| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料

原子炉格納施設のらち圧力低減設備その他の安全設備
（放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに
格納容器再循環設備 (可搬型窒素ガス供給系)
（本文）

2021年6月
東北電力株式会社

申請範囲

7．原子炉格納施設

7.3 圧力低減設備その他の安全設備
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
f．可搬型窒素ガス供給系
二 圧縮機（可搬型）
－可搬型窒素ガス供給装置
ル 主配管（常設）
ル 主配管（可搬型）
f．可搬型窒素ガス供給系
二 圧縮機（可搬型）

注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系），並びに圧力低減設備その他の安全設備のうち放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィ ルタベント系），及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊2：重大事故等時における使用時の値。
＊ 3 ：公称値を示す。

ル 主配管（常設）

注記＊1 ：外径は公称値を示す。

＊2：（ ）内は公称値を示す
＊3 ：重大事故等時における使用時の値。
容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊5 ：エルボを示す。
＊6 ：差込継手の差込部内径及び最小厚さ
計画で兼用とする。
器再循環設備（可搬型窒素ガス供給系）として本工事計画で兼用とする。

ル 主配管（可搬型）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{変 更 前} \& \multicolumn{9}{|c|}{変 更 後} \\
\hline 名称 \& \begin{tabular}{l}
最高使用 \\
圧力 \\
（kPa）
\end{tabular} \& 最高使用温度 （ \(\left.{ }^{\circ} \mathrm{C}\right)\) \& \[
\begin{gathered}
\text { 外径*1 }^{2} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
厚さ＊2 \\
（mm）
\end{tabular} \& 材料 \& 個数 \& 取付箇所 \& \multicolumn{2}{|r|}{名 称} \& \[
\begin{gathered}
\hline \text { 最高使 用 } \\
\text { 圧 力 } \\
(\mathrm{kPa})
\end{gathered}
\] \& 最 高 使 用温 度 \(\left({ }^{\circ} \mathrm{C}\right)\) \& \[
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 厚 さ＊2 （mm） \& 材 料 \& 個 数 \& 取 付 箇 所 \\
\hline \multirow{3}{*}{可
搬
型
至
素
カ
ス
供
給
系} \& \multicolumn{7}{|l|}{\multirow[t]{3}{*}{（n）}} \& \multirow{3}{*}{可
搬
型
窒
素
ガ
ス
供
給
系} \& \begin{tabular}{l}
窒素供給用ホース \\
（50A：5m）
\end{tabular} \& 854 \& 50 \& \(61.5 * 4\) \& \[
\begin{aligned}
\& \hline \\
\& \hline(0.3) \\
\& \hline
\end{aligned}
\] \& SUS304 \& \[
\begin{gathered}
18^{* 5} \\
(\text { (予備1) }
\end{gathered}
\] \& \begin{tabular}{l}
保管場所： \\
- 第1保管エリア 屋外 O．P．約62m \\
- 第 4 保管エリア 屋外 O．P．約62m \\
予備を含めた19本を第1保管エリアに18本及び第 4 保管エリアに1本保管する。 \\
取付場所：
\end{tabular} \\
\hline \& \& \& \& \& \& \& \& \& 窒素供給用ヘッダ＊3 \& 854 \& 50 \& 60.5

114.3 \& （5．5）

（6．0） \& STPG370 \& \[
$$
\begin{gathered}
1 \\
(\text { 予備1) }
\end{gathered}
$$

\] \& | 保管場所 ： |
| :--- |
| - 第1保管エリア 屋外 O．P．約 62 m |
| - 第 4 保管エリア 屋外 O．P．約 62 m |
| 予備を含めた2個を第1保管エリアに1個及び第4保管エリアに1個保管する。 |
| 取付場所： (•屋外 0.P. 約14. 8m原子炉建屋付近) |

\hline \& \& \& \& \& \& \& \& \& 可搬型窒素ガス供給装置接続管 \& 854 \& 50 \& 60.5 \& （5．5） \& STPG370 \& \[
$$
\begin{gathered}
1 \\
(\text { (予備1) }
\end{gathered}
$$

\] \& | 保管場所 ： |
| :--- |
| - 第1保管エリア 屋外 O．P．約62m |
| - 第4保管エリア 屋外 O．P．約62m |
| 予備を含めた2個を第1保管エリアに1個及び第4保管エリアに1個保管する。 |
| 取付場所： |
| $\left[\begin{array}{c}\text { •可搬型窒素ガス供給装置接続口 } \\ \text {（屋外）又は可船型窒素ガス供給 } \\ \text { 装置接続口（屋内）}\end{array}\right]$ |

\hline
\end{tabular}

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊4：伸縮継手部の外径及び厚さ。
＊5：必要本数 18 本（ $5 \mathrm{~m}: 18$ 本）を 1 セットに予備 1 本の数量を示す。

