女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－D－04－0004＿改 1
提出年月日	2021 年 6 月 15 日

工事計画に係る説明資料

（原子炉冷却系統施設の基本設計方針

【個別項目】に係る説明資料）

2021年6月
東北電力株式会社

変更前	変更後
第2章 個別項目 1．原子炉冷却材 原子炉冷却材は，通常運転時における圧力，温度及び放射線によって起 こる最も厳しい条件において，核的性質として核反応断面積が核反応維持 のために適切であり，熱水力的性質として冷却能力が適切であることを保持し，かつ，燃料体及び構造材の健全性を妨げることのない性質であり，通常運転時において放射線に対して化学的に安定であることを保持する設計とする。 【25 条 1】	第2章 個別項目 1．原子炉冷却材 変更なし
2．原子炉冷却材再循環設備 2.1 原子炉再循環系 原子炉再循環系は，原子炉再循環ポンプ及び原子炉圧力容器内に設け られたジェットポンプにより，原子炉冷却材を原子炉圧力容器内に循環 させて，炉心から熱除去を行う。 【33 条 2】 原子炉再循環ポンプの 1 台が急速停止又は電源喪失の場合でも，燃料棒が十分な熱的余裕を有し，かつ，タービン・トリップ又は負荷遮断直後の原子炉出力を抑制できるように，原子炉再循環系は適切な慣性を有する設計とする。 【33 条 9】	2．原子炉冷却材再循環設備 変更なし
3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等

変更前	変更後
炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付 ける設計とする。 【33 条 3】 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻 す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 【33 条 5】 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するた めに復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計 とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 【33 条 6】 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 【33 条 7】 3．2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成す	炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付 ける設計とする。 【33条3】 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻 す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 【33 条 5】 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するた めに復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計 とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 【 33 条 6】 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 【33 条 7】 3．2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成す

変更前	変更後
る機器に加わる負荷に耐える設計とする。 【27条1】 設計における衝撃荷重として，冷却材喪失事故に伴らジェット反力等，安全弁等の開放に伴う荷重を考慮するとともに，反応度が炉心に投入されることにより原子炉冷却系の圧力が増加することに伴う荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴う荷重の増加を含む。）を考慮した設計とする。 【27条2】 原子炉冷却材圧力バウンダリは，次の範囲の機器及び配管とする。 【27条3】 （1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構ハウジング等） 【27 条 4】 （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のう ち発電用原子炉側からみて第二隔離弁を含むまでの範囲） 【27 条5】 （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時閉及び設計基準事故時閉となる弁を有するものは，発	る機器に加わる負荷に耐える設計とする。 【27 条1】 設計における衝撃荷重として，冷却材喪失事故に伴うジェット反力等，安全弁等の開放に伴う荷重を考慮するとともに，反応度が炉心に投入されることにより原子炉冷却系の圧力が増加することに伴う荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴ら荷重の増加を含む。）を考慮した設計とする。 【27条2】 原子炉冷却材圧力バウンダリは，次の範囲の機器及び配管とする。 【27条3】 （1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構ハウジング等） 【27 条 4】 （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のう ち発電用原子炉側からみて第二隔離弁を含むまでの範囲） 【27条5】 （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののう

電用原子炉側からみて，第一隔離弁を含むまでの範囲とする。
（三）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。
（四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。
なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記（二）に該当する。

【27条6】

また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足 するように設計，材料選定を行う。

【27条7】

通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力 を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑える等の配慮をする。

タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラ ム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（9．48MPa）を超えない設計とする。

【27条8】

設計基準事故時のうち原子炉冷却材圧力バウンダリの健全性が問題 となる可能性がある制御棒落下事象については，「原子炉周期（ペリオ

変更後
ち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁 を含むまでの範囲とする。
（四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。
（五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。
なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記（三）に該当する。

【27条6】

また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足 するように設計，材料選定を行う。

【27条7】

通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力 を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑える等の配慮をする。

タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラ ム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（9．48MPa）を超えない設計とする。

【27条8】

設計基準事故時のうち原子炉冷却材圧力バウンダリの健全性が問題 となる可能性がある制御棒落下事象については，「原子炉周期（ペリオ

変更前	変更後
ド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置 を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑 え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 【27条9】 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 【27条10】	ド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置 を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑 え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 【27 条 9】 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 【27条10】
3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限する ために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。 【28 条 1】 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおり とする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とす る。 （二）通常時閉及び設計基準事故時閉となる弁を有するものは，発	3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限する ために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。 【28 条 1】 なお，原子炬冷却材圧力バウンダリの隔離弁の対象は，以下のとおり とする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とす る。 （二）通常時開又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののう

電用原子炉側からみて，第一隔離弁を対象とする。
（三）通常時閉及び冷却材喪失時開となる弁を有する非常用灯心冷却系等も発電用原子炉側からみて第一隔離弁及び第二隔離弁を対象とする。
（四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行う弁は，開となるおそれがなく，上記（二）に該当することから，発電用原子炬側からみて第一隔離弁を対象とする。
【28条2】
3.4 主蒸気逃がし安全弁の機能

3．4．1 系統構成
主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉 を行らアクチュエータを取付けたもので，排気はサプレッションチ ェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。
【33 条4】
自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプ レッションチェンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炬心スプレ イ系による注水を可能とし，炉心泠却を行らことができる設計とす る。

変更後
ち，（二）以外のものは，発電用原子炬側からみて，第一隔離弁 を対象とする。
（四）通常時閉及び伶却材喪失時開となる弁を有する非常用炬心椧却系等も，発電用原子炉側からみて第一隔離弁及び第二隔離弁を対象とする。
（五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。
なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行ら弁は，開となるおそれがなく，上記（三）に該当することから，発電用原子炉側からみて第一隔離弁を対象とする。
【28条2】
3.4 主蒸気逃がし安全弁の機能

3．4．1 系統構成
主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉 を行らアクチュエータを取付けたもので，排気はサプレッションチ ェンバのプール水面下に導き，原子炉泠却系の過度の圧力上昇を防止できる設計とする。

【 33 条4】

自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプ レッションチェンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炬心スプレ イ系による注水を可能とし，炉心泠却を行うことができる設計とす る。

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \underset{\sim}{1} \end{aligned}$		レッションチェンバのプール水面下に導き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とする。 【61条19】
		3．4．2 環境条件等 主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動す るように，原子炉格納容器内に設置し，制御用空気が喪失した場合 に使用する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンべの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能な設計とする。 【61 条 24】
	3．4．2 主蒸気逃がし安全弁の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピストンを備え たバネ式の平衡形安全弁に，外部から強制的に開閉を行うアクチュ エータを取付けたもので，蒸気圧力がスプリングの設定圧力に達す ると自動開放するほか，外部信号によってアクチュエータのピスト ンに窒素圧力を供給して弁を強制的に開放することができるもの を使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与えない設計とする。なお，主蒸気逃が し安全弁は，11個設置する設計とする。 主蒸気逃がし安全弁の排気は，排気管によりサプレッションチェ ンバのプール水面下に導き凝縮する設計とする。	3．4．3 主蒸気逃がし安全弁の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピストンを備え たバネ式の平衡形安全弁に，外部から強制的に開閉を行らアクチュ エータを取付けたもので，蒸気圧力がスプリングの設定圧力に達す ると自動開放するほか，外部信号によってアクチュエータのピスト ンに窒素圧力を供給して弁を強制的に開放することができるもの を使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与えない設計とする。なお，主蒸気逃が し安全弁は，11個設置する設計とする。 主蒸気逃がし安全弁の排気は，排気管によりサプレッションチェ ンバのプール水面下に導き凝縮する設計とする。

変更前	変更後
【20 条6】	【20 条6】【57条6】
主蒸気逃がし安全弁の容量は，原子炉泠却材圧力バウンダリの過	主蒸気逃がし安全弁の容量は，原子炉泠却材圧力バウンダリの過
度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み	度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み
合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上	合わせることにより，原子灯圧力容器の過圧防止に必要な容量以上
を有する設計とする。	を有する設計とする。
なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バ	なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バ
ウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要	ウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要
な容量を算定する。	な容量を算定する。
【20 条 7】	【20条7】【57条7】
	3．4．4 代替自動減圧回路（代替自動減圧機能）
	原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事
	故対処設備が有する発電用原子炉の減圧機能が震失した場合にお
	いても灯心の著しい損傷及び原子炉格納容器の破損を防止するた
	め，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故
	等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧
	回路（代替自動減圧機能）を設ける設計とする。
	【61条1】
	主蒸気逃がし安全弁の自動減圧機能が䨖失した場合の重大事故
	等対処設備として，主蒸気逃がし安全弁は，代替自動減圧回路（代
	替自動減圧機能）からの信号により，主蒸気逃がし安全弁自動減圧
	機能用アキュムレータに蓄圧された窒素をアクチュエータのピス
	トンに供給することで作動し，蒸気を排気管によりサプレッション
	チェンバのプール水面下に導き凝縮させることで，原子炉泠却材圧

変更前	変更後
4．残留熱除去設備 4.1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の冷却材喪失事故時 には低圧炉心スプレイ系及び高圧炉心スプレイ系と連携して，中小破断の泠却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炉心シュラウド内に注水する設計とする。 【32 条 7】 4．1．2 原子炉停止時冷却モード （1）系統構成 発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要 なパラメータが設計値を超えないようにするため，原子炉圧力容器内において発生した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。 残留熱除去系の泠却速度は，原子炉冷却材圧力バウンダリの加熱•冷却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計 とする。 【33 条 15】	4．残留熱除去設備 4． 1 残留熱除去系 4． 1.1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の冷却材喪失事故時 には低圧炉心スプレイ系及び高圧炉心スプレイ系と連携して，中小破断の泠却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炉心シュラウド内に注水する設計とする。 【32 条 7】 4．1．2 原子炉停止時冷却モード （1）系統構成 発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要 なパラメータが設計値を超えないようにするため，原子炉圧力容器内において発生した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。 残留熱除去系の冷却速度は，原子炉冷却材圧力バウンダリの加熱•泠却速度の制限値（ $\left.55^{\circ} \mathrm{C} / \mathrm{h}\right)$ を超えないように制限できる設計 とする。 【33 条 15】 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事

ω

	変更前	変更後
		容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 【62条58】63条4】 （2）多様性，位置的分散等 残留熱除去系（原子炉停止時冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただ し，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針の うち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しな い。 【62 条 59】【63条45】
	4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉泠却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損なうことを防止するため，原子炉格納容器内にお いて発生した熱を除去する設備として，残留熱除去系（格納容器ス プレイ冷却モード）を設ける設計とする。 【44条26】 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をドライウェル内及び サプレッションチェンバ内にスプレイすることにより，環境に放出	4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損なうことを防止するため，原子炉格納容器内にお いて発生した熱を除去する設備として，残留熱除去系（格納容器ス プレイ泠却モード）を設ける設計とする。 【44条26】 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をドライウェル内及び サプレッションチェンバ内にスプレイすることにより，環境に放出

変更前	変更後
される放射性物質の濃度を減少させる設計とする。 【44条24】 残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出さ れるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度 が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 【44条27】 残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響につ いて「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置 の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 【44条28】 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とす る。 【44条29】 残留熱除去系（格納容器スプレイ泠却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計	される放射性物質の濃度を減少させる設計とする。 【44条24】 残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出さ れるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度 が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 【44条27】 残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響につ いて「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置 の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 【44条28】 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とす る。 【44 条 29】 残留熱除去系（格納容器スプレイ冷却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計

\rightleftharpoons

変更前	変更後
（1）系統構成 残留熱除去系（サプレッションプール水泠却モード）は，サプレ ッションチェンバのプール水温度を所定の温度以下に泠却できる設計とする。 【33条16】	（1）系統構成 残留熱除去系（サプレッションプール水冷却モード）は，サプレ ッションチェンバのプール水温度を所定の温度以下に泠却できる設計とする。 【33条16】 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （サプレッションプール水泠却モード）が使用できる場合は重大事故等対処設備（設計基準抎張）として使用できる設計とする。 【63条2】 残留熱除去系（サプレッションプール水冷却モード）の流路とし て，設計基準対象施設である原子炉格納容器を重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 【63条56】 （2）多様性，位置的分散等 残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針 は適用しない。 【63条45】

変更前	変更後
4．1．5 燃料プール冷却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とす る。残留熱除去系熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海 へ輸送できる設計とする。 【26条26】【26条27】	4．1．5 燃料プール泠却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とす る。残留熱除去系熱交換器で除去した熱は，原子炉補機泠却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海 へ輸送できる設計とする。 【26条26】【26条27】 4．2 原子炉格納容器フィルタベント系 4．2．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送す る機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。） を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備として，原子炉格納容器フィルタベント系を設け る設計とする。 【63条1】 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，原子炉格納容器フ イルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フィルタ装置出口側 ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィ

	変更前	変更後
$\begin{aligned} & \sim \\ & \stackrel{0}{च} \\ & \stackrel{\rightharpoonup}{\beth} \end{aligned}$		原子炬格納容器フィルタベント系使用時の排出経路に設置され る隔離弁は，遠隔手動弁操作設備（個数 4）（原子炉格納施設のう ち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉泠却系統施設のらち「4．2 原子炉格納容器フィルタベント系」の設備として兼用）によって人力により容易かつ確実に操作が可能な設計とする。 【63条15】 排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電に より，中央制御室から操作が可能な設計とする。 【63条17】 系統内に設けるフィルタ装置出口側ラプチャディスクは，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計 とする。 【63条18】 原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイプI）によりフィルタ装置にスクラバ溶液を補給で きる設計とする。 【63条20】 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，サプレッションチェンバベント用出口隔離弁（T48－

N

変更前	変更後
超えて上昇することを防止できる設計とするとともに，燃料の過熱によ る燃料被覆管の大破損を防ぎ，更にこれに伴らジルコニウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とする。 【32条1】 非常用炬心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。【32 条2】 非常用炉心冷却設備又は残留熱除去設備のらち，サプレッションチェ ンバのプール水を水源として原子炉圧力容器へ注水するために運転す るポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並 びに，原子炉泠却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計 とする。 【32条3】	超えて上昇することを防止できる設計とするとともに，燃料の過熱によ る燃料被覆管の大破損を防ぎ，更にこれに伴らジルコニウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とする。 【 32 条1】 非常用炉心泠却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。【32 条 2】 非常用炉心泠却設備又は残留熱除去設備のうち，サプレッションチェ ンバのプール水を水源として原子炉圧力容器へ注水するために運転す るポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並 びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計 とする。 【 32 条3】 非常用炉心冷却設備その他原子炉注水設備のらち，サプレッションチ ェンバのプール水を水源として原子炉圧力容器へ注水するために運転 するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炬冷却材中の異物の影響について「非常用鿉心椧却設備又は格納容器熱除去設備 に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。

変更前	変更後
非常用炉心泠却設備のうち，復水貯蔵タンクを水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により最も小さい有効吸込水頭においても，正常に機能する能力を有 する設計とする。 【32条4】	【54条87】 非常用炉心泠却設備のうち，復水貯蔵タンクを水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。 【32条4】 非常用炉心浍却設備その他原子炉注水設備のうち，復水貯蔵タンク， ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプ は，復水貯蔵タンク，ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。【54 条 88】
自動減圧系を除く非常用炉心泠却設備については，作動性を確認する	自動減圧系を除く非常用炉心泠却設備については，作動性を確認する
ため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試	ため，発電用原子炉の連転中に，テストラインを用いてポンプの作動試
験ができる設計とするとともに，弁については単体で開閉試験ができる	験ができる設計とするとともに，弁については単体で開閉試験ができる
設計とする。	設計とする。
【32 条9】	【32条9】
自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁	自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁
の駆動用窒素供給圧力の碓認を行らことで，非常用炉心冷却設備の能力	の駆動用窒素供給圧力の碓認を行らことで，非常用炉心椧却設備の能力
の維持状況を確認できる設計とする。なお，発電用原子炉停止中に，主	の維持状況を確認できる設計とする。なお，発電用原子炉停止中に，主
蒸気逃がし安全弁の作動試験ができる設計とする。	蒸気逃がし安全弁の作動試験ができる設計とする。

【32条10】

変更前	変更後
5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時には低圧炉心 スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン クの水又はサプレッションチェンバのプール水を炉心上部に取付 けられた高圧炉心スプレイスパージャのノズルから炉心にスプレ イする設計とする。 【32条5】	5．2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の冷却材喪失事故時には低圧炉心 スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン クの水又はサプレッションチェンバのプール水を炉心上部に取付 けられた高圧炉心スプレイスパージャのノズルから炉心にスプレ イする設計とする。 【32 条5】 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 【60 条 3】 高圧炉心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 【60 条 4】 インターフェイスシステム LOCA 発生時の重大事故等対処設備と して，高圧炉心スプレイ系注入隔離弁（E22－F003）は，現場で弁 を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。

変更前	変更後
5.3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炉心スプレイ系は，大破断の泠却材喪失事故時には残留熱除去系（低圧注水モード）及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を，炉心上部に取付けられた低圧炉心スプレイスパージャのノ ズルから炉心にスプレイする設計とする。 【32 条 6】	5.3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炉心スプレイ系は，大破断の冷却材喪失事故時には残留熱除去系（低圧注水モード）及び高圧炉心スプレイ系と連携して，中小破断の泠却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を，炉心上部に取付けられた低圧炉心スプレイスパージャのノ ズルから炉心にスプレイする設計とする。 【32 条 6】 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である低圧炉心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用できる設計とする。 【62 条 3】 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，低圧炉心 スプレイ系が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，低圧炉心スプレイ系を復旧できる設計 とする。低圧炉心スプレイ系は，常設代替交流電源設備からの給電 により機能を復旧し，低圧炉心スプレイ系ポンプによりサプレッシ ョンチェンバのプール水を原子炉圧力容器ヘスプレイすることで炉心を冷却できる設計とする。本系統に使用する泠却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代

$\stackrel{N}{N}$

5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水

$\stackrel{\wedge}{0}$

OTO

G

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \stackrel{1}{0} \\ & \hline \end{aligned}$		として，大容量送水ポンプ（タイプI）は，海水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 【71条14】 更に，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2） の淡水が枯渴した場合に，海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプII）は，海水を淡水貯水槽 （No．1）及び淡水貯水槽（No．2）へ供給できる設計とする。 【71条15】 大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII） は，空冷式のディーゼルエンジンにより駆動できる設計とする。 【71条16】 代替水源及び代替淡水源からの移送ルートを確保するとともに，可搬型のホース，大容量送水ポンプ（タイプ I）及び大容量送水ポ ンプ（タイプII）については，複数箇所に分散して保管する。 【71条5】 水源への水の供給に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設のうち 「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のう ち「5．10．2 代替水源移送系」の設備として兼用）により行ら設計 とする。 【71 条18】
	6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系	6．原子炉泠却材補給設備 6.1 原子炉隔離時冷却系

変更前	変更後
原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及び原子炉冷却材圧力バウンダリに接続する小口径配管 の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 【33 条 12】 原子炉隔離時冷却系は，短時間の全交流動力電源喪失時においても，炉心を冷却する機能を有する設計とする。 【33 条 17】 6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンク を設置する設計とする。 【33 条 8】	原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及び原子炉冷却材圧力バウンダリに接続する小口径配管 の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 【33条12】 原子炉隔離時冷却系は，全交流動力電源喪失時から重大事故等に対処 するために必要な電力の供給が常設代替交流電源設備から開始される までの間，炉心を冷却する機能を有する設計とする。 【33条17】 6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンク を設置する設計とする。 【33 条8】
7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成	7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成

最終ヒートシンクへ熱を輸送することができる設備である原子炉補機泠却水系（原子炉補機泠却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内にお いて発生した残留熱及び重要安全施設において発生した熱を，最終的な熱の逃がし場である海へ輸送が可能な設計とする。

また，津波又は発電所敷地若しくはその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計と する。

【33条18】

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。
【33条19】
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，淡水 ループである原子炉補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計とする。
【33条20】

変更後
最終ヒートシンクへ熱を輸送することができる設備である原子炉補機泠却水系（原子炉補機泠却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内にお いて発生した残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計とする。

また，津波，溢水又は発電所敷地若しくはその周辺において想定 される発電用原子炉施設の安全性を損なわせる原因となるおそれ がある事象であって人為によるものに対して安全性を損なわない設計とする。
【33 条 18】
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。

【33条19】

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，淡水 ループである原子炉補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計とする。
【33 条 20】
原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する

変更前	変更後
	ための設備，最終ヒートシンクい熱を輸送するための設備，原子炉格納容器内の泠却等のための設備，原子炉格納容器の過圧破損を防止するための設備又は原子炉格納容器下部の溶融炉心を泠却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）が使用できる場合は，重大事故等対処設備（設計基準拡張） として使用できる設計とする。 【62 条 19】【62 条28】【62条40】【62 条51】【63条2】【64条20】【64条32】【65 条3】【66条36】 7．1．2 多様性，位置的分散等 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用す るため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備 の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 【63条45】
7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である高圧	7.2 高圧炝心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である高圧

炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，重要安全施設において発生した熱を，最終的な熱の逃が し場である海へ輸送が可能な設計とする。

また，津波又は発電所敷地若しくはその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計と する。
【33 条 18】
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。
【33 条 19】
高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系 と，海水系である高圧炉心スプレイ補機冷却海水系から構成する設計とする。
【33条23】

変更後
炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計と する。

また，津波，溢水又は発電所敷地若しくはその周辺において想定 される発電用原子炉施設の安全性を損なわせる原因となるおそれ がある事象であって人為によるものに対して安全性を損なわない設計とする。
【33条18】
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。

【33条19】

高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機泠却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系 と，海水系である高圧炉心スプレイ補機冷却海水系から構成する設計とする。
【33条23】
最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプ

	変更前	変更後
$$		原子炉補機代替冷却水系に使用するホースの敷設は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設の らち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設 のらち「7．3 原子炬補機代替冷却水系」の設備として兼用）によ り行ら設計とする。 【62 条24】【62 条 33】【62 条 45】【62 条56】【63条41】【64条25】 【64条37】【65 条 12】【66 条 42】【69 条60】 原子炉補機代替冷却水系の流路として，設計基準対象施設である残留熱除去系熱交換器を重大事故等対処設備として使用すること から，流路に係る機能について重大事故等対処設備としての設計を行う。 【63条42】 7．3．2 多重性又は多様性及び独立性，位置的分散 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよ ら，原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポン プ（タイプ I ）を空冷式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炬補機冷却海水系を含む。）に対して多様性を有する設計とする。 また，原子炬補機代替冷却水系は，原子炉格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計 とする。 【63条51】

変更前	変更後
	7．4 重大事故等の収束に必要となる水源 海は，想定される重大事故等時において，原子炉補機代替冷却水系の水源として利用できる設計とする。 【71条10】
8．原子炉冷却材浄化設備 8． 1 原子炉冷却材浄化系 原子炉冷却材浄化系は，原子炉冷却材の純度を高く保つために設置す るもので，原子炉再循環系配管及び原子炉圧力容器底部から原子炉冷却材を一部取り出し，原子炉冷却材浄化系ろ過脱塩器によって浄化脱塩し て復水給水系へ戻すことにより，原子炉冷却材中の不純物及び放射性物質の濃度を発電用原子炉施設の運転に支障を及ぼさない値以下に保つ ことができる設計とする。 【33 条 14】 放射性物質を含む原子炉冷却材を，原子炉起動時，停止時及び高温待機時において，原子炉冷却系統外に排出する場合は，原子炉冷却材浄化系により原子炉冷却材を浄化して，液体廃棄物処理系へ導く設計とす る。 【29 条 1】	8．原子炉冷却材浄化設備 変更なし
9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいに対して，ド ライウェル送風機冷却コイルドレン流量測定装置，ドライウェル床ドレン サンプ水位測定装置，ドライウェル機器ドレンサンプ水位測定装置及び格	9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置変更なし

変更前	変更後
納容器内ダスト放射線濃度測定装置を設ける設計とする。 このうち，漏えい位置を特定できない原子炉格納容器内の漏えいに対し ては，ドライウェル床ドレンサンプ水位測定装置により，1時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出する能力を有する設計とするとともに，自動的に中央制御室に警報を発信する設計とする。 また，測定値は，中央制御室に指示する設計とする。 【28条3】 ドライウェル床ドレンサンプ水位測定装置は，ドライウェル床ドレンサ ンプに設ける設計とする。 【28条5】 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいは，ドライウ エル床ドレンサンプ水位測定装置にて検出できる設計とする。 【28条6】 ドライウェル床ドレンサンプ水位測定装置が故障した場合は，これと同等の機能を有するドライウェル送風機冷却コイルドレン流量測定装置及 び格納容器内ダスト放射線濃度測定装置により，漏えい位置を特定できな い原子炉格納容器内の漏えいを検知可能な設計とする。 【28 条 4】	
10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系（原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合その他の原子炉冷却材の挙動により生じる温度変動により損	10．流体振動等による損傷の防止 変更なし

変更前	変更後
傷を受けない設計とする。 【19 条2】 管に設置された円柱状構造物で耐圧機能を有するものに関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J SME S 0 1 2）の規定に基づく手法及び評価フローに従った設計と する。 【19条3】 温度差のある流体の混合等で生じる温度変動により発生する配管の高 サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J S M E S O 1 7 ）の規定に基づく手法及び評価フローに従った設計とする。 【19 条 4】	
11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備 について，「表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。	11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備 について，「表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト」に示す。

