| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審查資料

> VI-3-別添 3-4-1 水密扉の強度計算書 (溢水)

2021年6月
東北電力株式会社

目 次

1．概要 1
2．一般事項 2
2.1 検討対象水密扉一覧 2
2.2 配置概要 4
2.3 構造計画 16
2． 4 評価方針 19
2.5 適用規格•基準等 21
2.6 記号の説明 22
3．強度評価 27
3.1 タイプ I 27
3．1．1 評価対象部位 27
3．1．2 荷重及び荷重の組合せ 30
3．1．2．1 荷重の設定 30
3．1．2．2 荷重の組合せ 31
3．1．3 許容限界 32
3．1．3．1 使用材料 32
3．1．3．2 許容限界 34
3．1．4 評価方法 36
3．1．4．1 応力算定 36
3．1．4．2 断面検定 54
3．1．5 評価条件 58
3．1．6 評価結果 67
3．2 タイプ II 69
3．2．1 評価対象部位 69
3．2．2 荷重及び荷重の組合せ 71
3．2．2．1 荷重の設定 71
3．2．2．2 荷重の組合せ 72
3．2．3 許容限界 73
3．2．3．1 使用材料 73
3．2．3．2 許容限界 74
3．2．4 評価方法 75
3．2．4．1 応力算定 75
3．2．4．2 断面検定 92
3．2．5 評価条件 99
3．2．6 評価結果 101
\qquad3．3 タイプIII102
3．3．1 評価対象部位 102
3．3．2 荷重及び荷重の組合せ 103
3．3．2．1 荷重の設定 103
3．3．2．2 荷重の組合せ 103
3．3．3 許容限界 104
3．3．3．1 使用材料 104
3．3．3．2 許容限界 105
3．3．4 評価方法 106
3．3．4．1 応力算定 106
3．3．4．2 断面検定 109
3．3．5 評価条件 110
3．3．6 評価結果 111
\square

1．概要

本資料は，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」に基づき，溢水防護設備である原子炉建屋の水密扉，制御建屋の水密扉，タービン建屋の水密扉，軽油タン クエリアの水密扉及び海水ポンプ室の水密扉（以下「水密扉」という。）が，発生を想定する溢水 による静水圧荷重に対して，止水性の維持を考慮して，主要な構造部材が構造健全性を維持する ことを説明するものである。

2．一般事項
2.1 検討対象水密扉一覧

検討対象の水密扉を表2－1 に示す。

表 2－1 検討対象水密扉一覧 $(1 / 2)$

扉名称	設置高さ 0. P.
プ室－共通通路浸水防止水密扉	－8．10m
水防止水密扉	－8． 10 m
共通通路浸水防止水密扉	－8．10m
水防止水密扉	－8． 10 m
防止水密扉	－8．10m
防止水密扉	－8．10m
共通通路浸水防止水密扉	－8．10m
止水密扉	－8．10m
水防止水密扉	－8．10m
（B）（D）室浸水防止水密扉	－8．10m
止水密扉（No．3）	－8．10m
止水密扉（No．4）	－0．80m
室－区分 II 非常用電気品室浸水防止水密扉	6． 00 m
Hx（B）室浸水防止水密扉	15.00 m
域外伝播防止水密扉（No．3）	15．00m
S）室浸水防止水密扉	15．00m
トレンチ（2T－5）管理区域外伝播防止水密扉	15.00 m
域外伝播防止水密扉（No．1）	15.00 m
域外伝播防止水密扉（No．2）	15．00m
域外伝播防止水密扉	15.00 m
外伝播防止水密扉	15.00 m
水防止水密扉	15．00m
人口	15．00m
卜（A）室浸水防止水密扉	22.50 m
室－HECW 冷凍機（A）（C）室浸水防止水密扉	22.50 m
ア浸水防止水密扉	22.50 m

表 2－1 検討対象水密扉一覧 $(2 / 2)$

水密扉 No．	扉名称	設置高さ 0. P.
27	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．2）	1． 50 m
28	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．1）	1． 50 m
29	250V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	1． 50 m
30	ISI 室浸水防止水密扉	1． 50 m
31	RSS 盤室浸水防止水密扉	8.00 m
32	計測制御電源室（B）浸水防止水密扉（No．2）	8.00 m
33	計測制御電源室（B）浸水防止水密扉（No．1）	8.00 m
34	計測制御電源室（A）－常用および共通 $M / C \cdot P / C$ 室浸水防止水密扉	8.00 m
35	制御建屋管理区域外伝播防止水密扉（No．1）	15．00m
36	補助ボイラー建屋連絡階段管理区域外伝播防止水密扉	15．00m
37	タービン建屋管理区域外伝播防止水密扉	0．80m
38	燃料移送ポンプ（H）室－燃料移送ポンプ（A）室浸水防止水密扉	9．50m
39	燃料移送ポンプ（A）室一燃料移送ポンプ（ $\mathrm{B}^{\text {）室浸水防止水密扉 }}$	9.50 m
40	燃料移送ポンプ（A）室浸水防止水密扉	9．50m
41	燃料移送ポンプ（B）室浸水防止水密扉	9．50m
42	RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	3.00 m
43	HPSW ポンプ室浸水防止水密扉	3.00 m
44	TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉	3.00 m

2.2 配置概要

原子炉建屋の水密扉の設置位置図を図 2－1 に，制御建屋の水密扉の設置位置図を図 2－2 に，タービン建屋の水密扉の設置位置図を図 $2-3$ に，軽油タンクエリアの水密扉の設置位置図を図 2－4 に，海水ポンプ室の水密扉の設置位置図を図 $2-5$ に示す。

1	RCIC タービンポンプ室－共通通路浸水防止水密扉
2	FPMUW ポンプ室浸水防止水密扉
3	RHR ポンプ（C）室－共通通路浸水防止水密扉
4	RHR ポンプ（B）室浸水防止水密扉
5	HPCS ポンプ室浸水防止水密扉
6	LPCS ポンプ室浸水防止水密扉
7	RCW Hx（A）（C）室－共通通路浸水防止水密扉
8	HPCW Hx 室浸水防止水密扉
9	RHR ポンプ（A）室浸水防止水密扉
10	HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉
11	原子炉建屋浸水防止水密扉（No．3）

図 2－1 原子炉建屋の水密扉の設置位置図（1／5）0．P．－8．10m

12 原子炉建屋浸水防止水密扉（No．4）

図 2－1 原子炉建屋の水密扉の設置位置図（2／5）$\quad 0$. P．-0.80 m

図 2－1 原子炉建屋の水密扉の設置位置図（3／5）0．P．6．00m

14	RHR Hx（A）室－RHR Hx（B）室浸水防止水密扉
15	原子炉建屋管理区域外伝播防止水密扉（No．3）
16	D／G（B）室－D／G（HPCS）室浸水防止水密扉
17	主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉
18	原子炉建屋管理区域外伝播防止水密扉（No．1）
19	原子炉建屋管理区域外伝播防止水密扉（No．2）
20	北西階段室管理区域外伝播防止水密扉
21	Rw 制御室管理区域外伝播防止水密扉
22	Rw 電気品室（B）浸水防止水密扉
23	原子炉建屋大物搬入口

図 2－1 原子炉建屋の水密扉の設置位置図（4／5）0．P．15．00m
枠囲みの内容は防護上の観点から公開できません。

24	SGTS ヒータユニット（A）室浸水防止水密扉
25	HECW 冷凍機（B）（D）室－HECW 冷凍機（A）（C）室浸水防止水密扉
26	制御建屋共通エリア浸水防止水密扉

図 2－1 原子炉建屋の水密扉の設置位置図（5／5）0．P．22．50m

I U

27	制御建屋空調機械（A）室－$-(B)$ 室浸水防止水密扉（No．2）
28	制御建屋空調機械（A）室－$-(B)$ 室浸水防止水密扉（No．1）
29	$250 V$ 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉
30	ISI 室浸水防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（1／3）0．P．1．50m

31	RSS 盤室浸水防止水密扉
32	計測制御電源室（B）浸水防止水密扉（No．2）
33	計測制御電源室（B）浸水防止水密扉（No．1）
34	計測制御電源室（A）－常用および共通 M／C•P／C 室浸水防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（2／3）0．P．8．00m
\square

35	制御建屋管理区域外伝播防止水密扉（No．1）
36	補助ボイラー建屋連絡階段管理区域外伝播防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（3／3）0．P．15．00m

枠囲みの内容は防護上の観点から公開できません。

37	タービン建屋管理区域外伝播防止水密扉

図2－3 タービン建屋の水密扉の設置位置図 0．P． 0.80 m

38	燃料移送ポンプ (H) 室－燃料移送ポンプ (A) 室浸水防止水密扉
39	燃料移送ポンプ (A) 室－燃料移送ポンプ (B) 室浸水防止水密扉
40	燃料移送ポンプ (A) 室浸水防止水密扉
41	燃料移送ポンプ (B) 室浸水防止水密扉

図 2－4 軽油タンクエリアの水密扉の設置位置図 O．P．9．50m

42	RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉
43	HPSW ポンプ室浸水防止水密扉
44	TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉

図 $2-5$ 海水ポンプ室の水密扉の設置位置図 0. P． 3.00 m

2.3 構造計画

水密扉の構造は，タイプII，タイプII及びタイプIIIに区分しており，各扉の構造計画を表2 －2に示す。

表 2－2 水密扉の構造計画（タイプ I ）

枠囲みの内容は商業機密の観点から公開できません。

表 2－2 水密扉の構造計画（タイプII）

計画の概要		説明図
主体構造	支持構造	
片開き型の鋼製扉 とし，鋼製の扉板 に芯材を取り付 け，扉に設置され たカンヌキを鋼製 の取付金具に差し 込み，扉と取付金 具を一体化させる 構造とする。 また，扉と取付金具の接続はヒンジ を介する構造とす る。	扉開放時において は，ヒンジにより 扉が取付金具に固 定され，扉閉止時 においては，カン ヌキにより扉が取 付金具に固定され る構造とする。 また，取付金具を 躯体に定着するこ とで荷重を躯体に 伝達する構造とす る。	正面図 水圧作用方向（扉側）平面図

表2－2 水密扉の構造計画（タイプIII）

	計画の	概要	
	主体構造	支持構造	
	片開き型の鋼製扉 とし，鋼製の扉板 に芯材を取付け，扉に設置されたカ ンヌキを鋼製の扉枠に差し込み，扉 と扉枠を一体化さ せる構造とする。 また，扉と扉枠の接続はヒンジを介 する構造とする。	扉開放時において は，ヒンジにより 扉が扉枠に固定さ れ，扉閉止時にお いては，カンヌキ により扉が扉枠に 固定される構造と する。 また，扉枠はアン カーボルトにより 躯体に固定する。 扉板に発生する荷 重は扉枠を介して 荷重を躯体に伝達 する構造とする。	扉板 正面図 断面図

2.4 評価方針

水密扉の強度評価は，以下にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ て，水密扉の評価対象部位に作用する応力等が許容限界内に収まることを，各設備の「3．強度評価」に示す方法により，水密扉のタイプごとに「3．1．5 評価条件」，「3．2．5 評価条件」及び「3．3．5 評価条件」に示す評価条件を用いて評価し，応力評価の確認事項を水密扉のタイ プごとに「3．1．6 評価結果」，「3．2．6 評価結果」及び「3．3．6 評価結果」にて確認する。

水密扉の強度評価フローを図 $2-6$ に示す。
水密扉の強度評価においては，その構造を踏まえ，発生を想定する溢水による静水圧荷重の作用方向及び伝達過程を考慮し，評価対象部位を設定する。
（1）タイプ I
水密扉タイプ I の強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材，カンヌキ部（カンヌキ，カンヌキ⿳⿱㇒⿲丶丶㇒冖又心壮ピン，カンヌキ受けボルト），パネル板，方立，マグ サ，扉固定部（扉付固定ボルト，枠付固定ボルト）及びパネル取付ボルトの発生応力並びにア ンカーボルトの発生荷重を算定し，許容限界との比較を行う。
なお，パネル板は扉板と同じ評価方法，方立及びマグサは芯材と同じ評価方法，扉付固定ボ ルト，枠付固定ボルト及びパネル取付ボルトはカンヌキ受けボルトと同じ評価方法とする。

アンカーボルトは壁に埋め込まれた方向によって下記のとおりに呼ぶこととする。

- 0° 方向配置：アンカーボルトが壁の厚さの直交方向に配置されている場合
- 45° 方向配置：アンカーボルトが壁の厚さの方向から 45° 傾斜して配置されている場合
- 90° 方向配置：アンカーボルトが壁の厚さの方向に配置されている場合
（2）タイプII
水密扉タイプII の強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングに生じる応力または応力度を算定し，許容限界との比較を行う。
（3）タイプIII
水密扉タイプIIIの強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材に生じる応力または応力度を算定し，許容限界との比較を行う。

（1）
図 2－6 水密扉の強度評価フロー

2.5 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本機械学会 機械工学便覧
- 原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984（日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会））（以下「J E A G 4 6 0 1 」と記載しているものは上記3指針を指す。）
－発電用原子力設備規格 設計•建設規格（2005年版（2007年追補版を含む。）） J S ME S NC 1－2005／2007（日本機械学会）（以下，設計•建設規格という。）

2.6 記号の説明

水密扉の強度評価に用いる記号を表2－3に示す。

表 2－3 強度評価に用いる記号（タイプ I ）（1／2）

記号	単位	定義
h	mm	扉の水圧作用高さ
ρ 。	t／m ${ }^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
$L_{\text {PL }}$	mm	扉板の短辺長さ
t	mm	扉板の厚さ
w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重
R_{1}	N	静水圧荷重に対する反力
β_{1}	－	四辺支持長方形板の応力係数
w＇	N / mm	芯材に作用する等分布荷重
b	mm	芯材，方立又はマグサに作用する荷重の負担幅
L	mm	芯材，方立又はマグサの支持間距離
Z	mm ${ }^{3}$	断面係数
As	mm ${ }^{2}$	せん断断面積
n_{2}	本	カンヌキの本数
L 5	mm	カンヌキの突出長さ
L_{p}	mm	カンヌキ受けピンの軸支持間距離
n b	本	ボルトの本数
L_{D}	mm	扉の幅又はパネルの幅
H_{D}	mm	扉の高さ又はパネルの高さ
$L_{\text {c } 1}$	mm	躯体開口部の高さ
L c_{2}	mm	躯体開口部の幅
M	$\mathrm{N} \cdot \mathrm{mm}$	曲げモーメント
T	N	引張力
Q	N	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
T ${ }_{\text {d }}$	N	アンカーボルト1本当たりに生じる引張力

表 2－3 強度評価に用いる記号（タイプ I ）（2／2）

記号	単位	定義
Q_{d}	N	アンカーボルト 1 本当たりに生じるせん断力
T_{a}	N	アンカーボルト 1 本当たりの短期許容引張力
Q_{a}	N	アンカーボルト 1 本当たりの短期許容せん断力
$\mathrm{n}_{\mathrm{a} 1}$	本	0° 方向 左右もしくは上下のアンカーボルト本数
$\mathrm{n}_{\mathrm{a} 2}$	本	90° 方向 左右もしくは上下のアンカーボルト本数
$\mathrm{n}_{\mathrm{a} 3}$	本	45° 方向 左右もしくは上下のアンカーボルト本数

[^0]表2－3 強度評価に用いる記号（タイプ II）（1／2）

記号	単位	定義
P_{h}	$\mathrm{kN} / \mathrm{m}^{2}$	溢水による静水圧荷重
h	mm	扉の水圧作用高さ
$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
L PL	mm	扉板の短辺長さ
β_{1}	－	四辺支持長方形板の応力係数
t	mm	扉板の厚さ
w	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重
W ${ }^{\prime}$	kN／m	芯材に生じる等分布荷重
R_{p}	kN	カンヌキ部，ヒンジに作用する荷重
P_{0}	kN	設計水圧荷重
L_{1}	mm	扉高さ
L_{2}	mm	扉幅
$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）
L L 1	mm	芯材の支持長さ（横リブ）
$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）
$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）
$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）
$\mathrm{L}_{\mathrm{L} 2}$	mm	芯材の支持長さ（縦リブ）
$\mathrm{Z}_{\mathrm{L} 2}$	mm^{3}	芯材の断面係数（縦リブ）
$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）
n 2	個	カンヌキとヒンジの個数
L K 1	mm	カンヌキの突出長さ
$\mathrm{Z}_{\mathrm{K} 1}$	mm^{3}	カンヌキの断面係数
$\mathrm{A}_{\mathrm{K} 1}$	mm^{2}	カンヌキの断面積
L K 2	mm	カンヌキ受けの支持長さ
$\mathrm{Z}_{\mathrm{K} 2}$	mm^{3}	カンヌキ受けの断面係数
$\mathrm{A}_{\mathrm{K} 2}$	mm^{2}	カンヌキ受けの断面積
n b	本	カンヌキ受けボルトの本数
A_{b}	mm^{2}	カンヌキ受けボルト断面積

表2－3 強度評価に用いる記号（タイプII）（2／2）

記号	単位	定義
$\mathrm{A}_{\mathrm{K} 3}$	mm ${ }^{2}$	カンヌキ受け溶接部の断面積
$\mathrm{L}_{\mathrm{H} 1}$	mm	ヒンジピンの支持長さ
$\mathrm{A}_{\mathrm{H} 1}$	mm ${ }^{2}$	ヒンジピンの断面積
$\mathrm{Z}_{\mathrm{H} 1}$	mm ${ }^{3}$	ヒンジピンの断面係数
$\mathrm{L}_{\mathrm{H} 2}$	mm	ヒンジ受けピン穴（扉側）の支持長さ
$\mathrm{A}_{\mathrm{H} 2}$	mm ${ }^{2}$	ヒンジ受けピン穴（扉側）の断面積
$\mathrm{Z}_{\mathrm{H} 2}$	mm ${ }^{3}$	ヒンジ受けピン穴（扉側）の断面係数
$\mathrm{L}_{\mathrm{H} 3}$	mm	ヒンジ受けピン穴（躯体側）の支持長さ
$\mathrm{A}_{\mathrm{H} 3}$	mm ${ }^{2}$	ヒンジ受けピン穴（躯体側）の断面積
$\mathrm{Z}_{\mathrm{H} 3}$	mm ${ }^{3}$	ヒンジ受けピン穴（躯体側）の断面係数
$\mathrm{L}_{\mathrm{H} 4}$	mm	ヒンジ受け（扉側）の突出長さ
$\mathrm{A}_{\mathrm{H} 4}$	mm ${ }^{2}$	ヒンジ受け溶接部（扉側）の断面積
$\mathrm{Z}_{\mathrm{H} 4}$	mm ${ }^{3}$	ヒンジ受け溶接部（扉側）の断面係数
$\mathrm{A}_{\mathrm{H} 5}$	mm ${ }^{2}$	ヒンジ受け溶接部（躯体側）の断面積
n bh6	本	ヒンジ受けボルト（扉側）の本数
AbH6	mm ${ }^{2}$	ヒンジ受けボルト（扉側）の断面積
n bh7	本	ヒンジ受けボルト（躯体側）の本数
$\mathrm{A}_{\mathrm{bH} 7}$	mm ${ }^{2}$	ヒンジ受けボルト（躯体側）の断面積
n 3	本	取付金具リブの本数
$\mathrm{A}_{\mathrm{H} 8}$	mm ${ }^{2}$	取付金具リブ溶接部の引張方向の断面積
A＇$^{\prime} 8$	mm ${ }^{2}$	取付金具リブ溶接部のせん断方向の断面積
$\mathrm{A}_{\mathrm{H} 9}$	mm ${ }^{2}$	固定リング溶接部の断面積
T	kN	引張力
M	kN $\cdot \mathrm{m}$	曲げモーメント
Q	kN	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
$\sigma \times$	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度

表2－3 強度評価に用いる記号（タイプIII）

記号	単位	定義
P_{h}	$\mathrm{kN} / \mathrm{m}^{2}$	溢水による静水圧荷重
h	mm	扉の水圧作用高さ
$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
$L_{\text {P L }}$	mm	扉板の短辺長さ
β_{1}	－	四辺支持長方形板の応力係数
t	mm	扉板の厚さ
w	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重
w，	kN／m	芯材に作用する等分布荷重
$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）
$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横リブ）
$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）
$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）
$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）
$\mathrm{L}_{\mathrm{L} 2}$	mm	芯材の支持長さ（縦リブ）
$\mathrm{Z}_{\mathrm{L} 2}$	mm^{3}	芯材の断面係数（縦リブ）
$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）
M	$\mathrm{kN} \cdot \mathrm{m}$	曲げモーメント
Q	kN	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度

3．強度評価

3.1 タイプ I

3．1．1 評価対象部位

水密扉の評価対象部位は，「2．3 構造計画」に示す構造上の特徴を踏まえ選定する。
水密扉を閉める方向から作用する静水圧荷重は，扉板から芯材を介し扉枠に伝わり，扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されることから，評価対象部位は扉板，芯材及びアンカーボルトとする。

水密扉を開く方向から作用する静水圧荷重は，扉板から芯材に伝わり，カンヌキ部（カ ンヌキ，カンヌキ受けピン，カンヌキ受けボルト）及び扉固定部（扉付固定ボルト，枠付固定ボルト）に伝達され，扉枠及び扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されることから，評価対象部位は扉板，芯材，カンヌキ部及び扉固定部並 びにアンカーボルトとする。

アンカーボルトについては，荷重を伝達する芯材の取付け方向または扉板の辺長比を踏 まえ，水平方向に芯材を配置する構造若しくは扉板の短辺方向へ支配的に荷重を伝達する構造である場合はヒンジ側及び扉開閉側のアンカーボルトを，鉛直方向に芯材を配置する場合は扉上部側及び扉下部側のアンカーボルトを評価対象部位として選定する。

パネル付きの水密扉については，パネル板，パネル板を支える方立及びマグサ並びにパ ネル取付ボルトを評価対象部位として選定する。

なお，ヒンジは静水圧荷重の伝達経路とならないため，評価対象外とする。
また，結果が厳しい評価対象部位を有する水密扉を代表として評価するものとし，水密扉 No．3，7，10，24 及び 29 を抽出した。

水密扉に作用する荷重の作用図を図 3－1 に示す。
－－－－－：評価対象部位に作用する荷重
こー－』 ：評価対象部位
\qquad 1

図 3－1 水密扉に作用する荷重の作用図（1／2）
枠囲みの内容は商業機密の観点から公開できません。

4－－－－：評価対象部位に作用する荷重
こー－ー－1：評価対象部位

図 3－1 水密扉に作用する荷重の作用図（2／2）
枠囲みの内容は商業機密の観点から公開できません。

3．1．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏 まえて設定する。

3．1．2．1 荷重の設定
強度評価に用いる荷重を以下に示す。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式によ り算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{o} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-6}
$$

ここで,
P_{h} ：静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

3．1．2．2 荷重の組合せ

水密扉の強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。
P_{h}

ここで，
P_{h} ：溢水による静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

3．1．3 許容限界

許容限界は，「3．1．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添3－ 3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．1．3．1 使用材料

水密扉を構成する扉板，芯材，カンヌキ部，扉固定部，パネル，パネル取付ボルト，方立，マグサ及びアンカーボルトの使用材料を表3－2に示す。

表 3－2 使用材料

部位		材質強度区分	仕様 (mm)
扉板		SS400	$\begin{aligned} & \text { PL-9, 12, } 16 \\ & \text { PL-19, } 32,36,60 \end{aligned}$
芯材		$\begin{aligned} & \text { SS400 } \\ & \text { SM490 } \end{aligned}$	$\begin{aligned} & \mathrm{FB}-19 \times 75 \\ & \mathrm{FB}-25 \times 75 \\ & \mathrm{FB}-38 \times 125 \\ & {[-100 \times 50 \times 5 \times 7.5} \\ & {[-180 \times 75 \times 7 \times 10.5} \\ & {[-125 \times 65 \times 6 \times 8} \\ & {[-200 \times 80 \times 7.5 \times 11} \\ & {[-200 \times 90 \times 8 \times 13.5} \\ & \mathrm{H}-200 \times 200 \times 8 \times 12 \\ & \mathrm{H}-248 \times 407 \times 20 \times 35 \\ & \mathrm{H}-600 \times 300 \times 25 \times 36 \end{aligned}$
カンヌキ部	カンヌキ	$\begin{gathered} \text { SUS304 } \\ \text { SUS304N2 } \\ \text { SCM440 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 50,60,75,80,120 \end{aligned}$
	カンヌキ受けピン	$\begin{gathered} \text { SUS304N2 } \\ \text { S45C } \\ \text { SCM435 } \\ \text { SUS304 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 20,25,30,45,70 \end{aligned}$
	カンヌキ受けボルト	$\begin{gathered} 10.9 \\ (\mathrm{SCM} 435, \mathrm{SCM} 440) \\ 12.9(\mathrm{SCM} 435) \end{gathered}$	M10，M16，M20
扉固定部	扉付固定ボルト	10.9 （SCM435）	M16
	枠付固定ボルト	10.9 （SCM435）	M16
パネル		SS400	PL－6，9，25， 32
パネル取付ボルト		12.9 （SCM435）	M10，M12
方立		SS400	$\begin{aligned} & \text { PL- } 9 \times 276 \\ & {[-250 \times 90 \times 11 \times 14.5} \\ & H-200 \times 200 \times 8 \times 12 \end{aligned}$
マグサ		SS400	$\begin{aligned} & \text { PL }-9 \times 276 \\ & {[-250 \times 90 \times 11 \times 14.5} \end{aligned}$
アンカーボルト		$\begin{aligned} & \text { SS400 } \\ & \text { SM490 } \end{aligned}$	$\begin{aligned} & \text { M16, M20, M24, M30 } \\ & \phi 16, \quad \phi 25 \end{aligned}$

3．1．3．2 許容限界

（1）鋼材の許容応力度
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準 — 許容応力度設計法ー」を踏まえて表3－3の値とする。

表 3－3 鋼材の許容限界

材質•強度区分＊1	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	
	曲げ・引張	せん断
SS400（ $\mathrm{t} \leqq 40$ ）${ }^{\text {2 }}$	235	135
SS400（ $40<\mathrm{t} \leqq 100$ ）${ }^{2}$	215	124
SS400（ $100<\mathrm{t}$ ）＊2	205	118
SM490（ $\mathrm{t} \leqq 16$ ）${ }^{2}$	325	187
SM490 $(16<\mathrm{t} \leqq 40) * 2$	315	181
SM490（ $40<\mathrm{t} \leqq 100$ ）＊2	295	170
SUS304	205	118
SUS304N2	345	199
S45C	345	199
SCM435	651	375
SCM440	686	396
10.9 （SCM435，SCM440）	728	420
12.9 （SCM435）	854	493

注記＊1：許容応力度を決定する基準値 F は，J I S に基づき算定する。
＊2：tは板厚（mm）を示す。
（2）アンカーボルトの許容限界の算定値
アンカーボルトの許容限界は，「3．1．1 評価対象部位」に記載したアンカーボルト に作用する荷重の向きを踏まえて，「日本建築学会 2010年 各種合成構造設計指針•同解説」に基づき算定した，表 3－4の値とする。

なお，評価対象部位のアンカーボルトが引張力を受ける場合においては，アンカー ボルトの降伏により決まる許容応力，及び付着力により決まる許容応力を比較して， いずれか小さい値を採用する。また，評価対象部位のアンカーボルトがせん断力を受 ける場合においては，アンカーボルトのせん断強度により決まる許容耐力，定着した コンクリート躯体の支圧強度により決まる許容耐力及びコーン状破壊により決まる許容応力を比較して，いずれか小さい値を採用する。

表 3－4 アンカーボルトの許容限界の算定値

水密扉 No．		許容称力	
		引張	せ本）
3	RHR ポンプ（C）室－共通通路浸水防止水密扉		
7	RCW Hx（A）（C）室－共通通路浸水防止水密扉	28617	25826
10	HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉	37194	19172
24	SGTS ヒータユニット（A）室浸水防止水密扉	37194	19172
29	250V 直流主母線盤室－制御建屋空調機械（B）室浸水防止 水密扉	26104	18433

[^1]
3．1．4 評価方法

水密扉の強度評価は，以下に設定する評価式を用いる。

3．1．4．1 応力算定

（1）扉板及びパネル板
扉板及びパネル板に生じる応力は，等分布荷重が作用する四辺支持の矩形板として，
「日本機械学会 機械工学便覧」に基づき，「3．1．4．2 断面検定」にて算定する。な お，この時，実際に作用する溢水による静水圧荷重は，台形分布もしくは，三角形分布であるが，扉最下部の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に作用する荷重の例を図3－2に，パネル板に作用する荷重の例を図3－3に示す。

$$
\mathrm{w}_{\mathrm{D}}=\mathrm{P}_{\mathrm{h}}
$$

ここで，
w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{P}_{\mathrm{h}} \quad$ ：溢水による静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
\square

図3－2 扉板に作用する荷重の例

枠囲みの内容は商業機密の観点から公開できません。
－－－－－：評価対象部位に作用する荷重
こーーー・ ：評価対象部位
\square

図 3－3 パネル板に作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
（2）芯材，方立及びマグサ
芯材，方立及びマグサに生じる応力は，等分布荷重を受ける両端単純支持の梁とし て算定する。

芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉下端に作用 する最大静水圧荷重に，芯材に作用する荷重の負担幅（＝間隔）を乗じた荷重が等分布に作用するものとし芯材の支持間距離は保守的に扉幅として安全側に評価する。

方立及びマグサに作用する荷重の負担幅（＝間隔）を乗じた荷重が等分布に作用す るものとし，方立及びマグサの支持間距離は保守的に扉及びパネルの上端から下幅ま での高さ並びに扉及びパネルの幅として安全側に評価する。芯材に作用する荷重の例 を図 3－4に，方立及びマグサに作用する荷重の例を図3－5に示す。
$\mathrm{M}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}^{2}}{8}$
$\mathrm{Q}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}}{2}$

ここで，
w^{\prime} ：芯材，方立又はマグサに作用する等分布荷重（N／mm）〔w，＝ $\mathrm{w}_{\mathrm{D}} \cdot \mathrm{b} 〕$
W_{D} ：扉下端に作用する静水圧荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
b ：芯材，方立又はマグサに作用する荷重の負担幅（mm）
M ：芯材，方立又はマグサに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
L ：芯材，方立又はマグサの支持間距離（mm）
Q ：芯材，方立又はマグサに生じる最大せん断力（N）
\square
4－－－－－：評価対象部位に作用する荷重
こーーー・：評価対象部位

図 3－4 芯材に作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

4－－－－－：評価対象部位に作用する荷重
こーー－ー：評価対象部位

図 3－5 方立及びマグサに作用する荷重の例

枠囲みの内容は商業機密の観点から公開できません。
（3）カンヌキ部
カンヌキ部は，カンヌキ，カンヌキ受けピン及びカンヌキ受けボルトで構成されて おり，カンヌキ部に生じる応力は次式により算定する。ここで，溢水による静水圧荷重に対する反力は，扉最下部の最大静水圧をカンヌキ部が等分布に負担するものと して算定する。カンヌキ部に作用する荷重の例を図 3－6に示す。
$\mathrm{R}_{1}=\frac{\mathrm{L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}} \cdot \mathrm{w}_{\mathrm{D}}}{\mathrm{n}_{2}}$

ここで，
R_{1} ：カンヌキ部に作用する静水圧荷重に対する反力（ N ）
L_{D} ：扉の幅又はパネル幅 (mm)
H_{D} ：扉の高さ又はパネル高さ（mm）
w_{D} ：下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
n_{2} ：カンヌキの本数
«－－－－－：評価対象部位に作用する荷重
ここ－こ！：評価対象部位
\square

図 3－6 カンヌキ部に作用する荷重の例
a．カンヌキ
カンヌキに生じる応力は，次式により算定する。なお，算定にあたっては，カンヌ キ受けピン中心位置を固定端とした片持ち梁として評価し，カンヌキの取付部位に応じて生じる応力を考慮する。カンヌキに作用する荷重の例を図 3－7に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{5} \\
& \mathrm{Q}=\mathrm{R}_{1} \\
& \text { ここで, } \\
& \mathrm{M} \quad: \text { カンヌキに生じる最大曲げモーメント }(\mathrm{N} \cdot \mathrm{~mm}) \\
& \mathrm{R}_{1} \quad \text { : カンヌキ部に作用する静水圧荷重に対する反力 (N) } \\
& \mathrm{L}_{5} \quad \text { : カンヌキの突出長さ }(\mathrm{mm}) \\
& \mathrm{Q} \\
& \quad: \text { カンヌキに生じる最大せん断力 }(\mathrm{N})
\end{aligned}
$$

\square
図 3－7 カンヌキに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
b．カンヌキ受けピン
カンヌキ受けピンに生じる応力は，カンヌキ受けピンを集中荷重が作用する単純梁とみなし，次式により算定する。カンヌキ受けピンに作用する荷重の例を図 3－8 に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{\mathrm{p}} \cdot \frac{1}{4} \\
& \mathrm{Q}=\mathrm{R}_{1} \cdot \frac{1}{2}
\end{aligned}
$$

ここで,

M ：カンヌキ受けピンに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
R_{1} ：カンヌキ部に作用する静水圧荷重に対する反力（N）
L_{p} ：カンヌキ受けピンの軸支持間距離（mm）
Q ：カンヌキ受けピンに生じる最大せん断力（ N ）
\square
図 3－8 カンヌキ受けピンに作用する荷重の例
c．カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルト カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトに生 じる応力は，次式により算定する。カンヌキ受けボルトに作用する荷重の例を図 3－ 9 に，扉付固定ボルト及び枠付固定ボルトに作用する荷重の例を図 3－10に，パネル取付ボルトに作用する荷重の例を図3－11に示す。

$$
\mathrm{T}=\frac{\mathrm{R}_{1}}{\mathrm{n}_{\mathrm{b}}}
$$

$$
\mathrm{Q}=\frac{\mathrm{L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}} \cdot \mathrm{w}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{b}}}
$$

Q ：ボルトに生じる最大せん断力（N）
$L_{\mathrm{D}} \quad$ ：扉の幅（mm）
H_{D} ：扉の高さ (mm)
w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 3－9 カンヌキ受けボルトに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

図 3－10 扉付固定ボルト及び枠付固定ボルトに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

4－－－－－：評価対象部位に作用する荷重
こーー－：評価対象部位

図 3－11 パネル取付ボルトに作用する荷重の例
（4）アンカーボルト
アンカーボルトに生じる応力は，溢水による静水圧荷重を左右もしくは上下に配置されたアンカーボルトに分配する。アンカーボルトに作用する荷重の例を図 3－ 12 に示す。
$\mathrm{R}_{\mathrm{a}}=\mathrm{L}_{\mathrm{c} 1} \cdot \mathrm{~L}_{\mathrm{c} 2} \cdot \mathrm{w}_{\mathrm{D}}$
ここで，
Ra ：左右もしくは上下のアンカーボルトに作用する荷重（N）
$L_{c 1}$ ：躯体開口部の高さ（mm）
$L_{c 2}$ ：躯体開口部の幅（mm）
w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

アンカーボルトの方向
（ 0° 方向配置の場合）
$\mathrm{Q}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a} 1}}$
（ 90° 方向配置の場合）
$\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a} 2}}$
（ 0° 方向配置及び 90° 方向配置の複合配置の場合）
$\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 1}+\mathrm{T}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 2}}$
（ 45° 方向配置の場合）
$\mathrm{Q}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\sqrt{2} \cdot \mathrm{n}_{\mathrm{a} 3}}$
$T_{d}=\frac{R_{a}}{\sqrt{2} \cdot n_{a_{3}}}$
ここで，
T_{a} ：アンカーボルト1本当たりに生じる短期許容引張力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（ N ）
n a $1: 0^{\circ}$ 方向 左右もしくは上下のアンカーボルトの本数
n a $2: 90^{\circ}$ 方向左右もしくは上下のアンカーボルトの本数
n a $3: 45^{\circ}$ 方向左右もしくは上下のアンカーボルトの本数

```
4－－－－－：評価対象部位に作用する荷重
こー－ー－1：評価対象部位
```

図 3－12 アンカーボルトに作用する荷重の例（ $1 / 3$ ）

枠囲みの内容は商業機密の観点から公開できません。

4－－－－－：評価対象部位に作用する荷重
こー－ー－：評価対象部位

図 3－12 アンカーボルトに作用する荷重の例（2／3）
枠囲みの内容は商業機密の観点から公開できません。

4－－－－：評価対象部位に作用する荷重
－ー－』：評価対象部位

図 3－12 アンカーボルトに作用する荷重の例（3／3）
枠囲みの内容は商業機密の観点から公開できません。

3．1．4．2 断面検定

評価対象部位に生じる応力より算定する応力度及び荷重が，許容限界値以下である ことを確認する。
（1）扉板及びパネル板
扉板及びパネル板に生じる曲げ応力度を「日本機械学会 機械工学便覧」に基づき，算定し，扉板及びパネル板の短期許容応力度を下回ることを確認する。

$$
\sigma=\beta_{1} \cdot \frac{\mathrm{w}_{\mathrm{D}} \cdot \mathrm{~L}_{\mathrm{P} \mathrm{~L}}{ }^{2}}{\mathrm{t}^{2}}
$$

ここで，
σ ：扉板又はパネル板に生じる最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
W_{D} ：扉下端に作用する静水圧荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
β_{1} ：四辺支持長方形板の応力係数
$L_{\text {PL }}$ ：扉板又はパネル板の短辺長さ（mm）
t ：扉板又はパネル板の板厚（mm）
（2）芯材，方立及びマグサ
芯材，方立及びマグサに生じる曲げ応力度及びせん断応力度を算定し，芯材，方立及びマグサの短期許容応力度を下回ることを確認する。

$$
\begin{aligned}
\sigma & =\mathrm{M} / \mathrm{Z} \\
\tau & =\mathrm{Q} / \mathrm{A}_{\mathrm{s}}
\end{aligned}
$$

ここで，
σ ：芯材，方立又はマグサに生じる曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：芯材，方立又はマグサに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Z ：芯材，方立又はマグサの断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：芯材，方立又はマグサに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材，方立又はマグサに生じる最大せん断力（ N ）
A_{s} ：芯材，方立又はマグサのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）カンヌキ部
a．カンヌキ
カンヌキに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し，カンヌキの短期許容応力度を下回ることを確認する。
$\mathbf{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma=\mathrm{M} / \mathrm{Z}$
x ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ ：カンヌキに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキに生じる最大曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z ：カンヌキの断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}$
τ ：カンヌキに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキに生じる最大せん断力（ N ）
As ：カンヌキのせん断断面積（ $\mathrm{mm}{ }^{2}$ ）
b．カンヌキ受けピン
カンヌキ受けピンに生じる曲げ応力度及びせん断応力度を算定し，カンヌキ受 けピンの短期許容応力度を下回ることを確認する。

$$
\begin{aligned}
& \sigma=\mathrm{M} / \mathrm{Z} \\
& \tau=\mathrm{Q} / \mathrm{A} .
\end{aligned}
$$

ここで，
σ ：カンヌキ受けピンに生じる最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：カンヌキ受けピンに生じる最大曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z ：カンヌキ受けピンの断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：カンヌキ受けピンに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキ受けピンに生じる最大せん断力（ N ）
As ：カンヌキ受けピンのせん断断面積（ mm^{2} ）
c．カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルト カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトに生じる引張応力度又はせん断応力度を次式により算定し，カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトの短期許容応力度を下回る ことを確認する。
$\sigma_{\mathrm{t}}=\mathrm{T} / \mathrm{A}$
$\tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}$

ここで，
σ_{t} ：ボルトに生じる最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：ボルトに生じる最大引張力（ N ）
A ：ボルトの断面積 $\left(\mathrm{mm}^{2}\right)$
τ ：ボルトに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ボルトに生じる最大せん断力（ N ）
A_{s} ：ボルトのせん断断面積（ mm^{2} ）
（4）アンカーボルト
アンカーボルト 1 本当たりに生じる引張力又はせん断力を「日本建築学会 各種合成構造設計指針•同解説」に基づき算定し，アンカーボルトの許容荷重を下回ること を確認する。
（ 0° 方向配置の場合）
$\frac{\mathrm{Q}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{a}}} \leqq 1.0$
（ 90° 方向配置の場合）
$\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{T}_{\mathrm{a}}} \leqq 1.0$
（ 0° 方向配置及び 90° 方向配置の複合配置の場合）
$\frac{R_{a}}{Q_{a} \cdot n_{a 1}+T_{a} \cdot n_{a 2}}$
（ 45° 方向配置の場合）
$\left(\mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}}\right)^{2}+\left(\mathrm{Q}_{\mathrm{d}} / \mathrm{Q}_{\mathrm{a}}\right)^{2} \leqq 1.0$
ここで，
Ra ：左右もしくは上下のアンカーボルトに作用する荷重（N）
T_{d} ：アンカーボルト 1 本当たりに生じる引張力（ N ）
T_{a} ：アンカーボルト 1 本当たりの短期許容引張力（ N ）
Q_{d} ：アンカーボルト 1 本当たりに生じるせん断力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（ N ）
$\mathrm{n}_{\mathrm{a} 1}: 0^{\circ}$ 方向 左右もしくは上下のアンカーボルトの本数
n a $2: 90^{\circ}$ 方向 左右もしくは上下のアンカーボルトの本数

3．1．5 評価条件

「3．4 評価方法」に用いる評価条件を表3－5に示す。

表 3－5 強度評価に用いる評価条件（1／9）

対象部位		記号	単位	定義	水密扉 No．	
		3				
共通			h	mm	扉の水圧作用高さ	5700
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.06	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	695	
		t	mm	扉板の板厚	16	
		β_{1}	－	応力係数	0.5	
芯材		w，	N / mm	芯材に作用する等分布荷重	38.55	
		b	mm	芯材に作用する荷重の負担幅	642.5	
		L	mm	芯材の支持間距離	1059	
		Z	mm^{3}	芯材の断面係数	153000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1113	
$\begin{aligned} & \text { カ } \\ & \text { ン } \\ & \text { 又 } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	$L_{\text {D }}$	mm	扉の幅	1186	
		H_{D}	mm	扉の高さ	2076	
		n 2	本	カンヌキの本数	4	
	カンヌキ	L 5	mm	カンヌキの突出長さ	61.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	108	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	14	
	カンヌキ 受けピン	L p	mm	カンヌキ受けピンの軸支持間距離	72	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	251	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	27	
	カンヌキ 受けボルト	n b	本	カンヌキ受けボルトの本数	2	
		σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	118	

表 3－5 強度評価に用いる計算条件（2／9）

	対象部位	記号	単位	定義	水密扉 No．
					3
	アンカーボルト	L c 1	mm	躯体開口部の高さ	2000
		L c 2	mm	躯体開口部の幅	1000
		n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
		n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	12
		n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	－
				0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
\sim		Q_{a}	N／本	90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	25826
1 \vdots 0				45° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
		T_{a}	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
（1）				90° 方向 アンカーボルト 1 本当たりの短期許容引張力	28617
\bigcirc				45° 方向 アンカーボルト 1 本当たりの短期許容引張力	－

表 3－5 強度評価に用いる評価条件（3／9）

対象部位		記号	単位	定義	水密扉 No．	
		7				
共通			h	mm	扉の水圧作用高さ	3900
		ρ 。	t／m ${ }^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.04	
		L_{PL}	mm	扉板の短辺長さ	673	
		t	mm	扉板の板厚	9	
		β_{1}	－	応力係数	0.8	
芯材		w ${ }^{\prime}$	N / mm	芯材に作用する等分布荷重	70.6	
		b	mm	芯材に作用する荷重の負担幅	1765	
		L	mm	芯材の支持間距離	3060	
		Z	mm^{3}	芯材の断面係数	472000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1408	
カン又キ部	共通	$L_{\text {D }}$	mm	扉の幅	－	
		H_{D}	mm	扉の高さ	－	
		n 2	本	カンヌキの本数	－	
	カンヌキ	L 5	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
扉 畕 部	扉付固定 ボルト	n b	本	扉付固定ボルトの本数	14	
		σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	50	
	枠付固定 ボルト	$\mathrm{A}_{\text {s }}$	mm^{2}	枠付固定ボルトのせん断断面積	157	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	50	

表 3－5 強度評価に用いる計算条件（4／9）

	対象部位	記号	単位	定義	水密扉 No．
					7
	アンカーボルト	L c 1	mm	躯体開口部の高さ	3470
		L c 2	mm	躯体開口部の幅	3000
		n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
		n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	－
		n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	42
				0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
\square		$Q_{\text {a }}$	N／本	90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
\square				45° 方向 アンカーボルト1本当たりの短期許容せん断力	19172
窓		T a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
（1）				90° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
\bigcirc				45° 方向 アンカーボルト 1 本当たりの短期許容引張力	37194

表 3－5 強度評価に用いる評価条件（5／9）

対象部位		記号	単位	定義	水密扉 No．	
		10				
共通			h	mm	扉の水圧作用高さ	1900
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.02	
		$L_{\text {PL }}$	mm	扉板の短辺長さ	673	
		t	mm	扉板の板厚	9	
		β_{1}	－	応力係数	0.8	
芯材		w ${ }^{\text {，}}$	N / mm	芯材に作用する等分布荷重	30.6	
		b	mm	芯材に作用する荷重の負担幅	1530	
		L	mm	芯材の支持間距離	3530	
		Z	mm^{3}	芯材の断面係数	326200	
		A s	mm^{2}	芯材のせん断断面積	2670	
$\begin{aligned} & \text { カ } \\ & \text { シ } \\ & \text { 又 } \\ & \text { キ } \\ & \text { 部 } \end{aligned}$	共通	$L_{\text {D }}$	mm	扉の幅	－	
		H_{D}	mm	扉の高さ	－	
		n 2	本	カンヌキの本数	－	
	カンヌキ	L 5	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
扉 宣 部	扉付固定 ボルト	n b	本	扉付固定ボルトの本数	14	
		$\sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	50	
	枠付固定 ボルト	$\mathrm{A}_{\text {s }}$	mm^{2}	枠付固定ボルトのせん断断面積	157	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	50	

表3－5 強度評価に用いる計算条件（6／9）

	対象部位	記号	単位	定義	水密扉 No．
					10
	アンカーボルト	L c 1	mm	躯体開口部の高さ	3470
		$L_{\text {c } 2}$	mm	躯体開口部の幅	3000
		n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
		n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	－
		n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	42
				0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
$\stackrel{\rightharpoonup}{a}$		Q a	N／本	90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
$\begin{aligned} & \ddagger \\ & \underset{\omega}{1} \end{aligned}$				45° 方向 アンカーボルト1本当たりの短期許容せん断力	19172
$\begin{aligned} & \text { 管 } \\ & \infty \end{aligned}$		Ta	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
（1）				90° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
$\begin{aligned} & \sim \\ & 0 \end{aligned}$				45° 方向 アンカーボルト 1 本当たりの短期許容引張力	37194

表 3－5 強度評価に用いる評価条件（7／9）

対象部位		記号	単位	定義	水密扉 No．	
		24				
共通			h	mm	扉の水圧作用高さ	5600
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		W D	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.05	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	1235	
		t	mm	扉板の板厚	32	
		β_{1}	－	応力係数	0.6	
$\begin{aligned} & \text { カ } \\ & \text { ン } \\ & \text { 又 } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	$L_{\text {D }}$	mm	扉の幅	－	
		H_{D}	mm	扉の高さ	－	
		n 2	本	カンヌキの本数	－	
	カンヌキ	L_{5}	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	L_{p}	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
アンカーボルト		$\mathrm{L}_{\mathrm{C} 1}$	mm	躯体開口部の高さ	2380	
		$\mathrm{L}_{\mathrm{c} 2}$	mm	躯体開口部の幅	1490	
		n a 1	本	0° 方向左右もしくは上下のアンカーボルト本数	20	
		n a 2	本	90° 方向左右もしくは上下のアンカーボルト本数	－	
		R a	N	アンカーボルトに作用する荷重	177300	
		T ${ }_{\text {a }}$	N／本	アンカーボルト1本当たりの短期許容引張力	26104	
		$\mathrm{Q}_{\text {a }}$	N／本	アンカーボルト 1 本当たりの短期許容せん断力	18433	

表 3－5 強度評価に用いる評価条件（8／9）

対象部位		記号	単位	定義	水密扉 No．	
		29				
共通			h	mm	扉の水圧作用高さ	3000
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.03	
		$L_{\text {PL }}$	mm	扉板の短辺長さ	885	
		t	mm	扉板の板厚	12	
		β_{1}	－	応力係数	0.5	
芯材		w ${ }^{\prime}$	N / mm	芯材に作用する等分布荷重	25.28	
		b	mm	芯材に作用する荷重の負担幅	842.5	
		L	mm	芯材の支持間距離	1360	
		Z	mm^{3}	芯材の断面係数	153000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1113	
$\begin{aligned} & \text { カ } \\ & \text { ン } \\ & \text { 又 } \\ & \text { キ } \\ & \text { 部 } \end{aligned}$	共通	L_{D}	mm	扉の幅	1360	
		H_{D}	mm	扉の高さ	2460	
		n 2	本	カンヌキの本数	4	
	カンヌキ	L 5	mm	カンヌキの突出長さ	68.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	141	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	13	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	62	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	147	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	18	
	カンヌキ 受けボルト	n b	本	カンヌキ受けボルトの本数	2	
		σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	52	

表3－5 強度評価に用いる計算条件（9／9）

3．1．6 評価結果
水密扉の強度評価結果を表 3－6に示す。水密扉の各部材の断面検定を行った結果，発生値は許容限界値を下回ることから，水密扉が構造健全性を有することを確認した。

表 3－6 水密扉の強度評価結果（ $1 / 2$ ）

水密 扉 No	評価対象部位		発生値 （応力度，荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	発生値／ 許容限界値	備考
3		扉板	57	235	0． 25	曲げ
		芯材＊1	36	235	0.16	曲げ
	カン ヌキ部	カンヌキ＊2	111	205	0.55	組合せ
		カンヌキ受けピン＊1	251	345	0． 73	曲げ
		カンヌキ受けボルト	118	728	0． 17	引張
	アンカーボルト＊3		10000	28617	0.35	引張
7		扉板	179	235	0.77	曲げ
		芯材＊1	176	315	0.56	曲げ
	カン ヌキ部	カンヌキ＊2	－	－	－	－
		カンヌキ受けピン＊1	－	－	－	－
		カンヌキ受けボルト	－	－	－	－
	扉固定 部	扉付固定ボルト	50	728	0.07	引張
		枠付固定ボルト	50	420	0.12	せん断
	アンカーボルト＊3		－	－	0.02	組合せ
10		扉板	90	235	0.39	曲げ
		芯材＊1	147	235	0.63	曲げ
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊2	－	－	－	－
		カンヌキ受けピン＊1	－	－	－	－
		カンヌキ受けボルト	－	－	－	－
	扉固定部	扉付固定ボルト	50	728	0.07	引張
		枠付固定ボルト	50	420	0． 12	せん断
	アンカーボルト＊3		－	－	0.02	組合せ

注記 $* 1$ ：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。

表 3－6 水密扉の強度評価結果 $(2 / 2)$

注記＊1：曲げ及びせん断のらち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。

3.2 タイプII

3．2．1 評価対象部位
水密扉の評価対象部位は，「2．3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定 する。

取付金具を躯体に定着することで荷重を躯体に伝達する構造の水密扉であるため，水密扉を閉める方向に外部から生じる静水圧荷重は，扉板から芯材に伝わり，壁と一体化した取付金具を介して開口部周辺の躯体に伝達されることから，評価対象部位は扉板，芯材と なる。

水密扉を開く方向に内部から生じる静水圧荷重は，扉板から芯材に伝わり，カンヌキ部及びヒンジに伝達され，取付金具及び固定リングを介し，開口部周囲の躯体に伝達される ことから，評価対象部位は，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リング とする。

また，タイプII の水密扉はNo．38，No．39であり，同様の構造であることを踏まえ，代表 として水密扉No．38にて評価を行う。

水密扉に作用する荷重の作用図を図 $3-13$ に示す。

I y

（1）
\sim

図 3－13 水密扉に作用する荷重の作用図（水密扉 No．38，No．39）

3．2．2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

3．2．2．1 荷重の設定

強度評価に用いる荷重は，以下の荷重を用いる。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式によ り算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
$$

3．2．2．2 荷重の組合せ

強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。
P_{h}

ここで，
P_{h} ：溢水による静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

3．2．3 許容限界

許容限界は，「3．2．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．2．3．1 使用材料

水密扉を構成する，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの使用材料を表3－7に示す。

表 3－7 使用材料

部位		材質	仕様（mm）
扉板		SS400	PL－6
芯材	横リブ	SS400	C -100×50
	縦リブ	SS400	C -100×50
		SS400	FB－100 $\times 9$
カンヌキ部	カンヌキ	S45C	40×36
	カンヌキ受け	SS400	95×15
	カンヌキ受けボルト	SCM435	M16
ヒンジ	ヒンジピン	SUS304	¢ 30
	ヒンジ受け	SS400	100×40
	ヒンジ受けボルト（扉側）	SCM435	M12
	ヒンジ受けボルト（躯体側）	SCM435	M16
取付金具		SS400	PL－9
固定リング		SS400	PL－19

3．2．3．2 許容限界

（1）扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リング
扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの鋼材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態 $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ ）を踏まえて表3－ 8の値とする。

表 3－8 扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの許容限界

注記 $* 1$ ：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。
＊2：SS400（溶接部）の許容応力は，非破壊試験（放射線透過試験，超音波探傷試験，磁粉探傷試験又は浸透探傷試験）を行っていない箇所を対象とする。
（2）ボルト
ボルト材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態III A_{A} S ）を踏まえて表3－9の値とする。

表3－9 ボルトの許容限界

材料	「設計•建設規格」に準じた供用状態C（許容応力状態 $\mathrm{III}_{\mathrm{A}}$ S）の許容応力）＊		
	引張	せん断	組合せ
SCM435	487	375	－

注記＊：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。

3．2．4 評価方法

水密扉の強度評価は，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している評価式を用いる。

3．2．4．1 応力算定

（1）扉板
扉板に生じる応力は，等分布荷重を受ける四辺支持板として算定する。
この時，実際に作用する静水圧は台形分布もしくは，三角形分布であるが，扉最下部 の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に生じる荷重の例 を図 3－14に示す。

$$
\mathrm{w}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
$$

w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
○ 0 ：液体の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{h}:$ 扉の水圧作用高さ (mm)

図 3－14 扉板に生じる荷重の例
（2）芯材
芯材に生じる応力は，等分布荷重を受ける両端単純支持の梁として算定する。なお，芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉最下部の最大静水圧に，芯材の支配幅（＝間隔）を乗じた荷重が等分布に作用するものとして安全側に評価する。芯材に作用する荷重の例を図 3－15 及び図 3－16に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}^{\prime} \cdot\left(\mathrm{L}_{\mathrm{L}} \cdot 10^{-3}\right)^{2} / 8 \\
& \mathrm{Q}=\mathrm{w}^{\prime} \cdot \mathrm{L}_{\mathrm{L}} \cdot 10^{-3} / 2 \\
& \text { ここで, } \mathrm{w}^{\prime}=\mathrm{w} \cdot \mathrm{~b}_{\mathrm{L}} \cdot 10^{-3} \\
& \text { w’: 芯材に作用する等分布荷重 (} \mathrm{kN} / \mathrm{m} \text {) } \\
& \text { M : 芯材に生じる最大曲げモーメント (kN•m) } \\
& \text { Q : 芯材に生じる最大せん断力 (} \mathrm{kN} \text {) } \\
& L_{L 1} \text { : 芯材の支持長さ (横リブ) (mm) } \\
& \mathrm{L}_{\mathrm{L} 2} \text { : 芯材の支持長さ (縦リブ) (mm) } \\
& \text { w : 扉下端に作用する静水圧荷重 (} \mathrm{kN} / \mathrm{m}^{2} \text {) } \\
& \text { b L } 1 \text { : 芯材に作用する荷重の負担幅 (横リブ) (mm) } \\
& b_{\text {L } 2} \text { : 芯材に作用する荷重の負担幅 (縦リブ) (mm) }
\end{aligned}
$$

正面図

図 3－15 芯材（横リブ）に生じる荷重の例

図 3－16 芯材（縦リブ）に生じる荷重の例
（3）カンヌキ部及びヒンジ
カンヌキ部は，カンヌキ，カンヌキ受け及びカンヌキ受けボルトで構成しており，ま た，ヒンジはヒンジ受け，ヒンジピン及びヒンジ受けボルトで構成している。カンヌキ部及びヒンジに生じる荷重 R_{p} は，次式により算定する扉に作用する全静水圧を集中荷重に置換した設計水圧荷重 P 。により算定し，各構成部材に発生する応力を算定する。 カンヌキ部及びヒンジに生じる荷重の例を図 3－17に示す。

$$
\begin{aligned}
& \quad \mathrm{R}_{\mathrm{p}}=\mathrm{P}_{0} / \mathrm{n}_{2} \\
& \mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6} \\
& \text { ここで, } \mathrm{w}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
\end{aligned}
$$

R_{p} ：カンヌキ部及びヒンジに作用する荷重（kN）
Po：設計水圧荷重（kN）
n_{2} ：カンヌキ部及びヒンジの個数（個）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
ρ_{0} ：液体の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
h ：扉の水圧作用高さ（mm）
L_{1} ：扉高さ（mm）
L_{2} ：扉幅（mm）

正面図

断面図

図 3－17 カンヌキ部及びヒンジに生じる荷重の例
a．カンヌキ部
（a）カンヌキ
カンヌキに生じる応力は，次式により算定する。なお，算定にあたつては，カンヌ キの接触面中心位置を固定端とした片持ち梁として評価し，カンヌキの取付部位に応 じて作用する応力を考慮する。カンヌキに生じる荷重の例を図 3－18に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{K} 1} \cdot 10^{-3} \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} \\
& \mathrm{M} \quad: \text { カンヌキに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \mathrm{Q} \quad: \text { カンヌキに生じる最大せん断力 }(\mathrm{kN}) \\
& \mathrm{R}_{\mathrm{p}} \text { : カンヌキに作用する荷重 }(\mathrm{kN}) \\
& \mathrm{L}_{\mathrm{K} 1}: \text { カンヌキの突出長さ }(\mathrm{mm})
\end{aligned}
$$

図 3－18 カンヌキに生じる荷重の例
（b）カンヌキ受け
カンヌキ受けに生じる応力は，カンヌキ受けに集中荷重が作用する両端支持梁と みなし，次式により算定する。なお，算定にあたっては，カンヌキの形状に応じてカ ンヌキ受けに作用する応力を考慮する。カンヌキ受けに生じる荷重の例を図3－19に示す。

$$
\begin{aligned}
\mathrm{M} & =\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{K} 2} \cdot 10^{-3} / 4 \\
\mathrm{Q} & =\mathrm{R}_{\mathrm{p}} / 2
\end{aligned}
$$

$$
\text { M : カンヌキ受けに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m})
$$

Q : カンヌキ受けに生じる最大せん断力 (kN)

$$
R_{p} \text { : カンヌキ受けに作用する荷重 (kN) }
$$

$$
\mathrm{L}_{\mathrm{K} 2} \text { : カンヌキ受けの支持長さ }(\mathrm{mm})
$$

A-A矢視 (図 3-17参照)

図 3－19 カンヌキ受けに生じる荷重の例
（c）カンヌキ受けボルト
カンヌキ受けボルトに生じる応力は，次式により算定する。カンヌキ⿳⿱㇒⿲丶丶㇒冖又心壮ルトに生じる応力の例を図 3－20 に示す。

$$
\begin{array}{ll}
\mathrm{T}= & \mathrm{R}_{\mathrm{p}} / \mathrm{n}_{\mathrm{b}} \\
\mathrm{~T} & : \text { カンヌキ受けボルトに作用する引張力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { カンヌキ受けボルトに作用する荷重 }(\mathrm{kN}) \\
\mathrm{n}_{\mathrm{b}} & : \text { カンヌキ受けボルトの本数(本) }
\end{array}
$$

図3－20 カンヌキ受けボルトに生じる荷重の例
（d）カンヌキ受け溶接部
カンヌキ受け溶接部に生じる応力は，次式により算定する。カンヌキ受け溶接部 に作用する荷重の例を図3－21に示す。

$$
\begin{aligned}
\mathrm{T}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{~T} & : \text { カンヌキ受け溶接部に作用する引張力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { カンヌキ受け溶接部に作用する荷重 }(\mathrm{kN})
\end{aligned}
$$

b．ヒンジ
（a）ヒンジピン
ヒンジピンに生じる応力は，ヒンジピンに集中荷重が作用する両端支持梁とみな し，次式により算定する。なお，算定にあたっては，ヒンジ受けの形状に応じてヒン ジピンに作用する応力を考慮する。ヒンジピンに生じる荷重の例を図3－22に示す。

$$
\begin{aligned}
\mathrm{M} & =\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 1} \cdot 10^{-3} / 4 \\
\mathrm{Q}= & \mathrm{R}_{\mathrm{p}} / 2 \\
\mathrm{M} & : \text { ヒンジピンに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Q} & : \text { ヒンジピンに生じる最大せん断力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジピンに作用する荷重 }(\mathrm{kN}) \\
\mathrm{L}_{\mathrm{H} 1} & : \text { ヒンジピンの支持長さ }(\mathrm{mm})
\end{aligned}
$$

図3－22 ヒンジピンに生じる荷重の例
（b）ヒンジ受けピン穴部（扉側）
ヒンジ受けピン穴部（扉側）に生じる応力は，ヒンジ受けピン穴部（扉側）に集中荷重が作用する両端支持梁とみなし，次式により算定する。なお，算定にあたっては， ヒンジピンの形状に応じてヒンジ受けピン穴部（扉側）に作用する応力を考慮する。 ヒンジ受けピン穴部（扉側）に生じる荷重の例を図 3－23に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 2} \cdot 10^{-3} / 4 \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} \\
& \text { M : ヒンジ受けピン穴部 (扉側) に生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \text { Q : ヒンジ受けピン穴部 (扉側) に生じる最大せん断力 (kN) } \\
& R_{p} \text { : ヒンジ受けピン穴部 (扉側) に作用する荷重 (kN) } \\
& \mathrm{L}_{\mathrm{H} 2} \text { : ヒンジ受けピン穴部 (扉側) 支持長さ (mm) }
\end{aligned}
$$

$A-A$ 矢視

図3－23 ヒンジ受けピン穴部（扉側）に生じる荷重の例
（c）ヒンジ受けピン穴部（躯体側）
ヒンジ受けピン穴部（躯体側）に生じる応力は，ヒンジ受けピン穴部（躯体側）に集中荷重が作用する両端支持梁とみなし，次式により算定する。なお，算定にあたつ ては，ヒンジピンの形状に応じてヒンジ受けピン穴部（躯体側）に作用する応力を考慮する。ヒンジ受けピン穴部（躯体側）に生じる荷重の例を図 3－24に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} / 2 \cdot \mathrm{~L}_{\mathrm{H} 3} \cdot 10^{-3} / 4 \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} / 2 \\
& \text { M : ヒンジ受けピン穴部 (躯体側) に生じる最大曲げモーメント } \\
& \text { (kN•m) } \\
& \text { Q : ヒンジ受けピン穴部 (躯体側) に生じる最大せん断力 (kN) } \\
& R_{p} \text { : ヒンジ受けピン穴部 (躯体側) に作用する荷重 (kN) } \\
& \mathrm{L}_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) 支持長さ (mm) }
\end{aligned}
$$

図 3－24 ヒンジ受けピン穴部（躯体側）に生じる荷重の例
（d）ヒンジ受け溶接部（扉側）
ヒンジ受け溶接部（扉側）に生じる応力は，次式により算定する。なお，算定にあ たっては，ヒンジ受け中心位置を固定端とした片持ち梁として評価し，ヒンジ受けの取付部位に応じて作用する応力を考慮する。ヒンジ受け溶接部（扉側）に生じる荷重 の例を図3－25に示す。

$$
\begin{aligned}
\mathrm{M}= & \mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 4} \cdot 10^{-3} \\
\mathrm{Q}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{M} & : \text { ヒンジ受け溶接部 (扉側) に生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Q} & : \text { ヒンジ受け溶接部 (扉側) に生じる最大せん断力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジ受けに作用する荷重 }(\mathrm{kN}) \\
\mathrm{L}_{\mathrm{H} 4} & \text { : ヒンジ受けの突出長さ }(\mathrm{mm})
\end{aligned}
$$

$A-A$ 矢視

図 3－25 ヒンジ受け溶接部（扉側）に生じる荷重の例
（e）ヒンジ受け溶接部（躯体側）
ヒンジ受け溶接部（躯体側）に生じる応力は，次式により算定する。ヒンジ受け溶接部（躯体側）に生じる荷重の例を図 3－26に示す。

$$
\begin{array}{lll}
\mathrm{T}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{~T} & : \text { ヒンジ受け溶接部 } & (\text { 躯体側) に作用する引張力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジ受け溶接部 } & (\text { 躯体側 })
\end{array} \text { に作用する荷重 }(\mathrm{kN})
$$

A - A矢視
B - B 矢視

図 3－26 ヒンジ受け溶接部（扉側）に生じる荷重の例
（f）ヒンジ受けボルト（扉側）
ヒンジ受けボルト（扉側）に生じる応力は，次式により算定する。ヒンジ受けボル ト（扉側）に生じる荷重の例を図 3－27に示す。

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} / \mathrm{n}_{\mathrm{bH} 6} \\
& \mathrm{Q} \quad: \text { ヒンジ受けボルト (扉側) }
\end{aligned} \text { に作用するせん断力 }(\mathrm{kN}) ~ 子 ~(\text { 扉側 }) \text { に作用する荷重 }(\mathrm{kN})
$$

図 3－27 ヒンジ受けボルト（扉側）に生じる荷重の例
（g）ヒンジ受けボルト（躯体側）
ヒンジ受けボルト（躯体側）に生じる応力は，次式により算定する。ヒンジ受けボ ルト（躯体側）に生じる荷重の例を図 3－28に示す。

$\mathrm{T}=\mathrm{R}_{\mathrm{p}} / \mathrm{n}_{\mathrm{bH} 7}$				
T		ヒンジ受けボル	（躯体側）	に作用する引張力（kN）
R p		ヒンジ受けボルト	（躯体側）	に作用する荷重（kN）
n b H_{7}		ヒンジ受けボルト	（躯体側）	の本数（本）

図 3－28 ヒンジ受けボルト（躯体側）に生じる荷重の例
（4）取付金具リブ溶接部
取付金具リブ溶接部に生じる応力は，次式により算定する。取付金具リブ溶接部に作用する荷重の例を図 3－29に示す。

$$
\begin{aligned}
& \quad \mathrm{T}_{1}=\mathrm{P}_{0} / \mathrm{n}_{3} \\
& \text { ここで, } \quad \mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6}
\end{aligned}
$$

T_{1} ：取付金具リブ溶接部に作用する引張力（kN）
P_{0} ：取付金具リブ溶接部に作用する設計水圧荷重（kN）
n_{3} ：取付金具リブの本数（本）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{1} ：扉高さ (mm)
L_{2} ：扉幅（mm）

正面図

取付金具リブ溶接部（引張応力）

図 3－29 取付金具リブ溶接部に生じる荷重の例
（5）固定リング溶接部
固定リング溶接部に生じる荷重は，次式により算定する。なお，算定にあたっては，固定リングの形状に応じて固定リング溶接部に作用する応力を考慮し，発生する応力 を算定する。固定リング溶接部に生じる荷重の例を図 3－30に示す。

$$
\mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6}
$$

P_{0} ：固定リング溶接部に作用する設計水圧荷重（kN）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{1} ：扉高さ (mm)
L_{2} ：扉幅（mm）

正面図

図 3－30 固定リング溶接部に生じる荷重の例

3．2．4．2 断面検定
評価対象部位に発生する応力より算定する応力度が，許容限界値以下であることを確認する。
（1）扉板
扉板に生じる曲げ応力度を算定し，扉板の許容限界値以下であることを確認する。
$\sigma=\beta_{1} \cdot \mathrm{w} \cdot 10^{3} \cdot \mathrm{~L}_{\mathrm{PL}}{ }^{2} \cdot 10^{-6} / \mathrm{t}^{2}$
σ ：扉板の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
β_{1} ：四辺支持長方形板の応力係数
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{PL} ：扉板の短辺長さ（mm）
t ：扉板の厚さ（mm）
（2）芯材
芯材に生じる曲げ応力度及びせん断応力度を算定し，芯材の許容限界値以下である ことを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{L}}$
$\sigma \quad$ ：芯材の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：芯材の最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$Z_{\text {L } 1}$ ：芯材の断面係数（横リブ）（ mm^{3} ）
$Z_{\mathrm{L} 2}$ ：芯材の断面係数（縦リブ）（mm $\left.{ }^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{L}}$
$\tau \quad$ ：芯材の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材の最大せん断力（kN）
$\mathrm{A}_{\mathrm{L} 1}$ ：芯材の断面積（横リブ）（ mm^{2} ）
$\mathrm{A}_{\mathrm{L} 2}$ ：芯材の断面積（縦リブ）（mm²）
（3）カンヌキ部，ヒンジ
a．カンヌキ部
（a）カンヌキ
カンヌキに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「設計•建設規格」に基づく次式により算定し，カンヌキの許容限界値以下であることを確認する。
$\sigma_{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
σ_{x} ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ここで，$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{K} 1}$
σ ：カンヌキの最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{M} \quad$ ：カンヌキの最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$\mathrm{Z}_{\mathrm{K} 1}$ ：カンヌキの断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{K} 1}$
$\tau \quad$ ：カンヌキの最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキの最大せん断力（kN）
$\mathrm{A}_{\mathrm{K} 1}$ ：カンヌキの断面積 $\left(\mathrm{mm}^{2}\right.$ ）
（b）カンヌキ受け
カンヌキ受けに生じる曲げ応力度及びせん断応力度を次式により算定し，カンヌ キ受けの許容限界値以下であることを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{K} 2}$
ここで，\quad ：カンヌキ受けの最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキ受けの最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$\mathrm{Z}_{\mathrm{K} 2}$ ：カンヌキ受けの断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{K} 2}$
ここで，τ ：カンヌキ受けの最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキ受けの最大せん断力（kN）
$\mathrm{A}_{\mathrm{K} 2}$ ：カンヌキ受けの断面積（ $\left(\mathrm{mm}^{2}\right)$
（c）カンヌキ受けボルト
カンヌキ受けボルトに生じる引張応力度を次式により算定し，カンヌキ受けボル トの許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{b}}$
σ_{t} ：カンヌキ⿳⿱㇒⿲丶丶㇒冖又心夊けボルトの最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：カンヌキ受けボルトの最大引張力（kN）
$\mathrm{A}_{\mathrm{b}} \quad$ ：カンヌキ受けボルトの断面積 $\left(\mathrm{mm}^{2}\right)$
（d）カンヌキ受け溶接部
カンヌキ受け溶接部に生じる引張応力度を次式により算定し，カンヌキ受け溶接部 の許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{K} 3}$
$\sigma \mathrm{t}$ ：カンヌキ受け溶接部の最大引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
T ：カンヌキ受け溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{K} 3}$ ：カンヌキ受け溶接部の断面積（ mm^{2} ）
b．ヒンジ
（a）ヒンジピン
ヒンジピンに生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジピ ンの許容限界値以下であることを確認する。

$$
\begin{array}{cl}
\sigma= & \left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 1} \\
\sigma & : \text { ヒンジピンの最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{M} & : \text { ヒンジピンの最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Z}_{\mathrm{H} 1} & : \text { ヒンジピンの断面係数 }\left(\mathrm{mm}^{3}\right) \\
\tau & \\
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 1} \\
\tau & : \text { ヒンジピンの最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{Q} & : \text { ヒンジピンの最大せん断力 }(\mathrm{kN}) \\
\mathrm{A}_{\mathrm{H} 1} & : \text { ヒンジピンの断面積 }\left(\mathrm{mm}^{2}\right)
\end{array}
$$

（b）ヒンジ受けピン穴部（扉側）
ヒンジ受けピン穴部（扉側）に生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジ受けピン穴部（扉側）の許容限界値以下であることを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 2}$
σ ：ヒンジ受けピン穴部（扉側）の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：ヒンジ受けピン穴部（扉側）の最大曲げモーメント（kN•m）
$\mathrm{Z}_{\mathrm{H} 2}$ ：ヒンジ受けピン穴部（扉側）の断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 2}$
τ ：ヒンジ受けピン穴部（扉側）の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ヒンジ受けピン穴部（扉側）の最大せん断力（kN）
$\mathrm{A}_{\mathrm{H} 2}$ ：ヒンジ受けピン穴部（扉側）の断面積 $\left(\mathrm{mm}^{2}\right)$
（c）ヒンジ受けピン穴部（躯体側）
ヒンジ受けピン穴部（躯体側）に生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジ受けピン穴部（躯体側）の許容限界値以下であることを確認する。

$$
\begin{aligned}
& \sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 3} \\
& \sigma \text { : ヒンジ受けピン穴部 (躯体側) の最大曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { M : ヒンジ受けピン穴部 (躯体側) の最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& Z_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) の断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 3} \\
& \tau \quad: \text { ヒンジ受けピン穴部 (躯体側) の最大せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { Q : ヒンジ受けピン穴部 (躯体側) の最大せん断力 (kN) } \\
& \mathrm{A}_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) の断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

（d）ヒンジ受け溶接部（扉側）
ヒンジ受けに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「設計•建設規格」に基づく次式により算定し，ヒンジ受け溶接部（扉側）の許容限界値以下で あることを確認する。

$$
\sigma_{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
$$

$\sigma_{x}:$ 組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ここで，$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 4}$
σ ：ヒンジ受け溶接部（扉側）の最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：ヒンジ受け溶接部（扉側）の最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$\mathrm{Z}_{\mathrm{H} 4}$ ：ヒンジ受け溶接部（扉側）の断面係数（ mm^{3} ）
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 4}$
$\tau \quad:$ ヒンジ受け溶接部（扉側）の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ヒンジ受け溶接部（扉側）の最大せん断力（kN）
$\mathrm{A}_{\mathrm{H} 4}$ ：ヒンジ受け溶接部（扉側）の断面積（ mm^{2} ）
（e）ヒンジ受け溶接部（躯体側）
ヒンジ受け溶接部（躯体側）に生じる引張応力度を次式により算定し，ヒンジ受け溶接部（躯体側）の許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 5}$
σ_{t} ：ヒンジ受け溶接部（躯体側）の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：ヒンジ受け溶接部（躯体側）の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 5}$ ：ヒンジ受け溶接部（躯体側）の断面積（ mm^{2} ）
（f）ヒンジ受けボルト（扉側）
ヒンジ受けボルト（扉側）に生じるせん断応力度を次式により算定し，ヒンジ受け ボルト（扉側）の許容限界値以下であることを確認する。

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{bH} 6}
$$

$\tau \quad$ ：ヒンジ受けボルト（扉側）の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ヒンジ受けボルト（扉側）の最大せん断力（kN）
$\mathrm{A}_{\mathrm{bH} 6}$ ：ヒンジ受けボルト（扉側）の断面積（ mm^{2} ）
（g）ヒンジ受けボルト（躯体側）
ヒンジ受けボルト（躯体側）に生じる引張応力度を次式により算定し，ヒンジ受け ボルト（躯体側）の許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{bH} 7}$ σ_{t} ：ヒンジ受けボルト（躯体側）の最大引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

T ：ヒンジ受けボルト（躯体側）の最大引張力（kN）
$\mathrm{A}_{\mathrm{bH} 7}$ ：ヒンジ受けボルト（躯体側）の断面積（ mm^{2} ）
（4）取付金具リブ溶接部
取付金具リブ溶接部に生じる引張応力度及びせん断応力度を次式により算定し，取付金具リブ溶接部の許容限界値以下であることを確認する。

$$
\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 8}
$$

σ_{t} ：取付金具リブ溶接部の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：取付金具リブ溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 8}$ ：取付金具リブ溶接部の引張方向の断面積 $\left(\mathrm{mm}^{2}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}^{\prime}{ }^{\mathrm{H}} 8$
τ ：取付金具リブ溶接部の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：取付金具リブ溶接部の最大せん断力（kN）
$A^{\prime} \mathrm{H} 8$ ：取付金具リブ溶接部のせん断方向の断面積 $\left(\mathrm{mm}^{2}\right)$
（5）固定リング溶接部
固定リング溶接部に生じる引張応力度を次式により算定し，固定リング溶接部の許容限界値以下であることを確認する。

$$
\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 9}
$$

σ_{t} ：固定リング溶接部の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：固定リング溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 9}$ ：固定リング溶接部の断面積 $\left(\mathrm{mm}^{2}\right)$

3．2．5 評価条件

「3．2．4 評価方法」に用いる評価条件を表3－10に示す。

表3－10 強度評価に用いる評価条件（ $1 / 2$ ）

評価対象部位		記号	単位	定義	水密扉No．	
		38				
共通			h	mm	扉の水圧作用高さ	2300
		$\rho 0$	t／m ${ }^{3}$	液体の密度	1． 00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
		w	kN／m ${ }^{2}$	扉下端に作用する静水圧荷重	22． 5553	
		L_{1}	mm	扉高さ	1990	
		L_{2}	mm	扉幅	990	
扉板		$L_{\text {PL }}$	mm	扉板の短辺長さ	495	
		β_{1}	－	四辺支持長方形板の応力係数	0.5	
		t	mm	扉板の厚さ	6	
芯材（横リブ）		$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）	632.5	
		$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横りブ）	990	
		$\mathrm{Z}_{\mathrm{L}, 1}$	mm ${ }^{3}$	芯材の断面係数（横りブ）	37.6×10^{3}	
		$\mathrm{A}_{\mathrm{L} 1}$	mm ${ }^{2}$	芯材の断面積（横リブ）	1192	
芯材（綎リブ）		$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（綎リブ）	495	
		$\mathrm{L}_{\mathrm{L} 2}$	mm	芯材の支持長さ（縦リブ）	745	
		$\mathrm{Z}_{\mathrm{L} 2}$	mm ${ }^{3}$	芯材の断面係数（縦リブ）	15.0×10^{3}	
		$\mathrm{A}_{\mathrm{L} 2}$	mm ${ }^{2}$	芯材の断面積（縦リブ）	900	
$\begin{aligned} & \hline \text { カン } \\ & \text { ヌキ } \\ & \text { 部 } \end{aligned}$	共通	n 2	個	カンヌキとヒンジの個数	6	
	カンヌキ	$\mathrm{L}_{\mathrm{K} 1}$	mm	カンヌキの突出長さ	30	
		$\mathrm{Z}_{\mathrm{K} 1}$	mm ${ }^{3}$	カンヌキの断面係数	9600	
		$\mathrm{A}_{\mathrm{K} 1}$	mm ${ }^{2}$	カンヌキの断面積	1440	
	カンヌキ受 け	L K_{2}	mm	カンヌキ受けの支持長さ	55	
		$\mathrm{Z}_{\mathrm{K} 2}$	mm ${ }^{3}$	カンヌキ受けの断面係数	3562.5	
		$\mathrm{A}_{\mathrm{K} 2}$	mm^{2}	カンヌキ⿳⿱㇒⿲丶丶㇒冖又心㇒け暞断面積	1425	
	カンヌキ受 けボルト	n b	本	カンヌキ⿳⿱㇒⿲丶丶㇒冖又心㇒げけボルトの本数	4	
		A_{b}	mm^{2}	カンヌキ⿳⿱㇒⿲丶丶㇒冖又心断面積	157	
	カンヌキ受 け溶接部	$\mathrm{A}_{\mathrm{K} 3}$	mm ${ }^{2}$	カンヌキ受け溶接部の断面積	1343.50	

表3－10 強度評価に用いる評価条件（2／2）

評価対象部位		記号	単位	定義	水密扉No．	
		38				
$\begin{aligned} & \text { ヒ ン } \\ & \text { ジ } \end{aligned}$	ヒンジピン		$\mathrm{L}_{\mathrm{H} 1}$	mm	ヒンジピンの支持長さ	50
		$\mathrm{A}_{\mathrm{H} 1}$	mm^{2}	ヒンジピンの断面積	706． 858	
		$\mathrm{Z}_{\mathrm{H} 1}$	mm^{3}	ヒンジピンの断面係数	2650． 72	
	ヒンジ受け ピン穴部（扉側）	$\mathrm{L}_{\mathrm{H} 2}$	mm	ヒンジ受けピン穴（扉側）の支持長さ	38	
		$\mathrm{A}_{\mathrm{H} 2}$	mm^{2}	ヒンジ受けピン穴（扉側）の断面積	640	
		$\mathrm{Z}_{\mathrm{H} 2}$	mm^{3}	ヒンジ受けピン穴（扉側）の断面係数	1706.67	
	ヒンジ受け ピン穴部（躯体側）	L ${ }_{\text {H }}$	mm	ヒンジ受けピン穴（躯体側）の支持長さ	30	
		$\mathrm{A}_{\mathrm{H} 3}$	mm^{2}	ヒンジ受けピン穴（躯体側）の断面積	400	
		$\mathrm{Z}_{\mathrm{H} 3}$	mm^{3}	ヒンジ受けピン穴（躯体側）の断面係数	1333.33	
	ヒンジ受け溶接部（扉側）	L ${ }_{\text {H } 4}$	mm	ヒンジ受け（扉側）の突出長さ	56	
		$\mathrm{A}_{\mathrm{H} 4}$	mm^{2}	ヒンジ受け溶接部（扉側）の断面積	1414． 21	
		$\mathrm{Z}_{\mathrm{H} 4}$	mm^{3}	ヒンジ受け溶接部（扉側）の断面係数	23570.2	
	ヒンジ受け溶接部（躯体側）	$\mathrm{A}_{\mathrm{H} 5}$	mm^{2}	ヒンジ受け溶接部（躯体側）の断面積	2545.58	
	ヒンジ受け	n b H 6	本	ヒンジ受けボルト（扉側）の本数	6	
	ボルト（扉側）	$\mathrm{A}_{\mathrm{bH} 6}$	mm^{2}	ヒンジ受けボルト（扉側）の断面積	84.3	
	ヒンジ受け	n b H 7	本	ヒンジ受けボルト（躯体側）の本数	4	
	ボルト（躯体側）	$\mathrm{A}_{\mathrm{bH} 7}$	mm^{2}	ヒンジ受けボルト（躯体側）の断面積	157	
取付金具リブ溶接部		n 3	本	取付金具リブの本数	32	
		$\mathrm{A}_{\mathrm{H} 8}$	mm^{2}	取付金具リブ溶接部の引張方向の断面積	692.965	
		$A^{\prime}{ }^{\text {H } 8}$	mm^{2}	取付金具リブ溶接部のせん断方向の断面積	1682．91	
固定リング溶接部		$\mathrm{A}_{\mathrm{H} 9}$	mm^{2}	固定リング溶接部の断面積	22367． 2	

3．2．6 評価結果

水密扉の強度評価結果を表3－11に示す。水密扉の各部材の断面検定を行った結果，発生値は，許容限界値以下であることを確認した。

表3－11 水密扉の強度評価結果

水密扉 No．	評価対象部位		発生値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	発生値 ／許容限界値	備考
38	扉板		77	234	0.329	曲げ
	芯 材	横リブ＊1	47	234	0． 201	曲げ
		縦リブ＊1	52	234	0． 222	曲げ
	力 ヌ キ 部	カンヌキ＊2	25	483	0． 052	組合せ
		カンヌキ受け＊1	29	234	0． 124	曲げ
		カンヌキ受けボル ト	12	487	0.025	引張
		カンヌキ受け溶接部	6	105	0.057	引張
	ヒ	ヒンジピン＊1	35	204	0.172	曲げ
		ヒンジ受けピン穴部（扉側）＊1	42	234	0． 179	曲げ
		ヒンジ受けピン穴部（躯体側）＊1	21	234	0.090	曲げ
		ヒンジ受け溶接部 （扉側）＊2	20	105	0． 190	組合せ
		ヒンジ受け溶接部 （躯体側）	3	105	0.029	曲げ
		ヒンジ受けボルト （扉側）	15	375	0． 040	せん断
		ヒンジ受けボルト （躯体側）	12	487	0.025	引張
	取付金具リブ溶接部＊3		3	105	0.029	引張
	固定リング溶接部		2	60	0.033	せん断

注記＊1：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張及びせん断のうち，評価結果が厳しい方の値を記載する。

3．3 タイプIII

3．3．1 評価対象部位

水密扉の評価対象部位は，「2．3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定 する。

水密扉を閉める方向に外部から生じる静水圧荷重は，扉板から芯材を介し，扉枠に伝わ り，開口部周辺の躯体に伝達されることから，評価対象部位は扉板，芯材とする。

なお，荷重は扉枠から躯体に伝達されることから，アンカーボルトは静水圧荷重の伝達経路とならないため，評価対象外とする。

また，タイプIIIの水密扉はNo．40，No．41であり，同様の構造であることを踏まえ，代表 として水密扉No． 40 にて評価を行う。水密扉に作用する荷重の作用図を図 $3-31$ に示す。

正面図

\leftarrow ：評価する作用荷重
：溢水による静水圧荷重

図 3－31 水密扉に作用する荷重の作用図（水密扉 No．40，No．41）

3．3．2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

3．3．2．1 荷重の設定

強度評価に用いる荷重は，以下の荷重を用いる。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式により算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
$$

3．3．2．2 荷重の組合せ
強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。

```
Ph
ここで,
\(\mathrm{P}_{\mathrm{h}}\) ：溢水による静水圧荷重 \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
```


3．3．3 許容限界

許容限界は，「3．3．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．3．3．1 使用材料

水密扉を構成する，扉板及び芯材の使用材料を表3－12に示す。

表 3－12 使用材料

部位		材質	仕様（mm）
扉板		SS400	PL－9
芯材	横リブ	SS400	C -100×50
	縦リブ	SS400	C -100×50
		SS400	$\mathrm{FB}-100 \times 9$

[^2]
3．3．3．2 許容限界

（1）扉板，芯材
扉板及び芯材の鋼材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ）を踏まえて表3－13の値とする。

表 3－13 扉板及び芯材の許容限界

材料	「設計•建設規格」に準じた供用状態C（許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ）の許容応力）＊			
	引張，曲げ	せん断	組合せ	
SS400（ $\mathrm{t} \leqq 40$ ）	234	135	234	

[^3]
3．3．4 評価方法

水密扉の強度評価は，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している評価式を用いる。

3．3．4．1 応力算定

（1）扉板
扉板に生じる応力は，等分布荷重を受ける四辺支持板として算定する。
この時，実際に作用する静水圧は台形分布もしくは，三角形分布であるが，扉最下部の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に生じる荷重 の例を図 3－32に示す。
$\mathrm{w}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}$
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
○ 0 ：液体の密度（ $\mathrm{t} / \mathrm{m}^{3}$ ）
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{h}:$ 扉の水圧作用高さ (mm)

図 3－32 扉板に生じる荷重の例
（2）芯材
芯材に生じる応力は，等分布荷重を受ける両端単純支持の梁として算定する。なお，芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉最下部の最大静水圧に，芯材の支配幅（＝間隔）を乗じた荷重が等分布に作用するものとして安全側に評価する。芯材に作用する荷重の例を図 3－33 及び図 3－34に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}^{\prime} \cdot\left(\mathrm{L}_{\mathrm{L}} \cdot 10^{-3}\right)^{2} / 8 \\
& \mathrm{Q}=\mathrm{w}^{\prime} \cdot \mathrm{L}_{\mathrm{L}} \cdot 10^{-3} / 2 \\
& \text { ここで, } \mathrm{w}^{\prime}=\mathrm{w} \cdot \mathrm{~b}_{\mathrm{L}} \cdot 10^{-3} \\
& \text { w’: 芯材に作用する等分布荷重 (} \mathrm{kN} / \mathrm{m} \text {) } \\
& \text { M : 芯材に生じる最大曲げモーメント (kN•m) } \\
& \text { Q : 芯材に生じる最大せん断力 (kN) }
\end{aligned}
$$

$L_{L 1}$ ：芯材の支持長さ（横リブ）（mm）
$L_{L 2}$ ：芯材の支持長さ（縦リブ）（mm）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
b L 1 ：芯材に作用する荷重の負担幅（横リブ）（mm）
$\mathrm{b}_{\mathrm{L} 2}$ ：芯材に作用する荷重の負担幅（縦リブ）（mm）

図 3－33 芯材（横リブ）に生じる荷重の例

$\stackrel{7}{2}$

（a）
～

図3－34 芯材（縦リブ）に生じる荷重の例

3．3．4．2 断面検定

評価対象部位に発生する応力より算定する応力度が，許容限界値以下であることを確認する。
（1）扉板
扉板に生じる曲げ応力度を算定し，扉板の許容限界値以下であることを確認する。

$$
\begin{aligned}
& \sigma=\beta_{1} \cdot \mathrm{w} \cdot 10^{3} \cdot \mathrm{~L}_{\mathrm{PL}}{ }^{2} \cdot 10^{-6} / \mathrm{t}^{2} \\
& \sigma \quad \text { : 扉板の最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \beta_{1} \text { : 四辺支持長方形板の応力係数 } \\
& \mathrm{w} \text { : 扉下端に作用する静水圧荷重 }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
& L_{\mathrm{PL}} \text { : 扉板の短辺長さ (mm) } \\
& \mathrm{t} \text { : 扉板の厚さ (mm) }
\end{aligned}
$$

（2）芯材
芯材に生じる曲げ応力度及びせん断応力度を算定し，芯材の許容限界値以下である ことを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{L}}$
$\sigma \quad$ ：芯材の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：芯材の最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$Z_{\text {L } 1}$ ：芯材の断面係数（横リブ）（ mm^{3} ）
$Z_{\mathrm{L} 2}$ ：芯材の断面係数（縦リブ）（mm $\left.{ }^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{L}}$
$\tau \quad$ ：芯材の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材の最大せん断力（kN）
$\mathrm{A}_{\mathrm{L} 1}$ ：芯材のせん断断面積（横リブ）（mm²）
$\mathrm{A}_{\mathrm{L} 2}$ ：芯材のせん断断面積（縦リブ）（mm²）

3．3．5 評価条件

「3．3．4 評価方法」に用いる評価条件を表3－14に示す。

表3－14 強度評価に用いる評価条件

評価対象部位	記号	単位	定義	水密扉No．
				40
共通	h	mm	扉の水圧作用高さ	570
	$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	w	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重	5． 58979
扉板	$L_{\text {P L }}$	mm	扉板の短辺長さ	467
	β_{1}	－	四辺支持長方形板の応力係数	0.38
	t	mm	扉板の厚さ	9
芯材（横リブ）	$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）	474.5
	$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横リブ）	934
	$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）	37.6×10^{3}
	$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）	1192
芯材（縦リブ）	b L 2	mm	芯材に作用する荷重の負担幅（縦リブ）	467
	L L 2	mm	芯材の支持長さ（縦リブ）	514
	$\mathrm{Z}_{\mathrm{L} 2}$	mm^{3}	芯材の断面係数（縦リブ）	15.0×10^{3}
	$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）	900

3．3．6 評価結果

水密扉の強度評価結果を表3－15に示す。水密扉の各部材の断面検定を行った結果，発生値は，許容限界値以下であることを確認した。

表3－15 水密扉の強度評価結果

水密扉 No．	評価対象部位		$\begin{aligned} & \text { 発生値 } \\ & \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{aligned}$	許容限界値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	発生値 ／許容限界値	備考
40	扉板		6	234	0． 026	曲げ
	芯材	横リブ＊	8	234	0． 034	曲げ
		縦リブ＊	6	234	0． 026	曲げ

注記＊：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。

[^0]: $\xrightarrow{2}$

 （1）
 N
 \bigcirc

[^1]: $\stackrel{-}{\square}$

[^2]: $\xrightarrow{2}$

[^3]: 注記＊：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。

