女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-D-10-0001_改 1
提出年月日	2021年6月15日

工事計画に係る説明資料 常用電源設備 (基本設計方針)

> 2021年6月 東北電力株式会社

8.2.4 常用電源設備の基本設計方針,適用基準及び適用規格

(1) 基本設計方針

(1) 基本政司力可	
変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」,「実用	用語の定義は「実用発電用原子炉及びその附属施設の位置、構造及び設備
発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」	の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準
及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに	に関する規則」並びにこれらの解釈による。
これらの解釈による。	
第1章 共通項目	第1章 共通項目
常用電源設備の共通項目である「1. 地盤等, 2. 自然現象, 3. 火災,	常用電源設備の共通項目である「1. 地盤等, 2. 自然現象(2.2 津波
4. 設備に対する要求(4.2 材料及び構造等,4.3 使用中の亀裂等による	による損傷の防止を除く。), 3. 火災, 5. 設備に対する要求 (5.2 材料
破壊の防止,4.4 耐圧試験等,4.5 安全弁等,4.6 逆止め弁,4.7 内燃	及び構造等,5.3 使用中の亀裂等による破壊の防止,5.4 耐圧試験等,5.5
機関の設計条件を除く。), 5. その他」の基本設計方針については, 原子炉	安全弁等, 5.6 逆止め弁, 5.7 内燃機関及びガスタービンの設計条件を除
冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	く。), 6. その他」の基本設計方針については、原子炉冷却系統施設の基本
	設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目	第2章 個別項目
1. 保安電源設備	1. 保安電源設備
1.1 発電所構内における電気系統の信頼性確保	1.1 発電所構内における電気系統の信頼性確保
1.1.1 機器の破損,故障その他の異常の検知と拡大防止	1.1.1 機器の破損,故障その他の異常の検知と拡大防止
	安全施設へ電力を供給する保安電源設備は、電線路、発電用原子
	炉施設において常時使用される発電機,外部電源系及び非常用所内
	電源系から安全施設への電力の供給が停止することがないよう,発
	電機,送電線,変圧器,母線等に保護継電器を設置し,機器の損壊,
	故障その他の異常を検知するとともに、異常を検知した場合は、ガ

変更前

重要安全施設に給電する系統においては,多重性を有し,系統分離が可能である母線で構成し、信頼性の高い機器を設置する。

常用高圧母線(メタルクラッド開閉装置で構成)は、2 母線で構成し、通常運転時に必要な負荷を各母線に振り分け給電する。それぞれの母線から動力変圧器を通して降圧し、常用低圧母線(パワーセンタ及びモータコントロールセンタで構成)へ給電する。

共通用高圧母線(メタルクラッド開閉装置で構成)は、2 母線で構成し、それぞれの母線から動力変圧器を通して降圧し、共通用低圧母線(パワーセンタ及びモータコントロールセンタで構成)へ給電する設計とする。

また, 高圧及び低圧母線等で故障が発生した際は, 遮断器により 故障箇所を隔離できる設計とし, 故障による影響を局所化できると ともに, 他の安全施設への影響を限定できる設計とする。

常用の直流電源設備は、250V 蓄電池、250V 充電器、250V 直流主 母線盤等で構成する。

常用の直流電源設備は、タービンの非常用油ポンプ、発電機の非 常用密封油ポンプ等へ給電する設計とする。

常用の計測制御用電源設備は、計測母線で構成する。

常用電源設備の動力回路のケーブルは、負荷の容量に応じたケーブルを使用する設計とし、多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響を及ぼさない設計とするとともに、制御回路や計装回路への電気的影響を考慮した設計とする。

変更後

ス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動 作することにより、その拡大を防止する設計とする。

特に重要安全施設に給電する系統においては,多重性を有し,系 統分離が可能である母線で構成し、信頼性の高い機器を設置する。

常用高圧母線(メタルクラッド開閉装置で構成)は、2 母線で構成し、通常運転時に必要な負荷を各母線に振り分け給電する。それぞれの母線から動力変圧器を通して降圧し、常用低圧母線(パワーセンタ及びモータコントロールセンタで構成)へ給電する。

共通用高圧母線(メタルクラッド開閉装置で構成)は、2 母線で構成し、それぞれの母線から動力変圧器を通して降圧し、共通用低 圧母線(パワーセンタ及びモータコントロールセンタで構成)へ給電する設計とする。

また, 高圧及び低圧母線等で故障が発生した際は, 遮断器により 故障箇所を隔離できる設計とし, 故障による影響を局所化できると ともに, 他の安全施設への影響を限定できる設計とする。

常用の直流電源設備は、250V 蓄電池、250V 充電器、250V 直流主 母線盤等で構成する。

常用の直流電源設備は、タービンの非常用油ポンプ、発電機の非 常用密封油ポンプ等へ給電する設計とする。

常用の計測制御用電源設備は、計測母線で構成する。

常用電源設備の動力回路のケーブルは,負荷の容量に応じたケーブルを使用する設計とし,多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響を及ぼさない設計とするとともに,制御回路や計装回路への電気的影響を考慮した設計とする。

変更前	変更後
	1.1.2 1相の電路の開放に対する検知及び電力の安定性回復
	変圧器 1 次側において 3 相のうちの 1 相の電路の開放が生じた
	場合に検知できるよう,変圧器1次側の電路は,電路を筐体に内包
	する変圧器やガス絶縁開閉装置等により構成し,3相のうちの1相
	の電路の開放が生じた場合に保護継電器にて自動で故障箇所の隔
	離及び非常用母線の受電切替ができる設計とし,電力の供給の安定
	性を回復できる設計とする。
	送電線において 3 相のうちの 1 相の電路の開放が生じた場合,
	275kV 送電線は1回線での電路の開放時に安全施設への電力の供給
	が不安定にならないよう、多重化した設計とする。
	また,電力送電時,保護装置による3相の電流不平衡監視にて常
	時自動検知できる設計とする。
	66kV 送電線は、各相の不足電圧継電器にて常時自動検知できる
	設計とする。
	更に, 275kV 送電線及び 66kV 送電線は, 保安規定に定めている
	巡視点検を加えることで,保護装置による検知が期待できない場合
	の1相開放故障や,その兆候を早期に検知できる設計とする。
	275kV 送電線及び 66kV 送電線において 1 相の電路の開放を検知
	した場合は、自動又は手動で故障箇所の隔離及び非常用母線の受電
	切替ができる設計とし、電力の供給の安定性を回復できる設計とす
	る。
1.2 電線路の独立性及び物理的隔離	1.2 電線路の独立性及び物理的隔離
発電用原子炉施設は,重要安全施設がその機能を維持するために必要	要 発電用原子炉施設は,重要安全施設がその機能を維持するために必要

変更前

となる電力を当該重要安全施設に供給するため,電力系統に連系した設計とする。

設計基準対象施設は、送受電可能な回線として 275kV 送電線 (東北電力ネットワーク株式会社牡鹿幹線 (以下「牡鹿幹線」という。)) (第 1 号機設備、第 1, 2, 3 号機共用 (以下同じ。)) 及び 275kV 送電線 (東北電力ネットワーク株式会社松島幹線 (以下「松島幹線」という。)) (第 3 号機設備、第 1, 2, 3 号機共用 (以下同じ。)) の 2 ルート 4 回線及び受電専用の回線として 66kV 送電線 (東北電力ネットワーク株式会社塚浜支線 (以下「塚浜支線」という。)(東北電力ネットワーク株式会社鮎川線 (以下「塚浜支線」という。)1 号を一部含む。)及び東北電力ネットワーク株式会社鮎川線 (以下「鮎川線」という。)1 号を一部含む。)及び東北電力ネットワーク株式会社「カイットワーク株式会社「カイット」という。)) (第 1 号機設備、第 1, 2, 3 号機共用 (以下同じ。)) 1 ルート 1 回線の合計 3 ルート 5 回線にて、電力系統に接続する設計とする。

275kV 送電線(牡鹿幹線)1 ルート 2 回線は東北電力ネットワーク株式会社石巻変電所(以下「石巻変電所」という。), 275kV 送電線(松島幹線)1 ルート 2 回線は東北電力ネットワーク株式会社宮城中央変電所(以下「宮城中央変電所」という。)に連系する設計とする。また、66kV送電線(塚浜支線(鮎川線 1 号を一部含む。))1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所(以下「女川変電所」という。)及び万石線を経由し、その上流接続先である東北電力ネットワーク株式会社西石巻変電所(以下「西石巻変電所」という。)に連系する設計とする。

変更後

となる電力を当該重要安全施設に供給するため,電力系統に連系した設計とする。

設計基準対象施設は、送受電可能な回線として 275kV 送電線 (東北電力ネットワーク株式会社牡鹿幹線 (以下「牡鹿幹線」という。)) (第 1 号機設備、第 1, 2, 3 号機共用 (以下同じ。)) 及び 275kV 送電線 (東北電力ネットワーク株式会社松島幹線 (以下「松島幹線」という。)) (第 3 号機設備、第 1, 2, 3 号機共用 (以下同じ。)) の 2 ルート 4 回線及び受電専用の回線として 66kV 送電線 (東北電力ネットワーク株式会社塚浜支線 (以下「塚浜支線」という。) (東北電力ネットワーク株式会社塚川線 (以下「塚浜支線」という。) 1 号を一部含む。) 及び東北電力ネットワーク株式会社 1, 2, 3 号機共用 (以下同じ。)) 1 ルート 1 回線の合計 3 ルート 5 回線にて、電力系統に接続する設計とする。

275kV 送電線(牡鹿幹線)1ルート2回線は東北電力ネットワーク株式会社石巻変電所(以下「石巻変電所」という。),275kV 送電線(松島幹線)1ルート2回線は東北電力ネットワーク株式会社宮城中央変電所(以下「宮城中央変電所」という。)に連系する設計とする。また、66kV送電線(塚浜支線(鮎川線1号を一部含む。))1ルート1回線は東北電力ネットワーク株式会社女川変電所(以下「女川変電所」という。)及び万石線を経由し、その上流接続先である東北電力ネットワーク株式会社西石巻変電所(以下「西石巻変電所」という。)に連系する設計とする。

上記3ルート5回線の送電線の独立性を確保するため,万一,送電線の上流側接続先である石巻変電所が停止した場合でも,外部電源からの

変更前	変更後
	電力供給が可能となるよう,宮城中央変電所及び女川変電所を経由する
	ルートで本発電所に電力を供給することが可能な設計とする。また、宮
	城中央変電所が停止した場合には, 石巻変電所及び女川変電所を経由す
	るルートで本発電所に電力を供給することが可能な設計とする。更に、
	女川変電所が停止した場合には, 石巻変電所及び宮城中央変電所を経由
	するルートで本発電所に電力を供給することが可能な設計とする。
	設計基準対象施設は、電線路のうち少なくとも1回線は、同一の送電
	鉄塔に架線されていない,他の回線と物理的に分離された送電線から受
	電する設計とする。
	また、大規模な盛土の崩壊、大規模な地すべり、急傾斜地の崩壊に対
	し鉄塔基礎の安定性が確保され、台風等による強風発生時及び着氷雪の
	事故防止対策が図られ、送電線の接近・交差・併架箇所については、仮
	に1つの鉄塔が倒壊しても,全ての送電線が同時に機能喪失しない離隔
	距離が確保された送電線,又は電線の張力方向によって,全ての送電線
	が同時に機能喪失しないように配置された鉄塔の送電線から受電でき
	る設計とする。
	1.3 発電用原子炉施設への電力供給確保
	設計基準対象施設に接続する電線路は、いずれの 2 回線が喪失した
	場合においても電力系統から発電用原子炉施設への電力の供給が停止
	しない設計とし、275kV 送電線 4 回線は母線連絡遮断器を設置したタイ
	ラインにより起動変圧器を介して接続するとともに,66kV 送電線は予
	備変圧器(第1号機設備,第1,2,3号機共用)を介して接続する設計
	とする。

変更前変更前変更後

1.3 設備の共用

275kV 送電線, 275kV 開閉所, 66kV 送電線, 66kV 開閉所及び予備電源盤は, 第1号機, 第2号機及び第3号機で共用するが, 各号機の必要負荷容量を満足する設計とすること, また, 各号機に遮断器を設け, 短絡・地絡等の故障が発生した場合, 故障箇所を隔離し, 他号機へ影響を及ぼさない設計とし, 共用箇所の故障により外部電源を受電できなくなった場合は, 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。) により各号機の非常用所内電源系に給電できる設計とすることで, 共用により安全性を損なわない設計とする。

開閉所から主発電機側の送受電設備は、十分な支持性能を持つ地盤に 設置するとともに、耐震性の高い、可とう性のある懸垂碍子及び重心の 低いガス絶縁開閉装置を設置する設計とする。

更に,防潮堤等により津波の影響を受けないエリアに設置するとともに,塩害を考慮し,275kV送電線引留部の碍子に対しては,碍子洗浄ができる設計とし,66kV送電線引留部の碍子に対しては,絶縁強化を施した碍子を設置し,遮断器等に対しては,電路がタンクに内包されているガス絶縁開閉装置を設置する。

1.4 設備の共用及び相互接続

275kV 送電線, 275kV 開閉所, 66kV 送電線, 66kV 開閉所及び予備電源盤は, 第1号機, 第2号機及び第3号機で共用するが,各号機の必要負荷容量を満足する設計とすること,また,各号機に遮断器を設け,短絡・地絡等の故障が発生した場合,故障箇所を隔離し,他号機へ影響を及ぼさない設計とし,共用箇所の故障により外部電源を受電できなくなった場合は,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)により各号機の非常用所内電源系に給電できる設計とすることで,共用により安全性を損なわない設計とする。

共通用高圧母線(第1~2号機間及び第2~3号機間)は,第1号及び第2号機並びに第2号及び第3号機で相互接続しているが,電源融通時に何らかの要因で電気故障が発生した場合,遮断器により故障箇所を隔離し,他の号機へ影響を及ぼさない設計とすることで,相互接続により安全性を損なわない設計とする。

変更前	変更後
2. 主要対象設備	2. 主要対象設備
常用電源設備の対象となる主要な設備について、「表 1 常用電源設備 の主要設備リスト」に示す。	常用電源設備の対象となる主要な設備について、「表 1 常用電源設備 の主要設備リスト」に示す。

表1 常用電源設備の主要設備リスト(1/1)

				変更前				変更後						
設備	系統	Lake BB Int. (A)		設計基準対象施設 (注1)		重大事故等対処設備 (注1)			設計基準対象施設 (注1)		重大事故等対処設備 (注1)			
設備区分	系統名称	機器区分	名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		
		発電機	発電機	С	_	-	_	変更なし					-	
発電機		励磁装置	発電機励磁装置	С	_	_		変更なし	なし		_			
機	_	保護継電装置	発電機(保護継電装置)	С	_	_		変更なし		-				
		原動機との連結方法	原動機との連結方法 (注2)	_	_	-		変更なし		-				
変圧器		変圧器	主変圧器	С	_	-		変更なし			-			
器	_	保護継電装置	主変圧器(保護継電装置)	С	_	_		変更なし		_				
		遮断器	線路用 275kV 遮断器(牡鹿幹線用)(第 1 号機設備,第 1,2,3 号機共用)	С	_	-	_	変更なし			-			
遊断器			線路用 275kV 遮断器(松島幹線用)(第 3 号機設備,第 1,2,3 号機共用)	С	_	-	_	変更なし			_			
	_	保護継電装置	線路用 275kV 遮断器(牡鹿幹線用)(第 1 号機設備,第 1,2,3 号機共用)(保護継電装置)	С	_	-	_	変更なし			_			
			線路用 275kV 遮断器(松島幹線用)(第 3 号機設備,第 1,2,3 号機共用)(保護継電装置)	С	_	-	_	変更なし			_			

⁽注1) 表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針、適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。

⁽注 2) 設計基準対象施設として使用する。

(2) 適用基準及び適用規格

変更前	変更後					
第1章 共通項目	第1章 共通項目					
常用電源設備に適用する共通項目の基準及び規格については,以下の基準	常用電源設備に適用する共通項目の基準及び規格については,以下の基準					
及び規格並びに,原子炉冷却系統施設,火災防護設備の「(2) 適用基準及	及び規格並びに,原子炉冷却系統施設,火災防護設備の「(2) 適用基準及					
び適用規格 第1章 共通項目」に示す。	び適用規格 第1章 共通項目」に示す。					
第2章 個別項目	第2章 個別項目					
常用電源設備に適用する個別項目の基準及び規格は以下のとおり。	常用電源設備に適用する個別項目の基準及び規格は以下のとおり。					
・発電用原子力設備に関する技術基準を定める省令の解釈(平成 17 年 12	・発電用原子力設備に関する技術基準を定める省令の解釈(平成 17 年 12					
月 15 日原院第 5 号)	月 15 日原院第 5 号)					
	・実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈(平					
	成 25 年 6 月 19 日原規技発第 1306194 号)					
・JEC 114-1979 同期機	・JEC 114-1979 同期機					
	・JEC 204-1978 変圧器					
	・JEC 2300-1985 交流遮断器					