2021年6月8日 02-工-B-08-0011_改1

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番省ノソントの記載との比較表(VI-1-8-1 原于炉恰料施設 東海第二発電所	女川原子力発電所第2号機	備考
		VI-1-8-1 原子炉格納施設の設計条件に関する説明書	資料構成の相違 ・以下、章番号や図面番号等の 相違については、差異理由の記載を省略する。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(WI-1-8-1 原子炉) 東海第二発電所	女川原子力発電所第2号機	備考
		目 次	
		1. 概要	
		2. 基本方針 2	
		2.1 設計基準事故時における基本方針	
		2.2 重大事故等時における基本方針 ・・・・・・・・・・・ 2	
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
		 3. 原子炉格納施設の設計条件 ············· (項を記載している。
		3. 原于户特别地或V/gX司 未什	' <柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。
		3.1 設計基準事故時における設計条件 6	
		3.1.1 圧力及び温度に関する設計条件 6	記載表現の相違
		3.1.2 漏えい率に対する設計条件 7	•
		3.1.3 最低使用温度 7	,
		3.1.4 使用材料	
		3.1.5 耐圧試験圧力 ······ <u>1</u> (
		3.1.6 開口部 ······ <u>1</u> (
		3.1.7 配管貫通部 … 10	1
		3.1.8 電気配線貫通部 1(
		3.1.9 原子炉格納容器隔離弁 · · · · · · · · · · · · 11	
		3.1.10 原子炉格納容器体積	
		3.1.11 原子炉格納容器安全設備 24	
		3. 1. 12 許容外圧 24	
			記載方針の相違
		3.1.13 圧力抑制効果を得るために必要な構造及び寸法··· 25	・柏崎刈羽では4.2.1項にて整理。
		3.1.13 圧力抑制効果を持るために必要な構造及び特益で 28	格納容器型式による相違
			旧が存命生みによる印度
		3.1.14 真空破壞装置 26	
		3.1.15 原子炉建屋原子炉棟	
		3.1.16 可燃性ガス濃度制御設備	
		3. 1. 17 放射性物質濃度制御設備 · · · · · · · · 27	
		3. 1. 18 原子炉格納容器調気設備 · · · · · · · 28	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機 3.1.19 冷却材喪失事故時の荷重 3.1.20 逃がし安全弁作動時の荷重 3.1.21 地震荷重 3.1.23 繰返し荷重に対する解析 3.2 重大事故等時における設計条件 3.2.1 重大事故等時の評価温度,評価圧力 3.2.2 重大事故等時における原子炉格納容器の熱の輸送機能	記載表現の相違 記載表現の相違 ・荷重の組合せにおいて地震荷重を考慮していることから,使用する地震荷重の掲載図書を記載。 <柏崎刈羽7号機との比較>記載方針の相違 ・柏崎刈羽では5項にて整理。 33
			記載方針の相違 ・柏崎刈羽では設計基準事故時 と重大事故等時の両方をまと めて記載している。
		4.1 重大事故等時における原子炉格納容器の放射性物質 閉じ込め機能評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番金ノソントの記載との比較衣(VI-1-8-1 原子別格料施 東海第二発電所	女川原子力発電所第2号機	備考
	<u> </u>	4.1.3 評価方法 · · · · · · · · 66	
		4.1.4 評価結果 ······· <mark>71</mark>	
		4.2 その他原子炉格納容器限界温度,圧力に対する	記載表現の相違
		影響確認	
		4.2.1 確認内容	
		4. 2. 2 確認結果 ····· 82	
		別添 1 重大事故等時における原子炉格納容器の放射性物質閉じ込	記載表現の相違
		め機能健全性について	HOTOLOGICA PRIZE
			設備の相違
			・女川は原子炉格納容器下部か
			らドライウェル床ドレンサン
			プに通じるドレン配管内にコ
			リウムシールドを設置(自主対
			策設備) しており、ペデスタル
			全面に設置するものではない
			ため, コリウムシールドについ
			ては記載していない。
		別添 2 原子炉格納容器フィルタベント系の設計	設備名称の相違
			<柏崎刈羽7号機との比較>
			記載方針の相違 ・女川はVI-5「計算機プログラ
			ム (解析コード)の概要」に整
			理している。
			AU (1 3.

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笙ノソントの記載との比較表(VI-1-8-1 原寸炉格料施設 東海第二発電所	女川原子力発電所第2号機	備考
		1. 概要	
		本資料は、「実用発電用原子炉及びその附属施設の技術基準に関	
		する規則(以下「技術基準規則」という。)」第44条及びその「実用	
		発電用原子炉及びその附属施設の技術基準に関する規則の解釈(以	
		下「解釈」という。)」の要求に対する原子炉格納施設の設計基準事	
		故時の設計条件について記載したものであり、最高使用圧力、最高	
		使用温度,設計漏えい率,最低使用温度,使用材料(原子炉格納容	<柏崎刈羽7号機との比較>
		器本体の脆性破壊防止含む),耐圧試験圧力,開口部,配管貫通部,	格納容器型式による相違
		電気配線貫通部,原子炉格納容器隔離弁,原子炉格納容器体積,原	
		子炉格納容器安全設備、許容外圧、圧力抑制効果を得るために必要	
		な構造及び寸法,真空破壊装置,原子炉建屋原子炉棟,可燃性ガス	格納容器型式による相違
		濃度制御設備,放射性物質濃度制御設備,原子炉格納容器調気設備,	
		原子炉冷却材喪失事故時の荷重,主蒸気逃がし安全弁作動時の荷	記載表現の相違
		重、地震荷重、荷重の組合せ、繰返し荷重に対する解析について説	記載表現の相違
		明する資料である。	
		また,技術基準規則第63,64,65,66,67,68,70及び71条並	
		びにそれらの解釈の要求に対する重大事故等対処設備として原子	
		「	
		組合せについても説明するとともに、重大事故等時における原子炉	
		格納容器の放射性物質閉じ込め機能評価についても説明する。	
		2. 基本方針	差異なし
		原子炉格納施設は、原子炉冷却系統に係る発電用原子炉施設の損	
		壊又は故障の際に漏えいする放射性物質が公衆に放射線障害を及	
		ぼすおそれがない設計とする。	
		2.1 設計基準事故時における基本方針	基本方針内で設計基準事故と
		原子炉格納容器は、設計基準事故時において原子炉冷却材圧力バ	
		ウンダリ配管の最も過酷な破断を想定し、これにより放出される原	
		子炉冷却材のエネルギによる原子炉冷却材喪失事故(以下「冷却材	
		喪失事故 という。) 時の最大の圧力, 最高の温度及び設計上想定さ	
		れた地震荷重に耐える設計とする。また、冷却材喪失事故時及び主	
		で、原子炉格納容器に生じる動荷重に耐える設計とする。なお、原	
		テ炉格納容器に生じる動荷重に対する設計は、「BWR MARK I型格	
		神容器圧力抑制系に加わる動荷重の評価指針」に基づき実施する。	
		村子市 村子市 村子 村子 村子 村子 村子 村	四3日平171/円/ルッノ行理

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元付番笙ノソントの記載との比較衣(VI-1~8~1 原子) 東海第二発電所	女川原子力発電所第2号機	備考
		「日子标妆研究型の即日がでも7川1日及び母等がたみよった	フ急撃実現の担害
		原子炉格納容器の開口部である出入口及び貫通部を含めて原 炉格納容器全体の漏えい率を許容値以下に保ち、冷却材喪失 事故	
		及び逃がし安全弁作動時において想定される原子炉格納容器内	• '
		圧力、温度、放射線等の環境条件の下でも原子炉格納容器バウン	
		リの健全性を保つように設計するとともに、漏えい試験ができる	
		計とする。	
		7 - 2	
		原子炉格納容器バウンダリを構成する機器は,通常運転時,運	転 記載表現の相違
		時の異常な過渡変化時及び設計基準事故時において、原子炉格線	容
		器バウンダリの脆性破壊及び破断を防止する設計とする。	
		原子炉格納容器を貫通する各施設の配管系に設ける原子炉格	. śała
		容器隔離弁は、安全保護装置からの信号により、自動的に閉鎖す	
		動力駆動弁、チェーンロックが可能な手動弁、キーロックが可能	
		遠隔操作弁又は隔離機能を有する逆止弁とし、原子炉格納容器の	
		離機能の確保が可能な設計とする。	
		原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際	JI.
		生じる原子炉格納容器内の圧力及び温度の上昇により原子炉格	納
		容器の安全性を損なうことを防止するとともに,原子炉格納容器	内
		から漏えいする放射性物質の濃度を低減する設備として残留素	· k
		去系 (格納容器スプレイ冷却モード) を設置する設計とする。また	た, モード名称の相違
		原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に	生
		じる水素及び酸素により原子炉格納容器の安全性を損なうこと	を
		防止するため, 可燃性ガス濃度制御系及び原子炉格納容器調気系	を 設備名称の相違
		設置する設計とする。	
		なお, 冷却材喪失事故後, ドライウェル内蒸気の凝縮が進み,	
		ライウェル圧力がサプレッションチェンバ圧力より低下した場	
		に、圧力差により自動的に働き、サプレッションチェンバのプー	
		水のドライウェルへの逆流及びドライウェルの破損を防止する	た
		め、真空破壊装置を設置する設計とする。	
		運転時の異常な過渡変化時及び設計基準事故時において、原子	炉

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

常用ガス処理系を設置する設計 ②	力発電所第2号機	備考
2.2 重大事故等時における基本原子年格納管器は、重大事故等時の原子炉格納管器は、重大事故等時の原子炉格納管 原子所格納管器となったとに原子炉壁 ことで、排気中に含まれる放射 つ、原子ዎ格納管器時間を設計とする。 格納容器が即風気ガスを身後してきて、原子炉格納管器内に蓄積していて、原子炉格納管器内に蓄積していて、原子炉格納管器内に蓄積していて、原子炉格納管器内に蓄力ある大大、輸送できる設計とす可燃性ガスにも基準及び原子 ために、可模型高素ガス供給装性ガス (電素)の供給が可能なフィルタベント表は、排気中にくため、系統内を不活性ガス(原子炉格割管器でした)をしまれる設計とする。 重大事故等時の原子炉格納管格納容器で表す。 東上まれる設計とする。 重大事故等時の原子炉格納管格納容器である設計とする。 直大事故等時の原子炉格納管格納容器である。 正大事故等時の原子炉格納管格納容器である。 正大事故等時の原子炉格納管格納容器である。 正大事故等時の原子炉格納管格納容器では、変大移動が表現して、原子が格納管となった。 正大事故等時の原子炉格納管格納容器では、アイナること、正大事ながまた。 これないにながまた。 これないにないにないにないにないにないにないにないにないにないにないにないにないにな	放射性物質が漏えいしないように, 非	設計の相違
原子炉格納容器は、重大事故等時の原子炉格納容器は、重大事故等時の原子炉格納容器 原子炉格納容器 原子炉格納容器 原子炉格納容器 原子炉格納容器 内化含 まれる 放射 つ、原子炉格納容器内に含 まれる 放射 つ、原子炉格納容器内に蓄 強し 大気 へ 糖送できる設計とする。 格納容器内容囲気ガスを排突間 ことで、原子炉格納容器内に割ましき 可燃性ガスによる機を及び原子 ために、可敷型窒素ガス供給装置 性ガス (窒素) の供給が可能なフィルタベント系は、排気にに ぐため、系統内を不活性ガス (限子炉格納容器へ下) 表、統内を不活性ガス (限子炉格納容器へ下) 表、統内を不活性ガス (取子炉格納容器へ下) 表、統内を不活性ガス (取子炉格納容器へ下) 表、統内を不活性ガス (取子炉格納容器 (本) 表、統内を不活性ガス (取子炉格納容器 (本) 表、統内を下) 表、統内を下) 表、統内を下) 表、統内を下) 表、統内を下) 表、成本的を下) 表、成本の原子炉格納容器 (本) 表、成本的容器 (本) 表、成本の原子炉格納容器 (本) 表、成本の原子炉格納容器 (本) 表、成本の原子が、成本の原子が、成本の原子が、成本の原子が、成本の原子が、成本の原子が、成本の原子が、成本の原子が、表、成本の原子が、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、成本の原子が、表、表、表、表、表、表、表、表、表、表、表、表、表、表、表、表、表、表、表	計とする。	・女川は非常時の原子炉建屋の
原子炉格納容器は、重大事故等時の原子炉格納容器 原子炉格納容器 原子炉格納容器 原子炉格納容器 アイリタベント 質を低減させた後に原子炉建屋 ことで、那気中に含まれる放射性 つ、原子炉格納容器内に蓄積し 大気へ輸送できる設計とする。格納容器内雰囲気ガスを排気に ことで、原子炉格納容器内に当す 可燃性ガスによる場発及び原子 ために、可像型強素ガス供給装性 性ガス (窒素) の供給が可能なフィルタベント系は、排気中にでため、可像型強素ガス供給装性 サス・(室素) の供給が可能なフィルタベント系は、排気中にでため、系統内を不活性ガス (原子炉格納容器へ) 下級には (東本修・新容器、一方の原子炉格納容器できる) を設計とする。		ガス処理設備を非常用ガスタ
原子炉格納容器は、重大事故等時の原子炉格納容 原子炉格納容器フィルタベント 質を低減させた後に原子炉建屋 ことで、排気中に含まれる放射性 つ、原子炉格納容器内に蓄積し 大気へ輸送できる設計とする。 格納容器内雰囲気ガスを排気筒 ことで、原子炉格納容器内に蓄す 可燃性ガスによる爆発及び原子 ために、可繰型強素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に ぐため、系統内を不活性ガス(原子炉格納容器へ)下後においる設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(可襲型)は、復本修 を を がある設計とする。 重大事故等時の原子炉格納容 格納容器ではない る設計とする。		理系のみ設置している。
原子炉格納容器は、重大事故等時の原子炉格納容 原子炉格納容器フィルタベント 質を低減させた後に原子炉建屋 ことで、排気中に含まれる放射性 つ、原子炉格納容器内に蓄積し 大気へ輸送できる設計とする。 格納容器内雰囲気ガスを排気筒 ことで、原子炉格納容器内に蓄す 可燃性ガスによる爆発及び原子 ために、可繰型強素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に ぐため、系統内を不活性ガス(原子炉格納容器へ)下後においる設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(可襲型)は、復本修 を を がある設計とする。 重大事故等時の原子炉格納容 格納容器ではない る設計とする。	· 大士公	基本方針内で設計基準事故。
の閉じ込め機能を有する設計と 重大事故等時の原子炉格納容器 原子炉格納容器フィルタベント 質を低減させた後と原子炉珪度 ことで、排気中に含まれる放射 つ、原子炉格納容器内に蓄積した 大気へ輸送できる設計とする。 格納容器内雰囲気ガスを排気筒 ことで、原子炉格納容器内である。 を務めてきる設計とす 可燃性ガスによる爆を及び原子 ために、可線型窒素ガス供給設 性ガス (家者) の供給が可能な フィルタベント系は、排気中に ぐため、系統内を不活性ガス(原子坪格納容器一と下後においる る設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(のイガリ系(可製型)は、彼木移 イブ「)により原子炉格納容器 ライウェル内にスプレイする。 温度並びに放射性物質の濃度を		
重大事故等時の原子炉格納容原子ルタペント質を低減させた後に原子炉建理ことで、排気中に含まれる放射であった。排気中に含まれる放射であった。排気中に含まれる放射である大気へ輸送できる設計とする。格納容器内雰囲気ガスを排気にことで、原子炉格納容器内に蓄積ある大気へ輸送できる設計とす。可燃性ガスによる爆発及び原子ために、可能型窒素ガス供給装性 世ガス (虚素) の供給が可能なフィルタベント系は、排気中にくぐため、系統内を不活性ガス (次下) 系統内を不活性ガス (原子中格前容器・とりにより原子炉格納容器・とりにより原子炉格納容器・できないなります。		里八争収守く即で万割
原子炉格納容器フィルタベント 質を低減させた後に原子炉建屋 ことで、排気中に含まれる放射 つ、原子炉格納容器内に蓄積しが 大気へ輸送できる設計とする。 格納器門内雰囲気ガスを排気に ことで、原子炉格納容器内に蓄 ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可検型窒素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に ぐため、系が内を不活性ガス(所子炉格納容器へとをにおいる る設計とする。	C 7 W 0	
質を低減させた後に原子炉建屋ことで、排気中に含まれる放射性の、原子炉格納容器内に蓄積した大気へ輸送できる設計とする。格納容器内のの数が表する設計とする。格納容器内のの数が表する設計とする。とで、原子炉格納容器内のの供送できる設計とする。の供給が可能ないで、「動型窒素ガス供給装置性ガス(窒素)の供給が可能なで、でため、系統内を不活性ガス(で、でため、系統内を不活性ガス(で、でため、系統内を不活性ガス(で、原子炉格納容器で、上後においる設計とする。	容器内の熱を輸送するために用いる	
ことで、排気中に含まれる放射社で、原子炉格納容器内で、原子炉格納容器内で、原子炉格納容器内で、とて、原子炉格納容器内に、蓄動ある大気へ輸送できる設計とす。 可燃性ガスによる爆発及び原子ために、可嫌型塞ボガス供給減性ガス(変素)の供給が可能なで、でかめ、系統内を不活性ガス(でため、系統内を不活性ガス(原子炉格納容器へと下後においる設計とする。	ト系は,フィルタ装置により放射性物	設備名称の相違
つ、原子炉格納容器内に蓄積した大気へ輸送できる設計とする。 格納容器内雰囲気ガスを排気筒 ことで、原子炉格納容器内に蓄着 ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可擦型窒素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に でため、系統内を不活性ガス(原子炉格納容器ペント後においる 設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(レイ冷却系(可機型)は、復水移 イブ I)により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	屋屋上に設ける放出口から排出する	建屋構成の相違
大気へ輸送できる設計とする。 格納容器内雰囲気ガスを排気筒 ことで、原子炉格納容器内に蓄料 ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可搬型窒素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に ぐため、系統内を不活性ガス(原子炉格納容器ベント後におい る設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(レイ冷却系(可搬型)は、後水移 イブ I)により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	対性物質の環境への放出量を低減しつ	記載表現の相違
格納容器内雰囲気ガスを排気管ことで、原子炉格納容器内に蓄料 ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可搬型窒素ガス供給装置 性ガス (窒素)の供給が可能な フィルタベント系は、排気中に でため、系統内を不活性ガス (原子炉格納容器ペント後においる設計とする。 重大事故等時の原子炉格納容格納容器代替スプレイ冷却系 (アレイ冷却系 (可搬型) は、復水移 イブ I) により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	した熱を最終的な熱の逃がし場である	
ことで、原子炉格納容器内に蓄料 ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可機型窒素ガス供給装制性ガス(窒素)の供給が可能なけ フィルタベント系は、排気中にで でため、系統内を不活性ガス(原子炉格納容器ペント後においる設計とする。 重大事故等時の原子炉格納容格 格納容器代替スプレイ冷却系(可搬型)は、復水移 イブ I)により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	。また、耐圧強化ベント系は、原子炉	設備名称の相違
ある大気へ輸送できる設計とす 可燃性ガスによる爆発及び原子 ために、可搬型窒素ガス供給装 性ガス(窒素)の供給が可能な フィルタベント系は、排気中に ぐため、系統内を不活性ガス(原子炉格納容器ペント後におい る設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系(レイ冷却系(可搬型)は、復水移 イブ I)により原子炉格納容器に ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	、 筒を通して原子炉建屋外に放出する	設計の相違
可燃性ガスによる爆発及び原子ために、可搬型窒素ガス供給装置性ガス(窒素)の供給が可能ないフィルタベント系は、排気中にできため、系統内を不活性ガス(原子炉格納容器ペント後においる設計とする。 重大事故等時の原子炉格納容格約容器代替スプレイ冷却系(7・・ (2)	蓄積した熱を最終的な熱の逃がし場で	
ために、可搬型窒素ガス供給装i性ガス(窒素)の供給が可能なコイルタベント系は、排気中にでため、系統内を不活性ガス(原子炉格納容器ペント後においる設計とする。 重大事故等時の原子炉格納容格納容器代替スプレイ冷却系(可搬型)は、復水移イプ I)により原子炉格納容器ドライウェル内にスプレイするこ温度並びに放射性物質の濃度を	する。なお, 可搬型窒素ガス供給系は,	<柏崎刈羽7号機との比較>
性ガス(窒素)の供給が可能な フィルタベント系は、排気中にで ぐため、系統内を不活性ガス() 原子炉格納容器ペント後におい る設計とする。 重大事故等時の原子炉格納容 格納容器代替スプレイ冷却系() レイ冷却系(可搬型)は、復水移 イプ I)により原子炉格納容器に ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	「子炉格納容器の負圧破損を防止する」	表現の相違
フィルタベント系は、排気中にででため、系統内を不活性ガス(原子炉格納容器ベント後においる設計とする。 重大事故等時の原子炉格納容格納容器代替スプレイ冷却系(アルイ冷却系(可搬型)は、復水移イプI)により原子炉格納容器にライウェル内にスプレイするこ温度並びに放射性物質の濃度を	装置を用いて原子炉格納容器内に不活	・技術基準規則第 63 条とし
ぐため、系統内を不活性ガス(原子炉格納容器ペント後においる設計とする。 重大事故等時の原子炉格納容格納容器代替スプレイ冷却系(「ルイ冷却系(可搬型)は、復水移イプ I)により原子炉格納容器にライウェル内にスプレイするこ温度並びに放射性物質の濃度を	な設計とする。また,原子炉格納容器	使用する原子炉格納容器ス
原子炉格納容器ベント後においる設計とする。 重大事故等時の原子炉格納容格納容器代替スプレイ冷却系(では、後水移では、では、では、では、では、では、では、では、では、では、では、では、では、で	こ含まれる可燃性ガスによる爆発を防	ルタベント系は, 炉心損傷前
 	(窒素) で置換した状態で待機させ,	使用するものであるが,技術
重大事故等時の原子炉格納容格納容器代替スプレイ冷却系(格納容器代替スプレイ冷却系(可搬型)は, 復水移 イプ I)により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	<mark>いても</mark> 不活性ガス <mark>(窒素)</mark> で置換でき	準規則解釈の 65 条準用要求
格納容器代替スプレイ冷却系 (7版型) は, <mark>復水移 イプ I) により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を</mark>		従い, 女川 2 号では 65 条と
格納容器代替スプレイ冷却系 (7 レイ冷却系 (可搬型) は, <mark>復水移 イプ I)</mark> により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を		様の記載としている。
格納容器代替スプレイ冷却系 (7版型) は, <mark>復水移 イプ I) により原子炉格納容器 ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を</mark>	容器内の冷却のために用いる原子炉	
レイ冷却系 (可搬型) は, 復水移 イプ I) により原子炉格納容器ドライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	(常設)及び原子炉格納容器代替スプ	
イプ I)により原子炉格納容器 アライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	移送ポンプ又は大容量送水ポンプ(タ	
ライウェル内にスプレイするこ 温度並びに放射性物質の濃度を	器内のドライウェルスプレイ管からド	
	ことで,原子炉格納容器内の圧力及び	
	を低下させることができる設計とす	(11)
■ なり、 また、 が知道教師大士帝 (位置)	納容器スプレイ冷却モード)及び残留	
	ール水冷却モード)は、常設代替交流	
	能を復旧し、残留熱除去系ポンプ及び	, , , , , , , , , , , , , , , , , , , ,
	サプレッションチェンバのプール水	
	·ッションチェンバ内にスプレイ並び	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
-		に残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプレッ	, 2 タイプの可搬型ポンプ車に。
		ションチェンバのプール水を冷却することで原子炉格納容器を冷	う る対策としている。
		却できる設計とする。	<柏崎刈羽7号機との比較>
			運用の相違
			・女川はドライウェル側への
			プレイの方が効果的なため,
			子炉格納容器への外部注水
			限量も考慮して、ドライウェ
			側のみにスプレイを行う。
		重大事故等時の原子炉格納容器の過圧破損防止のために用いる	5
		代替循環冷却系は、代替循環冷却ポンプによりサプレッションチョ	設備名称の相違
		ンバのプール水を残留熱除去系熱交換器にて冷却し、原子炉圧力容	ア 設計の相違
		器へ注水及び原子炉格納容器内へスプレイすることで,原子炉格約	・運用の相違による。
		容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度	更
		を低下できる設計とする。また、原子炉格納容器フィルタベント系	設備名称の相違
		は、フィルタ装置により放射性物質を低減させた後に原子炉建屋屋	<u>=</u>
		上に設ける放出口から排出することで, 排気中に含まれる放射性物	建屋構成の相違
		質の環境への放出量を低減しつつ、原子炉格納容器内の圧力及び消	1.
		度を低下できる設計とする。なお、可搬型窒素ガス供給系は、可燃	* 設備名称の相違
		性ガスによる爆発及び原子炉格納容器の負圧破損を防止するため	5
		に、可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性力	が設備名称の相違
		ス(窒素)の供給が可能な設計とする。また、原子炉格納容器フィ	設備名称の相違
		ルタベント系は、排気中に含まれる可燃性ガスによる爆発を防ぐだ	=
		め、系統内を不活性ガス(窒素)で置換した状態で待機させ、原子	ご載表現の相違
		炉格納容器ベント後においても不活性ガス <mark>(窒素)</mark> で置換できる記	ž
		計とする。	
		重大事故等時の原子炉格納容器下部の溶融炉心冷却のために見	Ħ
		いる原子炉格納容器下部注水系(常設)(復水移送ポンプ)及び原子	設備名称の相違
		炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、復水移送	送 設計の相違
		ポンプ又は代替循環冷却ポンプにより、原子炉格納容器下部へ注水	・女川は原子炉格納容器下部
		し、溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ	・ 水系として、原子炉格納容器
		分な水位を確保するとともに、落下した溶融炉心を冷却できる設ま	計 部注水系 (常設) (復水移送ホ
		とする。また、原子炉格納容器下部注水系(可搬型)は、大容量は	送 プ)及び原子炉格納容器下部
		水ポンプ(タイプI)により、原子炉格納容器下部へ注水し、落下	水系 (常設) (代替循環冷却ホ
		した溶融炉心を冷却できる設計とする。	プ)を整備し、多様性等を図
			た設計としている。
			・東海第二は溶融炉心の落下
			備え,ペデスタル底部の構造

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

先行審査プラントの記載との比較表(VI-1-8-1 原子炉格納施設の設計条件に関する説明書)			
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			更を行いペデスタル床ドレン
			サンプの水位を維持すること
			で、溶融炉心の冠水対策を行っ
			ている。
		また,原子炉格納容器代替スプレイ冷却系(常設)及び代	
		冷却系は、復水移送ポンプ又は代替循環冷却ポンプにより原 ・	子炉格 ・女川はコリウムシ―ルドを
		納容器内のドライウェルスプレイ管からドライウェル内に	スプレ 置しない状態でも,原子炉格を
		イし、スプレイした水がドライウェル床面に溜まり、原子炉	各納容 容器下部へ落下した溶融炉
		器下部開口部を経由して原子炉格納容器下部へ流入すること	で,溶 がドレン配管内で凝固する。
		融炉心が落下するまでに原子炉格納容器下部にあらかじめ-	十分な とを確認しているが, 更なる
		水位を確保するとともに、落下した溶融炉心を冷却できる設	計とす 全性向上のため、自主対策設備
		る。また、原子炉格納容器代替スプレイ冷却系(可搬型)は	大容としてコリウムシールドを記
		量送水ポンプ (タイプ I) により原子炉格納容器内のドライ	ウェル 置する。
		スプレイ管からドライウェル内にスプレイし、スプレイした	水がド
		ライウェル床面に溜まり,原子炉格納容器下部開口部を経由	して原 設計の相違
		子炉格納容器下部へ流入することで,落下した溶融炉心を冷:	いでき ・女川では格納容器にスプレ
		る設計とする。	した水がドライウェル床面に
			たまり、格納容器下部開口部を
			経由して格納容器下部に流え
			することを考慮するため、原
			炉格納容器代替スプレイ冷却
			系及び代替循環冷却系を溶
			炉心の冷却設備として整理
			ている。
			1 . 1
		溶融炉心の原子炉格納容器下部への落下を遅延・防止する。	
		用いる低圧代替注水系(常設)(復水移送ポンプ),低圧代替	
		(可搬型),高圧代替注水系,代替循環冷却系及びほう酸水	
		は、低圧代替注水系(常設)(復水移送ポンプ)、低圧代替注水	
		搬型), 高圧代替注水系及び代替循環冷却系のいずれかと並	
		ほう酸水注入系による原子炉圧力容器への注水を行うこと	で溶触
		炉心を冷却できる設計とする。	
		■ 重大事故等時の原子炉格納容器内における水素爆発によ	る破損
		防止のために用いる可搬型窒素ガス供給装置は、原子炉格納	
		を不活性化するため、原子炉格納容器内に窒素を供給するこ	
		ジルコニウムー水反応、水の放射線分解等により原子炉格納	
		ンルコーソム=小区心、小の放射線が脾寺により原士炉格納	自動Y1 記載衣焼り相達

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表 (VI-1-8-1 原子炉程 東海第二発電所	女川原子力発電所第2号機	備考
		に発生する水素及び酸素の濃度を可燃限界未満にできる設計とす	
		る。また、原子炉格納容器フィルタベント系は、フィルタ装置によ	設備名称の相違
		り放射性物質を低減させた後に原子炉建屋屋上に設ける放出口か	建屋構成の相違
		ら排出することで、排気中に含まれる放射性物質の環境への放出量	記載表現の相違
		を低減しつつ, ジルコニウムー水反応, 水の放射線分解等により発	記載表現の相違
		生する原子炉格納容器内の水素及び酸素を大気に排出できる設計	
		とし、排気中に含まれる可燃性ガスによる爆発を防ぐため、系統内	記載表現の相違
		を不活性ガス(窒素)で置換した状態で待機させ、原子炉格納容器	記載表現の相違
		ベント開始後においても不活性ガス(窒素)で置換できる設計とす	記載表現の相違
		るとともに、系統内に可燃性ガスが蓄積する可能性のある箇所には	記載表現の相違
		バイパスラインを設け、可燃性ガスを連続して排出できる設計とす	記載表現の相違
		ることで、系統内で水素濃度及び酸素濃度が可燃領域に達すること	
		を防止できる設計とする。なお、可搬型窒素ガス供給系は、可燃性	設備名称の相違
		ガスによる爆発及び原子炉格納容器の負圧破損を防止するために、	
		可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス	設備名称の相違
		(窒素) の供給が可能な設計とする。	記載表現の相違
			<柏崎刈羽7号機との比較>
			設計の相違
			・柏崎刈羽は炉心損傷後も耐圧
			強化ベント系を使用するが、女
			川は炉心損傷後は耐圧強化べ
			ント系を使用しないため耐圧
			強化ベント系の記載はしてい
			ない。(63条で整理)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
作権が利用して対象	果では一角では、現代では、現代では、現代では、現代では、現代では、現代では、現代では、現代	原子炉建屋等の水素爆発による損傷を防止するために用いる静的触媒式水素再結合装置は、原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで、原子炉建屋原子炉棟内の水素濃度の上昇を抑制し、原子炉建屋原子炉棟の水素爆発を防止できる設計とする。	設計の相違 ・女川は静的触媒式水素再結合 装置により水素爆発損傷防止
		炉心の著しい損傷及び原子炉格納容器の破損に至った場合において、発電所外への放射性物質の拡散を抑制するために用いる放水設備(大気への拡散抑制設備)は、大容量送水ポンプ(タイプⅡ)により海水を取水し、放水砲から原子炉建屋へ放水することで発電所外への放射性物質の拡散を抑制する設計とし、原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するために用いる放水設備(泡消火設備)は、大容量送水ポンプ(タイプⅡ)により泡消火薬剤混合装置を通して、海水を泡消火薬剤と混合しながらホース等を経由して放水砲から原子炉建屋周辺へ放水できる設計と	設備名称の相違 設備名称の相違 記載表現の相違 設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		する。また、海洋への拡散抑制設備(シルトフェンス)は、シルト	設備名称の相違
		フェンスを汚染水が発電所から海洋に流出する南側排水路排水桝,	設備名称の相違
		タービン補機放水ピット、北側排水路排水桝及び取水口に設置する	
		ことで発電所外への放射性物質の拡散を抑制する設計とする。	
		原子炉格納容器は、想定される重大事故等時において、設計基準 対象施設としての最高使用圧力及び最高使用温度を超える可能性	
		があるが、設計基準対象施設としての最高使用圧力(設計圧力)の 2 倍である限界圧力及び 200℃の限界温度で閉じ込め機能を損なれ	
		ない設計とする。	
		上記の設計のため、評価に用いる解析コードの検証及び妥当性研	記載方針の相違
		認等の概要については、添付書類「VI-5 計算機プログラム(解析	- - - - - - - - - - - - - - - - - - -
		コード)の概要」に示す。	ム (解析コード) の概要」に割
			理している。
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載表現の相違
			・柏崎刈羽は既工認に基づき,
			構造の概要について記載して
			いる。

2021年6月8日 02-工-B-08-0011_改1

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉格納所 東海第二発電所	女川原子力発電所第2号機	備考
		3. 原子炉格納施設の設計条件	差異なし
		原子炉格納施設の設計条件としては設計基準事故時における設	
		計条件と,重大事故等時における設計条件に分類し,項目ごとに説	
		明する。	
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき, 運転状態等の定義に
			ついて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笛ノラントの記載との比較衣(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
	·	【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき,運転状態等の定義に
			ついて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笛ノラントの記載との比較衣(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
	·	【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき,運転状態等の定義に
			ついて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子) 東海第二発電所	女川原子力発電所第2号機	備考
		3.1 設計基準事故時における設計条件 原子炉格納容器の設計基準事故時の設計条件として,施設時に適用した「発電用原子力設備に関する構造等の技術基準」(昭和55年通商産業省告示第501号,以下「告示第501号」という。)に基づき最高使用圧力,最高使用温度,最低使用温度等を設定し,原子炉格納容器の強度評価等も含めた設計条件として使用する。以下に設計条件として使用する項目について示す。	施設時の規格の相違
		3.1.1 圧力及び温度に関する設計条件 (1) 内圧及び温度 原子炉格納容器は冷却材喪失事故直後の圧力上昇に耐えうるものでなくてはならないため、解析から得られる原子炉格納容器の最高内圧及び最高温度を上回るように設定する。	
		解析の際の初期条件は,表 3-1 に示す通常運転中の圧力及び温度である。	<柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は既工認に基づき, 解析モデルに用いたD/W,S/Cの 空間容積等について記載して いる。
		表 3-1 解析に用いた初期条件 F9イウェル	設計条件の相違 設備名称の相違
		解析結果による最高圧力及び最高温度は表3-2に示す値となる。	< 柏崎刈羽 7 号機との比較> 設計条件及び格納容器型式に よる設計条件の相違 < 柏崎刈羽 7 号機との比較> 記載方針の相違 ・柏崎刈羽は既工認に基づき,

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子炉格納施 東海第二発電所	女川原子力発電所第2号機	備考
			解析結果による圧力変化及び
			温度変化の図を記載している。
		主 0 0 <i>阿</i> 托外田 2 2 7 見方に 1 1 1 2 7 月 方 3	記引々/H-エバサ 姉雰 甲刊士 ト
		表 3-2 解析結果による最高圧力及び最高温度* ***********************************	設計条件及び格納容器型式よる解析結果の相違
		ドライウェル サブレッションチェンバ 圧 力 324 kPa 206 kPa	設備名称の相違
		進度 146℃ 97℃	<柏崎刈羽7号機との比較>
		注記*:記載内容は、平成2年5月24日付け元資庁第14466号にて認	
		可された工事計画の添付書類「IV-1-1-1 原子炉格納容器の	
		設計条件に関する説明書」による。	記載表現の相違
			<柏崎刈羽7号機との比較> 記載方針の相違
			・柏崎刈羽は既工認に基づき、
			圧力変化図を記載している。
			上外交信四色品类 0 (1 0)

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉木 東海第二発電所	かが他なりなず来性に関する説明者) 女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 上記の解析結果に余裕をもたせて最高使用圧力及び最高使用温	< 柏崎刈羽 7 号機との比較 > 記載方針の相違 ・柏崎刈羽は既工認に基づき, 圧力変化図を記載している。
		度を表3-3に示す値とする。 表 3-3 最高使用圧力及び最高使用温度 ドライウェル サブレッションチェンバ サブレッションチェンバ 日本 427 kPe は 104 ℃ は 171 ℃ 104 ℃	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
-		格納容器を防護する設計としている。したがって、ドライウェル及	
		びサプレッションチェンバの外面にうける最高の圧力は13.7kPaと	<柏崎刈羽7号機との比較>
		する。	設計条件及び格納容器型式に
			よる仕様の相違
		(3) 設計基準事故時の原子炉格納容器の評価水位	記載方針の相違
		冷却材喪失事故発生後、サプレッションチェンバ(内部水源)を	
		水源とした非常用炉心冷却系による注水開始により、炉心は冠水さ	容器の評価水位を明確化した。
		れ、冷却材は冷却材喪失事故の破断口から原子炉格納容器下部及び	
		ドライウェル床を経由して,サプレッションチェンバへと流入す	
		原子炉格納容器下部及びドライウェル床には,250m³弱の冷却材	
		を保有できる容量を有しており、冷却材喪失事故発生後の原子炉圧	
		力容器より流出する冷却材量(約 200m³)は原子炉格納容器下部及	
		びドライウェル床に保持される。	
		その後、サプレッションチェンバを水源とする非常用炉心冷却系	
		による注水が継続するため、サプレッションチェンバの水位は事象	
		発生時の水位以下で推移することから、弾性設計用地震動Sd及び	
		基準地震動Ssと組み合わせる原子炉格納容器の評価においては、	
		保安規定に基づく運転上の制限値を踏まえ, サプレッションチェン	
		バの水位を「通常運転水位である H. W. L 0. P3800mm (水位 3.6m)」	
		に設定している。	
		なお、非常用炉心冷却系のうち高圧炉心スプレイ系については、	
		第一水源として復水貯蔵タンクを用いるが、サプレッションチェン	
		バの水位が H.W.L 0.P3800mm (水位 3.6m) に到達すると水源が	
		サプレッションチェンバへ切り替わり、その後復水貯蔵タンク水に	
		より注水されることはない。	
		3.1.2 漏えい率に対する設計条件	
		設計基準対象施設として使用する原子炉格納容器の設計漏えい	
		率は、安全評価解析(原子炉設置変更許可申請書添付書類十)の環	
		境への放射性物質の異常な放出において、判断基準(実効線量 5mSv	
		以下)を満足することが確認されている設計漏えい率 0.5%/d 以下	に基つさ記載している。
		(常温,空気,最高使用圧力の0.9倍において)とする*。	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表 (VI-1-8-1 原子炉格納施i 東海第二発電所	女川原子力発電所第2号機	備考
		注記*: 令和2年2月26日付け「原規規発第2002261号」をもって許可を受けた「女川原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3.設計基準事故解析3.4.4原子炉冷却材喪失における解析条件	記載表現の相違
		3.1.3 最低使用温度 告示第501号で規定されている原子炉格納容器の最低使用温度を表3-4に示す。 表 3-4 原子炉格納容器の最低使用温度	記載表現の相違 記載表現の相違
		ドライウェル,サプレッションチェンバとも同じ値である。この 最低使用温度は <mark>健設時の</mark> 耐圧漏えい試験時 (試験状態)を考慮して 決めたものであり、建設時を除けば、原子炉建屋内にある <mark>ため、換</mark> 気空調系により 10℃以上に保たれる。	記載表現の相違
		3.1.4 使用材料 原子炉格納容器バウンダリに使用するフェライト系材料は原子 炉格納容器の最低使用温度に対して脆性破壊を防止するため、告示 第501号の規定により衝撃試験又は落重試験を行い、これに合格 したものを使用する。 原子炉格納容器本体の脆性破壊防止に関する確認事項を以下に 示す。	
		(1) 原子炉格納容器本体の脆性破壊防止 a. 概要	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

	元11番宜ノフントの記載との比較衣(VI-1-8-1 原十炉恰納旭訳	T	Atta de
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器本体は、施設時に適用された「告示第501号」	
		及び「電気工作物の溶接に関する技術基準を定める省令」(昭和45	
		年通商産業省令第81号(昭和60年10月改正を含む))(以下「省	施設時の規格の相違
		令第81号」という。) に基づき、材料、設計及び製作において、	
		次の試験を実施し、脆性破壊に対し十分安全であることを確認され	
		たものを使用する。	
		(a) 原子炉格納容器本体の材料は、告示第501号第20条第4項に	記載表現の相違
		規定する方法による破壊靱性試験を行い、同項に規定する合	
		格基準に適合するものを使用する。	
		(b) 原子炉格納容器本体の溶接部は、省令第81号第28条第2項に	規格の改正年度に伴う相違
		規定する試験板について第26条の規定に基づき,破壊靱性試	記載表現の相違
		験を行い,同条に規定する合格基準に適合することを確認さ	
		れたものを使用する。	
		b. 脆性破壊防止のための確認事項実施要領	
		(a) 原子炉格納容器本体の材料に関する確認	
		本体材料に関する破壊靱性試験として衝撃試験を実施する。衝撃	記載表現の相違
		試験の実施要領は次のとおりである。	
		イ. 対象材料	
		第二種容器(厚さが16mm未満の材料,断面積が625mm ² 未満の棒の	記載表現の相違
		材料, 呼び径が25mm未満のボルト等の材料, 外径が169mm未満の管	記載表現の相違
		の材料並びに厚さが16mm又は外径が169mm未満の管に接続されるフ	
		ランジの材料及び管継手の材料を除く。) に使用する材料のうち、	
		オーステナイト系ステンレス鋼及び高ニッケル合金以外のものに	
		限る。	
		口. 材料	
		原子炉格納容器本体において、該当する材料はSGV49及びSPV50で	原子炉格納容器本体の使用材
		ある。	料の相違
		ハ. 試験温度	
		試験温度は-17℃以下とする。これは最低使用温度 (0°C) より17°C	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子版 東海第二発電所	女川原子力発電所第2号機	備考
	果 改 界一 允 电 <i></i>	以上低い温度である。 二. 試験片 試験片は、3個採取する。 ホ. 合格基準 試験片の吸収エネルギが次の表の値以上であるものを合格とする。	材料の違いによる基準値の相
		対称	達

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女)	川原子力発電所第2号機	備考
		(b) 原子炉格納容器本	体の溶接部に関する確認	
		本体の溶接に関する	破壊靭性試験として衝撃試験を実施する	。衝記載表現の相違
		撃試験の実施要領は次	のとおりである。	
		イ. 対象溶接部		
		第二種容器の突合せ	容接による溶接部のうち、熱影響部であ	って 記載表現の相違
			系ステンレス鋼,ニッケルクロム鉄合金	
		ニッケルクロム合金又	は非鉄金属以外のもの及び溶接金属部	であ
		って、溶接金属がオージ	ステナイト系ステンレス合金、ニッケル	ウロ
		ム鉄合金又は非鉄金属	以外のものであって,厚さが16mm以上の	容接
		部,外径が169mm以上の	管の溶接部及び厚さが16mm又は外径が16	9mm
		以上の管に接続される	フランジ又は管継手の溶接部に限る。	
		ロ. 母材の材料		
		原子炉格納容器本体	において,該当する溶接部の母材は <mark>SGV</mark> 4	9及 原子炉格納容器本体の使用
		びSPV50である。		料の相違
		 ハ. 試験温度		
			でとする。これは最低使用温度(0°C)より:	7°C
		以上低い温度である。		
		二. 試験片		
		試験片は溶接金属部	及び熱影響部から、それぞれ3個採取す	る。
		ホ. 合格基準		
		試験片の吸収エネル	ギが次の表の値以上であるものを合格	とす
		る。なお、再試験は省の	令第81号第30条(第13条準用)の規定	こよ 規格の改正年度に伴う相違
		る。		
			破収エネルギ	原子炉格納容器本体の使用
		8589	3個の平均 最小値	料の相違
		15575	J J (kg * m)	
		12 4000 (1)	(kg · m) (kg · m) 27 21	
		SGV49	(2.8) (2.1)	
		SPV50	40 33	
		(91.198)	(4.1) (3.4)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金プラントの記載との比較表 (VI-1-8-1 原子炉格納施記 東海第二発電所	女川原子力発電所第2号機	備考
		3.1.5 耐圧試験圧力	
		原子炉格納容器の耐圧試験圧力は、施設時に適用された告示第5	
		0 1 号第 104 条第 1 号ハに基づき,最高使用圧力 427kPa (4.35kg/cm²) の 1.125 倍である 481kPa (4.9kg/cm²) で気圧試験を	
		(4.50kg/cm) 01.125 信でめる 451kPa (4.9kg/cm) で X(圧) 映を 行い原子炉格納容器の健全性を確認する。	は る仕様の相違
		以上より,原子炉格納容器の耐圧試験圧力 481kPa (4.9kg/cm²)	OV DELINIO PALE
		とする。	
		3.1.6 開口部	
		開口部となるドライウェル主フランジ,機器搬出入用ハッチ,逃 がし安全弁搬出入口,制御棒駆動機構搬出入口,サプレッションチ	
		エンバ出入口(以下「ハッチ類」という。)及び所員用エアロックは	
		十分な気密性を保つ設計とし、想定される漏えい量その他の漏えい	
		試験に影響を与える環境条件として、判定基準に適切な余裕係数を	
		見込み、日本電気協会「原子炉格納容器の漏えい率試験規程」(JE	
		AC4203) に定める漏えい試験のうちB種試験ができる設計とする。	
		7 '20	
		所員用エアロックは,扉の開閉状態を管理するため,所員用エア	
		ロックの扉が開いた場合には中央制御室に警報を発信する。また、	
		所員用エアロックの扉は、両方の扉が同時に開かないようにインタ	
		ーロックを設ける設計とする。 ハッチ類は、原子炉格納容器の貫通部にフランジ付の胴板が溶接	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子別 東海第二発電所	女川原子力発電所第2号機	備考
		固定されており、ハッチ類の外周側から蓋フランジをガスケットと	
		ボルトで固定し、気密性を保つ設計とする。	
		3.1.7 配管貫通部	
		原子炉格納容器配管貫通部は、冷却材喪失 <mark>事故</mark> 時において想定さ	記載表現の相違
		れる原子炉格納容器内の圧力を考慮した最高使用圧力, 温度を考慮	
		した最高使用温度,湿度,放射線等の環境条件の下でも機能を発揮	
		できる設計とする。	
		3.1.8 電気配線貫通部	
		電気配線貫通部は、冷却材喪失事故時において想定される原子炉	記載表現の相違
		格納容器内の圧力を考慮した最高使用圧力、温度を考慮した最高使	HO HOLD TO THE
		用温度、湿度、放射線等の環境条件の下でも機能を発揮できるよう、	
		それらの試験条件を考慮した試験により健全性が確認されたもの	
		を使用する設計とする。	
		3.1.9 原子炉格納容器隔離弁	
		原子炉格納容器隔離弁(以下「隔離弁」という。)は,施設時に適	
		用された「発電用原子力設備に関する技術基準を定める省令」(昭	
		和40年通商産業省令第62号,以下「省令第62号」という。)第32	
		条第3項に基づくとともに以下に示す設計方針及び設計仕様に基づ	
		き設置する。	
		(1) 設計方針	
		原子炉格納容器を貫通する各施設の配管系に設ける隔離弁は、安	
		全保護装置からの信号により、自動的に閉鎖する動力駆動弁、チェ	
		ーンロックが可能な手動弁、キーロックが可能な遠隔操作弁又は隔	
		離機能を有する逆止弁とし、原子炉格納容器の隔離機能の確保が可	
		能な設計とする。	
		原子炉冷却材圧力バウンダリに接続するか、又は原子炉格納容器	記載表現の相違
		内に開口し、原子炉格納容器を貫通している各配管は、冷却材喪失	記載表現の相違
		事故時に必要とする配管及び計測制御系統施設に関連する小口径	
		配管を除いて、原則として原子炉格納容器の内側に1個、外側に1個	
		の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とす	
		వ .	
		ただし、原子炉冷却系統に係る発電用原子炉施設内及び原子炉格	
		納容器内に開口部がなく、かつ、原子炉冷却系統に係る発電用原子	
		炉施設の損壊の際に損壊するおそれがない管又は原子炉格納容器	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	=,.	外側で閉じた系を構成した管で、原子炉冷却系統に係る発電用原子	
		炉施設の損壊その他の異常の際に、原子炉格納容器内で水封が維持	
		され、かつ、原子炉格納容器外へ導かれた漏えい水による放射性物	
		質の放出量が、冷却材喪失事故の原子炉格納容器内気相部からの漏	記載表現の相違
		えいによる放出量に比べ十分小さい配管については、原子炉格納容	
		器の内側又は外側に少なくとも1個の隔離弁を原子炉格納容器に近	記載表現の相違
		接した箇所に設ける設計とする。	
		また,原子炉格納容器の内側で閉じた系を構成する管に設置する	
		隔離弁は、遠隔操作にて閉止可能な弁を設置することも可能とす	
		් තිං	
		■ 貫通箇所の内側又は外側に設置する隔離弁は,一方の側の設置箇	
		所における管であって、湿気や水滴等により駆動機構等の機能が著	
		しく低下するおそれがある箇所、配管が狭隘部を貫通する場合であ	
		って貫通部に近接した箇所に設置できないことによりその機能が	
		著しく低下するような箇所には、貫通箇所の外側であって近接した	
		箇所に2個の隔離弁を設ける設計とする。	
		原子炉格納容器を貫通する配管には,圧力開放板を設けない設計	
		とする。	
		設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設	記載表現の相違
		備及び残留熱除去系(格納容器スプレイ冷却モード)で原子炉格納	設計の差異
		容器を貫通する配管、その他隔離弁を設けることにより安全性を損	・女川は可燃性ガス濃度制行
		なうおそれがあり、かつ、当該系統の配管により原子炉格納容器の	系,原子炉格納容器調気系に
		隔離機能が失われない場合は、自動隔離弁を設けない設計とする。	いて,格納容器隔離信号によ
			自動隔離する設計としている
			ことから記載しない。
		ただし、原則遠隔操作が可能であり、設計基準事故時及び重大事	
		故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計と	
		する。	
		また, 重大事故等時に使用する原子炉格納容器調気系の隔離弁に	記載方針の相違
		ついては、設計基準事故時の隔離機能の確保を考慮し自動隔離弁と	・設計基準事故時に自動隔離
		し、重大事故等時に容易に開弁が可能な設計とする。	れる弁のうち、重大事故等に対
			するために動作が必要な弁と、
			の設計方針を記載している。
			<柏崎刈羽7号機との比較>
			対象系統の相違
			・女川は重大事故等時に使用す
			る隔離弁として,「手動弁以
			外」、「格納容器隔離信号にて自

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			閉」及び「重大事故等時におい
			て使用 (開操作)」のすべてに該
			当する弁を対象としている。
		原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装	
		置に関連する小口径配管であって特に隔離弁を設けない場合には、	
		隔離弁を設置したものと同等の隔離機能を有する設計とする。	記載表現の相違
		原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫	
		通する計測系配管に隔離弁を設けない場合には、オリフィス又は過	
		流量防止逆止弁を設置し、流出量抑制対策を講じる設計とする。	
		隔離弁は、閉止後に駆動動力源が喪失した場合においても閉止状	
		態が維持され隔離機能を喪失しない設計とする。また、隔離弁のう	
		ち、隔離信号で自動閉止するものは、隔離信号が除去されても自動	
		開とはならない設計とする。	
		隔離弁は、想定される漏えい量その他の漏えい試験に影響を与え	
		る環境条件として、判定基準に適切な余裕係数を見込み、日本電気	
		協会「原子炉格納容器の漏えい率試験規程」(JEAC4203)に	
		定める漏えい試験のうちC種試験ができる設計とする。また、隔離	
		弁は動作試験ができる設計とする。	
		(2) 設備仕様	
		原子炉格納容器を貫通する配管系に設ける隔離弁は、以下の項目	
		を満足し、原子炉格納容器バウンダリを構成する。	
		a. 設計基準事故及び重大事故等の収束に必要な設備に係る配管	
		の隔離弁は、隔離信号により自動的に閉止しないが、必要に応	
		じて遠隔操作により閉止できる弁又は逆止弁動作により閉止	
		する弁であり、原子炉格納容器の隔離機能を確保できる。	
		b. 2個の隔離弁を必要とする配管の弁駆動は、駆動動力源の単一	
		故障によって両方の弁を閉止する能力を損なわない。さらに、	
		閉止後駆動動力源の喪失によっても閉止状態が維持され, 隔離	
		機能は喪失しない。	
		c. 隔離信号で自動閉止するものは,隔離信号が除去されても自動	
		開とはならない。	
		自動隔離弁への隔離信号は,原子炉水位低,ドライウェル圧力	
		高あるいは、放射能レベル高及び手動である。	
		原子炉格納容器バウンダリ及び隔離弁の全体概要図を図 3-1~図	図の引用関係の明確化
		3-9 に示す。また、記号及び略号を図 3-10 に示す。	
		, , , , , , , , , , , , , , , , , ,	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番笙ノフントの記載との比較衣(VI-1-8-1 原子炉作 東海第二発電所	女川原子力発電所第2号機	備考
	·	図3-1~図3-9 原子炉格納容器バウンダリ及び隔離弁 全体概要	
		図	
		【省略】	
		(注)	
		①:原子炉格納容器に取り付ける管の貫通箇所の内側及び外側であ	
		って近接した箇所に1個の隔離弁を設置する。	
		②:原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器	
		内に開口部がなく、かつ、原子炉冷却系統に係る発電用原子炉	
		施設の損壊の際に損壊するおそれがない管又は原子炉冷却系	記載表現の相違
		統に係る発電用原子炉施設の損壊その他の異常の際に、構造上	・技術基準規則の表現に準拠
		内部に滞留する液体により原子炉格納容器内の放射性物質が	
		外部へ漏えいするおそれがない管にあっては, 貫通箇所の内側	
		又は外側の近接した箇所に1個の隔離弁を設置する。	
		③: 貫通箇所の内側又は外側に隔離弁を設ける場合には,一方の側	
		の設置箇所における管であって、湿気その他の隔離弁の機能に	
		影響を与える環境条件によりその隔離弁の機能が著しく低下	
		するおそれがあると認められるもの(湿気や水滴等により隔離	
		弁の駆動機構等の機能が著しく低下するおそれがある管、配管	
		が狭隘部を貫通する場合であって貫通部に近接した箇所に設	
		置できないことにより隔離弁の機能が著しく低下するおそれ	
		がある管)にあっては、貫通箇所の外側であって近接した箇所	
		に2個の隔離弁を設置する。	
		④:隔離弁を設けることを要しない箇所	
		設計基準事故及び重大事故等の収束に必要な系統の配管に隔離	
		#を設けることにより安全性を損なうおそれがあり、かつ、当	
		該系統の配管により原子炉格納容器の隔離機能が失われない場	
		合。	
		⑤:隔離弁を設けることを要しない箇所 引き出れるながった	
		計測制御系統施設又は制御棒駆動装置に関連する配管であって、火性を受けるという。	
		て、当該配管を通じての漏えい量が十分許容される程度に抑制	
		されているもの。	
		【沙山友】	
		【省略】 図3-10 原子炉格納容器バウンダリ及び隔離弁	
		全体概要図の記号及び略号	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)		
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3.1.10 原子炉格納容器体積	
		設計基準事故時における冷却材喪失事故直後の圧力上昇に耐え	記載表現の相違
		うるよう, ドライウェル空間容積 (約 7900㎡), サプレッションチ	設計条件及び格納容器型式に
		ェンバ空間容積(約 4700m³)の自由体積を有している。	よる仕様の相違
		3.1.11 原子炉格納容器安全設備	
		設計基準対象施設としての残留熱除去系(格納容器スプレイ冷却	モード名称の相違
			設備名称の相違
		 内にスプレイすることにより、原子炉格納容器内の圧力及び温度を	
		原子炉格納容器の最高使用圧力及び最高使用温度以下に維持でき	
		る設計とする。	
		サプレッションチェンバのプール水を水源とする残留熱除去系	設備名称の相違
		ポンプは、予想される最も小さい有効吸込水頭においても、正常に	
		機能する能力を有する設計とする*。サプレッションチェンバは、	設備名称の相違
		設計基準事故及び重大事故等時に必要な水源として容量 2800m³, 個	機器仕様の相違
		数1個を有する設計とする。	
		残留熱除去系(格納容器スプレイ冷却モード)は、テストライン	モード名称の相違
		を構成することにより、発電用原子炉の運転中に試験ができる設計	
		とする。また、設計基準事故時に動作する弁については、残留熱除	
		去系ポンプが停止中に開閉試験ができる設計とする。また、残留熱	
		除去系(格納容器スプレイ冷却モード)は、冷却材喪失事故後、サ	モード名称の相違
		プレッションチェンバ内のプール水をドライウェル内及びサプレ	設備名称の相違
		ッションチェンバ内にスプレイすることによって,原子炉格納容器	設備名称の相違
		内の温度, 圧力を低減し, 原子炉格納容器内に浮遊している放射性	
		物質が漏えいするのを抑えるよう設計する。	
		注記*:詳細は,添付書類「VI-1-8-4 圧力低減設備その他の安全	添付書類名称の相違
		設備のポンプの有効吸込水頭に関する説明書」に示す。	
		3.1.12 許容外圧	<柏崎刈羽7号機との比較>
		原子炉格納容器の許容外圧は,施設時に適用された告示第501	説明箇所の相違
		号第22条第3項第2号ハ、ト、リ及び第23条第2項第2号、第4	・柏崎刈羽は圧力に関する設調
		号により,	条件の一部として整理してい
		ドライウェル上鏡 約 kPa	వే.
		ドライウェル上部円筒部約kPa	設計条件及び格納容器型式は
		ドライウェル球形部 約 kPa	よる仕様の相違
		ドライウェル下部円筒部 約 kPa	20 0 压体公用压
		ドライウェル下鏡 約 kPa	
		サプレッションチェンバ円筒部 約 kPa	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		ベント管円筒部 約 kPa ペント管円すい部 約 kPa となる。	記載表現の相違
		3.1.13 圧力抑制効果を得るために必要な構造及び寸法 蒸気凝縮による圧力抑制効果については、パシフィック・ガス アンド・エレクトリック社と GE 社が米国モスランディング発電列 において、フンボルトベイ及びボデガベイ原子力発電所用として行った実験結果に基づいており、この実験により構造及び寸法等のパラメータを定めている。 女川原子力発電所第 2 号機における構造及び寸法等のパラメータと上記実験によって求められたパラメータを比較すると表3-50とおりとなっており、圧力抑制効果を得るために必要な構造及び立法は満足されている。	所 「 「 「 「 「 「 「 「 「 「 「 「 「
		表3-5 女川原子力発電所第2号機 圧力抑制機能の構造, 寸法等	プラント名称の相違 格納容器型式の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

生行率本プラントの記載との比較率(W-1-8-1 原子恒枚幼旋説の設計条件に関する道田書)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機	
注記*1: の実効破断面積: A _R 記載表現の	相違
<u>————————————————————————————————————</u>	7 号機との比較>
字面对象的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	#備の相違
A_R = m^2 設備仕様に	よる相違
*2:ベント管流路面積: A _v	
(ベント管断面積×8)	
$A = - \lor A = $	7号機との比較>
· 特权1年6年	式の相違
ベント管内径: mm	
<u>ベント管本数: 8 本</u>	
Line	
日本の主義の主義の主義の主義の主義の主義の主義の主義の主義の主義の主義の主義の主義の	式の相選
0.4.4.	
3.1.14 真空破壊装置	17 円.4% 1. の い かく
本語 本語 本語 本語 本語 本語 本語 本語	7 号機との比較>
	⁾ 相遅 では既工認の記載事
・仕崎刈羽 項を記載し	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(1) 真空破壊装置の機能	
		(1) 具空板泰表直の機能 ドライウェル内の冷却材喪失事故後,ドライウェル圧力がサプ	レ製備を称の相違
		ッションチェンバ圧力より低下した場合に、ドライウェルとサプ	
		ッションチェンバ間に設置された6個の真空破壊装置が,圧力差	
		より自動的に働き、サプレッションチェンバのプール水のドライ	
		ェルへの逆流及びドライウェルの破損を防止できる設計とする。	
		真空破壊装置は、その作動によって原子炉格納容器に設計外圧	
		上の負圧を生じないようにする。真空破壊装置の取付位置を図:	3- 記載方針の相違
		11 に示す。	・ベント管に対する真空破壊装
			置の取付位置を明確化した。
		図 3-11 真空破壊装置の取付位置	
		(0) 古农种境状黑の农具	
		(2) 真空破壊装置の容量 ドライウェルの真空破壊装置の必要容量は、ベント管の容量と	1,
		トライリエルの具空破壊装直の必要谷重は、ヘント官の谷重と もにモスランディング発電所における実験によって求められて	
		もにエスソンテインク発电所におりる夫妻によって水められて る。	, , , , , , , , , , , , , , , , , , ,
		○。 必要な真空破壊装置の流路面積は	
		心女は宗工収象衣庫が加町面積は	
		真空破壊装置流路断面積 ≥ ベント管流路断面積	
		ベント管流路断面積	
		A 1 D MANAGEMENT	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表 (VI-1-8-1 原子炉枠 東海第二発電所	女川原子力発電所第2号機	備考
		したがって,真空破壊装置の必要流路面積 A_B は $A_B = $	真空破壊装置の仕様の相違
		4 × (m²) したがって、真空破壊装置の必要個数は、 (個) となる。実際の個数は、これに1個余裕をもたせて6個とする。 なお、この真空破壊装置は常時その開閉状態をチェックできる試	<柏崎刈羽7号機との比較> 真空破壊装置の仕様の相違
		まる,この異生収象表面は市時での開闭状態をチェックできる試験開閉装置を設置する。3.1.15 原子炉建屋原子炉棟原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいした場合,放射性物質の濃度を低減する設備として原子炉建屋原子炉棟を設置する。	差異なし
		原子炉建屋原子炉棟は、原子炉格納容器を収納する建屋であって、非常用ガス処理系により、内部の負圧を確保し、原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には、気密性を確保する設計とする。	
		3.1.16 可燃性ガス濃度制御設備 可燃性ガス濃度制御系は、通常運転中、原子炉格納容器調気系に より原子炉格納容器内に窒素を充填することとあいまって、冷却材 喪失事故時に原子炉格納容器内の水素濃度又は酸素濃度を、可燃限 界に達しないための制限値である水素濃度を 4vol%未満又は酸素 濃度を 5vol%未満に維持できる設計とする。	記載表現の相違
		3.1.17 放射性物質濃度制御設備 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に 原子炉格納容器から気体状の放射性物質が漏えいした場合, 放射性	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元 (1 番鱼 / ブントの記載との比較表(VI-1-8-1 原子)。 東海第二発電所	女川原子力発電所第2号機	備考
		物質の濃度を低減する設備として非常用ガス処理系を設置する設	設備名称の相違
		計とする。	
		非常用ガス処理系は,冷却材喪失 <mark>事故</mark> 時に原子炉格納容器内から	設備名称の相違
		原子炉建屋原子炉棟に漏えいした放射性よう素・粒子状核分裂生成	
		物を除去できるように設計する。非常用ガス処理系は、チャコール	設備名称の相違
		エアフィルタによるよう素除去効率は 99%以上となる設計とする	基本設計方針の相違
		*	
		注記*:令和2年2月26日付け「原規規発第2002261号」で一部	おおまれのおき
		補正)」をもって許可を受けた「女川原子力発電所発電用	山東水光が作建
		原子炉設置変更許可申請書」添付書類十 3.設計基準事故	
		解析 3.4.4 原子炉冷却材喪失における解析条件	
		3.1.18 原子炉格納容器調気設備	
		原子炉格納容器調気系は、水素及び酸素の反応を防止するため、	設備名称の相違
		あらかじめ原子炉格納容器内に窒素を充填することにより、水素濃	記載表現の相違
		度及び酸素濃度を可燃限界未満に保つ設計とする。	記載表現の相違
		炉心の著しい損傷が発生した場合において原子炉格納容器内に	
		おける水素爆発による破損を防止できるよう,発電用原子炉の運転	
		中は、原子炉格納容器内を原子炉格納容器調気系により常時不活性	設備名称の相違
		化する設計とする。	
		3.1.19 冷却材喪失事故時の荷重	記載表現の相違
		(1) ドライウェル内の配管破断によるジェットカ	
		原子炉格納容器のドライウェル内原子炉系配管が破断した場合、	記載表現の相違
		ドライウェル壁面は高温・高圧の飽和蒸気及び二相流の噴出流によ	
		るジェット力を受ける。	
		ジェット力及びその拡がりは F. J. Moody の理論により求めるが,	記載季明の知識
			記載が先り作達
		その荷重は応力評価すべき場所によって異なるため計算書の中で	
		述べる。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番笙ノフントの記載との比較衣(VI-1-8-1 原于炉 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表 (VI-1-8-1 原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番笙ノフントの記載との比較衣(VI-1-8-1 原于炉 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽では既工認の記載事 項を記載している。
		(2) サプレッションチェンバ内に生じる荷重 冷却材喪失事故時には、まず、ドライウェル内の非凝縮性ガスがベント管を経てサプレッションプール水中に押し出されるが、この非凝縮性ガスによって、サプレッションプール水がスラグ流となって上昇し、急速な水面の上昇(プールスウェル)が起こり、サプレッションチェンバ及びサプレッションチェンバ内部構造物に種々の荷重が加わる。また、その後サプレッションプール水中に蒸気が放出され、サプレッションプール水中で凝縮する。これらにより、サプレッションチェンバ及びサプレッションチェンバ内部構造物に種々の荷重が加わる。 図3-12に冷却材喪失事故時荷重の時間履歴を示す。	設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

プロ1番車//メトツ記載とツル製衣(VI-T-0-1 原丁が恰称他取り設計条件に関する説明書/	Atth -tar.
集神第二発電所 東海第二発電所 東海第二発電所 東海第二発電所 女川原子力発電所第2号機	格納容器型式に伴う相違
•	東海第二発電所

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

おいますのでは、	柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
冷期が表で、変化によりすのシカマのワールのが押し出きれ、引 直動をドライウェルの海線設性が大がラブレッションが、ル水中 に成出され、カブレッションナーンパに可含で調が付けする。 さらにダウンカールなに押したがあれるといたもり、 サブレッションナーンパに上のきで置かが押する。 これの可能は、角知が大規模を取りますを構物と通り下が動 関わてより次支をドライラールで加工し上が資を推断。 上に回り、規模実験、生は、現場実施、で加工し、現場を推断。 上に回り、規模実施、生の得られた重要を订確整分布のチータからスタールが開金に用いて評した。テレッションケーンが上向の自協の 素材は「加、下向シ南東の変化が上がし、ラン・シーラン・シーのの名を 一般の場合により得られた重要を打得整分をチータからスタールが開金に対した。アレッションゲールが上の場合協の 素材は「加、下向シ南東の変化が上がしていた」が、 一般の場合によった。では一般の表が、では、サブレッションチーンペに可能が用からで、 でレッションゲールがに対けを認めます。ことので プレッションゲールが上が対象が相がら場合には、テファッションチーンペに対象が明かる。 また、表が上の機能が開かる。 また、表が上の機能が開かる。 また、また、また、での動し、上の他のでは、対象を対していた。 を発酵し、上のを用いての動し、上のを用いての動し、 はないエージ・ダウンカッと回しておけるを建めため、、国地を動物に 等を評断し、上のを用いての動し、上のを見いたのが対象を変化していた。 東の動物を開始が、また、表に対象が、ドラック音楽は作用していた。 の、サールスタールが指揮。 第二年の表が表が、また、表には影響、ドフック音楽は作用しない。 は、数を実施する。 第二年の表が表が、また、アクシのが出口に正人を動か、よの能力の ののは、一般の表が上が表が、アクシのが出れるでは、また、アクシのではに対していた。 は、数を実施する 第二年の表が表が、アクシのが出口に正人を動か、アクシのではに作用しない。 は、数を実施する 第二年の表が表が、アクシのが出口に正人を動か、アクシのではに作用しない。 は、数を実施する 第二年の表が表が、アクシのではこれに正の表がまな、また、アクシのでは、こので、アクシのでは、こので、アクシのでは、こので、アクシのでは、こので、アクシのでは、アクシーをでは、アクシのでは、アクシのでは、アクシーをでは、アクシのでは、アクシーを			a. サプレッションチェンバに加わる荷重	格納容器型式及び記載方式の
②要念 ドリイグ・アルの減減能性ガスのサフレッションゲール本字 に放出され、カプレッションチュンパエ内含 音楽が用する。 さらにダウンガマ田口に飲意されら残念の地質によりサフレッ ションブールがに押し上げられ、気着形の圧縮されることにより。 リブレッションチェンパに更加を加まれた。実施を振り、一 これもの荷盒は、売却料果火事後をのデーが構物器利用・労働 特殊によるまるドライウ・東西はカ上生港産を成立した場合を振り した 国内 1/8 規模実験により行きます。 1/8 規模実験に表が表謝することによって ウブレッションブール水に参議を取り、第一である。 は) 第気保持を増置 ブールスクェルを引き続いた。 第人機能に誘め傾乱。 また、数支を取り入りでよった。 1/8 規模を削り、 1/8 元の行きます。 1/8 元			(a) プールスウェル時荷重	相違(既工認に同じ)
に数点され、サファックュンテュンペに下向く概念が相関する。 さらにダウンのであれば申し上げられ、気部が知知であるなことにより、 サフトックョンナールがは申し上げられ、気部が知知であるれることにより、 サフトックョンナーといい上向きを最近を指して最極を 解析によりまま。ドワイウェル・ビルドを最近の作用する。 これらの南風は、高地ドを直接の上の上の上の金融を 解析によりまま。ドワイウェル・ビルドとはなるなどでは、現金を個別した回り、1/12 規模大器により得られた 有温 たりに 実践り 及び PBU 1/12 規模大器により得られた 有温 反応 は PBU 1/12 規模大器により PBU 1/12 相談の			冷却材喪失事故によりダウンカマ内のプール水が押し出さ	れ, 引
きらにダウンサードに用成される公園の研究によりサブレッションアール本は押し上げられ、気相面が下端されることにより、 サフレッションオーンバ上上出き商品が肝臓されることにより、 サフレッションオーンバ上出た美術の原本性に大手を関係の原本では一般な事情を関 関本によります。とからないた年度に大手を変ない。実施を関 した一向上が多数度等後、光国1/4 財産実際(GFF 実験)及び定位 1/12 解接実際により得られた信仰を表 表の手がまた。「一般を用いて評価した。サフレッションギェンバ上的合物重の 最大性は一切か、下向さる点の最大性に一切か、である。 (b) かな事務や行動 ブールルウェルに「一般をき、流音や整なが起催することによって サフレッションア・スルに「基準限度の必分権」、サブレッション・オーンバ上の音が表 すった。他の音が作する(然の性を成分)。 また、我就を素を成る維持する(然の性を成分)。 また、我就を素を成る維持である。というなどのででは、スサンションア・エルイに正式を終われました。 でいるのの音は、実施を理論し、カランンが上の人に正力を認めている。 これらの心面は、実施を理論し、エルイに正力を認め、また。最後条件性 等を評価し、これを用いて動きなが解析とまして、ではなが解析を実施して対した。 素気が多数に関係をの最大正正に一切が、最大人正正に一切のであり、ナッキング育業の最大正正に一切が、最大人正正に一切のであり、ナッキング音楽の音楽により、フールスのよい時間は ローブレッションチェンバ片高機能像に関わる信息 ローブレッションチェンバ片高機能像に関わる信息 ローブレッションチェンバ片高機能像に関わる信息 ローブレッションチェンバ片高機能像に関わる信息 ローブレッションチェンバ片高機能像に関わる信息 の表生が作用を表している。 1. サブレッションチェンバ片高機能像に対しる信息 の表生が作用を表しているというによりないがでは、サウェンバトの情報を表しているというないがでは、サールである。 2. カースのよいには、サールである。 2. カースのよいには、サールでは、カースのよいには、サールである。 2. カースのよいには、サールでは、サールでは、サールでは、サールである。 2. カースのよいには、サールでは、サールでは、サールでは、サールである。 2. カースのよいには、サールでは			き続きドライウェルの非凝縮性ガスがサプレッションプール	レ水中
ショングールタは押し上げられ、熱相端が距離を執っていまり、サブレッションチェンバは上向き資産が用する時間を開口力学動を開行によりままるドライウェルが出力上が実施を経際した理解した関する場合では、実施を保障した関する場合で、実施した関連を関いて実施した日本のである。1/12 現機実際により得るれた有本及が商成分布のデータからスケール側等を削いて持衛が出した。サブレッションチェンル上向き資産の最大性に「一切。下ある。 (6) 富な影響時間重			に放出され、サプレッションチェンバに下向き荷重が作用す	る。
サブレッシュンチェンバス上向を脅重が停用する。 これらの毎年は、冷場を接触 解析により来きもだりでした。小型は大場ををは、実験を機器 した歯折りを規模変勢、深まり人の無円変換を係に、実験と機器 した歯折りを規模変勢、深まり人の無度変験(係す 実験)及びお呼 1/12 規模変勢により得られた商量の表がのデータからスケーの相等を強いて搭配した。サブレッションチェンバー向き前点の最大値は一か。下向を脅重の最大並は一かっである。 (8) 活気緩縮等的素 フールスのラルに引き続き、高高震震気が影響し、サブレッションチョンなで脅重が作用する(意気を終めを搭配)、サブレッションチェンバの一方な機が作用する(また場合を変が作用する(また場合を変が作用する(また場合を変が作用する(また場合を変が使用がある)。 これらの毎点は、実験を機関した米国実験域表解(83T実験)の 結果に基づき、タクンカマ出口における修復の大きさ、用波数特性 等を修理し、これを用いて動かが指する影響により、変が解除を確認の大きには一かってある。 (6) テブレッションチェンバ内部構造物に加わら命素 (6) チャギング脅電の最大正正は一から、最大負には一かってある。 (6) アンションチェンバ内部構造物に加わら命素 (6) アンションチェンバ内部構造物に加らの素といいに対していた。			さらにダウンカマ出口に形成される気泡の膨張によりサブ	プレッ
これるの常賞は、洛却村喪失事故後の原子呼略神響器内圧の浮動 類形により求るもドライウェル内圧力上并進度を基に、実施を構設 した短期に対象を展現。 相目 1 人類表現後 (60年 実施) 及び 1001 1/12 規模表験により待るもた代電気が関金分布のゲータからスケール制を担いて対策値にと、サブレッションサニンと自含存置の 最大値は 1 小の、下向き荷電の最大値は 1 小のである。 (6) 富気技術時荷置 ブールスウェルに引き続き、高流量電気が結婚することによって サブレッションケールとに自然機能が低値し、サブレッションチ エンパに南底が旧帰する (微気機能経験情報)。 また、長減限蒸気が経路する場合には、タウンカマ出口で不均一 な場路を生じ、サブレッションチェンパに自然験が作用する (例 5 外の 5 人間 5 人			ションプール水は押し上げられ、気相部が圧縮されることに	より,
解析により束生るドライクェル州圧力上昇速度を起に、実際を提展した国内18度 現実験 及び IPER 112 規模実験とより得られた意度 以可能のものデータからスタール開発を用いて評価した。サブレッションチェンバ上向き荷葉の最大性は「」」とは、下向き荷葉の最大性は「」」とは、下向き荷葉の最大性は「」」とは、下向き荷葉の最大性は「」」とは、下向き荷葉の最大性は「」」とは、下向き荷葉の最大性は「」」とは、下のまる場合を開かった。「高気経管整動作割」。また、民族等数が解析する「高気経管整動作割」。また、民族等数が解析する「高気経管整動作割」。また、民族等数が解析する(チャンタの面)。 これたの環境を生じ、サブレッションチェンバに圧力振動が作用する(チャンタの面)。 これたの環境に、実験を検疑した米田茨規模実験(67下実験)の 端壁に基づき、タウンカ・田口における極悪の大き、 開度設計性 等を評価し、これを用いて動かた外科を実施して評価した。 高気経験が関金の最大正圧は「」。「中でもり、サ・ギンタの電の最大正圧は「」」、「中でもり、・サ・ギンタの電の最大正圧は「」」、「中でもり、・サ・ギンタの電車の最大正圧は「」」、「中でもり、・サ・ギンションチェンバ内部構造物に加わる密重 原子矩构的容易に対象が高を展すが開始素をデル他した実験の結果により、ブールスウェル時存金 「原子・エルビ・トルート・エルビ・高数・ドラック商業は作用しない。」 (a) ブールスウェル時存金 「原子・エルビ・大き機の結果により、ブールスウェル時存金 「高気経験が高数圧力が開始素をディルビ・大き機の結果により、 「本気経験が高数に加わる密整・ドラック商業は作用しない。(a) 英級経験が高数に対象が高数に対しる密整・ドラック商業は作用しない。(b) 数数解析であり、 「本気経験を開始ないた」を表していました。 「本気経験を関する」と、 「表し、表し、表し、表し、表し、表し、表し、表し、表し、表し、表し、表し、表し、表			サプレッションチェンバに上向き荷重が作用する。	
した国内1/8 規模実験、※国 1/4 規模実験(容正 実験)及び ETRI 1/12 規模実験により得られた脅威及が指揮の中のデータからスケール関連を用いて評価した。アレッションテンパ上的き荷盛の最大体は			これらの荷重は、冷却材喪失事故後の原子炉格納容器内圧	力挙動
1/12 類核実験により得られた荷重及び荷重分布のデータからスケール関等を用いて評価した。サブレッションチェンバ上向き荷重の最大値は ゆい。下向き 有重の最大値は 即ゆってある。 (b) 無気影響時荷重 ブールスウェルに引き続き、高減量素気が凝雑することによってサブレッションブール水は希情を動成が伝播し、サブレッションチェンバに商業が作用する(重気影解を動荷重)。 また、低流量減気が影響行る場合には、ダウンカマ出口で不均一な場種を生じ、サブレッションチェンバに肝力軽動が利用する(チャマが電)。 これらの荷重は、実機を機能した米国実現検実験(PSIT実験)の 議果に基づき、ダウンカマ出口におおる接近の大きき、用波数特性 等を評価し、これを用いている間した。 一般表現に 上の表現 して評価した。 蒸気終報策動荷重の最大正正は かっ。最大負正は かっであり、チャギンダ南重の最大正正は かっ。最大負正は かった。 カールスウェル時間裏 原子を移動容器に対明である。 (a) ブールスウェル時間裏 原子を移動容器にが開発をモデル化した実験の結果により、ブールスウェル時にベント系には衝撃・ドラッダ衛電は作用しない。 然来発音時音電 然実発音時音電 に対しては、グウンカマ出口に圧力振動による横力的の南重が作用する(蒸気凝発音時音電 蒸気装置音音な			解析により求まるドライウェル内圧力上昇速度を基に、実機	を模擬
一ル則等を用いて評価した。サブレッションチェンバ上向き荷重の 歳欠値は □ Pra、下向き荷重の最大値は □ Pra である。 (b) 落気整縮時荷室 ブールスウェルに引き続き、高流重量気が延縮することによって サブレッションブールボに参解能動態が形態も、サブレッションチェンバに荷重が作用する(蒸気整循振動荷車)。 また。低速量数次が延縮する場合には、ダウンカマ出口で不均一 な磁像を生じ、サブレッションチェンバに圧力振動が作用する(チャギング荷置)。 これらの何重は、実験を模様した米田実規模実験(PSTT実験)の 類似に基づき、ダウンサコ目には対し発展の大き、周波要特性 等を評価し、これを用いて動めた解析を実施して評価した。 無気器解動動質重の最大正圧は □ Pra、最大負圧は □ Pra、最大負圧は □ Pra であ の、チャギング荷重の最大正圧は □ Pra 、最大負圧は □ Pra であ の、チャギング荷重の最大正圧は □ Pra 、最大負圧は □ Pra であ の、ブールスウェル時荷度 原子炉格納容能圧が動態をキデル化した実験の結果により、ブ ールスウェル時でベント系には質繁・ドラック荷重は作用しない。 (b) 対気延縮時間 無気器略時間 無気器略時間 無気器略時間 無気器略時間 無気器略時間 無気器略時間 無気器略時間 無気器略時間を 無気器略時間 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器略時間を 無気器を持ていては、ダウンカマ出口に圧力軽軽による様方向 の荷重が作用する(蒸気発解散的電及びチャギング荷重)。			した国内 1/8 規模実験,米国 1/4 規模実験(QSTF 実験)及び	ド EPRI
最大値は			1/12 規模実験により得られた荷重及び荷重分布のデータか	うスケ
(b) 蒸気緩縮時荷重 ブールスウェルに引き続き、高流量蒸気が凝縮することによって サブレッショングール水に凝縮振動成が伝播し、サグレッションチェンバに商産が作用する(高気電線を動作説)。 また、低流量素気が凝縮する場合には、ダウンカマ出口で不均一な緩縮を生じ、サブレッションチェンバ圧力援動が作用する(チャギング商重)。 これらの荷重は、実施を模擬した米国実規核実験(PST下実験)の 結果に基づき、ダウンカマ出口における歴色の大きさ、周波放特性 等を評価し、これを用いて動的が解析を実施して評価した。 ※気感縮緩動商車の最大正圧は			ール則等を用いて評価した。サプレッションチェンバ上向きる	帯重の
プールスウェルに引き続き、高茂豊高気が総権することによって サブレッションブール水に軽強所を動変が伝摘し、サブレッションチェンバに商重が作用する(蒸気整着は影響でする場合には、ダウンカマ出口で不均一な経稿を生じ、サブレッションチェンバに圧力援動が作用する(チャギング資宜)。 これらの荷重は、実機を模擬した米国実規模実験(FSIT実験)の 結果に基づき、ダウンカマ出口における優乱の大きき、周波要特性 等を評価し、これを用いて動的な解析を実施して評価した。 蒸気解析服動荷重の最大正圧は			最大値は kPa, 下向き荷重の最大値は kPa である。	
サブレッションブール水に凝縮接動波が伝播し、サブレッションチェンバに荷重が作用する(蒸気凝縮接動荷面)。 また、低速素気が凝縮さら降には、ダウンカマ出口で不均一な凝縮を生じ、サブレッションチェンバに圧力振動が作用する(チャギング荷重)。 これらの荷面は、実機を概断した米国実規模実験(FSTF実験)の結果に基づき、ダウンカマ出口における機画の大きを、周波数特性等を評価し、これを用いて動的な解析を実施して評価した。 蒸気凝縮振動荷重の最大正圧は「「APa、最大負圧は「」。Paであり、チャギング荷重の最大正圧は「」。Paであり、チャギング荷重の最大正圧は「」。Paである。 b. サブレッションチェンバ内部構造物に加わる荷重 原子が格神密器圧力抑制系をモデル化した実験の結果により、ブールスウェル時荷重 原子が特殊器圧力抑制系をモデル化した実験の結果により、ブールスウェル時荷面 素気振縮時荷面 蒸気振縮振動荷面及びチャギング荷重)。			(b) 蒸気凝縮時荷重	
エンパに荷重が作用する(蒸気蒸縮接動荷重)。 また、低減量蒸気が凝縮さない。 また、低減量蒸気が凝縮さない。 を終縮を生じ、サプレッションチェンパに圧力振動が作用する(チャギング荷重)。 これらの荷重は、実践を機関した米国実規模実験(FSTF実験)の 結果に基づき、ダウンカマ出口における擾乱の大きき、周波数特性 等を評価し、これを用いて動的な解析を実施しご評価した。 蒸気蒸縮援動荷重の最大正圧は			プールスウェルに引き続き, 高流量蒸気が凝縮することに。	よって
また、低流魔無気が凝縮する場合には、ダウンカマ出口で不均一な凝縮を生じ、サブレッションチェンバに圧力振動が作用する(チャギンが育宜)。 これらの衛重は、実機を模擬した米国実規模実験(FSTF実験)の 結果に基づき、ダウンカマ出口における優乱の大きさ、周波数特性 等を辞価し、これを用いて動的な解析を実施して評価した。 蒸気総縮振動荷重の最大正圧は APa、最大負圧は PPaであり、チャギング荷重の最大正圧は APa、最大負圧は PPaである。 b. サブレッションチェンバ内部構造物に加わる荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、ブールスウェル時荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、ブールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮振動荷重数びチャギング荷重)。			サプレッションプール水に凝縮振動波が伝播し,サプレッシ	ョンチ
な凝縮を生じ、サプレッションチェンバに圧力振動が作用する(チャギング荷重)。 これらの荷重は、実機を模擬した米国実規模実験(PSTF実験)の 結果に基づき、ダウンカマ出口における優乱の大きさ、周波教特性 等を評価し、これを用いて動的な解析を実施した診価した。 蒸気凝縮振動荷重の最大正圧は			エンバに荷重が作用する(蒸気凝縮振動荷重)。	
マギング荷重)。 これらの荷重は、実機を模擬した米国実規模実験(FSTF実験)の 結果に基づき、ダウンカマ出口における擾乱の大きさ、周波教特性 等を評価し、これを用いて動的な解析を実施して評価した。 蒸気凝縮振動荷重の最大正圧は			また、低流量蒸気が凝縮する場合には、ダウンカマ出口で	不均一
これらの荷重は、実機を機擬した米国実規模実験(FSTF実験)の 結果に基づき、ダウンカマ出口における擾乱の大きさ、周波数特性 等を評価し、これを用いて動的な解析を実施して評価した。 蒸気線縮矩動荷重の最大正圧は kPa、最大負圧は kPaであ り、チャギング荷重の最大正圧は kPa、最大負圧は kPaであ る。 b. サブレッションチェンバ内部構造物に加わる荷重 (a) ブールスウェル時荷重 原子好格納容器圧力抑制系をモデル化した実験の結果により、ブールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時では、ドラッグ荷重は作用しない。 (b) 蒸気凝縮時では、アラックでは、アラックででは、アラックでは、アラッのでは、アラックでは、アラッか			な凝縮を生じ、サプレッションチェンバに圧力振動が作用す	る (チ
			ャギング荷重)。	
等を評価し、これを用いて動的な解析を実施して評価した。 蒸気凝縮接動荷重の最大正圧は			これらの荷重は,実機を模擬した米国実規模実験(FSTF実	験) の
蒸気凝縮接動荷重の最大正圧は			結果に基づき、ダウンカマ出口における擾乱の大きさ、周波を	数特性
り、チャギング荷重の最大正圧は			等を評価し、これを用いて動的な解析を実施して評価した。	
る。 b. サプレッションチェンバ内部構造物に加わる荷重 (a) プールスウェル時荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、プ ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			蒸気凝縮振動荷重の最大正圧は kPa,最大負圧は kI	var a
b. サプレッションチェンバ内部構造物に加わる荷重 (a) プールスウェル時荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、プールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			り、チャギング荷重の最大正圧は kPa、最大負圧は kI	var a
(a) プールスウェル時荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、プ ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			వ .	
(a) プールスウェル時荷重 原子炉格納容器圧力抑制系をモデル化した実験の結果により、プ ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			b. サプレッションチェンバ内部構造物に加わる荷重	
ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			(a) プールスウェル時荷重	
ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない。 (b) 蒸気凝縮時荷重 蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。				り, プ
蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。				
蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方向 の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。			(b) 蒸気凝縮時荷重	
の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。				黄方向
	I			
			これらの荷重は、実機を模擬した米国FSTF実験の結果に基	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		蒸気凝縮振動についてはダウンカマ内における圧力を, チャギング	格納容器型式及び記載方式の
		についてはダウンカマ出口に加わる横方向の荷重を, 実機ダウンカ	相違 (既工認に同じ)
		マの振動特性等により補正して評価した。	
		蒸気凝縮振動荷重によるダウンカマ内圧力は,最大内圧 kPa,	
		最大差圧 kPaであり、チャギング荷重によるダウンカマ横方向	
		荷重は kNである。	
		_	
		3.1.20 逃がし安全弁作動時の荷重	
		逃がし安全弁作動時、排気管内の非凝縮性ガスが圧縮され、こ	格納容器型式及び記載方式の
		れがサプレッションプール水中に放出される際に気泡を形成し、	相違 (既工認に同じ)
		この気泡が過膨張・収縮を繰返し圧力振動がサプレッションチェ	
		ンバに作用する。	
		本荷重は、米国モンティセロ発電所における実機の試験結果に	
		基づいてクエンチャ出口における擾乱の大きさ, 周波数特性等を	
		評価し、逃がし安全弁排気管長さ、排気管水浸長等により補正し	
		て評価した。 	
		逃がし安全弁作動時の最大正圧は kPa, 最大負圧は kPa	
		である。	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし)

: 前回提出時からの変更箇所

先行番金ファントの記載との比較表 (VI-1-8-1 原子炉を 東海第二発電所	女川原子力発電所第2号機	備考
		格納容器型式及び記載方式の 相違 (既工認に同じ)
		記載表現の相違 ・荷重の組合せにおいて地震荷
	子炉圧刀谷器及び原子炉内部構造物业がに原子炉格納谷器及び原子炉本体の基礎の地震応答計算書」に示す解析結果を用いる。	用する地震何里の掲載図書を 記載
	【当該記載項目なし】	<柏崎刈羽7号機との比較>
		記載方針の相違・柏崎刈羽では既工認の記載事
		項を記載している。
	東海第二発電所	3.1.21 地震荷重 原子炉格納施設の設計に用いる地震荷重としては、添付書類「VI -2-1-7 設計用床応答曲線の作成方針」及び「VI-2-3-2 炉心、原 子炉本体の基礎の地震応答計算書」に示す解析結果を用いる。

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番笙ノフントの記載との比較数(VI-1-8-1 原于炉恰料版 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。
		3.1.22 荷重の組合せ	
		設計基準対象施設としての原子炉格納施設の荷重の組合せを表	
		3-6に示す。なお、応力計算はそれぞれの荷重の組合せの中で最も	
		厳しい条件について行う。また、 正力、温度及び冷却材喪失事故時	
		の蒸気ブローダウンによる荷重等において、 荷重の発生する時間が	
		明らかに異なる場合は時間のずれを考慮する。	

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元(1番笙) フントの記載との比較表(VI-1-8-1 原子炉作 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎では既工認の記載事項を
			記載している。
			格納容器型式による相違
			・柏崎刈羽7号機は、コンクリ
			ート製格納容器であり, 告示第
			452 号の荷重状態を考慮してい
			ることから、荷重の組合せ、許
			容応力状態及び荷重状態を表
			している。(女川は表 3-6 にお
			いて、荷重の組合せと許容応力
			状態を表している。)

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番笙ノフントの記載との比較衣(VI-1-8-1 原于炉 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊審省ノフントの記載との比較衣(VI-1-8-1 原子炉恰料旭記 東海第二発電所	女川原子力発電所第2号機	備考
		新年の出立された 11 11 11 11 11 11 11	格納容器型式による評価指針の相違に伴う荷重の組合せの相違 ・女川は Mark-I型の評価指針を参照している。

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表 (VI-1-8-1 原子炉枠 東海第二発電所	サ川原子力発電所第2号機	備考
IRIN GAMA YOUR MINING COM)(4),4),4 — >= ·=!>1	24/1001-07070-07070-0707	VIN V
		_	
		繰返し荷重に対する解析については、告示第501号第21条第	適用規格の相違
		2項(第13条第1項第3号準用)に示される条件を(1)に示すよう	
		にいずれも満足しているので、特殊な場合(ベント管ベローズ)を	
		除いて疲れ解析を必要としない。また、「発電用原子力設備規格(設	
		計·建設規格 (2005 年版 (2007 年追補版含む。)) J SME S	
		NC1-2005/2007)」(以下「設計・建設規格」という。)を適用す	
		る機器においては、PVB-3140に示される疲労解析不要の条件を(2)	
		に示すようにいずれも満足しているため、疲労解析を必要としな	
		Vo	
		・。 なお、疲れ解析及び疲労解析不要の条件のうち第3号へ及び PVB-	- 適用規格の相違による名称の
		3140(6)については、施設後の機械的荷重及び地震動による応力の	
		変更により、疲れ解析及び疲労解析不要の条件を満足できなくなる	
		可能性が考えられることから、満足できなくなった場合においては	
		疲れ解析及び疲労解析を実施する。	
			<柏崎刈羽7号機との比較>
			格納容器型式に伴う相違
		- ここで、繰返し荷重としてかかるサイクル数は便宜上、以下のよ	記載表現の相違
		うに定める。	
		・原子炉格納容器に全体的に加わる荷重のサイクル数	
		E力:原子炉格納容器に全体的に内圧が加わるのは、運転開始前	,
		試験時,定検時の漏えい試験時及び事故時である。ここで、	
		運転開始前試験時は 回,定検時の漏えい試験時は	
		回程度、事故時は一回である。	
		温度:原子炉格納容器が全体的に最高使用温度程度まで温度が上	
		昇するのは事故時一回である。	
		以上より原子炉格納容器が全体的に負荷される場合の回数は、圧	記載表現の相違
		力の回数に余裕をみて回しとする。	<柏崎刈羽7号機との比較>
			プラント固有の設計の相違
		・原子炉格納容器に局部的に加わる荷重のサイクル数	
		原子炉格納容器に局部的に負荷されるのは原子炉の起動停止、燃	
		料交換及び地震時である。ここで、原子炉の起動停止及び燃料交換	
			プラント固有の設計の相違
		- / - / / · · · · · · · · · · · · · · ·	- 2 - 1 四日 2 欧田 2 田建

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		荷重が加わるサイクル数は590回である。	記載表現の相違 ・女川は原子炉格納容器が局部的に負荷され場合の回数で (1)f.及び(2)f.にて記載
		(1) 告示第501号に基づく繰返し荷重に対する解析 a. 大気圧から運転圧力になり、再び大気圧に戻るサイクル数の 討(告示第501号第13条第1項第3号イ準用) 告示第501号に定められる許容引張応力Sの3倍の値は3× =393MPaであり、これに対応する許容繰返し回数Nは ここで告示第501号に示される運転圧力を原子炉格納容器の	建設規格としている。 31 5。 最
		高使用圧力と対応させてみると、その回数は 回でNより小いので本条項を満足している。	さ <柏崎刈羽7号機との比較> プラント固有の設計の相違
		b. 負荷運転時における圧力変動の全振幅の検討(告示第501 第13条第1項第3号ロ準用) 疲れ解析の対象となる圧力変動の全振幅は(イ)より、次のよ に求める。 $\mathrm{Am} = \frac{1}{3} \cdot P \cdot \frac{S^{'}}{S} = \boxed{\qquad\qquad} MPa$ ここに、 $P \qquad : 最高使用圧力(427kPa)$	設計条件及び格納容器型式は
		S' : 炭素鋼の 10 ⁶ 回の繰返しに対する許容ピーク応力強さ (

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		c. 起動,運転,停止サイクル中の任意の2点間の温度差の検討(告示第501号第13条第1項第3号ハ準用)解析の対象となる任意の2点間の距離は(イ)より,次のように求める。 $p=2\sqrt{R\cdot t}= mm$	設計条件及び格納容器型式に
		ここに、Rは原子炉格納容器の最大半径、tは原子炉格納容器の板厚で、pの値が最大となるように選ぶ。	
		疲れ解析が不要となる任意の 2 点間の最大温度差は $($ 口 $)$ より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \qquad \qquad \mathbb{C}$ ここに、 $Sa : 炭素鋼の \qquad \qquad 回の繰返しに対する許容ピーク応力強さ$	
		(MPa) E : 炭素鋼の縦弾性係数 (MPa (= *** *** *** *** *** *** *** *** ***	
		ここで、Tは設計上の最大温度差161℃ (171℃-10℃) より大きい。 したがって、任意の2点間の最大温度差はTの値を超えることはないので本条項を満足している。	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所		<柏崎刈羽7号機との比較>プラント固有の設計の相違 <柏崎刈羽7号機との比較>設計条件及び格納容器型式による仕様の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機	備考
ここに、く柏崎刈羽	7号機との比較>
	及び格納容器型式に
応力強さ(MPa) よる仕様の	相違
したがって、疲れ解析が不要となる異種材結合部の許容最大温度	
差は温度差(161°C)より大きくなるので本条項を満足している。	
f. 容器に接続される管からの反力その他機械的荷重及び地震動 < 柏崎刈羽	7号機との比較>
による応力の全振幅の検討(告示第501号第13条第1項第3号へ プラント固	有の設計の相違
· · · · · · · · · · · · · · · · · · ·	
荷重の繰返し回数は、原子炉の起動停止及び燃料交換のサイク	
ル数 回, 地震荷重が加わるサイクル数590回より, 回数に余	
裕をみて 回とする。荷重の繰返し回数 回に対応する	
許容ピーク応力強さは、MPaとなる。ここで、原子炉格納容	
器の機械的荷重及び地震動による応力の全振幅はいかなる場所	
でも MPaを超えることのないよう設計しているので本条項	
を満足している。	
(2) 設計・建設規格に基づく繰返し荷重に対する解析 適用規格の	明確化
a. 大気圧から運転圧力になり, 再び大気圧に戻るサイクル数の検 記載表現の	相違
討 (設計・建設規格 PVB-3140(1))	
設計・建設規格に定められる許容引張応力Sの3倍の値は3×131=	
$393MPa$ であり、これに対応する許容繰返し回数 M は $\ $ である。	
ここで設計・建設規格に示される運転圧力を原子炉格納容器の最高	
使用圧力と対応させてみると、その回数に 回でNより小さいの <柏崎刈羽	7号機との比較>
で本条項を満足している。	有の設計の相違
b. 負荷運転時における圧力変動の全振幅の検討(設計・建設規格	
PVB-3140(2))	
疲労解析の対象となる圧力変動の全振幅は PVB-3140(2) a. より,	
次のように求める。	L 78世 研究 中刊士)テ
A_{m-1} , B_{m-1} , B_{m-1} , B_{m-1} , B_{m-1} , A_{m-1}	とび格納容器型式に
	怕 基
ここに,	
P : 最高使用圧力(427kPa)	
S' :炭素鋼の 10^6 回の繰返しに対する許容ピーク応力強さ	
(MPa)	
S : 許容引張応力	
(131MPa)	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		したがって, 疲労解析が不要となる圧力変動の全振幅	は負荷運転
		時における圧力変動の全振幅(MPa)より大	きくなるの 設計条件及び格納容器型式に
		で本条項を満足している。	よる仕様の相違
		c. 起動,運転,停止サイクル中の任意の2点間の温度差	をの検討(設 記載表現の相違
		計・建設規格 PVB-3140(3))	
		解析の対象となる任意の 2 点間の距離は PVB-3140(3)	より, 次の
		ように求める。	
			設計条件及び格納容器型式に
		$p = 2\sqrt{R \cdot t} = mm$	よる仕様の相違
		ここに, R は原子炉格納容器の最大半径, t は原子炉	格納容器の
		板厚で、pの値が最大となるように選ぶ。	
		接労解析が不要となる任意の2点間の最大温度差はF	VB-3140 (3)
		より、次のように求める。	VD 0110 (0)
		$T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square \mathcal{C}$	
		2 2 4 <u> </u>	
		Sa : 炭素鋼の 回の繰返しに対する許容ピーク	ストカ帝さ
		MPa)	
		E : 炭素鋼の縦弾性係数	
		上 及希剌以和印料法际数	
		MPa(= Cにお	<i>ける値</i>))
		. 出来個小呕吐粉 吃 酒	
		α :炭素鋼の瞬時熱膨張係数	=1)
		ここで、7は設計上の最大温度差161℃ (171℃-10℃)。	にり大さい。
			7 = 1 11.2
		したがって、任意の2点間の最大温度差はTの値を超え	ることはな
		いので本条項を満足している。	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		d. 負荷運転中の任意の2点間の温度差の変動の全振幅の検討(設	記載表現の相違
		計・建設規格 PVB-3140(4))	
		負荷運転中の温度変動の数を 回とすると、疲労解析が不要	プラント固有の設計の相違
		となる最大温度差は, c. 項に示すTと同じになる。	
		したがって、負荷運転時の任意の2点間の最大温度差の変動の全	
		振幅は, c. 項に示すTを超えることはないので本条項を満足してい	
		る。	
		e. 負荷運転時の異種材結合部分の温度差の検討(設計・建設規格	記載表現の相違
		PVB-3140(5))	
		疲労解析の対象となる異種材結合部分(貫通部)の最小温度差は	記載表現の相違
		PVB-3140(5)a. より,次のように求める。	
		c'	設計条件及び格納容器型式に
		$T = \frac{S}{2 \cdot \left(E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2 \right)}$	よる仕様の相違
		1 1 2 12)	
		= \bigcap_\circ	
		ここに,	
		S' : 炭素鋼の 10 ⁶ 回の繰返しに対する許容ピーク応力強さ	
		(MPa)	
		E ₁ : ステンレス鋼の縦弾性係数	
		(MPa (℃における値))	
		α ₁ : ステンレス鋼の瞬時熱膨張係数	
		(mm/mm・℃ (℃における値))	
		E2 : 炭素鋼の縦弾性係数	
		- 「	
		α2 : 炭素鋼の瞬時熱膨張係数	
		$lpha_2$. 灰条鋼の解析系版版版系数 $($ \bigcap	
		上記Tを超える異種材結合部温度差の変動回数を回とする	
		と, 疲労解析が不要となる異種材結合部の最大温度差はPVB-	
		こ, 阪刀牌がか小安となる英種物和口部の取入価及左はFVB-3140(5)b.より, 次のように求める。	
		$T = \frac{Sa}{2 \cdot \left(E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2\right)}$	
		2 (L ₁ u ₁ L ₂ u ₂)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		=	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

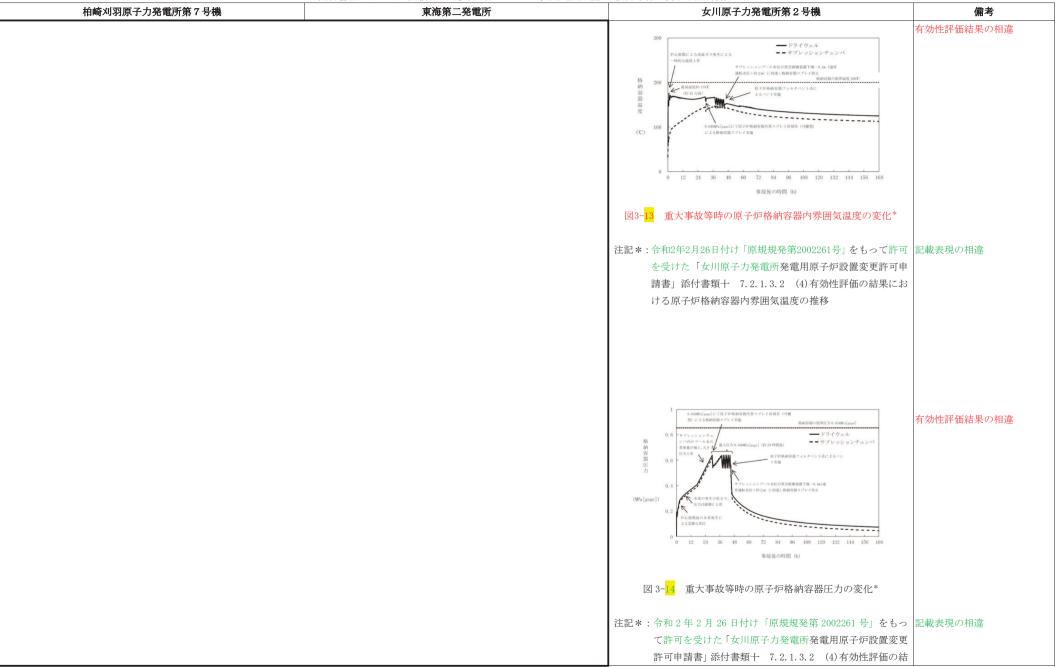
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		ここに、	
		Sa : 炭素鋼の 回の繰返しに対する許容ピーク応力強さ	
		( MPa)	
		したがって、疲労解析が不要となる異種材結合部の許容最大温度	
		差は温度差(161℃)より大きくなるので本条項を満足している。	
		f. 容器に接続される管からの反力その他機械的荷重及び地震動	
		による応力の全振幅の検討 (設計・建設規格 PVB-3140(6))	記載表現の相違
		荷重の繰返し回数は、原子炉の起動停止及び燃料交換のサイクル	原子炉格納容器に局部的に負
		数 回, 地震荷重が加わるサイクル数 590 回より, 回数に余裕	荷される場合の回数を本項に
		をみて回とする。荷重の繰返し回数回に対応する許容	て記載している。
		ピーク応力強さは、設計基準対象施設としては MPa、重大事故	
		等対処設備としては MPaとなる。ここで、原子炉格納容器の機	プラント固有の設計の相違
		械的荷重及び地震動による応力の全振幅はいかなる場所でも <mark>設計</mark>	設計・建設規格による DB 時と
		基準対象施設としては MPa, 重大事故等対処設備としては	SA 時の許容ピーク応力強さを
		MPaを超えることのないよう設計しているので本条項を満足してい	記載している。
		る。	
		3.2 重大事故等時における設計条件	
		重大事故等時については、原子炉格納容器の放射性物質閉じ込め	
		機能の確認を行うために、原子炉格納容器の評価温度、評価圧力を	
		設定し、構造健全性評価又は機能維持評価を行い、その環境下での	
		原子炉格納容器の放射性物質閉じ込め機能が損なわれることがな	
		いことを確認する。	
		また、重大事故等時の原子炉格納施設として原子炉格納容器内の	
		熱を輸送するために用いる原子炉格納容器フィルタベント系、耐圧	
		強化ベント系及び可搬型窒素ガス供給系,原子炉格納容器内の冷却	表現の相違,以下同様
		のために用いる原子炉格納容器代替スプレイ冷却系(常設),原子	
		「	
		器スプレイ冷却モード)及び残留熱除去系(サプレッションプール	
		水冷却モード) ,原子炉格納容器の過圧破損防止のために用いる代	
		替循環冷却系,原子炉格納容器フィルタベント系及び可搬型窒素ガ	
		ス供給系,原子炉格納容器下部の溶融炉心冷却のために用いる原子	20.21 a levé.
		炉格納容器下部注水系(常設)(復水移送ポンプ),原子炉格納容	
		器下部注水系(常設)(代替循環冷却ポンプ),原子炉格納容器下	
		部注水系(可搬型),原子炉格納容器代替スプレイ冷却系(常設),	備え、ペデスタル排水系として

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器代替スプレイ冷却系(可搬型)及び代替循環冷却系,	ペデスタル底部の構造変更を
		溶融炉心の原子炉格納容器下部への落下を遅延・防止するために用	行いペデスタル床ドレンサン
		いる低圧代替注水系(常設)(復水移送ポンプ)、低圧代替注水系	プの水位を維持することで、溶
		(可搬型),代替循環冷却系,高圧代替注水系及びほう酸水注入系,	融炉心の冠水対策を行ってい
		原子炉格納容器内における水素爆発による破損防止のために用い	る。
		る可搬型窒素ガス供給系及び原子炉格納容器フィルタベント系,原	
		子炉建屋等の水素爆発による損傷を防止するために用いる静的触	設計の相違
		媒式水素再結合装置,並びに炉心の著しい損傷及び原子炉格納容器	・女川では格納容器にスプレイ
		の破損に至った場合において,発電所外への放射性物質の拡散を抑	した水がドライウェル床面に
		制するために用いる放水設備(大気への拡散抑制設備),放水設備	たまり,格納容器下部開口部を
		(泡消火設備) 及び海洋への拡散抑制設備(シルトフェンス) の設	経由して格納容器下部に流入
		計についても以下に示す。	することを考慮するため,原子
			炉格納容器代替スプレイ冷却
			系及び代替循環冷却系を溶融
			炉心の冷却設備として整理し
			ている。
			設計の相違
			・女川は静的触媒式水素再結合
			装置により水素爆発損傷防止
			対策が可能であること, また,
			水素処理を目的として設置し
			た設備ではないことから、非常
			用ガス処理系を水素爆発損傷
			防止対策設備としては使用し
			ない。
		3.2.1 重大事故等時の評価温度,評価圧力	
		(1) 原子炉格納容器の限界温度,限界圧力	
		重大事故等時の原子炉格納容器の破損の防止において想定する	記載の明確化
		評価事故シーケンスのうち格納容器破損モード「雰囲気圧力・温度	• 設置変更許可申請書添付書類
		による静的負荷(格納容器過圧・過温破損)」について原子炉格納容	十の表現と整合させた。
		器の温度、圧力を評価した結果、原子炉格納容器バウンダリにかか	設置変更許可申請書添付書類
		る温度の最高値は約 178℃*1, 原子炉格納容器圧力の最高値は約	十における解析結果の相違
		0.640MPa* ² となる。	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所


柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
		■ 重大事故等時の原子炉格納容器内の最高温度及び最高圧力は、	設 記載表現の相違
		計基準事故時における最高使用温度(ドライウェル:171℃,サフ	
		ッションチェンバ: 104℃) 及び最高使用圧力 (1Pd: 427kPa) を	
		回ることから、重大事故等時の最高温度及び最高圧力を上回り、	
		つ、産業界でシビアアクシデント時の原子炉格納容器の耐性の指	標 記載表現の相違
		*3として用いられている 200℃及び 2Pd (0.854MPa) を原子炉格	納 記載表現の相違
		容器の限界温度、限界圧力として設定し、その環境下での原子炉	格 記載表現の相違
		納容器の放射性物質の閉じ込め機能について評価対象部位ごと	に
		評価することにより、その機能が損なわれることがないことを確	認
		する。また、これにより、原子炉格納容器を重大事故等時におい	て
		使用する場合の設計漏えい率は、設計基準対象施設として使用す	· a
		設計漏えい率と同じ 0.5%/d (最高使用圧力の 0.9 倍の圧力にお	い <柏崎刈羽7号機との比較>
		て)以下を維持できる。なお,重大事故等時の漏えい率は,原子	炉 記載方針の相違
		格納容器圧力が設計基準対象施設としての最高使用圧力の 0.9	倍 ・柏崎刈羽は安全係数を見込ん
		より大きい場合においても原子炉格納容器の環境条件を考慮し、	適だ漏えい率としている。
		切に割増しして評価に使用しており、その設定値において被ばく	評
		価上の基準に適合することを確認している。	記載表現の相違
		図 3- <mark>13</mark> に原子炉格納容器内雰囲気温度の変化,図 3- <mark>14</mark> に原子	炉
		格納容器圧力の変化を示す。	
		注記*1:令和2年2月26日付け「原規規発第2002261号」をも	
		て許可を受けた「女川原子力発電所発電用原子炉設置	
		更許可申請書」添付書類十 7.2.1.3.2 (4)有効性割	
		の結果における原子炉格納容器バウンダリにかかる温	.度
		の最高値	

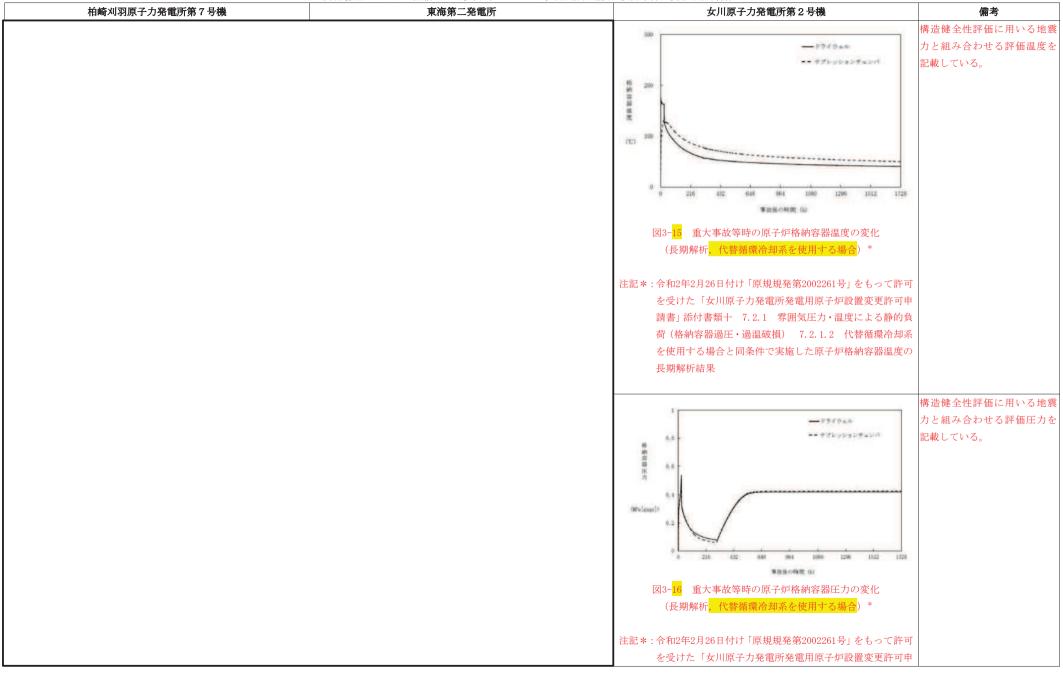
赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笙ノラントの記載との比較衣(VI-1-8-1 原子炉恰附旭 東海第二発電所	女川原子力発電所第2号機	備考
		*2:令和2年2月26日付け「原規規発第2002261号」をもっ	記載表現の相違
		て許可を受けた「女川原子力発電所発電用原子炉設置変	
		更許可申請書」添付書類十 7.2.1.3.2 (4)有効性評価	
		の結果における原子炉格納容器圧力の最高値	
		*3: (財) 原子力発電技術機構「重要構造物安全評価(原子	
		炉格納容器信頼性実証事業)に関する総括報告書」	格納容器型式の相違

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所




赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		果における原子炉格納容器圧力の推移	
		(2) 地震力と組み合わせる原子炉格納容器の評価温度、評価圧力	構造健全性評価に用いる地震
		重大事故等と地震力の組合せについては,添付書類「VI-2-1-1	
		耐震設計の基本方針」において、「原子炉格納容器バウンダリを構	び評価圧力を記載している。
		成する施設(原子炉格納容器内の圧力、温度の条件を用いて評価を	
		──行うその他の施設を含む。)については、いったん事故が発生した。	
		場合,長時間継続する事象による荷重と弾性設計用地震動Sdによ	
		る地震力を組み合わせ、その状態から更に長期的に継続する事象に	
		よる荷重と基準地震動Ssによる地震力を組み合わせる」としてい	
		3.	
		a. 弾性設計用地震動Sdと組み合わせる原子炉格納容器の評価	
		温度,評価圧力	
		弾性設計用地震動Sdと組み合わせる原子炉格納容器の評価温	
		度,評価圧力は,事象発生後10 ⁻² 年 (約3日) 後の状態として,保守	
		的に事象発生後以降の最高となる原子炉格納容器温度、圧力とす	
		3.	
		重大事故等時の原子炉格納容器の破損の防止において想定する	
		評価事故シーケンスのうち格納容器破損モード「雰囲気圧力・温度	
		による静的負荷(格納容器過圧・過温破損)」(代替循環冷却系を	
		使用できない場合)について原子炉格納容器の温度,圧力を評価し	
		た結果、原子炉格納容器バウンダリにかかる温度の最高値は約	
		178℃,原子炉格納容器バウンダリにかかる圧力の最高値は640kPa	
		となる。図3-13に原子炉格納容器内雰囲気温度の変化、図3-14に原	
		子炉格納容器圧力の変化を示す。原子炉格納容器の強度評価等に用	
		いる温度条件としては、原子炉格納容器バウンダリにかかる最高温	
		度である約178℃を考慮する。	
		以上より、弾性設計用地震動Sdと組み合わせる原子炉格納容器	
		の評価温度は178℃、評価圧力は640kPaとする。	
		-> нт пистикустостто Оз — нт пигдду тосотом и С — 7 - О 0	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		b. 基準地震動Ssと組み合わせる原子炉格納容器の評価温度, 言	平 構造健全性評価に用いる地震
		価圧力	力と組み合わせる評価温度及
		基準地震動S s と組み合わせる,原子炉格納容器の評価温度,言	平 び評価圧力を記載している。
		価圧力は、事象発生後2×10 ⁻¹ 年 (約72日) 後の値とする。	
		基準地震動Ssとの組合せにおいて想定する評価事故シーケン	
		スは、雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損	
		(代替循環冷却 <mark>系</mark> を使用する場合) <mark>及び雰囲気圧力・温度による</mark>	<u> </u>
		的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用する場	
		<u>合)である。</u>	_
		雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(作	
		替循環冷却系を使用する場合) について原子炉格納容器の温度, 原	
		力を評価した結果,事象発生後2×10 ⁻¹ 年 <mark>(約72日)</mark> 後時点において	
		は,原子炉格納容器温度は約50℃,原子炉格納容器圧力は約426kP	
		となる。 <mark>同シーケンスについて、</mark> 図3- <mark>15</mark> に原子炉格納容器温度の変	
		化(長期解析 <mark>、代替循環冷却系を使用する場合</mark> )、図3- <mark>16</mark> に原子炉	
		格納容器圧力の変化(長期解析 <mark>、代替循環冷却系を使用する場合</mark> )	
		を示す。	
		雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(作	
		替循環冷却系を使用できない場合) について原子炉格納容器の温	
		度,圧力を評価した結果,事象発生後2×10-1年(約72日)後時点に	
		おいては、原子炉格納容器温度は約110℃、原子炉格納容器圧力に	
		約38kPaとなる。同シーケンスについて、図3-17に原子炉格納容器	<del></del>
		温度の変化(長期解析、代替循環冷却系を使用できない場合)、図	
		3-18に原子炉格納容器圧力の変化(長期解析,代替循環冷却系を使	<del>É</del>
		用できない場合)を示す。	
		以上より、基準地震動Ssと組み合わせる原子炉格納容器の評価	## I
		温度,評価圧力は,上記を包絡する値として,111℃,427kPaとっ	F
		る。	

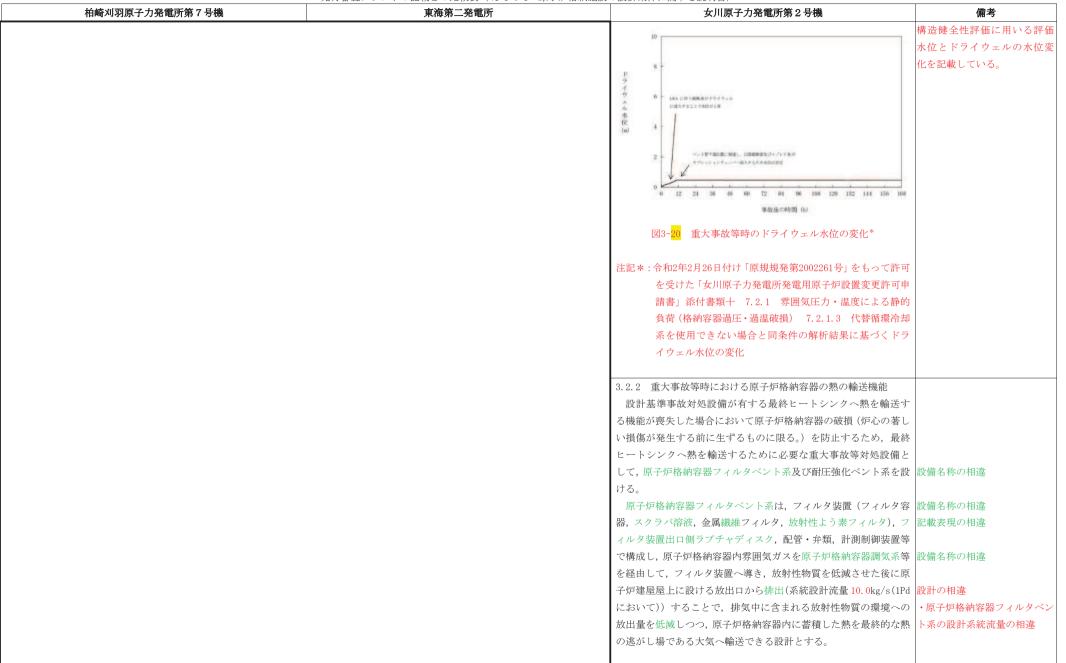
赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所



赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		請書」添付書類十 7.2.1 雰囲気圧力・温度による静的負	
		荷(格納容器過圧・過温破損) 7.2.1.2 代替循環冷却系	
		を使用する場合と同条件で実施した原子炉格納容器圧力の	
		長期解析結果	
		<u>.</u>	青造健全性評価に用いる地震
			」と組み合わせる評価温度を
		<b>──</b> ドライウェル	己載している。
		サブレッションチェンバ	
		格 200 · · · · · · · · · · · · · · · · · ·	
		容 器 風 皮	
		100	
		(C) 100	
		0 216 432 648 864 1080 1296 1512 1728	
		事故後の時間 (h)	
		図 3-17 重大事故等時の原子炉格納容器温度の変化	
		(長期解析、代替循環冷却系を使用できない場合)*	
		注記*:令和2年2月26日付け「原規規発第2002261号」をもつ	
		て許可を受けた「女川原子力発電所発電用原子炉設置変更	
		許可申請書」添付書類十 7.2.1 雰囲気圧力・温度によ	
		る静的負荷(格納容器過圧・過温破損) 7.2.1.3 代替循	
		環冷却系を使用できない場合と同条件で実施した原子炉	
		格納容器温度の長期解析結果	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所


柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
			構造健全性評価に用いる地震
		1 ── ドライウェル	力と組み合わせる評価圧力を
		0.8	記載している。
		格納容	
		容 器 圧 力	
		0.4	
		(Ma[gage])	
		0.2	
		0	
		0 216 432 648 864 1080 1296 1512 1728	
		**放後の時間 (h) 図3-18 重大事故等時の原子炉格納容器圧力の変化	
		(長期解析、代替循環冷却系を使用できない場合)*	
		(区別所内, 1/日 四条印料がも関用しては、一個日)	
		注記*:令和2年2月26日付け「原規規発第2002261号」をもって許可	ł
		を受けた「女川原子力発電所発電用原子炉設置変更許可申	
		請書」添付書類十 7.2.1 雰囲気圧力・温度による静的	<u> </u>
		負荷(格納容器過圧・過温破損) 7.2.1.3 代替循環冷虫	
		系を使用できない場合と同条件で実施した原子炉格納容	<b>=</b> :   <b> </b>
		器圧力の長期解析結果	
		(3) 重大事故等時の原子炉格納容器の評価水位	構造健全性評価に用いる評価
		重大事故等時は原子炉格納容器外部を水源とする原子炉格納容	水位を記載している。
		器代替スプレイ冷却系により、サプレッションプール水位が上昇	
		し、また、ドライウェル水位が形成される。	
		重大事故等時の原子炉格納容器の破損の防止において想定する	
		評価事故シーケンスのうち,原子炉格納容器水位が最大となる雰囲	
		気圧力・温度による静的負荷(格納容器過圧・過温破損)について	•
		サプレッションプール水位及びドライウェル水位を評価した結果、	
		最高値はそれぞれ約 5.6m 及び約 0.5m となる。図 3-19 にサプレッ	•
		ションプール水位の変化、図 3-20 にドライウェル水位の変化を示	÷
		す。	
		重大事故対応上は、サプレッションプール水位が真空破壊弁下端	4
		位置から-0.4mに到達した時点で原子炉格納容器代替スプレイ冷却	1
		を停止するが、保守的にこれを上回る水位として、真空破壊弁下端	
		位置である 0. P1514mm (水位約 5. 9m) を <mark>弾性設計用地震動 S d 及</mark>	
		び基準地震動Ssと組み合わせる原子炉格納容器の評価に用いる	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		サプレッションプール水位とする。	
		# 10	
		図 3-19 重大事故等時のサプレッションプールの水位の変化注記*:令和2年2月26日付け「原規規発第2002261号」をで許可を受けた「女川原子力発電所発電用原子炉設置許可申請書」添付書類十7.2.1 雰囲気圧力・温度に静的負荷(格納容器過圧・過温破損) 7.2.1.3 代替冷却系を使用できない場合 7.2.1.3.2 格納容器破止対策の有効性評価 (4) 有効性評価の結果におけ7.2.1.3-12図 サプレッションプール水位の推移	もっ 変更 よる 循環 損防

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所



赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
·		原子炉格納容器フィルタベント系を使用した場合に放出される	設備名称の相違
		放射性物質の放出量に対して,設置(変更)許可において敷地境界	
		での線量評価を行い,実効線量が 5mSv 以下であることを確認して	
		おり、原子炉格納容器フィルタベント系はこの評価条件を満足する	設備名称の相違
		設計とする。	
		詳細は,「3.2.4 重大事故等時における原子炉格納容器の過圧破	
		損防止機能」に示す。	
		耐圧強化ベント系は、原子炉格納容器内雰囲気ガスを原子炉格納	設備名称の相違
		容器調気系等を経由して、 <mark>排気筒</mark> を通して原子炉建屋外に放出(系	設計の相違
		統設計流量 10.0kg/s (1Pd において)) することで,原子炉格納容	・女川の非常用ガス処理系排気
		器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送でき	は、排気筒を通して放出され
		る設計とする。	る。東海第二は非常用ガス処理
			系排気筒を通して放出される。
		最終ヒートシンクへ熱を輸送するための設備として使用する場	
		合の耐圧強化ベント系は、炉心損傷前に使用するため、排気中に含	
		まれる放射性物質及び可燃性ガスは微量である。	
		耐圧強化ベント系は、使用する際に弁により他の系統・機器と隔	
		離することにより、悪影響を及ぼさない設計とする。	
		耐圧強化ベント系の使用に際しては、原子炉格納容器が負圧とな	
		らないよう原子炉格納容器代替スプレイ冷却系等による原子炉格	設備名称の相違
		納容器内へのスプレイを停止する運用とする。耐圧強化ベント系の	記載表現の相違
		使用後に再度、原子炉格納容器内にスプレイをする場合において	
		も,原子炉格納容器内圧力が規定の圧力まで減圧した場合には,原	
		子炉格納容器内へのスプレイを停止する運用とする。	
		耐圧強化ベント系使用時の排出経路に設置される隔離弁のうち	記載表現の相違
		電動弁(直流)は所内常設蓄電式直流電源設備,常設代替直流電源	設計の相違
		設備又は可搬型代替直流電源設備からの給電による操作が可能な	・女川の耐圧強化ベント系の隔
		設計とする。また、排出経路に設置される隔離弁のうち電動弁(交	離弁には直流駆動弁と空気駆
		流) については常設代替交流電源設備又は可搬型代替交流電源設備	動弁を設置している。
		からの給電による操作が可能な設計とする。	
			<柏崎刈羽7号機との比較>
			設計の差異
		このうち、電動弁(直流)については、遠隔手動弁操作設備によ	・柏崎刈羽では空気作動弁を設
		って人力による操作が可能な設計とし、隔離弁の操作における駆動	置しているが,女川では電動弁

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
	•	源の多様性を有する設計とする。	のみで構成している。
		耐圧強化ベント系はサプレッションチェンバ及びドライウェル	レ記載方針の相違
		と接続し、いずれからも排気できる設計とする。サプレッション	・耐圧強化ベント系仕様の記載
		ェンバ側からの排気ではサプレッションチェンバの水面からの	高位置の相違
		さを確保し、ドライウェル側からの排気では、ドライウェルの床	面
		からの高さを確保するとともに有効燃料棒頂部よりも高い位置に	こ記載表現の相違
		接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響	<u>*</u>
		受けない設計とする。	
		耐圧強化ベント系を使用した場合に放出される放射性物質の力	汝
		出量に対して、設置(変更)許可において敷地境界での線量評価	<u>*</u>
		行い, 実効線量が 5mSv 以下であることを確認しており, 耐圧強(	
		ベント系はこの評価条件を満足する設計とする。	記載表現の相違
		可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止 ⁻	d-
		るために必要な重大事故等対処設備として、可機型窒素ガス供給	
		を設ける。	R IX III 14 17 17 17 12 1
		可機型窒素ガス供給系は、可機型窒素ガス供給装置を用いて原	子、設備を称の相違
		「	
		た、原子炉格納容器フィルタベント系は、排気中に含まれる可燃	
		ガスによる爆発を防ぐため、系統内を不活性ガス(窒素)で置換	
		た状態で待機させ、原子炉格納容器ベント後においても不活性ガン	
		(窒素)で置換できる設計とする。	記載表現の相違
		3.2.3 重大事故等時における原子炉格納容器冷却機能	
		3.2.3 重人争成寺所における原子炉格納存締行却機能 設計基準事故対処設備が有する原子炉格納容器内の冷却機能	12
		喪失した場合において炉心の著しい損傷を防止するために原子が	
		格納容器内の圧力及び温度を低下させるため、また、炉心の著し、	
		損傷が発生した場合において原子炉格納容器の破損を防止する。	
		めに原子炉格納容器内の圧力及び温度並びに放射性物質の濃度	
		低下させるための重大事故等対処設備として、原子炉格納容器代料ファイルイ冷却で(党型)及び原子原故物容界供替ファイルイ冷却で	
		スプレイ冷却系(常設)及び原子炉格納容器代替スプレイ冷却系(す	
		搬型)を設ける。また、想定される重大事故等時において、設計を	
		準事故対処設備である残留熱除去系(格納容器スプレイ冷却モービンなど)	
		ド)及び残留熱除去系(サプレッションプール水冷却モード)が(	
		用できる場合は重大事故等対処設備(設計基準拡張)として使用	ご 記載表現の相違

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笛ノフントの記載との比較衣(VI-1-8-1 原士外 東海第二発電所	女川原子力発電所第2号機	備考
		きる設計とする。	・女川では設備分類として設計
			基準拡張を設けているが、東海
			第二は同分類を設けず重大事
			故等対処設備として整理して
			いる。なお、設備分類の相違で
			あり, 東海第二と実質的な違い
			はない。
		原子炉格納容器代替スプレイ冷却系(常設)は <mark>、復水移送ポ</mark>	ンプ 設備名称の相違
		により、 <b>復水貯蔵タン</b> クの水を残留熱除去系等を経由して原子	炉格 設計の相違
		納容器内のドライウェルスプレイ管からドライウェル内にス	プレ ・東海第二は新設設備(常設低
		イすることで,原子炉格納容器内の圧力及び温度並びに放射性	物質 圧代替注水系ポンプ,代替淡水
		の濃度を低下させることができる設計とする。	貯槽) を用いるが, 女川は既設
			設備(復水移送ポンプ,復水貯
			蔵タンク)を使用する。
		原子炉格納容器代替スプレイ冷却系(常設)の水源である <mark>復</mark>	水貯設備名称の相違
		蔵タンクは、複数の代替淡水源から淡水を供給できる設計とし	, 淡 設計の相違
		水が枯渇した場合に、海を利用できる設計とする。	・女川は既設の復水貯蔵タンク
			を重大事故等対処設備として
			使用する。東海第二は,重大事
			故等対処設備として代替淡水
			貯槽を新設する。
		原子炉格納容器代替スプレイ冷却系(常設)は、非常用交流	電源 設備名称の相違
		設備に加えて、代替所内電気設備を経由した常設代替交流電源	設備 記載方針の相違
		又は可搬型代替交流電源設備からの給電が可能な設計とする	, ま ・非常用電源設備からの給電も
		た,系統構成に必要な電動弁(直流)は,所内常設蓄電式直流	電源 可能であるため記載している。
		設備からの給電が可能な設計とする。	設計の相違
			・女川では原子炉格納容器下部
			注水系(常設)(復水移送ポン
			プ) の系統構成を行うにあた
			り, 直流電源で作動する弁も使
			用する。
		原子炉格納容器代替スプレイ冷却系(常設)は,炉心の著し	い損 設備名称の相違
		傷及び原子炉格納容器の破損を防止するための設備として兼	用す
		る設計とする。	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子) 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器代替スプレイ冷却系(可搬型)は,大容量送水ポ 設	と 備名称の相違
		ンプ (タイプ I) により代替淡水源の水を残留熱除去系等を経由し 設	計の差異
		て原子炉格納容器内のドライウェルスプレイ管からドライウェル・	女川は1水源,1タイプの可
		内にスプレイすることで,原子炉格納容器内の圧力及び温度並びに 携	<b>設型ポンプ車による対策とし</b>
		放射性物質の濃度を低下させることができる設計とする。	こいる。東海第二は 2 水源, 2
		J. J	イプの可搬型ポンプ車によ
		Z	対策としている。
		原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が 記	己載方針の相違
		枯渇した場合において,重大事故等の収束に必要となる水の供給設・	設置 (変更) 許可を踏襲し,
		備である大容量送水ポンプ (タイプ I ) により海を利用できる設計 代	は替淡水源が枯渇した場合の
		とする。	手の利用について記載してい
		3	) .
		原子炉格納容器代替スプレイ冷却系(可搬型)は,非常用交流電 設	は備名称の相違
		源設備に加えて、代替所内電気設備を経由した常設代替交流電源設 記	己載方針の相違
		備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま・	非常用電源設備からの給電も
		た、大容量送水ポンプ(タイプ I)は、空冷式のディーゼルエンジ 可	「能であるため記載している。
		ンにより駆動できる設計とする。	
		原子炉格納容器代替スプレイ冷却系(可搬型)は、炉心の著しい 設	と 備名称の相違
		損傷及び原子炉格納容器の破損を防止するための設備として兼用	
		する設計とする。	
		残留熱除去系(格納容器スプレイ冷却モード)は,常設代替交流 モ	ナード名称の相違
		電源設備からの給電により機能を復旧し、残留熱除去系ポンプ及び表	<b>現の相違</b>
		残留熱除去系熱交換器によりサプレッションチェンバのプール水・	残留熱除去系熱交換器も使用
		をドライウェル内及びサプレッションチェンバ内にスプレイする。す	るため記載している。
		ことで原子炉格納容器を冷却できる設計とする。	
		残留熱除去系(サプレッションプール水冷却モード)は、常設代 モ	ード名称の相違
		替交流電源設備からの給電により機能を復旧し、残留熱除去系ポン	
		プ及び残留熱除去系熱交換器により, サプレッションチェンバのプ 設	は備名称の相違
		ール水を冷却することで原子炉格納容器を冷却できる設計とする。	
		3.2.4 重大事故等時における原子炉格納容器の過圧破損防止機能	
		炉心の著しい損傷が発生した場合において, 原子炉格納容器の過	
		圧による破損を防止するために必要な重大事故等対処設備として、	
		原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧	
I		力及び温度を低下させるための設備である代替循環冷却系及び原	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	·	子炉格納容器内の圧力を大気中に逃がすための設備である原子炉	設備名称の相違
		格納容器フィルタベント系を設ける。	
		代替循環冷却系は、代替循環冷却ポンプによりサプレッションチ	設計の相違
		エンバのプール水を残留熱除去系熱交換器にて冷却し, 残留熱除去	・原子炉格納容器構造の相違に
		系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内へス	より、東海第二では代替循環冷
		プレイすることで,原子炉格納容器バウンダリを維持しながら原子	却系を使用しない場合の原子
		炉格納容器内の圧力及び温度を低下できる設計とする。	炉格納容器ベント時間が他の
			原子炉格納容器型式よりも短
			いことをふまえて, 代替循環冷
			却系の更なる信頼性向上のた
			め,代替循環冷却系を多重化し
			ている。
			derth a least.
		原子炉圧力容器に注水された水は、原子炉圧力容器又は原子炉格	
		納容器内配管の破断口等から流出し、原子炉格納容器内へスプレイ	
		された水とともに、ベント管を経て、サプレッションチェンバに戻	
		ることで循環できる設計とする。	
		   代替循環冷却系は, <mark>非常用交流電源設備に加えて</mark> ,代替所内電気	設計の相違
		設備を経由した常設代替交流電源設備からの給電が可能な設計と	・女川は「溶融炉心・コンクリ
		する。	ート相互作用」に係る有効性評
			価解析において、非常用交流電
			源に期待しているため記載し
			ている。
			50.7# /z 51- o 103#
		原子炉格納容器フィルタベント系は、フィルタ装置(フィルタ容	
		器,スクラバ溶液,金属繊維フィルタ,放射性よう素フィルタ),フ	
		イルタ装置出口側ラプチャディスク,配管・弁類,計測制御装置等	
		で構成し、原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等	
		を経由して、フィルタ装置へ導き、放射性物質を低減させた後に原	
		子炉建屋屋上に設ける放出口から排出(系統設計流量 10.0kg/s(1Pd	
		において)) することで、排気中に含まれる放射性物質の環境への	
		放出量を低減しつつ,原子炉格納容器内の圧力及び温度を低下でき	ト系の設計系統流量の相違。
		る設計とする。	30.31 - levé.
		フィルタ装置は3台を並列に設置し、排気中に含まれる粒子状放	
		射性物質、ガス状の無機よう素及び有機よう素を除去できる設計と	
		する。また、無機よう素をスクラバ溶液中に捕集・保持するために	違。女川はフィルタ装置3台を

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		アルカリ性の状態 (待機状態において pH13 以上) に維持する設計	並列に設置。
		とする。	
		原子炉格納容器フィルタベント系はサプレッションチェンバ及	設備名称の相違
		びドライウェルと接続し、いずれからも排気できる設計とする。サ	
		プレッションチェンバ側からの排気ではサプレッションチェンバ	
		の水面からの高さを確保し、ドライウェル側からの排気では、ドラ	
		イウェル床面からの高さを確保するとともに有効燃料棒頂部より	記載表現の相違
		も高い位置に接続箇所を設けることで、長期的にも溶融炉心及び水	
		没の悪影響を受けない設計とする。	
		原子炉格納容器フィルタベント系は, 排気中に含まれる可燃性ガ	設備名称の相違
		スによる爆発を防ぐため、可搬型窒素ガス供給系により、系統内を	設備名称の相違
		不活性ガス (窒素) で置換した状態で待機させ,原子炉格納容器べ	記載表現の相違
		ント開始後においても不活性ガス(窒素)で置換できる設計とする	記載表現の相違
		とともに、系統内に可燃性ガスが蓄積する可能性のある箇所にはバ	
		イパスラインを設け、可燃性ガスを連続して排出できる設計とする	記載表現の相違
		ことで、系統内で水素濃度及び酸素濃度が可燃領域に達することを	
		防止できる設計とする。	
		原子炉格納容器フィルタベント系は,他の発電用原子炉施設とは	設備名称の相違
		共用しない設計とする。また、原子炉格納容器フィルタベント系と	
		他の系統・機器を隔離する弁は直列で2個設置し,原子炉格納容器	
		フィルタベント系と他の系統・機器を確実に隔離することで、悪影	
		響を及ぼさない設計とする。	
		原子炉格納容器フィルタベント系の使用に際しては、原子炉格納	設備名称の相違
		容器が負圧とならないよう,原子炉格納容器代替スプレイ冷却系等	設備名称の相違
		による原子炉格納容器内へのスプレイを停止する運用とする。原子	記載表現の相違
		スプレイをする場合においても,原子炉格納容器内圧力が規定の圧	
		力まで減圧した場合には、原子炉格納容器内へのスプレイを停止す	
		る運用とする。	
		原子炉格納容器フィルタベント系使用時の排出経路に設置され	設備名称の相違
		る隔離弁は、遠隔手動弁操作設備(個数4)によって人力により容	
		易かつ確実に操作が可能な設計とする。	
		#出経路に設置される隔離弁の電動弁については、常設代替交流	設計の相違
		電源設備,可搬型代替交流電源設備,所内常設蓄電式直流電源設備,	・電動弁に給電する電源系の相
		常設代替直流電源設備又は可搬型代替直流電源設備からの給電に	
		より、中央制御室から操作が可能な設計とする。	ルタベント系は直流電源弁で
		C / T T / T / T / T / T / T / T / T / T	系統構成する。

先行案本プラントの記載との比較表(W-1-8-1 原子恒核納施設の設計条件に関する説明書)

やないのドラムや金式体では株	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設	T	AH - Hr.
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機 1	備考
			<柏崎刈羽7号機との比較>
			設計の差異
			・柏崎刈羽では空気作動弁を設
			置しているが、女川では電動弁
			のみで構成している。
		系統内に設けるフィルタ装置出口側ラプチャディスクは、原子炉	
		格納容器フィルタベント系の使用の妨げにならないよう,原子炉格	
		納容器からの排気圧力と比較して十分に低い圧力で破裂する設計	
		とする。	
			設計の相違
			・女川は排水設備を自主対策設
			備としているため記載しない。
			なお、女川はベント後のスクラ
			バ溶液のサプレッションチェ
			ンバへの移送を自重により実
			施し、ポンプが不要な設計とし
			ている。
			and the fact of the least.
		原子炉格納容器フィルタベント系は、代替淡水源から、大容量送	
		水ポンプ(タイプⅠ)によりフィルタ装置にスクラバ溶液を補給で	
		きる設計とする。	<ul><li>・女川は1水源,1タイプの可</li></ul>
			搬型ポンプ車による対策とし
			ている。東海第二は2水源2タ
			イプの可搬型ポンプ車による
			対策としている。
			<柏崎刈羽7号機との比較>
			設計の差異
			・柏崎刈羽ではベント中に蒸気
			凝縮によりフィルタ装置水位
			が上昇するため、機能喪失しな
			い水位に維持するため排水が
			必要で、その際に pH 調整が必
			要である。女川では水位上昇に
			よっても機能喪失しない設計
			としており、排水せず、さらに
			待機時に十分な量の薬液を保

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			有することで、ベント後でもア
			ルカリ性を維持できる設計と
			している)
		可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止す	
		るために必要な重大事故等対処設備として, 可搬型窒素ガス供給系	設備名称の相違
		を設ける。	
		可搬型窒素ガス供給系は, 可搬型窒素ガス供給装置を用いて原子	設備名称の相違
		<b>炉格納容器内に不活性ガス(窒素)の供給が可能な設計とする。</b>	
		可搬型窒素ガス供給装置発電設備は, 車両内に搭載し, 可搬型窒	設備名称の相違
		素ガス供給装置に給電できる設計とする。	設計の相違
			・女川の可搬型窒素ガス供給装
			置発電設備は、可搬型窒素ガス
			供給装置内に搭載している。
		3.2.5 重大事故等時における原子炉格納容器下部の溶融炉心冷却	
		機能	
		炉心の著しい損傷が発生した場合において原子炉格納容器の破	
		損を防止するため、溶融し、原子炉格納容器下部に落下した炉心を	違
		冷却するために必要な重大事故等対処設備として、原子炉格納容器	設備名称の相違
		下部注水系(常設)(復水移送ポンプ),原子炉格納容器下部注水系	設計の相違
		(常設)(代替循環冷却ポンプ),原子炉格納容器下部注水系(可搬	
		型),原子炉格納容器代替スプレイ冷却系(常設),原子炉格納容器	
		代替スプレイ冷却系(可搬型)及び代替循環冷却系を設ける。	時間を要するため、原子炉格納
			容器下部への事前水張を開始
			する時間までに注水を可能な
			設備として、原子炉格納容器下
			部注水系 (常設) (復水移送ポン
			プ) に加えて常設設備である原
			子炉格納容器下部注水系(常
			設)(代替循環冷却ポンプ)を整
			備し、多様性等を図った設計と
			している。また、東海第二は溶
			融炉心の落下に備え、ペデスタ
			ル底部の構造変更を行いペデ
			スタル床ドレンサンプの水位
			を維持することで、溶融炉心の
			冠水対策を行っている。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 <b>東海第二発電所</b>	女川原子力発電所第2号機	備考
			設計の相違
			・女川では格納容器にスプレイ
			した水がドライウェル床面に
			たまり,格納容器下部開口部を
			経由して格納容器下部に流入
			することを考慮するため,原子
			炉格納容器代替スプレイ冷却
			系を溶融炉心の冷却対応設備
			として整理している。
			設計の差異
			・女川では格納容器にスプレイ
			した水がドライウェル床面に
			たまり,格納容器下部開口部を
			経由して格納容器下部に流入
			することを考慮するため、代替
			循環冷却系を溶融炉心の冷却
			対応設備として整理している。
		また、溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ 十分な水位を確保するとともに、落下した溶融炉心を冷却できる設 計とする。	
			設計の相違
			<ul><li>・女川はコリウムシールドを設</li></ul>
			置しない状態でも,原子炉格納
			容器下部へ落下した溶融炉心
			がドレン配管内で凝固するこ
			とを確認しているが、更なる安
			全性向上のため、自主対策設備
			としてコリウムシールドを設
			置する。
		原子炉格納容器下部注水系(常設)(復水移送ポンプ)は, <b>復水移</b>	設備名称の相違
		送ポンプにより、復水貯蔵タンクの水を補給水系配管等を経由して	
		原子炉格納容器下部へ注水し、溶融炉心が落下するまでに原子炉格	
		納容器下部にあらかじめ十分な水位を確保するとともに、落下した	
		溶融炉心を冷却できる設計とする。	貯槽)を用いるが,女川は既設
		HIMAN GETTER COMBANIC / WO	設備(復水移送ポンプ,復水貯

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器下部注水系(常設)(復水移送ポンプ)の水源であ	蔵タンク)を使用する。
		る復水貯蔵タンクは、複数の代替淡水源から淡水を供給できる設計	
		とし、淡水が枯渇した場合に、海を利用できる設計とする。	設計の相違
			・女川は既設の復水貯蔵タンク
			を重大事故等対処設備として
			使用する。東海第二は、重大事
			故等対処設備として代替淡水
			貯槽を新設する。
		原子炉格納容器下部注水系(常設)(復水移送ポンプ)は、非常用	設備名称の相違
		交流電源設備に加えて、代替所内電気設備を経由した常設代替交流	記載方針の相違
		電源設備又は可搬型代替交流電源設備からの給電が可能な設計と	・非常用電源設備からの給電も
		する。また、系統構成に必要な電動弁(直流)は、所内常設蓄電式	可能であるため記載している。
		直流電源設備からの給電が可能な設計とする。	設計の相違
			・女川では原子炉格納容器下部
			注水系(常設)(復水移送ポン
			プ) の系統構成を行うにあた
			り, 直流電源で作動する弁も使
			用する。
		原子炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、代	設計の相違
		替循環冷却ポンプにより、サプレッションチェンバのプール水を残	<ul><li>・女川の原子炉格納容器下部注</li></ul>
		留熱除去系等を経由して原子炉格納容器下部へ注水し, 溶融炉心が	水系(可搬型)は、設置作業に
		落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確	時間を要するため、原子炉格納
		保するとともに、落下した溶融炉心を冷却できる設計とする。	容器下部への事前水張を開始
		原子炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、非	する時間までに注水を可能な
		常用交流電源設備に加えて、代替所内電気設備を経由した常設代替	設備として,原子炉格納容器下
		交流電源設備からの給電が可能な設計とする。	部注水系 (常設) (復水移送ポン
			プ) に加えて常設設備である原
			子炉格納容器下部注水系(常
			設)(代替循環冷却ポンプ)を整
			備し, 多様性等を図った設計と
			している。
		原子炉格納容器下部注水系(可搬型)は、大容量送水ポンプ(タ	設備名称の相違
		イプ I ) により、代替淡水源の水をあらかじめ敷設した補給水系配	設計の相違
		管を経由して原子炉格納容器下部へ注水し、落下した溶融炉心を冷	<ul><li>・女川は1水源,1タイプの可</li></ul>
		却できる設計とする。	搬型ポンプ車による対策とし

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			ている。東海第二は 2 水源, 2
			タイプの可搬型ポンプ車によ
			る対策としている。
			設計の相違
			・女川の原子炉格納容器下部注
			水系(可搬型)は設置時間を要
			するため、溶融炉心が落下する
			までに、水張を行えないため記
			載していない。
		原子炉格納容器下部注水系(可搬型)は、代替淡水源が枯渇	した 記載方針の相違
		場合において、重大事故等の収束に必要となる水の供給設備で	
		大容量送水ポンプ(タイプ I)により海を利用できる設計とす	
		八仕里心小がマン(アイフェ)により揮化が用くさる政司とが	海の利用について記載する。
		原子炉格納容器下部注水系(可搬型)は、非常用交流電源設	
		加えて、代替所内電気設備を経由した常設代替交流電源設備又	
		搬型代替交流電源設備からの給電が可能な設計とする。また、	
		量送水ポンプ(タイプ I )は、空冷式のディーゼルエンジンに	より「可能であるため記載している。
		駆動できる設計とする。	
		原子炉格納容器代替スプレイ冷却系(常設)は,復水移送ホ	ンプ設計の差異
		により,復水貯蔵タンクの水を残留熱除去系配管等を経由して	原子 ・女川では格納容器にスプレイ
		炉格納容器内のドライウェルスプレイ管からドライウェル内	にス した水がドライウェル床面に
		プレイし,スプレイした水がドライウェル床面に溜まり,原子	炉格 たまり、格納容器下部開口部を
		納容器下部開口部を経由して原子炉格納容器下部へ流入する	こと 経由して格納容器下部に流入
		で、溶融炉心が落下するまでに原子炉格納容器下部にあらかじ	め十 することを考慮するため、原子
		分な水位を確保するとともに、落下した溶融炉心を冷却できる	設計 炉格納容器代替スプレイ冷却
		とする。	系を溶融炉心の冷却対応設備
		原子炉格納容器代替スプレイ冷却系(常設)の水源である復	水貯 として整理している。
		蔵タンクは、複数の代替淡水源から淡水を供給できる設計とし	,淡
		水が枯渇した場合に、海を利用できる設計とする。	
		原子炉格納容器代替スプレイ冷却系(常設)は、非常用交流	電源
		設備に加えて、代替所内電気設備を経由した常設代替交流電源	設備
		又は可搬型代替交流電源設備からの給電が可能な設計とする	
		た、系統構成に必要な電動弁(直流)は、所内常設蓄電式直流	
		設備からの給電が可能な設計とする。	

	原子炉格納容器代替スプレイ冷却系(可搬型)は、大容量送水ボンプ(タイプI)により、代替淡水源の水を残留熱除去系配管等を経由して原子炉格納容器内のドライウェルスプレイ管からドライウェル内にスプレイし、スプレイした水がドライウェル床面に溜まり、原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで、落下した溶融炉心を冷却できる設計とする。原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が枯渇した場合において、重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ(タイプI)により海を利用できる設計とする。原子炉格納容器代替スプレイ冷却系(可搬型)は、非常用交流電	・女川では格納容器にスプレイ した水がドライウェル床面に たまり、格納容器下部開口部を 経由して格納容器下部に流入 することを考慮するため、原子 炉格納容器代替スプレイ冷却 系を溶融炉心の冷却対応設備
	経由して原子炉格納容器内のドライウェルスプレイ管からドライウェル内にスプレイし、スプレイした水がドライウェル床面に溜まり、原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで、落下した溶融炉心を冷却できる設計とする。 原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が枯渇した場合において、重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ(タイプI)により海を利用できる設計とする。	した水がドライウェル床面にたまり,格納容器下部開口部を経由して格納容器下部に流入することを考慮するため,原子炉格納容器代替スプレイ冷却系を溶融炉心の冷却対応設備
	ウェル内にスプレイし、スプレイした水がドライウェル床面に溜まり、原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで、落下した溶融炉心を冷却できる設計とする。 原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が 枯渇した場合において、重大事故等の収束に必要となる水の供給 設備である大容量送水ポンプ(タイプI)により海を利用できる 設計とする。	たまり、格納容器下部開口部を 経由して格納容器下部に流入 することを考慮するため、原子 炉格納容器代替スプレイ冷却 系を溶融炉心の冷却対応設備
	り、原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで、落下した溶融炉心を冷却できる設計とする。 原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が 枯渇した場合において、重大事故等の収束に必要となる水の供給 設備である大容量送水ポンプ(タイプI)により海を利用できる 設計とする。	経由して格納容器下部に流入 することを考慮するため,原子 炉格納容器代替スプレイ冷共 系を溶融炉心の冷却対応設備
	入することで、落下した溶融炉心を冷却できる設計とする。 原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が 枯渇した場合において、重大事故等の収束に必要となる水の供給 設備である大容量送水ポンプ(タイプI)により海を利用できる 設計とする。	することを考慮するため,原子 炉格納容器代替スプレイ冷却 系を溶融炉心の冷却対応設備
	原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が 枯渇した場合において、重大事故等の収束に必要となる水の供給 設備である大容量送水ポンプ(タイプI)により海を利用できる 設計とする。	炉格納容器代替スプレイ冷却 系を溶融炉心の冷却対応設備
	枯渇した場合において、重大事故等の収束に必要となる水の供給 設備である大容量送水ポンプ (タイプ I) により海を利用できる 設計とする。	系を溶融炉心の冷却対応設備
	設備である大容量送水ポンプ (タイプ I) により海を利用できる 設計とする。	
	設計とする。	として整理している。
	<b>I</b>	
	原子炉格納容器代替スプレイ冷却系(可搬型)は、非常用交流電	
	源設備に加えて、代替所内電気設備を経由した常設代替交流電源設	
	備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま	
	た、大容量送水ポンプ(タイプ I )は、空冷式のディーゼルエンジ	
	ンにより駆動できる設計とする。	
	代替循環冷却系は、代替循環冷却ポンプによりサプレッションチ ・	
	ェンバのプール水を残留熱除去系熱交換器にて冷却し、残留熱除去	
	系配管を経由して原子炉格納容器内へスプレイし,スプレイした水	
	がドライウェル床面に溜まり、原子炉格納容器下部開口部を経由し	
	て原子炉格納容器下部へ流入することで、溶融炉心が落下するまで	
	に原子炉格納容器下部にあらかじめ十分な水位を確保するととも	
	に、落下した溶融炉心を冷却できる設計とする。	
	代替循環冷却系は、非常用交流電源設備に加えて、代替所内電気	
	設備を経由した常設代替交流電源設備からの給電が可能な設計と	
	する。	
		設計の相違
		<ul><li>・女川はコリウムシールドを設</li></ul>
		置しない状態でも,原子炉格納
		容器下部へ落下した溶融炉心
		がドレン配管内で凝固するこ
		とを確認しているが, 更なる安
		全性向上のため、自主対策設備
		としてコリウムシールドを設
		置する。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元 (VI-18-1 原子炉格料 肥 放 東海第二発電所	女川原子力発電所第2号機	備考
			設計の相違
			・東海第二は溶融炉心の落下に
			備え、ペデスタル底部の構造変
			更を行いペデスタル床ドレン
			サンプの水位を維持すること
			で、溶融炉心の冠水対策を行っ
			ている。

要求の事業」は認知が必要を下に信念、ペアメタの経済の構造を受されているがなる事情という。 「大学スタの経済の構造を受されているがなる事情することで、 一般である。 「大学の大学なのかます」でいる。 「大学の経済を持ちている。 「大学の経済を発展・物理する。」 「大学の経済を発展・物理する。」 「大学の経済を発展・物理する。」 「大学の経済を発展・物理する。」 「大学の経済を発展・第一体的主義、第一体的性体系。 「内閣・企業の経済を発展・第一体的性体系、 「内閣・企業の経済を発展・第一体的性体系、 「内閣・企業の経済を発展・ 「内閣・企業の経済を発展・ 「内閣・企業の経済を表現して、 「内閣・企業の経済を発展・ 「内閣・企業の経済を表現して、 「内閣・企業の経済を発展・ 「内閣・ 「内閣・企業の経済を発展・ 「内閣・ 「内閣・ 「内閣・ 「内閣・ 「内閣・ 「内閣・ 「内閣・ 「内閣	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
環点、ペラスタの底がいた 更を行いベアスタの底ではますることで、 のを出しいがスタの底ではますることで、 のを出しいなな対策を行っていた。 からの者しい情報が発生した場合に溶験があるの底子が終点容器 下部への者下と優生、防止するための底が解検を検定を担して、 更近代表する「保証」(の表すをランプ、使用で表する。 近年代的社本系(保証) (他大きなかの底が解検を検定を対して、 の近代的社本系 (保証) (他大きなみの底が解検を対しな検えなる。 (は 微性名称の相差	-			設計の相違
要の行い。デスタの本位を指することで、高畑町のの下子の影響等は の心の著しい側端が発生した場合に溶膜が心地を実施できるを対す。 でいる。  「原生化物性水系(電流)(健水等医ボンク、配性化物性水系(可能 型)、代音場所容系、点所代性性水系及びよう吸水は人名を設け の、低生化物性水系(電流)(健水等医水は人名を設け の、低生化物性水系(環境)(健水等医水は人名を設け の、低生化物体系が、高所代性性水系及びよう吸水は人名を設け の、低生化物体系が、同じ、(液体医水が、)、低性化物性水系(可能の多か中国 に代音性水系(環)(成水形をメンフ)。促生代物性水系(可能型)、 作者指点が多かが、10分割を含め、10分割を含め、10分割をかり、10分割をかり、10分割を がは入るによる原子が正力が多るの対土を行うことで開催的心を 治知するの設計と来る(環境)(健水等医ボンク)は、健水等医ボンクに とり、復水が確多とうの大き疾間密除よ系等を全値して原子を圧力 関連の時間 等のい様と表して、10分割を のできるを対土とない。10分割を を用いますると、使用性性がよる。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といます。 を用いますると、といますると、といます。 を用いますると、といますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いますると、といまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。 を用いまする。				・東海第二は溶融炉心の落下に
の心の著しい刺傷が発生した場合に溶繊如心の原子が移動容易 で高心の原子が展生・防止するための原大整体が経過能して、 近世の表する。(原文の原本を変更・防止するための原大整体を経過能して、 近世の表する。(原文の原本を変更を対した。)。 他EL代管比水系(深文)(復水移送ポンツ)、他EL代管比水系(内 環色)、代管循係の無点、個E代管比水系の(の多)を変更が外、他EL代管比水系(内 環色を作の相違 流性を表点(深文)(表表を表で対)、他EL代管比水系(内型) が自動を表点(深文)(表表を表で対)の表では表点(内型)と変更を 使力を含える設計とする。 他EL代管比水系(深文)(像水移送ポンツ)のが自力と支配性が必要 を定さる支配とする。 他EL代管比水系(高文)(像水移送ポンツ)は、像水移送ポンンズ の、作品で起水系(高文)(像水移送ポンツ)は、像水移送ポンンズ の、作品で起水系(不同)、体水移送ポンツ、に を発力によるが、大型に起これが の関係(像水移送ボンズ、代管水 が指め上が成る。 が高め上を構合と、原を利用できる数計できる傾倒とし、熱水 が高め上を構合と、原を利用できる数計できる質別とし、熱水 が高め上を構合と、原を利用できる数計できる質別とし、熱水 が高め上を構合と、原を利用できる数計できる質別とし、熱水 が高め上を構造がある。 の関係(像水移送が、クス (大管液を が指を新変する。 便利・利用・フェル・ の関係(なるを表する) を表すると、で変更なが、ア(タイプ)に を表する。変換され、またゆ はを発変する。 便利・利用・フェル・ の関係を表すると、変更なが、ア(タイプ)に を表する。変換され、またゆ はを発変する。 の関係として代きまな が指を新変する。 の関係となるので、変更ななが、ア(タイプ)に に対して、表面、フィーのの形態 で、文別による対象とし を表面する。 を表面する。 の関係となるので、表面を利用して、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係を表面を表面を含めで、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係を表面が、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係を表面が、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 の関係となるので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、				備え、ペデスタル底部の構造変
で、設備というの表す複数を行っている。  「ための書」と複数を見います。 「ない、「ない、「ない、「ない、「ない、「ない、「ない、「ない、「ない、「ない、				更を行いペデスタル床ドレン
びいる。  が心の変しい損傷が発生した場合に溶腫炉心の原子が移物質器  工能が存むまる。(では、				サンプの水位を維持すること
かの著しい張僧が発生した場合に診療中のの原子が指摘容器 記載表現の知道 下部への落下を凝集・防止するための原本事故率対処理をして、 既存代替定系名(常設)(仮大修達がよう)。近年代替末本名(可数 理)、代替福衛冷却系。然近代替此本系及(知う数水は人系を設け 5。 近年代替止水系(常設)(後本移近ボンプ)。既在代替止水系は、質 変細名称の相應 圧化が住水系(常設)(後本移近ボンプ)。既在代替上水系(列種型)。 代替衛衛冷却系とが原产用力器外の足法を行うことで落盤を企を 冷却できる配せとする。 が圧して苦止水系(常設)(後水移近ボンプ)は、後水移及ボブンド まり、選よ所選シンクの水を残型制除水系等を結由して原子炉口 容器と外の相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変かの相当 変がの相当 変がの相当 変があるな大計蔵 変が、女川は既変 変質・(気水等速パンプ、仮求所 変かり、女別は既変 変質・(気水等速パンプ、仮求所 変かのを表がしたが、女別は既変 変質・(気水等速パンプ、仮求所 変かり、女別は既変の彼水形を多が、女別は既変の彼水形を多が、女別は既変 変質・気があきが、女別は既変 変質・気があきが、女別はとして 使用する、未得悪によ、未来等によ。まな事 を実施を対象を対象を対象として を用する、未得悪によ、まな事 の代替を所がする。 変に、なが表が、女別は優として代目後水 が種を新かりな数性として を用する、未得悪によ、まな事 の代目が表示を対象を指数として を用する、未得悪によ、まな事 の代目をあまた。 を発して代目が水 が種を新かりな数性として を用する、未得悪によ。まな事 を実施を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を				で、溶融炉心の冠水対策を行っ
下部への落下を短延・あたするための電大事故等対処数備として、 極圧性特性水系(常設)(複木移造ポンプ)、仮正性管性水系 (可数) を無性性水系(常設) (復水移造ポンプ)、仮正代替性水系 (可数) を無性性水系(常設) (復水移造ポンプ)、仮正代替性水系 (可機型)。 代替物液や加速なの活性ではまれるのいすれるを受けてはう酸水 水油人系による原子が圧力部器への出水を行うことで溶験が心を 冷却できる設計とする。 施圧代替性水系(常設)(後水移造ポンプ) は、復水移造ポンプに な所を表します。(常設) (後水移造ポンプ) は、復水移造ポンプに より、後水貯蔵ケンクの水を残留熱除よ系等を終由して原子炉圧力 容器へ止水することで溶盤が心を冷却できる設計とする。 ・ 機圧代替は水系(常設)(後水移造ポンプ) の水面である後水貯蔵 クンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水 が情況した場合に、海を利用できる設計をする。 ・ 女川は野波の者な貯蔵かとの を乗用して原子炉圧力 容器・止水することで溶盤が心を冷却できる設計とし、淡水 が簡 を掛いるが、女川は現故 とで、音楽がまプン、代本除板 タンク)を使用する。 ・ 女川は野波の者な貯蔵タンク を重力する。で変対処理能として代等淡水 が確を動せする。 ・ 女川は野波の者な貯蔵かとで、 ・ 女川は野波の者な貯蔵かとで、 ・ 女川は下波の者な貯蔵かとで、 ・ 女川は下波の者な貯蔵かとで、 ・ 女川は大路、19イブリンに より、代等淡水類の水を残態があるるを延伸して原子が下が充する。 ・ 女川は大路、19イブの可 ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女田の ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女川は大路、19イブの ・ 女田の ・				ている。
版正代替注水系(常設)(複水移送ボンブ)、低正代替注水系(可樂型)、代替商場市海系、高正代替注水系(常設)(複水移送ボンブ)、仮正代替注水系(可數型)、代替循場所海系。高正代替注水系の対2)を株注入系は、飲 設備を移の相違 数型。代替循場所海系。高田代技治水系の対2)を株注入系は、飲 設備を移の相違 医代替正水系により原子即圧力容器へのは子体を行うことで高値即心を治理できる設計とする。   施正氏转注水系(常設)(復水移送ボンブ)は、復水移送ボンブに			炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器	記載表現の相違
型)、代替循環冷却系、高圧代替注水系(写設)(彼水移送ポンプ)、低圧代替注水系(可能型)、代替循環冷和系、高圧代替注水系(可能型)、代替循環冷和系、高圧化替注水系(可能型)、化特循環分解及医療工作、行設)(彼水移送ポンプ)、低圧化替注水系(可能型)、化特留等均率及反所属化管抹水系のいずれかと参行してほう酸素注入系による原子炉圧力容器への注水を行うことで溶融炉のを溶却とする。低圧性特注水系(常設)(彼水移送ポンプ)は、彼水移送ポンプに、皮膚多形の中心器質器へ上水することで溶融炉のを冷却できる設計とする。  低圧代替注水系(常設)(彼木移送ポンプ)は、彼水移送ポンプ)に、彼水移送ポンプに、2000年は水系ポンプ、代替液水的病。多用いるが、女川は歩歌を開催の大きに、変し、後木を使用いるが、女川は歩歌を開始した。第二十年では、一般では、大野産・大学の大学では、一般で対して、大野産・大学の大学では、大学を対して、一般で対して、大学を対して、大学を対して、一般で対して、一般で対して、一般で対して、一般で対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対し、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対し、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対し、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対して、一般に対し、一般に対して、一般に対し、一般に対し、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、一般に対し、、例え、、、、、、、、、、、、、、、、、			下部への落下を遅延・防止するための重大事故等対処設備として、	
る。  振圧代替注水系(常設)(彼水移送ボンブ)、概圧代替止水系(可 機型)、代替網別的類系、高圧代特注水系のパする飲み注入系は、 近代代替注水系(認設)(像水移送ボンブ)、低圧代替注水系(可數型)、 代達所線が上地上の容器・の注水を行うことで溶配性のを 治却できる設計とする。  振圧代替注水系(禁設)(復水移送ボンブに より、複水的数タンクの水を密密熱除主系等を終して原子炉圧力 容器へ注水することで溶配がなどを発射を終わる。  ・ 東海等二は新設設備(第26年 上代特達水系がンブ。(特別水 を指しているが、大型的数分 が開めたが、大型的数分と表現が表示が、 が開めたが、大型的数分とである。  ・ 東海等二は、海水砂 数分の大型の水が、大型の、大型の水が、大型の、大型の、大型の、大型の、大型の、大型の、大型の、大型の、大型の、大型の			低圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系(可搬	設備名称の相違
歴史代替注水系(常設)(復水移送ボンブ),低圧代替注水系(明 規型),代替確認的場系。延圧代替注水系(成)(成水移送ボンブ)、低圧代替注水系(可酸物), 代替確認的場系及び高圧代替注水系(可酸),低水移送ボンブ)に、食水移送ボンブに より、後水貯罐タンクの水を残留器除去系卷を経由して原子炉圧力 容器へ注水することで溶離炉心を冷却できる設計とする。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 変情(復水移送ボンブ)、保下的 を用いるが、女川に既設 設備(復水移送ボンブ)、保下的 を用いるが、女川に既設 設備(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  近日に接き水が、対射送した場合に、海を利用できる設計とし、淡水 が制造した場合に、海を利用できる設計とする。  低圧代替注水系(可敷型)は、大容量送水ボンブ(タイプ)に まり、代替液水原の水を残留熱給系系等を経由して原子所圧力容器 小性水することで溶離炉心を冷却できる設計とする。  を重く事故等対処変値として代替液水 財産を新設する。  では、水水水の間 を重く事故等対処変値として、使用する。東京を等対処変値として、使用する。東海第二は、重大事 な等対処変値として、使用する。東京を等対処変値として、使用する。東京を等対処変値として、使用する。東京等な等対処変値として、使用する。東京を等対処変値として、使用する。東京等を表する。  ・女川は上水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原は1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原のでは1タイプの可能を表する。  ・女川は1水原のでは1タイプを表する。  ・女川は1水原のでは1タイプのでは1タイプを表する。  ・女川は1水原のでは1タイプを表する。  ・女川は1水原のでは1ターでは1ターでは1ターでは1ターでは1ターでは1ターでは1ターでは1ター			型),代替循環冷却系,高圧代替注水系及びほう酸水注入系を設け	
歴史代替注水系(常設)(復水移送ボンブ),低圧代替注水系(明 規型),代替確認的場系。延圧代替注水系(成)(成水移送ボンブ)、低圧代替注水系(可酸物), 代替確認的場系及び高圧代替注水系(可酸),低水移送ボンブ)に、食水移送ボンブに より、後水貯罐タンクの水を残留器除去系卷を経由して原子炉圧力 容器へ注水することで溶離炉心を冷却できる設計とする。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 変情(復水移送ボンブ)、保下的 を用いるが、女川に既設 設備(復水移送ボンブ)、保下的 を用いるが、女川に既設 設備(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  振圧代替注水系(常設)(復水移送ボンブ)の水原である復水貯蔵 タンク」を使用する。  近日に接き水が、対射送した場合に、海を利用できる設計とし、淡水 が制造した場合に、海を利用できる設計とする。  低圧代替注水系(可敷型)は、大容量送水ボンブ(タイプ)に まり、代替液水原の水を残留熱給系系等を経由して原子所圧力容器 小性水することで溶離炉心を冷却できる設計とする。  を重く事故等対処変値として代替液水 財産を新設する。  では、水水水の間 を重く事故等対処変値として、使用する。東京を等対処変値として、使用する。東海第二は、重大事 な等対処変値として、使用する。東京を等対処変値として、使用する。東京を等対処変値として、使用する。東京等な等対処変値として、使用する。東京を等対処変値として、使用する。東京等を表する。  ・女川は上水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原は1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原、1タイプの可能を表する。  ・女川は1水原のでは1タイプの可能を表する。  ・女川は1水原のでは1タイプを表する。  ・女川は1水原のでは1タイプのでは1タイプを表する。  ・女川は1水原のでは1タイプを表する。  ・女川は1水原のでは1ターでは1ターでは1ターでは1ターでは1ターでは1ターでは1ターでは1ター			[ 3.	
正代特注水系 (常設)(復水移送ポンプ)、低圧代替注水系(可輓型)、代替領格利率及び高圧代替注水系のいずれかと並行してほう酸水注人系による原子炉圧力容器への注水を行うことで溶離炉心を冷却できる設計とする。  低圧代替注水系 (常設)(復水移送ポンプ)は、後水移送ポンプにより、復水移送水とでは、設計の相違容器ができる設計とする。  低圧代替注水系 (常設)(復水移送ポンプ)の水を設計を対し、流水・対・動・を用いるが、次川は既設定備(常設低圧代替注水系 (常設)(復水移送ポンプ)の水原である復水貯蔵タンク)を使用するが、次川は既設定機(後水移送ポンプ,復水貯蔵タンク)は、複数の代替液水源から淡水を使給できる設計とし、淡水が出場した場合に、消を利用できる設計とする。  低圧代替注水系 (可機型)は、大容量送水ボンブ (タイプ 1)により、代替液水素の水を残削熱去系を各種由して原子炉圧力容器が開金布設する。  低圧代替注水系 (可機型)は、大容量送水ボンブ (タイプ 1)により、代替液水源の水を残削熱去系を各種由して原子炉圧力容器が開金布設する。  低圧代替注水系 (可機型)は、大容量送水ボンブ (タイプ 1)により、代替液水源の水を残削熱去系を各種由して原子炉圧力容器が開金布設する。  本女川は1水原、19イブの可能を発力のできる設計とする。  ・女川は1水原、19イブの可能を発力できる設計とする。  ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。 ・女川は1水原、19イブの可能を発力できる設計とする。・女川は1水原、19イブの可能を発力できる設計とする。・女川は1水原、19イブの可能を発力できる対すとしています。・女川は1水原、19イブの可能を発力できる対すとしています。・女川は1水原、19イブの対象を発力できる。・女川は1水原、19イブの対象を発力できる。・女川は1水原、19イブの対象を発力できる。・女川は1水原、19イブの対象を発力できる。・女川は1水原、19イブの対象を発力できる。・女川は19イブの対象を使用を含めまする。・女川は19イブの対象を対象を含むまする。・女川は19イブの対象を表する。・女川は19イブの対象を対象を対象を含むされるいまする。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの対象を表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女川は19イブの表する。・女別は19イブの表する。・女別は19イブの表する。・女別は19イブの表する。・女別は19イブの表する。・女科は19イブの表する。・女別は19イブの表する。・女別は19イブの表する。・女別は19イブの表する。・			低圧代替注水系(常設)(復水移送ポンプ), 低圧代替注水系(可	設備名称の相違
代替係機合知系及び高圧代替注水系のいすれかと並行してほう酸水注入系による原子原圧力容器への往水を行うことで溶離炉心を 治却できる設計とする。  低圧代替注水系 (常設) (復水移送ポンプ) は、復水移送ポンプにより、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ往水することで溶融炉心を冷却できる設計とする。  低圧代替注水系 (常設) (復水移送ポンプ) の水源である復水貯蔵タンク)を使用する。 が枯渇した場合に、海を利用できる設計とし、淡水が枯渇した場合に、海を利用できる設計とし、淡水が枯渇した場合に、海を利用できる設計とし、淡水が枯渇した場合に、海を利用できる設計とし、淡水が枯渇した場合に、海を利用できる設計とより、代替淡水原の後水貯蔵タンクを重大事故等が起設備として代替淡水が構を新設する。			搬型),代替循環冷却系,高圧代替注水系及びほう酸水注入系は,低	設備名称の相違
水注人系による原子が圧力容器への注水を行うことで溶融炉心を 冷却できる設計とする。 低圧代替注水系(常設)(彼水移送ボンプ)は、復水移送ボンプに より、彼水貯域タンクの水を残留熱除金系等を経由して原子炉圧力 容器へ注水することで溶融炉心を冷却できる設計とする。  低圧代替注水系(常設)(彼水移送ボンプ)の水瀬である後水貯蔵 カンクは、複数の代替液水源から淡水を供給できる設計とし、淡水 が結遇した場合に、海を利用できる設計とする。  低圧代替注水系(常設)(彼水移送ボンプ)の水瀬である後水貯蔵 タンクは、複数の代替液水源から淡水を供給できる設計とし、淡水 が結遇した場合に、海を利用できる設計とする。  低圧代替注水系(可樂型)は、大容量透水ボンブ(タイプ I)に より、代替液水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融炉心を冷却できる設計とする。  歳数計の相違 ・女川は1水源、1タイプの可 ・女川は1水源、1タイプの可 像型ボンブ率による対策とし 像型ボンブ率による対策とし			圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系(可搬型),	
冷却できる設計とする。 低圧代特注水系 (常設) (彼木移送ボンブ) は、復水移送ボンブに 設備名称の相違 表り、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力 設計の相違 ・ 東海第二は新設設備 (常設低 圧代替注水系パンプ, 代替淡水 貯槽) を用いるが、女川は既設設備 (復水移送ボンブ) の水源である復水貯蔵 設備 (復水移送ボンブ, 復水貯蔵 タンク) を使用する。  低圧代替注水系 (常設) (復水移送ボンブ) の水源である復水貯蔵 みンク) を使用する。  が結渇した場合に、海を利用できる設計とし、淡水 ・ 女川は既設の復水貯蔵タンク が結渇した場合に、海を利用できる設計とする。  低圧代替注水系 (可搬型) は、大容量送水ボンブ (タイプ1) に 設計の相違 まり、代替淡水源の木を残留熱除去系等を経由して原子炉圧力容器 ・ 女川は 1 水源、1 タイプの可 へ注水することで溶離炉心を冷却できる設計とする。			代替循環冷却系及び高圧代替注水系のいずれかと並行してほう酸	
低圧代替注水系(常設)(復水移送ポンプ)は、復水移送ポンプにより、復水財職タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を冷却できる設計とする。  低圧代替注水系(常設)(復水移送ポンプ)の水源である復水財職 設計の相違 ・ 東海第二は新設設備 (常設低・文) (技術を選出・文) (表 大)			水注入系による原子炉圧力容器への注水を行うことで溶融炉心を	
より、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を冷却できる設計とする。 ・東海第二は新設設備(常設低圧代替注水系がンプ、(内替液水 貯槽。多域の大力で、(内型 で			冷却できる設計とする。	
容器へ注水することで溶融炉心を冷却できる設計とする。 ・東海第二は新設設備(常設低圧代替注水系がンプ、代替淡水 貯槽)を用いるが、女川は既設設備(復水移送ポンプ、復水貯蔵タンク)を使用する。  低圧代替注水系(常設)(復水移送ポンプ)の水源である復水貯蔵タンク)を使用する。  数計の相違 ・女川は既設の復水貯蔵タンク が結渇した場合に、海を利用できる設計とする。 ・女川は既設の復水貯蔵タンク を重大事故等対処設備として使用する。東海第二は、重大事故等対処設備として代替淡水原・大容量送水ポンプ(タイプ I)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は 1 水源、1 タイプの可 、注水することで溶融炉心を冷却できる設計とする。 ・数計の相違 ・女川は 1 水源、1 タイプの可 機型ボンプ車による対策とし			低圧代替注水系(常設)(復水移送ポンプ)は,復水移送ポンプに	設備名称の相違
歴代替注水系ボンブ、代替淡水 貯槽)を用いるが、女川は既設設備(復水移送ポンブ)の水源である復水貯蔵タンク)を使用する。  低圧代替注水系(常設)(復水移送ポンプ)の水源である復水貯蔵タンク)を使用する。 かが枯渇した場合に、海を利用できる設計とする。  低圧代替注水系(可搬型)は、大容量送水ボンブ(タイプ 1)に はり、代替淡水源の水を残留熱除法系等を経由して原子炉圧力容器 ・女川は1水源、1タイプの可冷注水することで溶極炉心を冷却できる設計とする。			より、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力	設計の相違
時情 を用いるが、女川は既設設備(復水移送ポンプ、復水貯蔵タンク)を使用する。  低圧代替注水系(常設)(復水移送ポンプ)の水源である復水貯蔵タンク)を使用する。  数計の相違  タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水が枯渇した場合に、海を利用できる設計とする。  低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)にまり、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を冷却できる設計とする。  地型ポンプ車による対策とし			容器へ注水することで溶融炉心を冷却できる設計とする。	・東海第二は新設設備(常設低
設備(復水移送ポンプ、復水貯蔵タンク)を使用する。  低圧代替注水系(常設)(復水移送ポンプ)の水源である復水貯蔵 設計の相違  タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水 ・ ケ川は既設の復水貯蔵タンク を重大事故等対処設備として使用する。 東海第二は、重大事故等対処設備として代替淡水 貯槽を新設する。  低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)に 設計の相違 、より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器・ ケ川は 1 水源、1 タイプの可 ・				圧代替注水系ポンプ, 代替淡水
低圧代替注水系(常設)(復水移送ボンブ)の水源である復水貯蔵 タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水 が枯渇した場合に、海を利用できる設計とする。      低圧代替注水系(可搬型)は、大容量送水ボンブ(タイプ1)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融炉心を冷却できる設計とする。      横型ボンブ車による対策とし				貯槽) を用いるが, 女川は既設
低圧代替注水系 (常設) (復水移送ポンプ) の水源である復水貯蔵 タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水 ・女川は既設の復水貯蔵タンク を 重大事故 等対処設備 として 使用する。東海第二は、重大事故 等対処設備として代替淡水 貯槽を新設する。  低圧代替注水系 (可搬型) は、大容量送水ポンプ (タイプ1) に 設計の相違 ・女川は1水源、1タイプの可 、注水することで溶融炉心を冷却できる設計とする。				設備(復水移送ポンプ、復水貯
タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水が枯渇した場合に、海を利用できる設計とする。  低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)にはり、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器では、10円は1水源、1タイプの可では水することで溶融炉心を冷却できる設計とする。				蔵タンク)を使用する。
が枯渇した場合に、海を利用できる設計とする。 を重大事故等対処設備として使用する。東海第二は、重大事故等対処設備として代替淡水貯槽を新設する。   低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)により、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器・女川は1水源、1タイプの可へ注水することで溶融炉心を冷却できる設計とする。   搬型ポンプ車による対策とし			低圧代替注水系(常設)(復水移送ポンプ)の水源である <mark>復水貯蔵</mark>	設計の相違
使用する。東海第二は、重大事故等対処設備として代替淡水 貯槽を新設する。 低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融炉心を冷却できる設計とする。 使用する。東海第二は、重大事 故等対処設備として代替淡水 貯槽を新設する。 設計の相違 ・女川は1水源、1タイプの可 搬型ポンプ車による対策とし			タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水	・女川は既設の復水貯蔵タンク
故等対処設備として代替淡水 貯槽を新設する。 低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は 1 水源、1 タイプの可 へ注水することで溶融炉心を冷却できる設計とする。			が枯渇した場合に、海を利用できる設計とする。	を重大事故等対処設備として
故等対処設備として代替淡水 貯槽を新設する。 低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は 1 水源、1 タイプの可 へ注水することで溶融炉心を冷却できる設計とする。				
版圧代替注水系(可搬型)は、大容量送水ポンプ(タイプ I)に より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は 1 水源、1 タイプの可 へ注水することで溶融炉心を冷却できる設計とする。				
より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は1水源、1タイプの可 へ注水することで溶融炉心を冷却できる設計とする。				
より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 ・女川は1水源、1タイプの可 へ注水することで溶融炉心を冷却できる設計とする。			低圧代替注水系(可柳型)は 木窓長送水ポンプ(タイプI)に	設計の相違
へ注水することで溶融炉心を冷却できる設計とする。 搬型ポンプ車による対策とし				
			, , , , , , , , , , , , , , , , , , , ,	
			へは小りることで冷酷が心を行為できる故計とりる。	搬型ホンノ単による対策としている。また、東海第二は2水

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
			源、2 タイプの可搬型ポンプ車
			の対策としている。東海第二は
			代替淡水貯槽を水源とし, 可擦
			型代替注水大型ポンプにより
			原子炉建屋東側接続口から注
			水する場合は、低圧炉心スプレ
			イ系を使用するが, 女川はいす
			れの接続口からも残留熱除去
			系を経由しての原子炉注水と
			なる。
		低圧代替注水系(可搬型)は、代替淡水源が枯渇した場合におい	・ 記載表現の相違
		て、重大事故等の収束に必要となる水の供給設備である大容量送水	
		ポンプ(タイプ I)により海を利用できる設計とする。	代替淡水源が枯渇した場合の
			海の利用について記載する。
		高圧代替注水系は、蒸気タービン駆動ポンプにより <b>復水貯蔵タン</b>	/ 設計の相違
		クの水を高圧炉心スプレイ系等を経由して、原子炉圧力容器へ注水	
		することで溶融炉心を冷却できる設計とする。	事故等対処設備として使用す
		,	る。
		代替循環冷却系は、代替循環冷却ポンプにより、サプレッション	設備名称の相違
		チェンバのプール水を残留熱除去系配管を経由して原子炉圧力容	
		器へ注水することで、原子炉圧力容器内に存在する溶融炉心を冷却	1 記載表現の相違
		できる設計とする。	
		ほう酸水注入系は,ほう酸水注入系ポンプにより,ほう酸水注入	、設備名称の相違
		系貯蔵タンクのほう酸水を原子炉圧力容器へ注入することで、溶融	原子炉格納容器型式による相
		炉心の原子炉格納容器下部への落下を遅延・防止する設計とする。	違
		3.2.6 重大事故等時における水素爆発による原子炉格納容器の砂	7
		損防止機能	
		「炉心の著しい損傷が発生した場合において原子炉格納容器内に	
		おける水素爆発による破損を防止するための重大事故等対処設備	
		として、原子炉格納容器内を不活性化するための設備である可搬型	
		窒素ガス供給装置及び原子炉格納容器内に滞留する水素及び酸素	
		を大気へ排出するための設備である原子炉格納容器フィルタベン	
		ト系を設ける。	STATE OF THE STATE

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		また, 炉心の著しい損傷が発生した場合において原子炉格納容器	
		内における水素爆発による破損を防止できるよう,発電用原子炉の	
		運転中は、原子炉格納容器内を原子炉格納容器調気系により常時不	設備名称の相違
		活性化する設計とする。	
		可搬型窒素ガス供給装置は,原子炉格納容器内に窒素を供給する	設備名称の相違
		ことで、ジルコニウムー水反応、水の放射線分解等により原子炉格	
		納容器内に発生する水素及び酸素の濃度を可燃限界未満にできる	
		設計とする。	
		可搬型窒素ガス供給装置は,車両内に搭載された可搬型窒素ガス	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		供給装置発電設備により給電できる設計とする。	以佣石彻砂和建
			<柏崎刈羽7号機との比較>
			設計の差異
			・柏崎刈羽は炉心損傷後も耐圧
			強化ベント系を使用するがす
			川は炉心損傷後は耐圧強化~
			ント系を使用しないため、耐圧
			強化ベント系の記載はしない。
			(63 条で整理)
			(65 朱で登垤)

柏崎刈羽原子力発電所第7号機	元11番笙ノラントの記載との比較衣(VI-1-8-1)原子が作 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器フィルタベント系は、炉心の著しい損傷が発生し	設備名称の相違
		た場合において、原子炉格納容器内雰囲気ガスを原子炉格納容器調	設備名称の相違
		気系等を経由して、フィルタ装置へ導き、放射性物質を低減させた	
		後に原子炉建屋屋上に設ける放出口から排出(系統設計流量	設計の相違
		10.0kg/s (1Pd において)) することで、排気中に含まれる放射性物	・原子炉格納容器フィルタベン
		質の環境への放出量を低減しつつ、ジルコニウムー水反応、水の放	ト系の設計系統流量の相違。
		射線分解等により発生する原子炉格納容器内の水素及び酸素を大	
		気に排出できる設計とする。	
		原子炉格納容器フィルタベント系は、排気中に含まれる可燃性ガ	設備名称の相違
		スによる爆発を防ぐため、可搬型窒素ガス供給系により、系統内を	設備名称の相違
		不活性ガス (窒素) で置換した状態で待機させ、原子炉格納容器べ	
		ント開始後においても不活性ガス(窒素)で置換できる設計とする	
		とともに、系統内に可燃性ガスが蓄積する可能性のある箇所にはバ	
		イパスラインを設け、可燃性ガスを連続して排出できる設計とする	
		ことで、系統内で水素濃度及び酸素濃度が可燃領域に達することを	
		防止できる設計とする。	
		可搬型窒素ガス供給装置は, 車両内に搭載された可搬型窒素ガス	記載方針の相違
		供給装置発電設備により給電できる設計とする。	・可搬型窒素ガス供給装置の給
			電に関する設計方針について
			記載している。
		なお,詳細は添付書類「VI-1-8-2 原子炉格納施設の水素濃度低	
		減性能に関する説明書」に示す。	
		3.2.7 重大事故等時における水素爆発による原子炉建屋等の損傷	
		防止機能	
		炉心の著しい損傷が発生した場合において原子炉建屋等の水素	設計の相違
		爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃	・女川は静的触媒式水素再結合
		度上昇を抑制し、水素濃度を可燃限界未満に制御するための重大事	装置において水素処理が可能
		故等対処設備として,水素濃度制御設備である静的触媒式水素再結	であり,非常用ガス処理系は水
		合装置を設ける。	素処理を目的として設置した
			設備でないことから,重大事故
			等対処設備とはしていない。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番省ノラントの記載との比較数(VI-1-8-1 原寸炉 東海第二発電所	女川原子力発電所第2号機	備考
		水素濃度制御設備である静的触媒式水素再結合装置は、運転員の	設備名称の相違
		起動操作を必要とせずに、原子炉格納容器から原子炉建屋原子炉棟	IX VIII - CI - VIII - VIII - CI - VIIII - CI - VIII -
		内に漏えいした水素と酸素を触媒反応によって再結合させること	
		で、原子炉建屋原子炉棟内の水素濃度の上昇を抑制し、原子炉建屋	
		原子炉棟の水素爆発を防止できる設計とする。	
		なお,詳細は添付書類「VI-1-8-2 原子炉格納施設の水素濃度低	
		減性能に関する説明書」に示す。	
		3.2.8 重大事故等時における放射性物質拡散抑制機能	
		炉心の著しい損傷及び原子炉格納容器の破損に至った場合にお	
		いて,発電所外への放射性物質の拡散を抑制するための重大事故等	
		対処設備として、放水設備(大気への拡散抑制設備)及び海洋への	設備名称の相違
		拡散抑制設備(シルトフェンス)を設ける。また、原子炉建屋周辺	
		における航空機衝突による航空機燃料火災に対応できる設備とし	設備名称の相違
		て、放水設備(泡消火設備)を設ける設計とする。	
		大気への放射性物質の拡散を抑制するための重大事故等対処設	記載表現の相違
		備として、放水設備(大気への拡散抑制設備)は、大容量送水ポン	
		プ(タイプⅡ)により海水を取水し、ホースを経由して放水砲から	
		原子炉建屋へ放水できる設計とする。大容量送水ポンプ(タイプⅡ)	
		及び放水砲は、設置場所を任意に設定し、複数の方向から原子炉建	
		屋に向けて放水できる設計とする。また、原子炉建屋周辺における	
		航空機衝突による航空機燃料火災に対応するため, 大容量送水ポン	設備名称の相違
		プ(タイプⅡ)により泡消火薬剤混合装置を通して、海水を泡消火	
		薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺	
		へ放水できる設計とする。	
		海洋への放射性物質の拡散を抑制するための重大事故等対処設	
		備として、海洋への拡散抑制設備(シルトフェンス)は、シルトフ	設備名称の相違
		エンスで構成し、シルトフェンスは、汚染水が発電所から海洋に流	BY MINTELLIANS LEVE
		出する南側排水路排水桝、タービン補機放水ピット、北側排水路排	設計の相違
		水桝及び取水口に設置できる設計とする。	・シルトフェンス設置場所の相違

柏崎刈羽原子力発電所第7号機	元刊番笙ノブントの記載との比較衣(VI-18-1 原子) 東海第二発電所	女川原子力発電所第2号機	備考
	·	シルトフェンスは、海洋への放射性物質の拡散を抑制するため、	設備名称の相違
		設置場所に応じた高さ及び幅を有する設計とする。また、 <mark>破損時及</mark>	設計の相違
		び保守点検時のバックアップ用として、設置場所ごとに予備を保管	・バックアップ保有数の相違。
		する。	
			<柏崎刈羽7号機との比較>
			設計の差異
			・女川は放水砲による放水開始
			前にシルトフェンスを設置す
			ることで海洋への放性物質の
			拡散抑制対策が可能なため、放
			射性物質吸着材は、自主対策設
			備と位置付けている。
		3.2.9 重大事故等時の動荷重	
		0.2.0 里八年以中的少數同里	
		重大事故等時は、設計基準事故時と事故進展が異なるため、設計	
		基準事故時に生じる冷却材喪失事故時の動荷重及び逃がし安全弁	記載表現の相違
		作動時以外の動荷重が加わる。	
		そこで、炉心損傷防止対策の有効性評価における重要事故シーケ	
		ンス及び格納容器破損防止対策の有効性評価における評価事故シ	
		ーケンス(以下「重要事故シーケンス等」という。)ごとの事故進展	
		を考慮し、重大事故等時の動荷重を抽出した。	
		その結果、設計基準事故時の動荷重である冷却材喪失 <mark>事故</mark> 時及び	記載表現の相違
		逃がし安全弁作動時以外に,以下の重要事故シーケンス等における	
		動荷重を新たに抽出した。	
		・原子炉圧力容器外の溶融燃料ー冷却材相互作用時の蒸気発生に	
		伴う圧力上昇	
		・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
		時の格納容器ベントによる減圧	
		これらの動荷重については、影響を評価した結果、冷却材喪失 <mark>事</mark>	記載表現の相違
		故時の動荷重に対して同等以下であり、設計基準事故時の動荷重に	
		包絡される。	
		一方で,以下の重要事故シーケンス等の状態は設計基準事故時の	
		範囲を逸脱しており、この際に生じる逃がし安全弁作動時の動荷重	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		は設計基準事故時より大きくなる可能性が考えられる。	
		・全交流動力電源喪失のプール水の温度上昇時	
		・原子炉停止機能喪失時の逃がし安全弁 11 弁作動時	設備の相違
		・原子炉停止機能喪失時の <mark>原子炉圧力</mark> 上昇時	・逃がし安全弁設置台数の相違
		・高圧溶融物放出/格納容器雰囲気直接加熱の発生防止のため	0
		逃がし安全弁作動に伴う過熱蒸気発生時	
		これらのうち,原子炉停止機能喪失時の <mark>原子炉圧力</mark> 上昇時の動	荷
		重は、設計基準事故時の逃がし安全弁作動時の動荷重よりも大き	<
		なる可能性があることから、重大事故等時の動荷重として、新た	K
		考慮し、動荷重に対する構造健全性を確認する。	
		上記以外の状態については、影響を評価した結果、設計基準事	故
		の逃がし安全弁の動荷重に対して同等以下であり,設計基準事故	時
		の動荷重に包絡される。	
		なお、重大事故等時のサプレッションチェンバ内部構造物に加	わ 記載表現の相違
		る荷重のうち、チャギング荷重によるダウンカマ横方向荷重につ	い ・重大事故等時のダウンカマ様
		ては kN である。	方向荷重について記載してい
			<u>る</u>
		3.2.10 荷重の組合せ	
		原子炉格納施設の重大事故等時における荷重の組合せを表3-7	12
		示す。なお、応力計算はそれぞれの荷重の組合せの中で最も厳し	V \
		条件について行うが、SA 長期(L)及び SA 長期(LL)時において	サ 記載表現の相違
		プレッションチェンバ内に設置されるベント管,ベントヘッダ及	び・ベント系設備に対する組み合
		ダウンカマに組み合わせる圧力は、SA長期(L)及びSA長期(L	L)わせる圧力について記載して
		時に想定されるドライウェル内圧力とサプレッションチェンバ	内 いる
		圧力との最大圧力差を組み合わせる。また、圧力、温度及び冷却	
		喪失事故時の蒸気ブローダウンによる荷重等において、荷重の発	
		する時間が明らかに異なる場合は時間のずれを考慮する。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考
柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉格糸 東海第二発電所	
		A

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		4. 重大事故等時における原子炉格納容器の放射性物質閉じ込め	
		機能評価及びその他影響確認	
		重大事故等時の評価温度、評価圧力に対して原子炉格納容器の構	
		造健全性及び機能維持について評価する。	
		4.1 重大事故等時における原子炉格納容器の放射性物質閉じ込め	
		機能評価	
		4.1.1 評価方針	
		「3.2.1 重大事故等時の評価温度,評価圧力」に示す限界温度	記載表現の相違
		(200℃), 限界圧力 (2Pd) を用いて, その環境下での原子炉格納容	
		器の放射性物質閉じ込め機能について評価部位ごとに評価するこ	
		とにより、その機能が損なわれることがないことを確認する。	
		原子炉格納容器の放射性物質の閉じ込め機能を確認するため,	
		200℃, 2Pd の環境下で原子炉格納容器本体及び開口部等のリーク	
		パスとなる可能性のある部位を抽出し、規格を用いた構造健全性評	
		価にて原子炉格納容器の放射性物質閉じ込め機能について確認す	
		る。	
		さらに、福島第一原子力発電所での事故において、原子炉格納容	
		器からの漏えい要因の一つとして指摘されている原子炉格納容器	
		に設置されるフランジ部等のシール部についても評価部位として	
		抽出し、試験結果を用いた機能維持評価により原子炉格納容器の放	
		射性物質閉じ込め機能について確認する。	
		4.1.2 評価対象部位及び評価対象部位における機能喪失要因	
		図 3-1~図 3-9「原子炉格納容器バウンダリ及び隔離弁 全体概	
		要図」に示す原子炉格納容器バウンダリを構成する機器から、以下	
		のとおり評価対象部位を抽出し、評価部位ごとに放射性物質の閉じ	
		込め機能喪失の要因を抽出する。	
		評価対象部位として 200℃, 2Pd の環境下で原子炉格納容器の放	
		射性物質の閉じ込め機能が損なわれることがないよう原子炉格納	
		容器本体について強度評価する。また、原子炉格納容器の開口部及	<柏崎刈羽7号機との比較>
		び貫通部については、構造上原子炉格納容器の内圧等の影響により	
		リークパスになる可能性があるため、評価対象部位として抽出す	
		る。開口部のシール部についても、ガスケットの劣化及びシール部	
		の変形に伴いリークパスになる可能性があるため評価対象部位と	
		する。	
		原子炉格納容器の機能喪失要因としては脆性破壊、疲労破壊、座	
		屈及び延性破壊が考えられるため、これらの破損モードの中から原	

柏崎刈羽原子力発電所第7号機	元11番笙ノフントの記載との比較衣(VI-1-8-1 原士》 東海第二発電所	女川原子力発電所第2号機	備考
		子炉格納容器内の環境条件等を考慮し,評価対象ごとに想	定される
		機能喪失要因を抽出する。	
		機能喪失要因の詳細な抽出内容については別添1におい	て,評価 記載表現の相違
		対象ごとに説明する。	
		原子炉格納容器バウンダリ構成部である評価対象部位を	と以下に
		示す。また、バウンダリ構成部の概要図を図 4-1 に示す。	
		① 原子炉格納容器本体	
		(ドライウェル, サプレッションチェンバ, ベント管 (·	ベント管 設備の相違
		ベローズを含む。))	・格納容器型式の相違による評
			価対象の相違,以下同様。
		② ドライウェル主フランジ	設備名称の相違
		③ 機器搬出入用ハッチ	設備名称の相違
		④ 制御棒駆動機構搬出入口	
		⑤ 所員用エアロック	
		⑥ 逃がし安全弁搬出入口	
		⑦ 配管貫通部	
		・貫通配管	記載表現の相違
		・スリーブ	
		<ul> <li>端板</li> </ul>	記載表現の相違
		・フランジ部	記載表現の相違
		・閉止板	記載表現の相違
		・伸縮継手	記載表現の相違
		・短管 	記載表現の相違
		⑧ 電気配線貫通部	
			記載表現の相違
		⑨ 原子炉格納容器隔離弁	
		・原子炉格納容器調気系バタフライ弁	記載表現の相違
		・移動式炉心内計装系電磁弁	記載表現の相違
		・移動式炉心内計装系ボール弁	記載表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元 (1 番笙 ) フントの記載との比較宏(Wi-1-8-1 原子炉俗和 東海第二発電所	女川原子力発電所第2号機	備考
		②ドライウェル主フランジ  ③原子か格納容器隔離  ③電気配線質連部  ③電気配線質連部  ③で変な配線質連部  ③で変な配線質連部  ①ペント管ベローズ  ①サブレッションチェンバ  ①サブレッションチェンバ  ① 特別解析の容易に対しています。	
		図4-1 原子炉格納容器バウンダリ構成部の概要図 原子炉格納容器バウンダリ構成部の重大事故時における放射性物質の閉じ込め機能喪失の要因(以下「機能喪失要因」という。)として、原子炉格納容器内の温度、圧力条件や原子炉格納容器本体の変形から、表4-1に示す機能喪失要因が想定される。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	<u> </u>	大川原子力発電所第	備考		
		679	表 4-1 評価対象における機	能喪失要因		設備の相違
					機能喪失要因	・格納容器型式の相違による評
		371	而対象	構造部	シール部	
		①原子炉格納容器本体	脚部等及びドライウェル基部		- 1	価対象及び機能喪失要因の相
			ベント管ベローズ フランジ	被労破壊 延性破壊	開口。シール能力低下	違
		②ドライウェル主フランジ	締付ボルト	延性破壊	連は、シールを分配す	
			円筒胴取付部	延性破壞	-	
		③機器搬出入用ハッチ	円筒期	延性破壞	変形。シール能力低下	
			競板	座網		
		OT MANUFACTURE OF PROPERTY AND	円筒順取付部	延性破壊		
		①制御棒駆動機構搬出入口	円箔胴 鏡板	延性破壊	変形。シール能力低下	
			軍及び隔壁	延性破壊	変形、シール能力低下	
		③所負用エアロック	円倚胴	延性破壊	-	
			シール部(扉以外)	_	シール能力低下	
			円筒網	延性破壊	-	
		⑥逃がし安全弁搬出入口	競板	延性破壊	-	
		The second secon	フランジ センジボルト	延性破壞 延性破壞	開口、シール能力低下	
			貫通配管	延性破壊		
			スリーブ	延性破壞。		
				座網	-	
			端板	延性破壞	-	
		<b>②配管貫通部</b>	ボルト締付車板 プランジ	延性破壊		
			縮付ポルト	延性破壊 延性破壊	開口、シール能力低下	
			閉止板	延性破壞	-	
			仲稲継手	被労破壊		
			短管	延性破壊	-	
			スリーブ	延性破壞	=	
		(8)電気配線貫通部	アリプリ	延性破壊	-	
			モジュール	延性破壊	シール能力低下	
		1	耐圧部材	延性破壞	- MIROS (80.1	
		⑤原子炉格納容器隔離弁	シール部	_	シール能力低下	
		4.1.3 評価方法 機能喪失要因に対す の閉じ込め機能を確保 いずれかの方法により 及びシール部の機能 (a) 告示第501号 (b) 設計・建設規格 (c) 既往研究又は解 評価方法による評価	Rできる判断基準を の評価し、200℃、 維持を確認する。 ででは設計・建設規 の準用等による評 が結果等を活用し	を設定し 2Pdの環境 格に準拠 価 た評価	, 以下の(a)〜(c) 寛下での構造健全 加した評価	<i>の</i>

先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 設備の相違 評価対象機器の選定 ・格納容器型式の相違による評 · 原子炉格納容器本体 胴部等及びドライウェル基部、ベント管ベローズ 価対象の相違 ドライウェル主フランジ フランジ、縮付ポルト ・機器搬出入用ヘッチ 円筒胴取付部, 円筒胴, 鏡板 ·制御棒駆動機構搬出入口 円筒胴取付部, 円筒胴, 鏡板 所員用エアロック 扉及び隔壁, 円筒胴。シール部 ・逃がし安全弁搬出人口 円筒輌、鏡板、フランジ、ヒンジボルト ·配管貫通部 質通配管、スリーブ、爆板、ボルト綿付平板、フランジ、綿付ボルト、関止板、伸縮継手、短管 · 電気配線質通部 スリーブ、アダプタ、ヘッダ、モジュール · 原子炉格納容器隔離弁 耐圧部材、シール部 機能喪失要因の抽出と評価方法の設定 シール部 (試験又は解析結果を用いた評価) 構造部(規格を用いた評価) 既往研究又は解析結果等を 活用した評価で確認 表 4-2 の評価方法(c)参照 告示第501号又は 設計・建設規格に準拠 した評価で確認できる 表 4-2 の評価方法(a)参照 設計・建設規格の準用等による 評価により確認 表 4-2 の評価方法(b)参照 図 4-2 評価方法による評価対象の分類 図 4-2 評価方法による評価対象の分類

柏崎刈羽原子力発電所第7号機	元们番笙ノブントの記載との比較衣(VI-1-8-1 原于炉格料施設) 東海第二発電所	女川原子力発電所第2号機						備考
								設備の相違
							・格納容器型式の相違による評	
				表 4-2 評価	面対象の	の分類及び評価内容 (1/3)		価対象及び機能喪失要因の相
		評価対	(条機器	想定される 機能喪失要因	詳価 方法**	評価方法の概要で	特定基準*2	違
			MERCAN IN	延性破壊 (構造・形状不連続部)	(a)	添付書類「VI-3-3-6-1-1 原子炉格 「VI-3-3-6-2 圧力低減設備その他	納容器本体の強度計算書」及び の安全設備の強度計算書」に記載	記載方針の相違
		①原子炉 格納容器	脚部等及 びドライ ウェル基 部	延件破壊 (一般部)	(a)	添付書類「VI-3-3-6-1-1 原子炉格線 -3-3-6-2 圧力低減設備その他の安	容器本体の強度計算書 及び「VI 全設備の強度計算書  に記載	・構造健全性評価として各計算
		本体		延性破壊 (ドライウェル基部)	(a)	靠付書類「VI-3-3-6-1-1 原子炉格a	authoris communication	書にて評価している。
			ペント管ベローズ	疲労破壊 延性破壊	(a)	掛付書籍「VI-3-3-6-2 圧力鉄減設書」に記載		
		②ドライウ ンジ	ェル主フラ	(フランジ及び縮付ボ ルト)	-	添付書類「VI-3-3-6-1-1 原子炉格線 有限要素法を用いた弾塑性解析結果		
		-		開口、シール能力低下 延性破壊		有限要素法を用いた無塑性解析結果 による側口整評値及びガスケットの 試験結果に基づき評価	*	
				(円筒馴取付部) 延性破壊	(a)	添付書類「VI-3-3-6-1-2 機器輸出 添付書類「VI-3-3-6-1-2 機器輸出	White Committee	
		③機器搬出	入用ハッチ	(円筒綱) 座陽 (鏡板)	(a)	添付書類「VI-3-3-6-1-2 機器搬出		
				変形、シール能力低下	(c)	有限要素法を用いた弾型性解析結果 による変形量評価及びガスケットの 試験結果に基づき評価	シール部が健全であること (許容変形量以下であるこ	
				延性破壊 (円筒制取付部)	(a)	武統和来に至っされ場 添付書類「VI-3-3-6-1-2 機器搬出	***	
		(1) 80 60 60 50	動機構搬出	延性破壊 (円筒脚)	(a)	非付書類「VI-3-3-6-1-2 機器搬出	入口の強度計算書」に記載	
		λп		/ / / / / / / / / / / / / / / / / / /	(a)	添付書類「VI-3-3-6-1-2 機器搬出	入口の強度計算者』に記載	
				変形、シール能力低下	(c)	有限要素法を用いた弾塑性解析結果 による変形量評価及びガスケットの 試験結果に基づき評価	と シール部が健全であること (許容変形量以下であること)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原	備考				
							設備の相違
			# 0-C 2F	医対象の	の分類及び評価内容(2/3)		・格納容器型式の相違による評
		印度対象機能	教育38.5 <b>确建市大学</b> 20	力体		HOAD!	価対象及び機能喪失要因の相
			是性療療 (第五7編集)	60	### /VEDDETS HTF:	**************************************	違
			(000)	-00	8085 Wassess with	******** CR#	
		当後義用にTUッタ	(事的) ミース優力能下 (種のシース数)	107	機関エサダ軍のはこのことが要す により変形要称表示がガイマットの	た シール部が確全であること の (数容度栄養以子であるこ	記載方針の相違
			ラール能力指す (単点外のシール他)	361	が発出する。 シールはの発験を単元で移転を任い より評価	MREE OWNER THE	・構造健全性評価として各計算 書にて評価している。
			総合連絡 (円面銀行の機能)	168	お付着等 パリーコモンス 海田東北	Age <b>保存产品等</b> 。它是 <b>第</b> :	
		<b>市場がし企会中集出</b> 人	を代達場 (フランジ系がモンジ ボルド)	0.0	銀行事務 /VEコロセンコ 機関単出	A0498988 FRE	
			●ロ、5一キ他の前す	:07	有事を意味を同いた単独性和を結果に よる単の最終を見びがえかっしたは もないずん的無効果に基づき評価	(教教教の養女をおなこと (教教教の養女をすること)	
			(548.E)	(ta)	部の事業 ・ 一般のおおりません。 ・ 一般のようによります。 ・ 他のである。 ・ 他ので。 ・ 他のである。 ・ 他のである。 ・ 他のである。 ・ 他のである。 ・ 他のである。 ・ 他のである。	書書、「リンフンの 京京別から 市計算書、「リンフンの 京子が リンマリン 利用時間数とは影響 はエストが第二年間子が 基金。「リンコを1・4 間子が 活色が検索計算書」「リン 工芸所算書」「リンカンの	
	TENROR	現代 <b>申申</b> - (3 リータ)	140	部の事務「VO-コンチェン 情形療法 フセン・ ボラや特許可能を含まる 者」に形象	入立の機能計算者。当び「Vbつ」 利用で整め最終者機能の機能計算		
		## (#9~9)	(a)	部の事務 V-ココモンモ 用于の物を 者性の発音が発表:   全部	OUSEY BARR CRIME		
			(海外)	(4)	部の事務 'Xt コロケコ・ 用于中特別 連絡の指律対策事: 仁包載	<b>的中国和学家</b> 由和自己 <b>和</b> 生民的原则	
			(24 + MH ES)	w	Bir 事覧「VD つ 0 1 2 複数数の つ 0 1 4 数での数数が概念を発達が 更」に対象	入口の機能計算を、長力で知っ 同口管性を終表達成の機能計算	
			佐住政権 (アセンジ)	60	部の事務「ロッコモンタ 情報報の コモンタ 第三字報をお開発を表達され 第三字記載	入口の機度計算者。 当は「対コ 同日で電性配用者通用の機度計算	

				7発電所第2号機		備考	
						設備の相違	
460		W-4-3 18	<b>佐村県</b> (	0分類及10評価内容(3.2%)		・格納容器型式の相違による評	
SP-Mr. o	10.00	無理される 機能表示を図	作權 方在"		和名數學。	価対象及び機能喪失要因の相	
		SERVICE TO	(6)	前付書名「VI->コーコン 物的単元 コーコー 第75年前の前記を表示的 第1日記載	人口の保険計算者: 及び「VD-10 8日で電電影響書通知の検索計算	違	
	i i	側は、 シール能力能下 (アウンジ数)	100	一般式によるフサンン製の量評価値 単独でガステットの飲食値楽に基づ 手評価	1 (野野株は豊保下であること 2 (野野株は豊保下であるこ と)	記載方針の相違	
ceres	TERRAN	他性関係 (限の数)	40	部の事務 (サラスチン4 - ボデが指揮 連絡へ発発対策者) に記載	的自然的 安全 通报员 计电池系统 國	・構造健全性評価として各計算	
		別不安原 (外報を干)	(a)	部代書館/VDココカンモ 用子が移向 書館の指字計算書) に影像	NO DECEMBER OF STREET	書にて評価している。	
		(0.8) (0.00)	(66)	おけ事性(なうりのなる 何子を取る 者が小規模計算者) に記載	*********		
	S-	\$5.00 (a) (-7)	tal	近付書覧/いつかかり十 哲子が称名 者称の特殊所募集) に形蔵	的主命配管政治核及扩展性配换的		
0.075.0	***	がたいます。 (アダプラ)	60	e Co	20		
22.00	10 mm	がない。 (一分が)	w	部の事務「いっこうこと ボイが指摘 通信の指揮的事業」に記載	<b>非国际管理者目录中电性系统</b>		
		5一片能力低す (モジュール)	(60)		22		
	※ 十分 株 株 か 本 本	STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN	(84)	CONTRACTOR OF THE PROPERTY OF			
	73/4	5一の最力能で	160	Control of the Contro	E.		
****	事業法が 心内計物	(第17年的)	180	基づく評価」に基づき、非確定能の報 日曜歌を評価	BARRESPORE		
-	-461	シール最力化す	(e)	4.5 音楽	Property of the second second		
	日本式が ら内を施 品が一つ	OWNERS	184		-		
12	5		47		1、5一の機能を維持するこ と		
*2	(a) <b>S</b>	主研究又以解析結	集等を活	用した評価			
	京衛工工会 京都 中 日 市 東 市 南 福和市	参照文配達産機 が かかま を から は が か が か が か が か か が か か か か か か か か か	(中国産業を制 (中国産業) (中国産業	で有意義的 (でランクを) (でランクを) (の の の の の の の の の の の の の の の の の の の	できる (中央 ) (1) (1) (1) (1) (1) (1) (1) (1) (1) (	の機能を のかり (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
·		4.1.4 評価結果	
		原子炉格納容器本体及び原子炉格納容器に設置されている開口	
		部(ドライウェル主フランジ,機器搬出入用ハッチ, <mark>制御棒駆動機</mark>	設備名称の相違
		構搬出入口,所員用エアロック及び逃がし安全弁搬出入口)につい	設備の相違
		ては、告示第501号の規格式による応力評価等を行い、判定値を	適用規格の相違
		満足することにより 200℃, 2Pd の環境下での構造健全性を確認し	
		te.	
		原子炉格納容器貫通部(配管貫通部,電気配線貫通部)及び原子	
		炉格納容器隔離弁については、告示第501号及び設計・建設規格	適用規格の相違
		等による評価を行い、判定値を満足することにより 200℃, 2Pd の	
		環境下での構造健全性を確認した。	
		また、ドライウェル主フランジ、機器搬出入用ハッチ等の開口部	設備名称の相違
		のシール部、原子炉格納容器調気系バタフライ弁等については既往	設備名称の相違
		研究又は解析結果を基に評価を行い, 200℃, 2Pd の環境下での機能	記載表現の相違
		維持が可能であることを確認した。	
		評価対象部位ごとの詳細な評価方法及び評価結果を表 4-3 及び	記載表現の相違
		別添1に示す。	
		,	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考	
柏崎刈羽原子力発電所第7号機	東海第二発電所		(備考 設備の相違 ・格納容器型式の相違による評 価対象及び機能喪失要因の相違 記載方針の相違 ・構造健全性評価として各計算 書にて評価している。	
		(2) (1) (2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表 (VI-1-8-1 原子炉格納加 東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・格納容器型式の相違による評価対象及び機能喪失要因の相違 記載方針の相違 ・構造健全性評価として各計算
		新田高等 (1992年 1992年 1992	書にて評価している。
		# 4-3 音子信用 東京主 か (2.7.2) # 20	
		(1) 日本	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機
柏崎刈羽原子力発電所第7号機

先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)			
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		カスケット カスケット カスケット センジポルト A 窓路線 機器療出入用ハッチ	設備の相違・格納容器型式の相違
		第三年   第三年	(0,50)

及偏の相違 ・格納容器型式の相違	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
選りる 対子を発表されている。 選りる 対子を発表さないウンディ構造業業等(L/引			第四年 10年 10年 10年 10年 10年 10年 10年 10年 10年 10	設備の相違・格納容器型式の相違

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納) <b>東海第二発電所</b>	女川原子力発電所第2号機	備考
		及子が統領を認い報 スリープ 場板 再連配管 配管費通部 (資通配管、スリープ、端板)	設備の相違・格納容器型式の相違
		ボルト線付平板 ボルト線付平板 スリープ スリープ スリープ スリープ	
		配管資通部 (フランジ館) 図 4-3 原子炉格納容器パウンダリ構成部概要図 (4/8)	

: 前回提出時からの変更箇所

	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格網		
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		Vari	設備の相違
		第三年 (48.46) 第三年 (	・格納容器型式の相違
		配管真連絡 (閉止板)	
		THE STATE OF THE S	
		紀智賞進郎(仲福継手、報管)	
		図 4-3 原子が格納容器パウンダリ構成能觀要図 (5/9)	

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納) 東海第二発電所	女川原子力発電所第2号機	備考
		原子が体納容器 内側 スリーク アダンタ アダンタ エ気配発質連郎 (高電圧用)	設備の相違 ・格納容器型式の相違
		度子炉核納容器 内側 原子炉核納容器 外側 スリーブ アダナタ モジューブ アダナタ エジュー マック (6/8) 第 (6/8) 第 (4/8) 第 (6/8)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器隔離弁(原子炉格納容器調気系パタフライ弁)	設備の相違・格納容器型式の相違
		##レート報 # (移動式炉心内計装系電磁弁) 原子炉格納容器隔離弁 (移動式炉心内計装系電磁弁) 図 4-3 原子炉格納容器パウンダリ糖成部概要図 (7/8)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉格納施語 東海第二発電所		機考設備の相違・格納容器型式の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		4.2 その他原子炉格納容器の限界温度,圧力に対する影響確認	記載表現の相違
		原子炉格納容器の限界温度, 圧力の環境下における評価に対して	記載表現の相違
		影響を及ぼす可能性のある設備の経年劣化,200℃,2Pdが負荷され	記載表現の相違
		た後の耐震性,貫通部の核分裂生成物(以下「FP」という。)沈着	
		について影響を確認する。	
		4.2.1 確認内容	
		原子炉格納容器の放射性物質の閉じ込め機能の評価に対して、影	
		響を及ぼす可能性のある対象機器の経年劣化、限界温度、圧力負荷	記載表現の相違
		後の耐震性への影響等,以下の内容について影響を確認する。	
		(1) 経年劣化の影響	
		原子炉格納容器の限界温度,圧力 (200℃, 2Pd) の環境下での	記載表現の相違
		放射性物質の閉じ込め機能の健全性が,経年劣化により低下して	
		いないことを確認する。確認方法及び確認結果の詳細は別添1別	
		紙1に示す。	
		(2) 限界温度, 圧力負荷後の耐震性への影響	記載表現の相違
		原子炉格納容器が限界温度,圧力 (200℃, 2Pd) が負荷された	記載表現の相違
		後の耐震性の影響について確認する。確認方法及び確認結果の詳	
		細は別添1別紙2に示す。	
		(3) 貫通部のFP沈着による影響	
		炉心溶融時, 貫通部のリークパスにFPが沈着した場合の温度上	
		昇について確認する。確認方法及び確認結果の詳細は別添1別紙3	
		に示す。	
		4.2.2 確認結果	
		(1) 原子炉格納容器の閉じ込め機能を有する箇所における経年	
		劣化の対策について確認し、原子炉格納容器の限界温度、圧	記載表現の相違
		力における閉じ込め機能への影響はないことを確認した。	記載表現の相違
		(2) 重大事故等時の温度, 圧力を超える限界温度, 圧力が負荷	記載表現の相違
		された後の耐震性の影響については,限界温度,圧力の環境	記載表現の相違
		下において残留ひずみが生じないことを確認したことから,	評価結果の相違
		発生応力に与える影響はない。地震の許容応力は,放射性物	
		質の閉じ込め機能の確認にて考慮した許容応力の制限内であ	
		り、さらに限界温度、圧力負荷前と同様の挙動を示すことか	記載表現の相違
		ら、耐震性に影響はないことを確認した。	
		(3) 炉心溶融時の原子炉格納容器内のFPの沈着による温度上昇	
		について、格納容器破損防止対策の有効性評価における評価	
		事故シーケンスのうち雰囲気圧力・温度による静的負荷(格	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番省ノフントの記載との比較衣(VI-1-8-1 原于炉恰和 東海第二発電所	女川原子力発電所第2号機	備考
		納容器過圧・過温破損)を想定した条件にて、原子炉格納容器	
		のリークパスへFPが飛散し、リークパス内がFPで満たされ目	
		詰まりしたと保守的に仮定し、FEM解析により熱解析を実施し	
		た。評価結果としては,原子炉格納容器の貫通部リークパス	
		箇所の最高温度は約178℃となり、原子炉格納容器の限界温度	評価結果の相違
		である200℃を下回ることから原子炉格納容器の限界温度, 圧	記載表現の相違
		力に影響はないことを確認した。	
			<柏崎刈羽7号機との比較>
			引用文献の使用の相違
			<ul><li>・柏崎刈羽は、既工認と同様ジ</li></ul>
			ェット力に係る記載を行って
			おり,これらにて引用文献を使
			用している。
			2 3