す。 を確認した。	。断面検言	寸の結果,	全ての	部材の応	
			<u>表 5.3.2-9(1) 断面</u> 材	検討結果	(一般部, Ss 地	<u>震時,応</u> 之	力度比)			
		<u> 部位*1</u>	<u>部材形状(mm)</u> <u><使用材料*2></u>	<u>地震波</u> (位 置)* ³	<u>入力</u> <u>方向</u> <u><u>「</u></u>	<u>作用</u> 芯力度 N/mm ²)	<u>許谷</u> <u>応力月</u> <u>(N/mm²</u>	<u>度</u> <u>度</u>	<u>力</u> <u>比</u> <u>判定</u>	
	<u>()</u>	<u>柱</u>	$\underline{\text{H-}428 \times 407 \times 20 \times 35}$	<u>Ss-1</u>	$\frac{+\text{NS}-}{\text{UD}}$ σ_c	<u>335. 5</u>	<u>f</u> <u>c</u> <u>344</u>	<u>. 0</u> <u>0.</u>	<u>98</u> <u>0. K.</u>	
	<u>②</u>	<u>梁</u>	$\underline{\text{H-588}\times300\times12\times20}$	<u>Ss-1</u>	$\frac{+\text{NS}-}{\underline{\text{UD}}}$ $\underline{\sigma}_{c}$	<u>291. 6</u>	<u>f</u> _c <u>321</u>	<u>. 6</u> <u>0.</u>	<u>91</u> <u>0. K.</u>	
	<u>3</u>	<u>ブレース</u>	$\phi -355.6 \times 7.9$	<u>Ss-1</u>	$\frac{+\text{NS}-}{\underline{\text{UD}}}$ $\underline{\sigma}_c$	<u>299. 0</u>	<u>f</u> _c <u>337</u>	<u>. 2</u> <u>0.</u>	<u>89</u> <u>0. K.</u>	
	<u>4</u>	<u>鋼板</u>	<u>PL-16</u> <u><sn400b></sn400b></u>	<u>Ss-1</u>	$\frac{\pm EW}{UD} = \frac{\sigma_x}{\sigma_y}$	89.5 32.4 125.9	<u>f</u> t <u>258</u>	<u>. 0</u> <u>0.</u>	<u>90</u> <u>0. K.</u>	
			表 5.3.2-9(2) 断ī	面検討結界	寻(一般部,Ss	地震時,並	塱性率)			
		<u> 部位*1</u>	<u>部材形状</u> <u><使用</u> 权	<u>、(mm)</u> 才料*2>	<u>地震波</u> <u>(位</u> 置) ^{*3}	<u>入力</u> <u>方向</u>	<u>塑</u>	性率	<u>判定</u>	
	5	<u>水平ブレ</u> ・	<u>ース</u> +2PL-28	L-28×210 ×91)	<u>Ss-1</u>	+EW-U	<u>D</u> <u>4</u>	<u>. 51</u>	<u>0. K.</u>	
	<u>6</u>	<u>鉛直ブレ</u> ・	<u> </u>	<u>4×6.6</u>	<u>Ss-1</u>	<u>-NS+U</u>	<u>D</u> <u>4</u>	<u>. 34</u>	<u>0. K.</u>	
		<u>表 5.</u>	3.2-9(3) 断面検討結	果(燃料珥	<u> </u>	Ss 地震甲	時,応力」	<u> </u>		
		<u>部位*1</u>	<u>部材形状 (mm)</u> <u><使用材料*2></u>	<u>地震波</u> (位置)* ³	<u>入力</u> <u>方向</u> <u>/</u>	<u>作用</u> 5 <u>力度</u> V/mm ²)	<u>許容</u> 応力月 (N/mm ²	<u>度</u> <u>度</u>	<u> 立 判 </u> 正	
	<u>(7)</u>	<u>柱</u>	$\frac{\underline{H}-400\times400\times13\times}{\underline{21}}$	$\frac{\text{Ss-1}}{(-^{*4})}$	$\underline{-EW-UD}$ σ_c	<u>58. 0</u>	<u>f</u> _c <u>32</u>	<u>6. 1</u> <u>0.</u>	<u>18</u> <u>0. K</u>	
	<u>8</u>	<u>梁</u>	$\frac{\text{H-800}\times300\times14\times}{26}$	$\frac{\text{Ss-1}}{(-^{*4})}$	$\underline{-EW-UD}$ $\underline{\sigma_{c}}$	<u>93. 3</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$ $\underline{31}$	<u>8.5</u> 0.	<u>30</u> <u>0. K</u>	
	<u>9</u>	<u>水平</u> ブレース	<u>十字 PL (PL-28×</u> <u>10</u> +2PL-28×91)_	$\frac{\text{Ss-1}}{(-^{*4})}$	$-\text{NS-UD}$ σ_t	<u>219. 2</u>	$\underline{\mathbf{f}}_{\mathrm{t}}$ $\underline{35}$	7 <u>.5</u> <u>0.</u>	<u>62</u> <u>0. K</u> <u>-</u>	
	<u>10</u>	<u>鉛直</u> ブレース	ϕ -355. 6×7. 9	$\frac{\text{Ss-1}}{(-^{*4})}$	$\underline{-\text{NS-UD}}$ $\underline{\sigma_c}$	<u>185. 5</u>	<u>f</u> _c <u>34</u>	<u>9.6</u> <u>0.</u>	<u>54</u> <u>0. K</u> <u>-</u>	
			*1:①~⑩の符号は図 *2:特記なき限り, 名 *3:特記なき限り cas *4:ガレキ撤去用天共	図 5.3.2-9 0 予部材の使用 se1 であり, キクレーンの	∩応力検討箇所を ∃材料は, 鋼管 : 5 図 5. 2. 1−2 にガ ⊃位置によらない	<u>示す</u> STKN490B, そ レキ撤去用ラ	その他は SI 天井クレー	[<u>490B</u> ンの位置	<u>を示す</u>	

変	更	理	由
	変	変更	変更理

福島第一原子力発電所 特定原子力施設に係る実施計画変更比	「較表(第Ⅱ章	2.11 添付 4-2 焌	*料取り出し	用カバー	の構造及	び耐震	性に関す	る説明	書)	
変更前			変更	更 後						変 更 理 由
	b) 燃料取り出し時 麦 5.3.2-10 に応力度比が最大となる部位の断面検討結果を示す。断面検討の結果,全ての部材の応力度比が1以下又は,塑性率が5以下になることを確認した。 麦 5.3.2-10(1) 断面検討結果(一般部,Ss 地震時,応力度比) 截材形状(mn) 地震波 (位 介力 市台 作用 応力度 許容 応力度 一次力 市 1									
	<u>部位*1</u>	<u>部材形状 (mm)</u> <u><使用材料*2></u>	- <u>地震波</u> (位 <u>置)*</u> 3	<u>入力</u> <u>方向</u>	<u>作用</u> 応力度 (N/mm ²)	<u> </u>	<u>許容</u> <u>芯力度</u> (N/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
	① <u>柱</u>	<u>H-400×400×13</u> ×	< <u>21</u> <u>Ss-1</u>	<u> </u>	<u>σ</u> <u>329</u>	<u>). 5</u> <u>f</u> _c	<u>345. 1</u>	<u>0. 96</u>	<u>O. K.</u>	
	② 梁	<u>H-588×300×12×</u>	<u><20</u> <u>Ss−1</u>	$\frac{+EW-}{UD}$	<u>σ</u> <u>314</u>	<u>t. 3</u> <u>f</u> _c	<u>344. 9</u>	<u>0. 92</u>	<u>O. K.</u>	
	<u>③</u> <u>ブレース</u>	<u>φ-355.6×9.5</u>	<u>5 Ss-1</u>	<u>-NS-</u> <u>UD</u>	<u>σ</u> <u>318</u>	<u>3.5 <u>f</u>c</u>	<u>343. 2</u>	<u>0. 93</u>	<u>O. K.</u>	
	<u>④</u> <u>鋼板</u>	<u>PL-16</u> <u><sn400b></sn400b></u>	<u>Ss-1</u>	<u>+EW+U</u> <u>D</u>	$ \frac{\sigma_x}{\sigma_y} = \frac{82}{36} $ $ \frac{\tau}{138} $ $ \underline{\tau} = 138 $	$\frac{\underline{2}}{\underline{1}} \underline{f}_{t}$	<u>258. 0</u>	<u>0. 97</u>	<u>O. K.</u>	
		表 5.3.2-10(2)	断面検討結果	見(一般剖	ß, Ss 地震E	時,塑性	三率)			
			<u>『材形状(mm)</u> <u><使用材料*2></u>	<u>地</u> (在	<u>地震波</u> 立置) ^{*3}	入 <u>力</u> 方向	塑性率	<u>×</u>	<u>判定</u>	
	<u>⑤</u> 水平:	<u>ブレース</u> <u>+</u> 字	<u> </u>	<u>10</u>	<u>Ss-1</u> <u>+</u>]	<u>EW-UD</u>	<u>4. 16</u>	<u>(</u>	<u>). K.</u>	
	<u>⑥</u> <u>鉛直</u>	<u>ブレース</u>	<u>φ−267.4×6.6</u>	<u>-</u>	<u>Ss-3</u> <u>-</u>]	<u>NS-UD</u>	<u>4. 52</u>	<u>(</u>	<u>D. K.</u>	
	<u>表 5.</u>	3.2-10(3) 断面検	討結果(燃料取	放設備支	、 持部,Ss	也震時,	応力度比)		
	<u> </u>	<u>部材形状 (mm)</u> <u><使用材料*2></u>	- <u>地震波</u> - <u>(位</u> <u>置)*</u> 3	<u>入力</u> <u>方向</u>	<u>作用</u> 応力度 <u>(N/mm²)</u>	<u>,</u>	<u>許容</u> む力度 N/mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
	⑦ 柱	$\underline{\text{H-400}\times 400\times 13\times}$	$\frac{Ss-1}{(case4)}$	<u>-EW-</u> <u>UD</u>	<u>σ</u> _c <u>88.</u>	<u>1</u> <u>f</u> _c	<u>326. 1</u>	<u>0. 28</u>	<u>O. K.</u>	
	<u>⑧</u> 梁	<u>H-350×350×12×</u>	$\frac{\text{Ss-1}}{(\text{case4})}$	$\frac{+\text{NS+U}}{\underline{D}}$	<u>σ_t</u> <u>130</u>	<u>.4</u> <u>f</u> t	<u>357.5</u>	<u>0. 37</u>	<u>O. K.</u>	
	<u>⑨</u> <u>水平</u> <u>ブレース</u>	<u>十字 PL (PL-28×2</u> +2PL-28×91)	<u>210</u> <u>Ss-1</u> (case4)	$\frac{+\text{NS+U}}{\underline{D}}$	<u>σ_t</u> <u>220</u>	<u>.5</u> <u>f</u> t	<u>357.5</u>	<u>0. 62</u>	<u>O. K.</u>	
	<u>⑩</u> <u>鉛直</u> ブレース	<u>φ-355.6×7.9</u>	<u>Ss-1</u> (case4)	<u>-NS-</u> <u>UD</u>	<u>σ</u> <u>261</u>	<u>.4</u> <u>f</u> _c	<u>349. 6</u>	<u>0. 75</u>	<u>O. K.</u>	
		<u>*1:①~⑩の符</u> <u>*2:特記なき限</u> <u>*3:特記なき限</u>	号は図 5.3.2-10。 り, 各部材の使用 り case3 であり,	の応力検討 材料は, 錚 図 5.2.1-3	<u>箇所を示す</u> <u>蜀管 : STKN490</u> に燃料取扱言) <u>B,</u> その(設備の位置	<u>也は SN490B</u> 置を示す			

	変	更	理	由
度比位置 率位置 ボルト最大耐力比位置 大応力度比位置				
<u>(</u>				
芯力度比位置 カーボルト最大耐力比位置 邪最大応力度比位置				
<u>地震時)</u>				

変更前			変更後				変更理由
	5.3.3 建屋町 (1) アンカー 大型カバー (SNR490B)の 法人日本建築 る。表 5.3.3-						
		<u>表 5.3.3-1</u>	接着系アンカープ	ドルトの終局耐	<u>力</u>		
		部位		<u>一般部</u>	燃料取扱影	设備支持部	
		h 1P		1-795 3/442	<u>GL+13.7</u>	<u>GL+22.9</u>	
		<u>817</u>		<u>標準</u>	<u>標準</u>		
		鋼材種類		<u>M33</u> SNR490B	<u>M33</u> SNR490B	<u>M33</u> SNR490B	
		埋め込み長さ	(mm)	375	375	375	
		アンカーボルト間隔	(mm)	<u>400</u>	<u>400</u>	400	
	然已	許容引張力(pu)	(kN/本)	<u>249</u>	<u>334</u>	<u>268</u>	
	<u>飛行月</u>	<u>許容せん断力(qu)</u>	(kN/本)	<u>193</u>	<u>193</u>	<u>193</u>	

変更前	変更後	変 更 理 由
	<u>アンカーボルトの検討は,建屋取り合い部に生じる最大支点反力に対し,下式にて検討を行う。</u>	
	Р	
	$\frac{1}{P_{u}} \leq 1$	
	$\frac{Q}{Q_u} \leq 1$	
	$\left(\frac{P}{P_{u}}\right)^{2} + \left(\frac{Q}{Q_{u}}\right)^{2} \leq 1$	
	<u>Pu:アンカーボルトの終局引張耐力 (kN)</u> Ou:アンカーボルトの終局せん断耐力 (kN)	
	<u>P</u> :アンカーボルトの引張力(kN) Q:アンカーボルトのせん断力(kN)	

変 更 前				変	更後					変更理由
	<u>1)</u> ガレキ撤去時 <u>表 5.3.3-2</u> に正 検討の結果,ア	き 耐力比が最大 ンカーボル	<u>、となる部(</u> 、トの最大雨	立の検討結 対力比は11	果 <u>を示す。</u> 以下になるこ	とを確認し	<u>、た。</u>			
		<u>表 5.3.3-</u> 2	<u>!(1) アン</u>	カーボルト	の検討結果	(一般部,:	<u>Ss 地震時)</u>	_		
	<u>部位*1</u> (アンカー本数)	<u>地震波</u> (位置)* ²	<u>入力</u> 方向	<u>作用</u> <u>引張力</u>	<u> 応力</u> <u>せん断力</u>	<u>終局</u> <u>引張</u>	<u>耐力</u> <u>せん断</u>	耐力比	<u>判定</u>	
				<u>P</u> (kN)	<u>Q</u> (kN)	<u>耐力</u> <u>Pu(kN)</u>	<u>耐力</u> Qu (kN)			
	$\underbrace{\textcircled{1}}_{\underline{12}} \underbrace{\frac{\overline{r}\nu}{\overline{r}\nu}}_{\underline{r}\nu}$	<u>Ss-1</u> (case1)	+EW-UD	<u>0</u>	<u>2082</u>	<u>2988</u>	<u>2316</u>	<u>0. 90</u>	<u>O. K.</u>	
	<u>表</u>	5.3.3-2(2)	アンカー	<u>-ボルトの椅</u>	<u> </u>	料取扱設備	情支持部,S	<u>s 地震時)</u>		
	~~~ /*1	山田田		<u>作用</u>	<u>]応力</u>	<u>終局</u>	耐力			
	<u>部位**</u> <u>(アンカー本数)</u>	<u>地震波</u> (位置)* ²	<u>入刀</u> <u>方向</u>	<u>引張力</u> <u>P</u> (kN)	<u>せん断力</u> <u>Q</u> <u>(kN)</u>	<u>引張</u> <u>耐力</u> Pu(kN)	<u>せん断</u> <u>耐力</u> Qu(kN)	耐力比	<u>判定</u>	
	$ \underbrace{12} \qquad \underbrace{\frac{\mathcal{T} \sim \mathcal{D} - \mathcal{D}}{\mathcal{K} \mathcal{V} h}}_{(12)} $	$\frac{\text{Ss-1}}{(-^{*3})}$	<u>-NS-UD</u>	<u>606</u>	<u>1443</u>	<u>4008</u>	<u>2316</u>	<u>0. 63</u>	<u>O. K.</u>	
				<u>*1:図</u> <u>*2:図</u> *3:ガ	<u>5.3.2-9に応</u> <u>5.2.1-2にガ</u> レキ撤去用天	<u>力検討箇所を</u> レキ撤去用天 井クレーンの	<u>:示す</u> <u>天井クレーン(</u> )位置によら;	<u>の位置を示す</u> ない	<u>-</u>	
				<u></u>		////				
	<u> </u>									

2) 燃料取り出し時 表 5.3.3-3 に耐力比が最大となる部位の検討結果を示す。 検討の結果,アンカーボルトの最大耐力比は1以下になることを確認した。         支 5.3.3-3(1) アンカーボルトの検討結果(一般部, Ss 地震時)         変 5.3.3-3(1) アンカーボルトの検討結果(一般部, Ss 地震時)         部位*1 (アンカー本数)       地震波 (位置)*2         小力 方向       引張       世ん断         引張       世ん断	
表 5. 3. 3-3 (1)アンカーボルトの検討結果(一般部, Ss 地震時)部位*1 (アンカー本数)地震波 (位置)*2入力 方向作用応力 引張力終局耐力 引張利力 耐力比判定	
部位*1 (アンカー本数)地震波 (位置)*2八力 方向作用応力終局耐力●11小111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111	
PQ耐力(kN)(kN)Pu(kN)Qu(kN)	
$\underbrace{\textcircled{1}}_{(20)} \xrightarrow[\underline{\mathcal{T}}]{\mathcal{T}}{\mathcal{L}}_{\underline{(20)}} \xrightarrow[\underline{Ss-1}]{\underline{(case3)}} \xrightarrow{\underline{-EW+UD}} \underbrace{\underbrace{459}}_{\underline{459}} \underbrace{\underline{3398}}_{\underline{4980}} \underbrace{\underline{4980}}_{\underline{3860}} \underbrace{\underline{3860}}_{\underline{0.89}} \underbrace{\underline{0.89}}_{\underline{0.K.}}$	
表 5.3.3-3(2) アンカーボルトの検討結果(燃料取扱設備支持部, Ss 地震時)	
部位*1 地震波 入力 <u>作用応力</u> <u>終局耐力</u>	
(アンカー本数)(位置)*2方向引張力せん断力引張せん断前力比判定PQ耐力耐力三三11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<	
$ \underbrace{\textcircled{12}}_{(24)} \begin{array}{c} \frac{\overrightarrow{r} \times \overrightarrow{r} - \overrightarrow{r}}{\overrightarrow{r} \times \overrightarrow{r}} \\ \underline{\overbrace{(24)}}^{(25)} \end{array} \begin{array}{c} \underline{\underbrace{Ss-1}}_{(case4)} \end{array} \begin{array}{c} \underline{-NS+UD} \end{array} \begin{array}{c} \underline{3901} \end{array} \begin{array}{c} \underline{3100} \end{array} \begin{array}{c} \underline{6432} \end{array} \begin{array}{c} \underline{4632} \end{array} \begin{array}{c} \underline{0.83} \end{array} \begin{array}{c} \underline{0.K.} \end{array} $	
<u>*1 : 図 5. 3. 2-10 に応力検討箇所を示す</u> <u>*2 : 図 5. 2. 1-3 に燃料取扱設備の位置を示す</u>	

変更前		変更後							変更理由
	<u>(2) 「</u> 「5. 確認す	<u>原子炉建)</u> 2.3(2) ⁻ る。							
	<u>1)</u> ガ <u>表 5</u> <u>検</u> 読	^ĭ レキ撤去 . 3. 3−4 に tの結果,							
			<u>表 5.3.3</u> -	-4(1) 外壁部の	の検討結果(一般	<u> </u>	-1		
	<u>消音</u>	3位*1	<u>地震波</u> (位置)* ²	入力方向	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>(13)</u>	<u>外壁</u>	<u>Ss-1</u> (case1)	+NS-UD	<u>1.2</u>	<u>22. 1</u>	<u>0. 06</u>	<u>O. K.</u>	
			<u>表 5.3.3-4(</u>	2) 外壁部の検	討結果(燃料取	扱設備支持部, Ss	地震時)		
	1音	3位*1	<u>地震波</u> (位置)* ²	入力方向	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>[]</u>	<u>外壁</u>	$\frac{\text{Ss-1}}{(-^{*3})}$	-NS-UD	<u>0.8</u>	<u>22.1</u> b検討禁託なデオ	<u>0. 04</u>	<u>O. K.</u>	
				*1 *2 *3	. : 図 5. 3. 2-9 に応り 2 : 図 5. 2. 1-2 にガレ 5 : ガレキ撤去用天井	<u>フ検討画所を示す</u> レキ撤去用天井クレー キクレーンの位置によ	<u>-ンの位置を示</u> :らない	<u>==</u>	
				_					

福島第一原子力発電所 特定原子力施設に係る実施計画変更比	較表(第	第Ⅱ章	2.11 添付 4-	2 燃料取り出	コし用カバーの	構造及び耐震性	に関する記	兑明書) 	
変更前	変 更 後						変 更 理 由		
	2) 燃料取り出し時 表 5.3.3-5 に応力度比が最大となる部位の検討結果を示す。 検討の結果,原子炉建屋外壁部の最大応力度比は1以下になることを確認した。								
			<u>表 5.3.3-</u>	-5(1) 外壁部の	の検討結果(一般	と部,Ss 地震時)			
	<u>部</u> ,	位*1	<u>地震波</u> (位置)*2	入力方向	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>(13)</u>	<u>外壁</u>	<u>Ss-1</u> (case3)	+NS+UD	<u>1.2</u>	<u>22. 1</u>	<u>0.06</u>	<u>0. K.</u>	
			<u>表 5.3.3-5(2</u>	?) 外壁部の検	討結果(燃料取	扱設備支持部, Ss	<u>地震時)</u>		
	部	<u>位*1</u>	<u>地震波</u> (位置)* ²	入力方向	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> <u>(N/mm²)</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>(14)</u>	<u>外壁</u>	<u>Ss-1</u> (case4)	<u>–NS–UD</u>	<u>1.2</u>	<u>22. 1</u>	<u>0.06</u>	<u>0. K.</u>	
				<u>*1</u> *2	:図 5.3.2-10 に応 :図 5.2.1-3 に燃料	<u>力検討箇所を示す</u> 科取扱設備の位置を示	: <u>†</u>		

変更前	変 更 後	変 更 理 由
	5.3.4 屋根の耐震性に対する検討 (1) 地震応答解析モデル 屋根の評価に用いる応力は,地震応答解析により評価する。屋根の解析モデルは,屋根を構成する主要 な鉄骨部材からなる立体架構モデルとする。検討はスパン及びせいが大きく構造上の条件が厳しい架構③を 対象とする。立体解析モデルを図5.3.4-1 に示す。柱脚部は固定としている。 弦材は弾性モデルとし,その他ブレース等は「鉄骨 X 型ブレース架構の復元力特性に関する研究」(日 本建築学会構造工学論文集 37B 号 1991 年 3 月)に示されている修正若林モデルによる。 解析モデルへの入力は,大型カバーの地震応答解析結果から得られる大型カバー頂部(G.L.+53.9m) の応答結果を用いることとし、屋根脚部に水平方向と鉛直方向の同時入力とする。 地震応答解析結果が、JSCA 性能設計説明書 2017 年版(社団法人日本建築構造技術者協会, 2018 年)を 参考に定めたクライテリアとして,部材の塑性率が5以下を満足することを確認する。	
	PN         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         ()         (	

変更前	変 更 後
	(2) 断面検討 部材の塑性率は、引張及び圧縮に対して最大軸力時のひずみを引張耐力または 除した値で表される。表 5.3.4-1及び表 5.3.4-2 に断面検討結果を示す。なお、 力及び座屈耐力算定時の材料強度は「平成 12 年建設省告示第 2464 号」に定め 1.1 倍を用いる。

	変	更	理	由
は座屈耐力時のひずみで , 各許容応力度, 引張耐 らられた基準強度 F 値の				

	福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造及び耐震性に関する説明書)							
変更前	変更後	変更理由						
	<ul> <li>1) ガレキ撤去時</li> <li>表 5.3.4-1 に塑性率が最大となる部位の断面検討結果を示す。断面検討の結果,全ての部材の塑性率</li> <li>が 5 以下になることを確認した。</li> </ul>							
	表 5.3.4-1 断面検討結果(屋根部, Ss 地震時)							
	$     \begin{array}{c}                                     $							
	$\underbrace{1}_{\underline{\text{STKT590}}} \underbrace{\underline{\text{P-190. } 7 \phi \times 5. 3t}}_{\underline{\text{SS-1}}} \underbrace{\underline{\text{Ss-1}}}_{\underline{\text{HS-UD}}} \underbrace{\underline{0. 80}}_{\underline{0. K.}}$							
	$\textcircled{2}$ $\cancel{\text{A}\text{I}\text{I}}$ $\underbrace{\frac{P-89.1 \phi \times 3.2t}{\langle \text{STK490} \rangle}}{\langle \text{STK490} \rangle}$ $\underbrace{\text{Ss-1}}{\langle \text{Ss-1} \rangle}$ $\underbrace{+\text{NS-UD}}{3.40}$ $\underbrace{3.40}{0.K.}$							
	$ \underbrace{3} \begin{array}{c c} \underline{\mathcal{I}} & \underline$							
	<u>*1:①~③の符号は図 5.3.4-2 の応力検討箇所を示す</u> <u>*2:特記なき限り case1 であり,図 5.2.1-2 にガレキ撤去用天井クレーンの位置を示す</u>							
	3							
	и и и и и и и и и и и и и и и и и и и							

1) 世科なりれし教 えたスキンジン開始を少したく会社性の時間通行研究を示す。時間時行の研究、全ての記録の提供 からいてになることを感じ、         2) 日本なりたくたく会社性の時間通行研究を示す。時間時行の研究、全ての記録の提供 からいてになることを感じ、         2) 日本なりたえ、(日本生、Sourger)         1) 日本ない、(日本生、Sourger)         1) 日本ない(日本生)         1) 日本ない(日本生) <td< th=""><th>10. 広外市内11日 大の3.4.2 (近日中ない大くなら前の20時間約計造集を示す。16日前行の深思、全ての記録の20日本 が5.3 (日本のたくとき施設)へた。         第15月1日の11日前日は集を示す。16日前行の深思、全ての記録の20日本 が5.3 (日本のたくとき施設)への第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の</th><th>変更前</th><th></th><th colspan="7">変更後</th></td<>	10. 広外市内11日 大の3.4.2 (近日中ない大くなら前の20時間約計造集を示す。16日前行の深思、全ての記録の20日本 が5.3 (日本のたくとき施設)へた。         第15月1日の11日前日は集を示す。16日前行の深思、全ての記録の20日本 が5.3 (日本のたくとき施設)への第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二、第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の第二条の	変更前		変更後						
支払・4       地球部分成果(13)28:       So Hugen)         第10011       32824       13282       1321       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201	正価**       証担約**(m)       担当第       2.5       2.5       2.5       型生産       単産         ①       22.4       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3       (20.10).7.6 × 3.3<		<u>2)</u> 燃料 <u>表5.</u> が5以	2) <u>燃料取り出し時</u> <u>表 5.3.4-2 に塑性率が最大となる部位の断面検討結果を示す。断面検討の結果,全ての部材の塑性率 が 5 以下になることを確認した。</u>						
新代性         新代性化(m)         独居地         公正	新化性         単純化物((m))         単純化(m)         単純化(m)         単純化(m)         単純化(m)         単純化(m)         単純化(m)         単純化(m)         単純化(m)         単純化(m)         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●				表 5.3.4-2 断面椅	食討結果(屋根部,	Ss 地震時)			
①       送社       P=190.7.4 × 5.31       Se=1       -NS+UD       0.82       0.K.         ②       総計       P=80.1 6 × 3.21       Ss=1       -NS+UD       3.67       0.K.         ③       二       -1.500       Ss=1       -NS+UD       3.67       0.K.         ④       二       -1.500       Ss=1       -NS+UD       3.67       0.K.         ○       二       -1.500       Ss=1       -NS+UD       1.82       0.K.         ○       -1.500       Ss=1       -NS+UD       0.500       0.500         ○       -1.500       -1.500       -1.500       0.500       0.500       0.500         ○	①         空社         (*100.7 & X.5.3.1)         Serie			部位*1	<u>部材形状(mm)</u> < <u>&lt;使用材料&gt;</u>	<u>地震波</u> (位置) ^{*2}	<u>入力</u> <u>方向</u>	塑性率	<u>判定</u>	
①       単粒       P-89-1.6 × 3.21       Se-1       -SS+10       3.67       0.K.         ①       Zレース       1-300       Se-1       4/510       1.82       0.K.         ③       Zレース       1-300       Se-1       4/510       1.82       0.K.         ③       Zレース       1-300       Se-1       4/510       1.82       0.K.         ○       Zレース       1-300       Se-1       4/510       1.82       0.K.         ○       10-3200 75-0.0       Se-1       4/510 70000 40 ± ±       1.82       0.K.         ○       10-3200 75-0.0       Se-1       4/510 70000 40 ± ±       1.82       0.K.         ○       10-3200 75-0.0       Se-1       4/510 70000 40 ± ±       1.82       0.K.         ○       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>空       相対       P-86.1.6 × 3.21: (SIK400)       Sal       - NS-UD       3.67       0.K.         ①       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ③       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       ジレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       (SIK400)       0         ○       (SIK400)       (SIK</td> <td></td> <td></td> <td><u> 弦材</u></td> <td><u>P-190.7φ×5.3t</u> <u><stkt590></stkt590></u></td> <td><u>Ss-1</u></td> <td><u>–NS+UD</u></td> <td><u>0. 82</u></td> <td><u>O. K.</u></td>	空       相対       P-86.1.6 × 3.21: (SIK400)       Sal       - NS-UD       3.67       0.K.         ①       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ③       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       ブレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       ジレース       (SIK400)       Sal       - NS-UD       1.82       0.K.         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       0       0         ○       (SIK400)       (SIK400)       (SIK400)       (SIK400)       0         ○       (SIK400)       (SIK			<u> 弦材</u>	<u>P-190.7φ×5.3t</u> <u><stkt590></stkt590></u>	<u>Ss-1</u>	<u>–NS+UD</u>	<u>0. 82</u>	<u>O. K.</u>	
①       ブレース       上松的       Ssc1       北Sr4D       L.82       0.K.         *1.1.0.~2007年1325.3.4.30万作1325.3.4.30万作13250年13260日       *2.14日本市内市会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会	①       工业工       1-800       Set       1-SE       1.62       0.K.         #1:0500/62:108.5.1-40.02.07/86/16/96.41       #1:0500/62:108.5.1-40.02.07/86/16/96.41       #1:0500/62:108.5.1-40.02.07/86/16/96.41       #1:0500/62:108.5.1-40.02.07/86/16/96.41       #1:0500/62:108.5.1-40.02.07/86/16/96.41         #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41         #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.0.4-30.02.07/86/16/96.41         #1:0500/62:108.5.0.4-30.02.07/86/16/96.41       #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04         #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04         #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0500/62:108.5.04         #1:0500/62:108.5.04       #1:0500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04         #1:0500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04       #1:0-500/62:108.5.04		<u>②</u>	<u>斜材</u>	$\frac{P-89.1 \phi \times 3.2t}{\langle STK490 \rangle}$	<u>Ss-1</u>	-NS+UD	<u>3.67</u>	<u>O. K.</u>	
1:10-③の符号注意 5.3.4:3 の応力施計算後来主         2:9記な込役のax3 であり、図 5.2.1 % に燃料税税設備の位置を示す	11.①< 300月31辺53.4-90匹力応計画販を示す		<u>3</u>	<u>ブレース</u>	<u>1-M30</u> <snr490b></snr490b>	<u>Ss-1</u>	+NS+UD	<u>1.82</u>	<u>O. K.</u>	
				* - *	1:①~③の符号は図 5.3.4-3 ( 2:特記なき限り case3 であり,	の応力検討箇所を示す 図 5. 2. 1-3 に燃料B	<u>す</u> 取扱設備の位置	を示す		
							3			
図 5.3.4-3 最大塑性率位置図	<u>図 5.3.4-3 最大塑性率位置図</u>						<ul> <li>:最大塑性率(</li> </ul>	立置		
					図 5.3.4-3 責	<u>最大塑性率位置図</u>				

変更前	変 更 後	変 更 理 由
	5.3.5         原子伊建型の耐量性に対する検討           10         検討方針 大型パベーの設置に伴う原子伊建型の耐量性の評価は、耐量安全上重要な設備への波及的影響的止の 製点から、地類広想や値(4.0×10 ³ ) 以下になることを確認する。           23         原子伊建型の増量に学習性           11         免許に用いる人力地震動 検討に用いる人力地震動           検討に用いる人力地震動 使力に用いる人力地震動         10.5.2           15.3.2         大型カバーの耐量性に対する検討」で示した基準地震動などする。           25.3.2         大型カバーの耐量性に対する検討」で示したものと同一である。           20.数定発展中モデルの調査で経営を完全が優先でする。         10.5.2.2           15.3.2         大型カバーの耐量性に対する検討」で示したもなり、モデルに入力する地震動注 した事品の地震な客様モデルとする。           19.数定発航モデル         10.5.3.5.1           19.支き蒸発がモデルの調査で設定が設定している         10.5.3.5.1           19.大型などころ工業増加また事業の勘定設置する大型カバーの耐量性に対する検討」で示した地量定数と同一である。           10.支払になりの運営を営業した。地震 空器体防モデルの調査で設定な知道性を受いたの場合の意識性を営業をあったりに示す。           10.5.3.2         大型カバーの耐量性に対する検討」で示した地量定数と同一である。           10.5.3.5.1         原子伊建型の地震な発展した。地震ななる。           10.5.3.5.1         原子伊建型の地震な深いたちょう。           11.5.30         11.5.30           11.5.30         11.5.30           11.5.30         11.5.5.5.1           11.5.30         11.5.5.5.1           12.5.3.5.1         原子伊建型の地震に発展する。           13.5.5.1         原子伊建型の地震な発展したいの           14.5.00         11.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	

変更前

		変	更	後	
1)	原子炉建屋の地震応	答解	析モ	デルの諸元	(水平)
					回転性

	変更理由			
<u>表 5.3.</u>	5-1(1) 原子炉建屋の地震応	答解析モデルの諸元(水平方	<u>向, ガレキ撤去時)</u>	
G.L. (m)	質点重量	<u>回転慣</u> <u>I₆(×10⁵</u>	<u>性重量</u> 	
	<u>W (kN)</u>	<u>水平(NS)方向</u>	<u>水平(NS)方向</u> 水平(EW 方向)	
<u>+28.90</u>	<u>113830</u>	<u>163. 75</u>	<u>93. 73</u>	
+21.00	<u>81500</u>	<u>117. 34</u>	<u>67. 09</u>	
<u>+15.90</u>	<u>90680</u>	<u>130. 48</u>	<u>74. 63</u>	
<u>+8.70</u>	<u>87510</u>	<u>125. 98</u>	<u>125. 98</u>	
<u>+0. 20</u>	<u>162800</u>	<u>234. 31</u>	<u>234. 31</u>	
<u>-11.23</u>	<u>185210</u>	<u>266. 64</u>	<u>327. 39</u>	
<u>-14.00</u>	<u>62400</u>	<u>89. 83</u>	<u>110. 32</u>	
<u>合計</u>	<u>783930</u>			
<u>表 5.3.5</u> -	-1(2) 原子炉建屋の地震応答	5解析モデルの諸元 (水平方向	<u>可, 燃料取り出し時)</u>	
	質点重量	<u>回転慣</u> <u>I_(×10⁵</u>	<u>性重量</u> kN·m ² )	
<u>G.L. (m)</u>	<u>W (kN)</u>	<u>水平(NS)方向</u>	<u>水平(EW 方向)</u>	
<u>+28.90</u>	<u>161390</u>	<u>232. 17</u>	<u>132. 90</u>	
<u>+21.00</u>	<u>81500</u>	<u>117. 34</u>	<u>67. 09</u>	
<u>+15.90</u>	<u>90670</u>	<u>130. 46</u>	<u>74. 62</u>	
<u>+8.70</u>	<u>88080</u>	<u>126. 80</u>	<u>126. 80</u>	
<u>+0. 20</u>	<u>163140</u>	<u>234. 80</u>	<u>234. 80</u>	
<u>-11. 23</u>	<u>185210</u>	<u>266. 64</u>	<u>327. 39</u>	
<u>-14.00</u>	<u>62400</u>	<u>89. 83</u>	<u>110. 32</u>	
合計	<u>832390</u>			

変 更 前	変 更 後	変 更 理 由
	(3) 検討結果 基準地震動 Ss に対する最大応答値を,「JEAG4601-1991」に基づき設定した耐震壁のせん断スケルト ン曲線上にプロットした結果を,図5.3.5-2及び図5.3.5-3に示す。 検討の結果,地震応答解析により得られる最大応答値は,評価基準値(4.0×10 ⁻³ )以下となり,クラ イテリアを満足することを確認した。	



		変	更	理	由
レギ撤去時)					



	変	更	理	由
レキ撤去時) 				



	変	更	理	由



	変	更	理	由
■ ●取り出し時)				
·				



	変	更	理	由
l I				
·取り出し時)				



	変	更	理	由
取り出し時)				

変更前	変 更 後	変 更 理 由
	6. 別添           別添-1         福島第一原子力発電所 3号機大型カバーの構造強度及び耐震性について(東京電力株式会社,平成25年2月21日,特定原子力施設監視・評価検討会(第4回)資料4)           別添-2         福島第一原子力発電所 3号機大型カバーの構造強度及び耐震性について(コメント回答) (東京電力株式会社,平成25年3月8日,特定原子力施設監視・評価検討会(第6回)資 <u>料5)</u> 別添-3         4号機燃料取り出し用カバーに係る確認事項 別添-5           別添-5         3号機原子炉建屋の躯体状況調査結果を反映した使用済燃料プール等の耐震安全性評価結 里           別添-6         3号機原子炉建屋 遮へい体設置における滑動対策について 別添-9	1号機大型カバー設置に伴い記 載位置変更 1号機大型カバー設置に伴い追 記

変更前			変更(	後 後	変更理由
(現行記載なし)			1号機大型カバーに依	<u>別添-</u> 系る確認事項	<u>9</u> 1 号機大型カバー設置に伴い 追記
	1号機大型カ	バーの工事は	ニ係る主要な確認項目を表	₹-1に示す。	
			表-1 1号機大型カバー	一に係る確認項目	
	<u>催認事項</u>	催認坦目	<u>確認内容</u> <u>鋼材の材質,強度,化学</u> <u>成分を確認する。</u>	<u>判定基準</u> JIS G 3101, JIS G 3106, JIS G 3136, JIS G 3138, JIS G 3444, JIS G 3474, JIS G 3475, JIS G 4051, 又は建築基 準法第 37 条第二号に基づく国土交通	
		材料確認	<u>トルシア型超高力ボル</u> ト(SHTB)の仕様を確認 する。 アンカーボルトの材	建築基準法第 37 条第二号に基づく国 土交通大臣の認定に適合すること。	
	<u>構造強度</u> <u>および</u> 耐震性		<u>賃, 強度, 化子成分を確認する。</u> <u>外装材の仕様を確認する。</u>	JIS G 3138 に適合すること。         実施計画に記載されている材料諸元に         適合することを,検査証明書,出荷証         明書又はメーカー技術資料により確認	
		<u>寸法確認</u>	<u>アンカーボルトの埋め</u> 込み長さを確認する。	<u>アンカーボルトの有効埋め込み長さが</u> 図-1の通りであること。	
		据付確認	<u>接合部の施工状況を確</u> <u>認する。</u>	<u>高力ボルトの本数・種類が図-2の通りであること。</u>	
			<u>外装材の施工状況を確</u> <u>認する。</u>	<u>外装材の範囲が図-3の通りであるこ</u> <u>と。</u>	

変更前	変更後		
	「(a) アンカーボルト (一般部)	 (b) アンカーボルト(燃料	
	(a) アンガー水ルド(() (K) (D))         a 部         () () () () () () () () () () () () () (	(0) ノンル・ハルト(点(本)         b         原子炉建屋         原子炉建屋         工面図         立面図         「前埋め込み長さ::	
	<u>図-1 アン</u>	<u>カーボルト詳細</u>	



変 更 前	変 更 後
	<u>G. L. +28, 300 キープラン</u> <u>G. L. +53, 900 キープラン</u> <u>A-A</u>
	(a) 柱 材     (b) 梁 材     (c) 鋼 板
	<u>a−a 断面図</u> <u>a−a 断面図</u> <u>a−a</u>
	ボルト種類:SHTB M24       ボルト種類:SHTB M24         本数:32本       ボルト種類:SHTB M24         本数:18本×2       ボルト種類
	<u>図-2(1)</u> 一般部接合部詳細



変更前	変 更 後	変 更 理 由
変 皮 前		変更理由

変更前	変更後	変更理由
	(単位:mm)	
	(f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)弦材 (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)な (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)なう (f)な (f)な (f)な (f) (f)な (f) (f) (f) (f) (f) (f) (f) (f)	
	図-2 (3) 屋根部接合部詳細	
	L'	



福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付-6 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書)

変 更 前	変 更 後	変 更 理 由
添付資料-6	添付資料-6	3
福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	
1. 適用範囲 本書は,第1号機原子炉建屋カバー <u>排気設備停止前まで</u> の機能について記載するものである。 なお,原子炉建屋カバー <u>排気設備停止以降については,添付資料-7「福島第一原子力発電所第1号</u> 機原子炉建屋カバー解体について」を参照。	1. 適用範囲 本書は,第1号機原子炉建屋カバー <u>設置中</u> の機能について記載するものである。 なお,原子炉建屋カバーは <u>1号機大型カバーの設置に伴い解体する。</u>	1 号機原子炉建屋カバー解体 に伴う記載変更
(以下,省略)	(以下,省略)	