
前回提出時からの変更箇所

| 相崎め11羽原子力発電所第 7 号機 | 東海第二発電所 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| 女川原子力発電所第2号機 |  | 備考 |
| :---: | :---: | :---: |
| 3．1．19 泠却材喪失事故時の荷重 $\quad$ ．．．．．．．．．．．．．．．．．．．．． | 28 | 記載表現の相違 |
| 3．1．20 逃がし安全弁作動時の荷重 | 31 |  |
| 3．1．21 地震荷重 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | 31 | 記載表現の相違 |
|  |  | －荷重の組合せにおいて地震荷 |
|  |  | 重を考慮していることから，使 |
|  |  | 用する地震荷重の掲載図書を |
|  |  | 記載。 |
| 3．1． 22 荷重の組合せ | $\begin{aligned} & \frac{31}{33} \end{aligned}$ | ＜柏崎刈羽 7 号機との比較＞ |
| 3．1．23 繰返し荷重に対する解析 ．．．．．．．．．．．．．．．．．．．．．． |  | 記載方針の相違 |
|  |  | －柏崎刈羽では 5 項にて整理。 |
| 3.2 重大事故等時における設計条件 | 3939 |  |
| 3．2．1 重大事故等時の評価温度，評価圧力 $\ldots$ ．．．．．．．．．． |  |  |
| 3．2．2 重大事故等時における原子炉格納容器の熱の輸送 |  |  |
|  |  |  |
| 3．2．3 重大事故等時における原子炉格納容器冷却機能．．． |  |  |
| 3．2．4 重大事故等時における原子炉格納容器の過圧破損 |  |  |
|  |  |  |
| 3．2．5 重大事故等時における原子炉格納容器下部の溶融 |  |  |
| 炬心冷却機能 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |  |  |
|  |  |  |
|  |  |  |
| 3．2．7 重大事故等時 |  |  |
|  |  |  |
| 3．2．8 重大事故等時における放射性物質拡散抑制機能．．． |  | 記載表現の相違 |
|  |  |  |
| 3．2．10 荷重の組合せ ．．．．．．．．．．．．．．．．．．．．．．．．．．．． |  | ＜柏崎刈羽 7 号機との比較＞記載方針の相違 <br> －柏崎刈羽では設計基準事故時 と重大事故等時の両方をまと めて記載している。 |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 4．重大事故等時における原子炉格納容器の放射性物質 |  |  |
| 4.1 重大事故等時における原子炉格納容器の放射性物質 |  |  |
|  |  |  |
| 4．1．1 評価方針 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |  |  |
| 4．1．2 評価対象部位及び評価対象部位における |  |  |
|  |  |  |


 ：前回提出時からの変更箇所


| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 建屋原子炉棟から直接大気に放射性物質が漏えいしないように，非常用ガス処理系を設置する設計とする。 | 設計の相違 <br> －女川は非常時の原子炉建屋の ガス処理設備を非常用ガス処理系のみ設置している。 |
| 2.2 重大事故等時における基本方針 <br> 原子炉格納容器は，重大事故等時の条件下においても放射性物質 の閉じ込め機能を有する設計とする。 <br> 重大事故等時の原子炬格納容器内の熱を輸送するために用いる原子炬格納容器フィルタベント系は，フィルタ装置により放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出する ことで，排気中に含まれる放射性物質の環境への放出量を低減しつ つ，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。また，耐圧強化ベント系は，原子炉格納容器内雰囲気ガスを排気筒を通して原子炉建屋外に放出する ことで，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場で ある大気へ輸送できる設計とする。なお，可搬型窒素がス供給系は，可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止する ために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。また，原子炉格納容器 フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防 ぐため，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント後においても不活性ガス（窒素）で置換でき る設計とする。 | 基本方針内で設計基準事故と重大事故等で節を分割 <br> 設備名称の相違建屋構成の相違記載表現の相違 <br> 設備名称の相違設計の相違 <br> ＜柏崎刈羽 7 号機との比較＞表現の相違 <br> －技術基準規則第 63 条として使用する原子炉格納容器フィ ルタベント系は，炬心損傷前に使用するものであるが，技術基準規則解釈の 65 条準用要求に従い，女川 2 号では 65 条と同様の記載としている。 |
| 重大事故等時の原子炉格納容器内の泠却のために用いる原子炉格納容器代替スプレイ椧却系（常設）及び原子炉格納容器代替スプ レイ泠却系（可搬型）は，復水移送ポンプ又は大容量送水ポンプ（タ イプ I ）により原子炉格納容器内のドライウェルスプレイ管からド ライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることができる設計とす る。また，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水泠却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプレッションチェンバのプール水 をドライウェル内及びサプレッションチェンバ内にスプレイ並び | 設計の相違 <br> －常設設備において，東海第二 は新設設備（常設低圧代替注水系ポンプ）を用いるが，女川は既設設備（復水移送ポンプ）を使用する。また，可搬型設備に おいて，女川は 1 水源 1 タイプ の可搬型ポンプ車による対策 としており，東海第二は 2 水源 |


前回提出時からの変更箇所
前回提出時からの変更箇所















| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  | 3．1．5 耐圧試験圧力 <br> 原子炬格納容器の耐圧試験圧力は，施設時に適用された告示第 5 01 号第 104 条第 1 号八に基づき，最高使用圧力 427 kPa （ $4.35 \mathrm{~kg} / \mathrm{cm}^{2}$ ）の 1.125 倍である $481 \mathrm{kPa}\left(4.9 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ で気圧試験を行い原子炉格納容器の健全性を碓認する。 <br> 以上より，原子炉格納容器の耐圧試験圧力 $481 \mathrm{kPa}\left(4.9 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ とする。 | 規格の改正年度による相違設計条件及び格納容器型式に よる仕様の相違 |
|  |  | 3．1．6 開口部 <br> 開口部となるドライウェル主フランジ，機器搬出入用ハッチ，逃 がし安全弁搬出入口，制御棒駆動機構搬出入口，サプレッションチ ェンバ出入口（以下「ハッチ類」という。）及び所員用エアロックは十分な気密性を保つ設計とし，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E AC4203）に定める漏えい試験のうちB種試験ができる設計と する。 | 格納容器型式に伴ら設備名称 の相違 |
|  |  | 所員用エアロックは，扉の開閉状態を管理するため，所員用エア ロックの扉が開いた場合には中央制御室に警報を発信する。また，所員用エアロックの扉は，両方の扉が同時に開かないようにインタ ーロックを設ける設計とする。 <br> ハッチ類は，原子炉格納容器の貫通部にフランジ付の胴板が溶接 |  |



 ：前回提出時からの変更箇所




 ：前回提出時からの変更箇所



















| 柏崎刈羽原子力発電所第 7 号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | ここに， <br> Sa ：炭素鋼の $\square$回の繰返しに対する許容ピーク応力強さ $\square$ MPa ） <br> したがって，疲れ解析が不要となる異種材結合部の許容最大温度差は温度差（ $161^{\circ} \mathrm{C}$ ）より大きくなるので本条項を満足している。 | ＜柏崎刈羽 7 号機との比較＞設計条件及び格納容器型式に よる仕様の相違 |
|  |  | f．容器に接続される管からの反力その他機械的荷重及び地震動 による応力の全振幅の検討（告示第 5 0 1 号第13条第1項第3号へ準用） <br> 荷重の繰返し回数は，原子炉の起動停止及び燃料交換のサイク ル数 $\square$回，地震荷重が加わるサイクル数 590 回より，回数に余裕をみて $\square$回とする。荷重の繰返し回数 $\square$回に対応する許容ピーク応力強さは， $\square$ MPaとなる。ここで，原子炉格納容器の機械的荷重及び地震動による応力の全振幅はいかなる場所 でも $\square$ MPaを超えることのないよう設計しているので本条項 を満足している。 | ＜柏崎刈羽 7 号機との比較＞ プラント固有の設計の相違 |
|  |  | （2）設計•建設規格に基づく繰返し荷重に対する解析 <br> a．大気圧から運転圧力になり，再び大気圧に戻るサイクル数の検討（設計•建設規格 PVB－3140（1）） <br> 設計•建設規格に定められる許容引張応力 $S$ の 3 倍の値は $3 \times 131=$ 393 MPa であり，これに対応する許容繰返し回数 N は $\square$ である。 ここで設計•建設規格に示される運転圧力を原子炉格納容器の最高使用圧力と対応させてみると，その回数に $\square$回でNより小さいの で本条項を満足している。 | 適用規格の明確化記載表現の相違 <br> ＜柏崎刈羽 7 号機との比較＞ プラント固有の設計の相違 |
|  |  | b．負荷運転時における圧力変動の全振幅の検討（設計•建設規格 PVB－3140（2）） <br> 疲労解析の対象となる圧力変動の全振幅は PVB－3140（2）a．より，次のように求める。 $\begin{aligned} & \mathrm{Am}=\frac{1}{3} \cdot P \cdot \frac{S^{\prime}}{S}=\square M P a \\ & \text { ここに, } \\ & P \quad: \text { 最高使用圧力 }(427 \mathrm{kPa}) \end{aligned}$ | 設計条件及び格納容器型式に よる仕様の相違 |
|  |  | ```\(S^{\prime}\) : 炭素鋼の \(10^{6}\) 回の繰返しに対する許容ピーク応力強さ \(\square\) \(\mathrm{MPa})\)None``` |  |



















| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 原子炉格納容器代替スプレイ椧却系（可搬型）は，大容量送水ポ | 設備名称の相違 |
|  |  | ンプ（タイプI）により代替淡水源の水を残留熱除去系等を経由し | 設計の差異 |
|  |  | て原子炉格納容器内のドライウェルスプレイ管からドライウェル | －女川は 1 水源，1タイプの可 |
|  |  | 内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに | 搬型ポンプ車による対策とし |
|  |  | 放射性物質の濃度を低下させることができる設計とする。 | ている。東海第二は 2 水源， |
|  |  |  | タイプの可搬型ポンプ車によ |
|  |  |  | る対策としている。 |
|  |  | 原子炉格納容器代替スプレイ泠却系（可搬型）は，代替淡水源が | 記載方針の相違 |
|  |  | 枯渇した場合において，重大事故等の収束に必要となる水の供給設 | －設置（変更）許可を踏襲し， |
|  |  | 備である大容量送水ポンプ（タイプ I）により海を利用できる設計 | 代替淡水源が枯渴した場合の |
|  |  | とする。 | 海の利用について記載してい |
|  |  |  | る。 |
|  |  | 原子炉格納容器代替スプレイ泠却系（可搬型）は，非常用交流電 | 設備名称の相違 |
|  |  | 源設備に加えて，代替所内電気設備を経由した常設代替交流電源設 | 記載方針の相違 |
|  |  | 備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま | －非常用電源設備からの給電も |
|  |  | た，大容量送水ポンプ（タイプ I）は，空冷式のディーゼルエンジ | 可能であるため記載している。 |
|  |  | ンにより駆動できる設計とする。 |  |
|  |  | 原子炬格納容器代替スプレイ泠却系（可搬型）は，灲心の著しい | 設備名称の相違 |
|  |  | 損傷及び原子炉格納容器の破損を防止するための設備として兼用 |  |
|  |  | する設計とする。 |  |
|  |  | 残留熱除去系（格納容器スプレイ泠却モード）は，常設代替交流 | モード名称の相違 |
|  |  | 電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び | 表現の相違 |
|  |  | 残留熱除去系熱交換器によりサプレッションチェンバのプール水 | －残留熱除去系熱交換器も使用 |
|  |  | をドライウェル内及びサプレッションチェンバ内にスプレイする | するため記載している。 |
|  |  | ことで原子炉格納容器を椧却できる設計とする。 |  |
|  |  | 残留熱除去系（サプレッションプール水椧却モード）は，常設代 | モード名称の相違 |
|  |  | 替交流電源設備からの給電により機能を復旧し，残留熱除去系ポン |  |
|  |  | プ及び残留熱除去系熱交換器により，サプレッションチェンバのプ | 設備名称の相違 |
|  |  | ール水を泠却することで原子炉格納容器を泠却できる設計とする。 |  |
|  |  | 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 |  |
|  |  | 灲心の著しい損傷が発生した場合において，原子炉格納容器の過 |  |
|  |  | 圧による破損を防止するために必要な重大事故等対処設備として， |  |
|  |  | 原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧 |  |
|  |  | 力及び温度を低下させるための設備である代替循環泠却系及び原 |  |


| 柏崎刈羽原子力発電所第 7 号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 子炉格納容器内の圧力を大気中に逃がすための設備である原子炉格納容器フィルタベント系を設ける。 | 設備名称の相違 |
|  |  | 代替循環冷却系は，代替循環泠却ポンプによりサプレッションチ | 設計の相違 |
|  |  | エンバのプール水を残留熱除去系熱交換器にて泠却し，残留熱除去 | －原子炉格納容器構造の相違に |
|  |  | 系等を経由して原子炉圧力容器へ注水及び原子炬格納容器内へス | より，東海第二では代替循環泠 |
|  |  | プレイすることで，原子炬格納容器バウンダリを維持しながら原子 | 却系を使用しない場合の原子 |
|  |  | 炉格納容器内の圧力及び温度を低下できる設計とする。 | 炬格納容器ベント時間が他の |
|  |  |  | 原子炉格納容器型式よりも短 |
|  |  |  | いことをふまえて，代替循環冷 |
|  |  |  | 却系の更なる信頼性向上のた |
|  |  |  | め，代替循環冷却系を多重化し |
|  |  |  | ている。 |
|  |  | 原子炉圧力容器に注水された水は，原子炉圧力容器又は原子炉格 | 表現の相違 |
|  |  | 納容器内配管の破断口等から流出し，原子炉格納容器内ヘスプレイ | 設備名称の相違 |
|  |  | された水とともに，ベント管を経て，サプレッションチェンバに戻 |  |
|  |  | ることで循環できる設計とする。 |  |
|  |  | 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気 | 設計の相違 |
|  |  | 設備を経由した常設代替交流電源設備からの給電が可能な設計と | －女川は「溶融炬心・コンクリ |
|  |  | する。 | ート相互作用」に係る有効性評 |
|  |  |  | 価解析において，非常用交流電 |
|  |  |  | 源に期待しているため記載し |
|  |  |  | ている。 |
|  |  | 原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容 | 設備名称の相違 |
|  |  | 器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フ | 表現の相違 |
|  |  | イルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等 |  |
|  |  | で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等 |  |
|  |  | を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原 |  |
|  |  | 子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd | 設計の相違 |
|  |  | において））することで，排気中に含まれる放射性物質の環境への | －原子炉格納容器フィルタベン |
|  |  | 放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下でき | ト系の設計系統流量の相違。 |
|  |  | る設計とする。 |  |
|  |  | フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放 | 設計の相違 |
|  |  | 射性物質，ガス状の無機よう素及び有機よう素を除去できる設計と | －フィルタ装置設置個数の相 |
|  |  | する。また，無機よう素をスクラバ溶液中に捕集•保持するために | 違。女川はフィルタ装置3台を |


| 柏崎刈羽原子力発電所第 7 号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | アルカリ性の状態（待機状態において pH 13 以上）に維持する設計 | 並列に設置。 |
|  |  | とする。 |  |
|  |  | 原子炉格納容器フィルタベント系はサプレッションチェンバ及 | 設備名称の相違 |
|  |  | びドライウェルと接続し，いずれからも排気できる設計とする。サ プレッションチェンバ側からの排気ではサプレッションチェンバ |  |
|  |  | の水面からの高さを確保し，ドライウェル側からの排気では，ドラ |  |
|  |  | イウェル床面からの高さを確保するとともに有効燃料棒頂部より | 記載表現の相違 |
|  |  | も高い位置に接続箇所を設けることで，長期的にも溶融炬心及び水 |  |
|  |  | 没の悪影響を受けない設計とする。 |  |
|  |  | 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性が | 設備名称の相違 |
|  |  | スによる爆発を防ぐため，可搬型窒素がス供給系により，系統内を | 設備名称の相違 |
|  |  | 不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ | 記載表現の相違 |
|  |  | ント開始後においても不活性ガス（窒素）で置換できる設計とする | 記載表現の相違 |
|  |  | とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ |  |
|  |  | イパスラインを設け，可燃性ガスを連続して排出できる設計とする | 記載表現の相違 |
|  |  | ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを |  |
|  |  | 防止できる設計とする。 |  |
|  |  | 原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは | 設備名称の相違 |
|  |  | 共用しない設計とする。また，原子炬格納容器フィルタベント系と |  |
|  |  | 他の系統•機器を隔離する弁は直列で2個設置し，原子炬格納容器 |  |
|  |  | フィルタベント系と他の系統•機器を確実に隔離することで，悪影 |  |
|  |  | 響を及ぼさない設計とする。 |  |
|  |  | 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納 | 設備名称の相違 |
|  |  | 容器が負圧とならないよう，原子炉格納容器代替スプレイ椧却系等 | 設備名称の相違 |
|  |  | による原子炉格納容器内へのスプレイを停止する運用とする。原子 | 記載表現の相違 |
|  |  | 炉格納容器フィルタバント系の使用後に再度，原子炉格納容器内に |  |
|  |  | スプレイをする場合においても，原子炉格納容器内圧力が規定の圧 |  |
|  |  | 力まで減圧した場合には，原子炉格納容器内へのスプレイを停止す |  |
|  |  | る運用とする。 |  |
|  |  | 原子炉格納容器フィルタベント系使用時の排出経路に設置され | 設備名称の相違 |
|  |  | る隔離弁は，遠隔手動弁操作設備（個数 4）によって人力により容 | 設備名称の相違 |
|  |  | 易かつ確実に操作が可能な設計とする。 |  |
|  |  | 排出経路に設置される隔離弁の電動弁については，常設代替交流 | 設計の相違 |
|  |  | 電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備， | －電動弁に給電する電源系の相 |
|  |  | 常設代替直流電源設備又は可搬型代替直流電源設備からの給電に | 違。女川の原子炬格納容器フィ |
|  |  | より，中央制御室から操作が可能な設計とする。 | ルタベント系は直流電源弁で |
|  |  |  | 系統構成する。 |





| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 原子炉格納容器下部注水系（常設）（復水移送ポンプ）の水源であ | 蔵タンク）を使用する。 |
|  |  | る復水貯蔵タンクは，複数の代替淡水源から淡水を供給できる設計 |  |
|  |  | とし，淡水が枯渇した場合に，海を利用できる設計とする。 | 設計の相違 |
|  |  |  | －女川は既設の復水貯蔵タンク |
|  |  |  | を重大事故等対処設備として |
|  |  |  | 使用する。東海第二は，重大事 |
|  |  |  | 故等対処設備として代替淡水 |
|  |  |  | 貯槽を新設する。 |
|  |  | 原子炉格納容器下部注水系（常設）（復水移送ポンプ）は，非常用 | 設備名称の相違 |
|  |  | 交流電源設備に加えて，代替所内電気設備を経由した常設代替交流 | 記載方針の相違 |
|  |  | 電源設備又は可搬型代替交流電源設備からの給電が可能な設計と | －非常用電源設備からの給電も |
|  |  | する。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式 | 可能であるため記載している。 |
|  |  | 直流電源設備からの給電が可能な設計とする。 | 設計の相違 |
|  |  |  | －女川では原子炉格納容器下部 |
|  |  |  | 注水系（常設）（復水移送ポン |
|  |  |  | プ）の系統構成を行うにあた |
|  |  |  | り，直流電源で作動する弁も使 |
|  |  |  | 用する。 |
|  |  | 原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，代 | 設計の相違 |
|  |  | 替循環浍却ポンプにより，サプレッションチェンバのプール水を残 | －女川の原子炉格納容器下部注 |
|  |  | 留熱除去系等を経由して原子炉格納容器下部へ注水し，溶融炉心が | 水系（可搬型）は，設置作業に |
|  |  | 落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確 | 時間を要するため，原子炉格納 |
|  |  | 保するとともに，落下した溶融炬心を泠却できる設計とする。 | 容器下部への事前水張を開始 |
|  |  | 原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，非 | する時間までに注水を可能な |
|  |  | 常用交流電源設備に加えて，代替所内電気設備を経由した常設代替 | 設備として，原子炬格納容器下 |
|  |  | 交流電源設備からの給電が可能な設計とする。 | 部注水系（常設）（復水移送ポン |
|  |  |  | プ）に加えて常設設備である原 |
|  |  |  | 子炬格納容器下部注水系（常 |
|  |  |  | 設）（代替循環冷却ポンプ）を整 |
|  |  |  | 備し，多様性等を図った設計と |
|  |  |  | している。 |
|  |  | 原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タ | 設備名称の相違 |
|  |  | イプ I ）により，代替淡水源の水をあらかじめ敷設した補給水系配 | 設計の相違 |
|  |  | 管を経由して原子炉格納容器下部へ注水し，落下した溶融炉心を泠 | －女川は1水源，1タイプの可 |
|  |  | 却できる設計とする。 | 搬型ポンプ車による対策とし |






| 女川原子力発電所第2号機 | 備考 |
| :--- | :--- |



| 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: |
|  | 原子炉格納容器フィルタベント系は，炉心の著しい損傷が発生し た場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウム一水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計とする。 <br> 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素ガス供給系により，采統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計とする ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 <br> 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 <br> なお，詳細は添付書類「VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書」に示す。 | 設備名称の相違設備名称の相違設計の相違 <br> －原子炬格納容器フィルタベン ト系の設計系統流量の相違。 <br> 設備名称の相違設備名称の相違 <br> 記載方針の相違 <br> －可搬型窒素ガス供給装置の給電に関する設計方針について記載している。 |
|  | 3．2．7 重大事故等時における水素爆発による原子炉建屋等の損傷防止機能 <br> 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける。 | 設計の相違 <br> －女川は静的触媒式水素再結合装置において水素処理が可能 であり，非常用ガス処理系は水素処理を目的として設置した設備でないことから，重大事故等対処設備とはしていない。 |

前回提出時からの変更箇所

























