| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料
 非常用電源設備

（基本設計方針）

2021年6月
東北電力株式会社

8．1．4 非常用電源設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 非常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火災， 4．設備に対する要求（4．6 逆止め弁を除く。），5．その他（5．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 非常用電源設備の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．6 逆止め弁を除く。），6．その他 （6． 4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とす る。
第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持た せ， 3 系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3	第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持た せ， 3 系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3

変更前	変更後
系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。 更に，非常用所内電源系からの受電時の母線切替操作が容易な設計と する。 これらの母線は，独立性を碓保し，それぞれ区画分離された部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケーブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについて相互に物理的分離を図る設計とす るとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 所内電気系統 1．2．1 系統構成 非常用所内電気設備は， 3 系統の非常用母線等（メタルクラッド スイッチギア（非常用）（6900V，1200A のものを 2 個），メタルク ラッドスイッチギア（高圧炬ふスプレイ系用）（6900V，1200Aのも	系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。 更に，非常用所内電源系からの受電時の母線切替操作が容易な設計と する。 重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与 えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）について，遮断器の遮断時間の適切な設定等 により，高エネルギーのアーク放電によるこれらの電気盤の損壊の拡大 を防止することができる設計とする。 これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケーブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについて相互に物理的分離を図る設計とす るとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 代替所内電気系統 1．2．1 系統構成 非常用所内電気設備は，3系統の非常用母線等（メタルクラッド スイッチギア（非常用）（6900V，1200A のものを 2 個），メタルク ラッドスイッチギア（高圧炬ふスプレイ系用）（6900V，1200Aのも

変更前	変更後
のを 1 個），パワーセンタ（非常用）（ $600 \mathrm{~V}, 5000 \mathrm{~A}$ のものを 2 個）， モータコントロールセンタ（非常用）（600V，800A のものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（ $3300 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のも のを 2 個），動力変圧器（高圧炉心スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（非常用）（ 75 kVA ， 460／120Vのものを 4 個））により構成することにより，共通要因で機能を失うことなく，少なくとも 1 系統は電力供給機能の維持及 び人の接近性の確保を図る設計とする。	のを 1 個），パワーセンタ（非常用）（ $600 \mathrm{~V}, 5000 \mathrm{~A}$ のものを 2 個）， モータコントロールセンタ（非常用）（600V，800Aのものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（3300kVA，6750／460V のも のを 2 個），動力変圧器（高圧炉心スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（非常用）（ 75 kVA ， 460／120Vのものを 4 個））により構成することにより，共通要因で機能を失うことなく，少なくとも 1 系統は電力供給機能の維持及 び人の接近性の確保を図る設計とする。 これとは別に上記 3 系統の非常用母線等の機能が喪失したこと により発生する重大事故等の対応に必要な設備に電力を給電する代替所内電気設備として，ガスタービン発電機接続盤（7200V，1200A のものを 2 個），メタルクラッドスイッチギア（緊急用）（7200V， 1200Aのものを 3 個），動力変圧器（緊急用）（ 500 kVA ， $6900 / 460 \mathrm{~V}$ のものを 2 個， 750 kVA ， $6750 / 460 \mathrm{~V}$ のものを 1 個），パワーセンタ （緊急用）（600V，3000A のものを 1 個），モータコントロールセン タ（緊急用）（600V，800A のものを 4 個），ガスタービン発電設備燃料移送ポンプ接続盤（600V，100Aのものを 1 個），460V原子炉建屋交流電源切替盤（緊急用）（600V，150Aのものを 1 個），460V原子炉建屋交流電源切替盤（非常用）（600V，30A のものを 2 個），メ タルクラッドスイッチギア（非常用）（6900V，1200A のものを 2 個）， 120 V 原子炉建屋交流電源切替盤（緊急用）（120V，30A のものを 1個）及び中央制御室 120 V 交流分電盤（緊急用）（ 20 kVA ，460／120V のものを 1 個）を使用できる設計とする。

変更前	変更後
2．交流電源設備 2． 1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設におい て常時使用される発電機からの電力の供給が停止した場合におい て発電用原子炉施設の安全性を確保するために必要な装置の機能 を維持するため，内燃機関を原動力とする非常用電源設備を設ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする非常用電源設備の非常用ディ ーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）か らの電源供給が可能な設計とする。 非常用電源設備及びその附属設備は，多重性又は多様性を確保 し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処す るための設備がその機能を確保するために十分な容量を有する設計とする。	2．交流電源設備 2． 1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設におい て常時使用される発電機からの電力の供給が停止した場合におい て発電用原子炉施設の安全性を確保するために必要な装置の機能 を維持するため，内燃機関を原動力とする非常用電源設備を設ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする非常用電源設備の非常用ディ ーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）か らの電源供給が可能な設計とする。 非常用電源設備及びその附属設備は，多重性又は多様性を確保 し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処す るための設備がその機能を確保するために十分な容量を有する設計とする。

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）は，非常用高圧母線低電圧信号又は非常用炉心冷却設備作動信号で起動し，設置（変更）許可を受けた冷却材喪失事故におけ る工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は 10 秒及び高圧炉心スプレイ系ディーゼル発電機は 13 秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷に給電する設計とする。

設計基準事故時において，発電用原子炉施設に属する非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。

変更後

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）は，非常用高圧母線低電圧信号又は非常用炉心冷却設備作動信号で起動し，設置（変更）許可を受けた泠却材喪失事故におけ る工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は 10 秒及び高圧炉心スプレイ系ディーゼル発電機は 13 秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷に給電する設計とする。

設計基準事故時において，発電用原子炉施設に属する非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。
非常用交流電源設備は，想定される重大事故等時において，重大事故等対処設備（設計基準拡張）として使用できる設計とする。

非常用交流電源設備のらち非常用ディーゼル発電機は重大事故等時に，ATWS 緩和設備（代替制御棒挿入機能），ATWS 緩和設備（代替原子炉再循環ポンプトリップ機能），ATWS 緩和設備（自動減圧系作動阻止機能），ほう酸水注入系，代替自動減圧回路（代替自動減圧機能），高圧窒素ガス供給系（非常用），低圧代替注水系（常設） （復水移送ポンプ），低圧代替注水系（可搬型），残留熱除去系（低圧注水モード），低圧炉心スプレイ系，残留熱除去系（原子炉停止時冷却モード），原子炉補機冷却水系（原子炉補機冷却海水系を含 む。），原子炉格納容器代替スプレイ冷却系（常設），原子炉格納容器代替スプレイ冷却系（可搬型），残留熱除去系（格納容器スプレ イ冷却モード），残留熱除去系（サプレッションプール水冷却モー ド），代替循環冷却系，原子炉格納容器下部注水系（常設）（復水移

変更前	変更後
	定型），無線連絡設備（固定型），統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX）及び安全パ ラメータ表示システム（SPDS）等へ給電できる設計とする。 2.5 可搬型窒素ガス供給装置発電設備 可搬型窒素ガス供給装置発電設備は，車両内に搭載し，可搬型窒素ガ ス供給装置に給電できる設計とする。
3．直流電源設備及び計測制御用電源設備 3．1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対 し，直流電源設備を施設する設計とする。 直流電源設備は，短時間の全交流動力電源喪失時においても，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心を冷却するための設備が動作することができるよう，これらの設備の動作に必要な容量を有する 125 V 蓄電池を設ける設計とする。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及 び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全性は確保できる設計とする。また，これらの系統は，多重性及び独	3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対 し，直流電源設備を施設する設計とする。 直流電源設備は，全交流動力電源喪失時から重大事故等に対処す るために必要な電力の供給が常設代替交流電源設備から開始され るまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全 に停止し，かつ，発電用原子炉の停止後に炉心を冷却するための設備が動作するとともに，原子炉格納容器の健全性を確保するための設備が動作することができるよう，これらの設備の動作に必要な容量を有する 125 V 蓄電池を設ける設計とする。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及 び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全性は確保できる設計とする。また，これらの系統は，多重性及び独

ω

変更前	変更後
立性を確保することにより，共通要因により同時に機能が喪失する ことのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。	立性を確保することにより，共通要因により同時に機能が喪失する ことのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失） した場合に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する所内常設蓄電式直流電源設備として， 125 V 蓄電池 2 A 及び 2 B 並びに 125 V 充電器 2 A 及び 2 B を使用できる設計と する。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び $2 \mathrm{~B}, 125 \mathrm{~V}$充電器 2 A 及び 2 B （ 125 V ，700A のものを 2 個），電路，計測制御装置等で構成し， 125 V 蓄電池 2 A 及び 2 B は， 125 V 直流主母線盤 2 A 及 び 2 B （ 125 V ，1800A のものを 2 個）， 125 V 直流主母線盤 2A－1 及び $2 \mathrm{~B}-1$（ 125 V ， 1800 A のものを 2 個）， 125 V 直流分電盤 $2 \mathrm{~A}-1, ~ 2 \mathrm{~A}-2$ ， $2 \mathrm{~A}-3,2 \mathrm{~B}-1, ~ 2 \mathrm{~B}-2$ 及び $2 \mathrm{~B}-3$（ 125 V ， 1200 A のものを 6 個）， 125 V 直流電源切替盤 2 A 及び 2 B （ 125 V ， 60 A のものを 2 個）並びに 125 V 直流 RCIC モータコントロールセンタ（125V，800A のものを 1 個）～電力を給電できる設計とする。 所内常設蓄電式直流電源設備の 125 V 蓄電池 2 A 及び 2 B は，全交流動力電源喪失から1時間以内に中央制御室において不要な負荷 の切り離しを行うこと，また全交流動力電源喪失から 8 時間後に

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\perp}{\perp} \\ & \stackrel{\rightharpoonup}{\tau} \end{aligned}$		に，重大事故等の対応に必要な炬心の著しい損傷，原子炉格納容器 の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力 を供給する可搬型代替直流電源設備として 125 V 代替蓄電池， 250 V蓄電池及び電源車， 125 V 代替充電器及び 250 V 充電器を使用できる設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電源車， 125 V 代替充電器（ $125 \mathrm{~V}, 700 \mathrm{~A}$ のものを 1 個）， 250 V 充電器 （ $250 \mathrm{~V}, 400 \mathrm{~A}$ のものを 1 個），非常用ディーゼル発電設備軽油タン ク，高圧炬心スプレイ系ディーゼル発電設備軽油タンク，ガスター ビン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し， 125 V 代替蓄電池は 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$（ 125 V ， 1800A のものを 2 個）並びに 125 V 直流電源切替盤 2 A 及び 2 B （ 125 V ， 60 A のものを 2 個）へ， 250 V 蓄電池は 250 V 直流主母線盤（ 250 V ， 1800Aのものを 1 個）へ接続することで電力を供給できる設計とす る。 可搬型代替直流電源設備の 125 V 代替蓄電池は，電力の供給開始 から 8 時間後に中央制御室外において不要な負荷の切離しを行ら こと，また 250 V 蓄電池は，電力の供給開始から 1 時間後に中央制御室において不要な負荷の切離しを行い， 125 V 代替蓄電池及び 250V 蓄電池から電力を供給し，その後，電源車を代替所内電気設備， 125 V 代替充電器及び 250 V 充電器を経由し 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ 並びに 250 V 直流主母線盤へ接続することで，電力 を供給できる設計とする。

変更前	変更後
	可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ までの系統並びに 250 V 蓄電池及 び電源車から 250 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 2 \mathrm{~B}$ 及び 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H までの系統 に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有 する設計とする。 可搬型代替直流電源設備の電源車の接続箇所は，共通要因によっ て接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 3.4 主蒸気逃がし安全弁用可搬型蓄電池 原子炉冷却材圧力バウンダリを減圧するための設備のらち，主蒸気逃 がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃が し安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，主蒸気逃がし安全弁の作動回路 に接続することにより，主蒸気逃がし安全弁（2 個）を一定期間にわた り連続して開状態を保持できる設計とする。
3.2 計測制御用電源設備 設計基準対象施設の安全性を碓保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施	3.5 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施

変更前	変更後
設する設計とする。 非常用の計測制御用電源設備は，無停電交流 120 V 2 母線及び計測母線120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認 が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，直流電源設備である 125 V 蓄電池から直流電源が供給されることにより，無停電交流母線に対し電源供給を確保する設計とする。	設する設計とする。 非常用の計測制御用電源設備は，無停電交流 120 V 2 母線及び計測母線120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認 が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの間においても，非常用直流電源設備である 125 V 蓄電池から直流電源が供給されることにより，無停電交流母線に対し電源供給を確保する設計とする。 なお，無停電交流電源用静止形無停電電源装置は約1時間，電源供給 が可能な設計とする。
4．燃料設備 4． 1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機を 7 日間運転することにより必要とする電力を供給できる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計とする。	4．燃料設備 4.1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機（高圧炉心 スプレイ系ディーゼル発電機を含む。）2台を7日間運転することによ り必要とする電力を供給できる容量以上の燃料を敷地内の軽油タンク に貯蔵する設計とする。 重大事故等時に，非常用ディーゼル発電機及び高圧炉心スプレイ系デ イーゼル発電機の燃料は，非常用ディーゼル発電設備軽油タンク，高圧

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{1}{1} \\ & \stackrel{1}{N} \end{aligned}$		備 電源車は，非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タン クからタンクローリを用いて燃料を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼ ル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタン クローリへの燃料の補給は，ホースを用いる設計とする。 燃料補給設備のタンクローリは，屋外の原子炉建屋付属棟から離れた場所に保管することで，原子炉建屋付属棟近傍の燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とす る。また，予備のタンクローリについては，上記タンクローリと異なる場所に保管する設計とする。 ガスタービン発電設備軽油タンクは，非常用ディーゼル発電設備軽油 タンク及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクと離れ た屋外に分散して設置することで，共通要因によって同時に機能を損な わないよう，位置的分散を図る設計とする。 4． 4 緊急時対策所用代替交流電源設備の燃料補給設備 重大事故等時に電源車（緊急時対策所用）の燃料を貯蔵及び補給する設備として，緊急時対策所軽油タンク及びホースを使用できる設計とす る。 電源車（緊急時対策所用）は，緊急時対策所軽油タンクから燃料を補給できる設計とする。

	変更前	変更後
		4.5 可搬型窒素ガス供給装置発電設備の燃料補給設備 可搬型窒素ガス供給装置発電設備は，非常用ディーゼル発電設備軽油 タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタ ービン発電設備軽油タンクからタンクローリを用いて燃料を補給でき る設計とする。 非常用ディーゼル発電設備軽油タンク，高圧师心スプレイ系ディーゼ ル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタン クローリへの燃料の補給は，ホースを用いる設計とする。
$$	5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表1非常用電源設備の主要設備リスト」に示す。	5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表 1 非常用電源設備の主要設備リスト」に示す。

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（1／11）

表1非常用電源設備の主要設備リスト $(2 / 11)$

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（3／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分			変更前					変更後						
						名称	設計基漼対象施設（\＃1）		重大事故等対処設備 ${ }^{(3 \text { a 1 ）}}$		名称		設計基準対象施設 ${ }^{\left(3{ }^{(1)} \text { 1）}\right.}$		重大事故等対処設備 ${ }^{(3 \times 1)}$		
						$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \\ & \text { 発 } \\ & \text { 䨯 } \\ & \text { 置 } \end{aligned}$	韭雷テ个てセ登霖備	発電機				非常用ディーゼル発電機	S	－		－	変更なし				常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	－
			$\begin{array}{\|l\|} \hline \text { 登 } \\ \text { 纚 } \end{array}$	励磁装置		励磁装置	S	－		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	－	
				保護継電装	装置	保護継電装置	S	－		－		変更なし			常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	－	
				原動機と。 \|法	の連結方	原動機との連結方法（非常用ディーゼル発電設備設備）	－	－		－		変更なし ${ }^{(¥ 2)}$					
$\frac{\perp}{\stackrel{1}{\perp}}$			$\begin{array}{\|l\|} \\ \text { 内 } \\ \text { 燃 } \\ \text { 桦 } \\ \text { 関 } \end{array}$	機関		高圧炬心スプレイ系ディーゼル機関	S	火力技術基準		－		変更なし			常設／防止 （DB 拡張）	火力技術基準	
$$				調速装置及び非常調速装置		調速装置	S	－		－		変更なし			常設／防止 （DB 拡張）	－	
						非常調速装置	S	－		－		変更なし			常設／防止 （DB 拡張）	－	
				内燃機関に附属す る冷却水設備		機関付清水ポンプ	S	火力技術基準		－		変更なし			常設／防止 （DB 拡張）	火力技術基準	
				内燃機関 に附属す る空気圧縮設備	空気だめ	空気だめ（自動）	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SAクラス 2	
						空気だめ（手動）	S	クラス 3		－		変更なし					
					空気だめ	R44－F318	S	－		－		変更なし			常設／防止 （DB 拡張）	－	
					の安全弁	R44－F319	S	－		－		変更なし					
				$\begin{aligned} & \text { 燃料デイタンク又 } \\ & \text { はサービスタンン } \end{aligned}$		燃料デイタンク	S	火力技術基準		－		変更なし			常設／防止 （DB 拡張）	火力技術基準	

O 2 （1）II R 1

表1非常用電源設備の主要設備リスト（4／11）

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（5／11）

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（6／11）

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（7／11）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設（ ${ }^{\text {（1）}}$ ）		重大事故等対処設備 ${ }^{(3 \times 1)}$		名称	設計基準対象施設（31）		重大事故等対処設備（ ${ }^{(3) 1 \text { ）}}$		
				耐震 重要度 场分類	機器クラス	設備分類	重大事故等機器クラス	耐震要度分類		機器クラス	設備分類	重大事故等機器クラス		
韭虽発電装		$\begin{aligned} & \text { 燃 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	主配管		－					非常用ディーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準
				－					燃料移送ポンプ入口配管分岐点～非常用ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
				－					高圧炉心スプレイ系ディーゼル発電設備軽油タンク～高圧灲心スプレイ系ディーゼル発電設備燃料移送ポン プ入口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
				－					高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点 ～高圧炝心スプレイ系ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
				－					ガスタービン発電設備軽油タンク～ ガスタービン発電設備軽油タンク出口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
				－					ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
				－					軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	－	可搬／防止 可搬／緩和	SA クラス 3	
				－					給油用ホース（ $\dagger 25: 50 \mathrm{~m}$ ）	－	－	可搬／防止 可搬／緩和	SA クラス 3	
		$\begin{aligned} & \text { 登 } \\ & \text { 霖 } \end{aligned}$	発電機	－					電源車（発電機）	－	－	可搬／防止可搬／緩和	－	
			励磁装置	－					電源車（励磁装置）	－	－	可搬／防止可搬／緩和	－	
			保護継電装置	－					電源車（保護継電装置）	－	－	可搬／防止可搬／緩和	－	
			原動機との連結方法	－					原動機との連結方法（可搬型代替交流電源設備）（決3）	－	－	－		
	$\begin{aligned} & \text { 可 } \\ & \text { 搬 } \\ & \text { 型 } \\ & \text { 設僣 } \\ & \text { 備 } \\ & \text { 流 } \\ & \text { 霫 } \end{aligned}$	$\begin{aligned} & \text { 内 } \\ & \text { 燃 } \\ & \text { 関 } \end{aligned}$	機関		－				電源車（内燃機関）	－	－	可搬／防止可搬／緩和	－	
			調速装置及び非常調速装置	－					電源車（調速装置）	－	－	可搬／防止可搬／緩和	－	
				－					電源車（非常調速装置）	－	－	可搬／防止可搬／緩和	－	

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（8／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設 ${ }^{(311)}$		重大事故等対処設備 ${ }^{(31)}$		名称	設計基準対象施設 ${ }_{\text {a }}$（1）		重大事故等対処設備 ${ }^{(31)}$		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{1}{1} \\ & \stackrel{1}{\omega} \\ & \bullet \end{aligned}$	$\begin{aligned} & \text { 韭 } \\ & \text { 虽 } \\ & \text { 発 } \\ & \text { 䨟 } \\ & \text { 置 } \end{aligned}$	可搬型替淔流霫設備	内燃機関	内燃機関に附属す る冷却水設備		－					電源車（冷却水ポンプ）	－	－	可搬／防止 可搬／緩和	SA クラス 3
				$\begin{aligned} & \text { 燃料デイタンク又 } \\ & \text { はサービスタンク } \end{aligned}$	－					電源車（燃料タンク）	－	－	可搬／防止可搬／緩和	SA クラス 3	
			容器		－					非常用ディーゼル発電設備軽油タン ク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					高圧炬心スプレイ系ディーゼル発電設備軽油タンク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					ガスタービン発電設備軽油タンク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					タンクローリ	－	－	可搬／防止可搬／緩和	SA クラス 3	
				$\begin{gathered} \text { 燃 } \\ \text { 詸 } \\ \text { 備 } \\ \\ \\ \text { 主配管 } \end{gathered}$	－					非常用ディーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分岐点	－	－	常設而震／防止常設／緩和	火力技術基準	
					－					燃料移送ポンプ入口配管分岐点～非常用ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					高圧炉心スプレイ系ディーゼル発電設備軽油タンク～高圧灲心スプレイ系ディーゼル発電設備燃料移送ポン プ入口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点 ～高圧炉心スプレイ系ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					ガスタービン発電設備軽油タンク～ ガスタービン発電設備軽油タンク出口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					軽油扎出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	－	可搬／防止 可搬／緩和	SAクラス 3	
					－					給油用ホース（ $\phi 25: 50 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SAクラス 3	

O 2 （1）II R1

表1非常用電源設備の主要設備リスト（9／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緿 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設 ${ }^{\left({ }^{(1)} \text { 1）}\right.}$		重大事故等対処設備 ${ }^{\text {（3 }}$ 1）		名称	設計基準対象施設 ${ }^{(311)}$		重大事故等対処設備 ${ }^{(3 \times 1)}$		
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		$\begin{aligned} & \text { 可 } \\ & \text { 搬 } \\ & \text { 型 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 流 } \\ & \text { 震 } \\ & \text { 設 } \\ & \text { 備 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { 登 } \\ \text { 雵 } \end{array}$	発電機		－					電源車（発電機）	－	－	可搬／防止 可搬／緩和	－
				励磁装置	－					電源車（励磁装置）	－	－	可搬／防止可搬／緩和	－	
				保護継電装置	－					電源車（保護継電装置）	－	－	可搬／防止可搬／緩和	－	
				原動機との連結方法	－					原動機との連結方法（可搬型代替直流電源設備）	－	－			
			$\begin{aligned} & \text { 内 } \\ & \text { 燃 } \\ & \text { 䨀 } \end{aligned}$	機関	－					電源車（緊急時対策所用）（内燃機関）	－	－	可搬／防止可搬／緩和	－	
∞				調速装置及び非常	－					電源車（緊急時対策所用）（調速装置）	－	－	可搬／防止可搬／緩和	－	
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$				調速装置	－					電源車（緊急時対策所用）（非常調速装置）	－	－	可搬／防止可搬／緩和	－	
N	$\begin{aligned} & \text { 嫦 } \\ & \text { 䨍 } \end{aligned}$			内燃機関に附属す る泠却水設備	－					電源車（緊急時対策所用）（泠却水ポン プ）	－	－	可搬／防止可搬／緩和	SA クラス 3	
	$\begin{aligned} & \text { 発電 } \\ & \text { 㳖 } \end{aligned}$			$\begin{aligned} & \text { 燃料デイタンク又 } \\ & \text { はサービスタン } \end{aligned}$	－					電源車（緊急時対策所用）（燃料タン ク）	－	－	可搬／防止可搬／緩和	SAクラス 3	
			$\begin{aligned} & \text { 燃 } \\ & \text { 堣 } \\ & \text { 糒 } \end{aligned}$	容器	－					緊急時対策所軽油タンク	－	－	常設耐震／防止常設／緩和	火力技術基準	
				主配管	－					緊急時対策所軽油タンク～給油口	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					給油用ホース（20A：7m）	－	－	可搬／防止可搬／緩和	SA クラス 3	
			$\begin{aligned} & \text { 登爱 } \\ & \text { 機 } \end{aligned}$	発電機	－					電源車（緊急時対策所用）（発電機）	－	－	可搬／防止可搬／緩和	－	
				励磁装置	－					電源車（緊急時対策所用）（励磁装置）	－	－	可搬／防止可搬／緩和	－	
				保護継電装置	－					電源車（緊急時対策所用）（保護継電装置）	－	－	可搬／防止可搬／緩和	－	
				原動機との連結方法	－					原動機との連結方法（緊急時対策所デ ィーゼル発電設備）	－	－	－		

表1非常用電源設備の主要設備リスト（10／11）

	$\begin{aligned} & \text { 檼 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼対象施設瑯（1）		重大事故等対処設備 ${ }^{(2+1)}$		名称	設計基鹪対象施設 ${ }^{\text {（121）}}$		重大事故等対処設備 ${ }^{(2 \text {（1）}}{ }^{\text {a }}$		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
			機関		－					可搬型窒素ガス供給装置発電設備（内燃機関）	－	－	可搬／緩和	－
			調速装置及び非常	－					可搬型窒素がス供給装置発電設備（調速装置）	－	－	可搬／緩和	－	
			調速装置	－					可搬型窒素ガス供給装置発電設備（非常調速装置）	－	－	可搬（緩和	－	
			内燃機関に附属す る椧却水設備	－					可搬型窒素ガス供給装置発電設備（冷却水ポンプ）	\square	\square	可搬／皧和	SAクラス3	
			$\begin{aligned} & \text { 然料デイタンクス } \\ & \text { はサービスタン } \end{aligned}$	－					可搬型窒素がス供給装置発電設備（火然料タンク）	－	－	可搬（緩和	SAクラス 3	
				－					非常用ディーゼル発電設備軽油タン ク	－	－	常設／緩和	火力技術基準	
				－					高圧炬心スプレイ系ディーゼル発電設備軽油タンク	－	－	常設／（緩和	火力技㯎基準	
				－					ガスタービン発電設備柽油タンク	－	－	常設／緩和	火力技䝨基準	
				－					タンクローリ	－	－	可搬緩和	SAクラス 3	
				－					非常用デイーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分叶点	－	－	常設 緩和 $^{\text {a }}$	火力技術基準	
				－					燃料移送ポンプス口配管分跂点～非常用ディーゼル発電設備軽油タンク払出口	－	－	常設 緩和 $^{\text {a }}$	火力技術基準	
				－						－	－	常設／緩和	火力技術基準	
				－						－	－	常設 ${ }^{\text {緩和 }}$	火力技術基準	
				－					$\begin{aligned} & \text { ガスタービン発電設備軽油タンク~ } \\ & \text { ガスタービン発電設備㳗油タンク出 } \\ & \text { 口配管分岐古点 } \end{aligned}$	－	－	常設／緩和	火力技術基準	
				－						－	－	常設緩和	火力技術基準	

O 2 （1）II R1

表1非常用電源設備の主要設備リスト $(11 / 11)$

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
（注 2）設計基淮対象施設及び重大事故等対処設備として使用する。
（注 3）重大事故等対処設備として使用する。
（注 4）記載の適正化を行う。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12月 15 日原院第5号）	第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 - 消防法（昭和 23 年 7 月 24 日法律第 186 号） - 発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12月 15 日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号）
－発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号）	－発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 商局第 $2 \text { 号) }$
－J E C 1 1 4－1979 同期機	- 日本建築学会 1979 年 鉄筋コンクリート構造計算規準•同解説 - J E C 1 1 4－1979 同期機 - J EM 1 3 9 8－2006 ディーゼルエンジン駆動可搬形交流発電装置 - J EM 1435－2014 非常用陸用同期発電機 - J I S B 8 2 0 1－2005 陸用鋼製ボイラー構造 - NEGA C 3 31－2005 可搬形発電設備技術基準

上記の他「高エネルギーアーク損傷（HEAF）に係る電気盤の設計に関する審査ガイド」を参照する。

