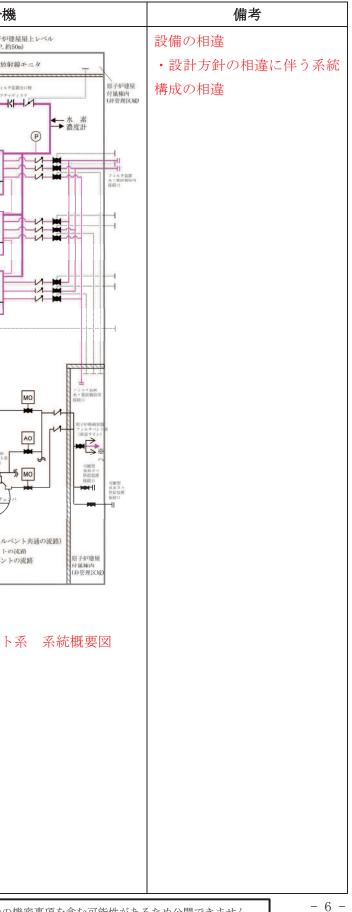
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号根
柏崎の格納容器圧力逃がし装置のフィルタ装置は自社設計,		
東二及び女川は Framatome 製のため,同一メーカ製である東		
二との比較表を作成		
		VI-1-8-1-別添2 原子炉格納容器フィル

2021年6月8日 02-工-B-08-0005_改2

柏崎刈羽原子力発電所第7号機	東海第二発電所 3	女川原子力発電所第2号機	備考
		目次	
	1. 概要 · · · · · ·	別添2-1	
	1.1 設置目的 ····	別添2-1	
	1.2 基本性能 ····	別添2-1	
	1.3 系統概要 ····	別添2-1	
	2. 系統設計 ·····	····· 別添2−4	
	2.1 設計方針 ····		
	2.2 設計条件 ····		
	2.3 原子炉格納容	器フィルタベント系 ・・・・・・・・・ 別添2-9	設備名称の相違
	2.3.1 系統構成	別添2-9	
	2.3.2 フィルタ	装置 ••••• 別添2-15	
	2.3.3 配置	····· 別添2−25	
	2.4 付帯設備・・・・		
	2.4.1 計装設備	別添2-33	
	2.4.2 電源設備	別添2-42	
	2.4.3 給水設備	別添2-45	
	2.4.4 可搬型窒	素ガス供給装置 ・・・・・・・・・・ 別添2-47	設備名称の相違
	2.4.5 排水設備	(自主対策設備) ・・・・・・・・・・ 別添2-49	設計の相違
			・女川はベント後にスク
			溶液を移送しなくても,
			ルタ装置の機能性能を維持
			きる設計としており、排
			備を自主対策設備とし
			る。
	2.4.6 排気管排;	水設備(自主対策設備) ・・・・・・ 別添2-51	設備名称の相違
		別添2-52	
	3.1 フィルタ装置	による放射性物質の除去原理・・・・・ 別添2-52	
	3.1.1 エアロゾ	ルの除去原理 ・・・・・・・・・・・・ 別添2-52	
	3.1.2 ガス状放	射性よう素の除去原理 ・・・・・・ 別添2-58	
	3.2 運転範囲・・・・	別添2-62	
	3.3 性能検証試験;	結果 ····· 別添2-63	
	3.3.1 性能検証	試験の概要 ・・・・・ 別添2-63	
	3.3.2 エアロゾ	ルの除去性能試験結果 ・・・・・・・ 別添2-68	
		射性よう素の除去性能試験結果・・・・・別添2-77	
		装置の継続使用による性能への影響・別添2-82	

本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。


2021年6月8日 02-工-B-08-0005_改2

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		4. 設備の維持管理	
		別紙	
		別紙1 可燃性ガスの爆発防止対策について・・・・・ 別添2-95	
		別紙2 原子炉格納容器フィルタベント系の系統設計条件の考え方	設備名称の相違
		について ・・・・・ 別添 2-120	
		別紙3 流量制限オリフィスの設定方法について・・・・・ 別添2-130	
		別紙4 スクラバ溶液の保有水量の設定根拠及び健全性について	設備名称の相違
		別紙5 原子炉格納容器フィルタベント系隔離弁の人力操作につい	設備名称の相違
		て ····································	
		別紙6 ベント実施に伴う作業等の作業員の被ばく評価	表現の相違
	- I		- 3

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所	f第2号機 備考
	1. 概要	
	1.1 設置目的	
	炉心の著しい損傷が発生した場合に	こおいて,原子炉格納容器の破 表現の相違
	損及び原子炉格納容器内の水素による	3爆発を防止するため,原子炉 設備名称の相違
	格納容器フィルタベント系を設置する	Jo
	本系統はフィルタ装置(フィルタ容	泽器 ,スクラバ溶液,金属繊維 設備名称の相違
	フィルタ、放射性よう素フィルタ)を	·通して排気に含まれる放射性 表現の相違
	物質を低減した上で,原子炉格納容器	内の雰囲気ガスを放出するこ
	とで,原子炉格納容器内の圧力及び温	』度を低下させるとともに、原
	子炉格納容器内に滞留する水素を大気	低へ放出する機能を有する。
	また,設計基準事故対処設備が有す	る最終ヒートシンクへ熱を輸
	送する機能が喪失した場合,かつ残留	熱除去系の使用が不可能な場
	合において, 炉心の著しい損傷及び原	子炉格納容器の破損を防止す
	るために,大気を最終ヒートシンクと	して熱を輸送する機能を有す
	る。	
	1.2 基本性能	
	原子炉格納容器フィルタベント系は	は、炉心の著しい損傷が発生し 設備名称の相違
	た場合において、原子炉格納容器内に	-発生するガスを,フィルタ装
	置を通して大気に逃がすことで、放け	出される粒子状の放射性物質
	(セシウム等)を低減する。	
	このため、放射性物質による環境へ	~の汚染の視点も含め,環境へ
	の影響をできるだけ小さくとどめるも	5のとして定められているCs-
	137の放出量が100TBqを下回ることが	できる性能を有したものとす
	る。	
	フィルタ装置としては、上述したCs	;=137の放出量制限を満足させ
	るため,粒子状放射性物質除去効率99).9%以上の性能を有する装置
	を採用する。	
	また、当該装置は、ガス状放射性よ	う素の除去効率として、無機
	よう素は99.8%以上,有機よう素は98	8%以上の性能を有する。 設計方針の相違
		・無機よう素の除去効率は,東
		二:99%以上,女川:99.8%以上
		として設計,詳細は 3.3.3 に
		記載(理由①)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	 女川原子力発電所第2号機 1.3 系統概要 図1.3-1に系統概要を示す。 本系統は、フィルタ装置、フィルタ装置出口側ラブチャディスク 等で構成する。本系統は、中央制御室からの操作で、原子炉格納容 器第一隔離弁(サブレッションチェンパペント用出口隔離弁又はド ライウェルベント用出口隔離弁)及び原子炉格納容器第二隔離弁 (原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原 子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」 とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェ ル又はサプレッションチェンパより抜き出し、フィルタ装置にて放 射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置 (0.P.約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを 設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した 状態で待機する際の大気との隔壁とする。このフィルタ装置出口側 ラブチャディスクの破裂圧力は、原子炉格納容器からの排気の妨げ にならないように、原子炉格納容器からの排気圧力と比較して十分 小さい圧力に設定する。 本系統は、中央制御室からの操作を可能とするため、代替電源設 備からの給電を可能とするが、電源の確保ができない場合であって も、放射線量率の低い原子炉建屋付属棟内(非管理区域)より遠隔 で操作することができる。 なお、原子炉格納容器からの排気時に、高線量率となるフィルタ 装置等からの被ばくを低減するために、必要な遮蔽等を行う。 	設備名称 表現の相違 ベントガス放出位置の相違 設備名称の相違

展示地域の安都規模集構の569=291-02-44- (金融資産) 展示地域の子が吸附 展示地域の子が吸附 原子地域の 原子地域の子が吸附 原子地域の子が吸附 原子地域の子が吸附 原子地域の子が吸附 原子地域の子が吸附

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	2. 系統設計	
	2.1 設計方針	
	原子炉格納容器フィルタベント系は,想定される重大事故等か	発設備名称の相違
	生した場合において,原子炉格納容器の過圧破損及び原子炉格約	容
	器内の水素による爆発を防止するとともに、大気を最終ヒートシ	
	クとして熱を輸送できるよう、以下の事項を考慮した設計とす	5.
	(1) 原子炉格納容器フィルタベント系の設置	設備名称の相違
	炉心の著しい損傷が発生した場合において,原子炉格納容器の	過
	圧による破損を防止するために必要な重大事故等対処設備のう ⁵	>,
	原子炉格納容器内の圧力を大気中に逃がすための設備として,原	(子)
	炉格納容器フィルタベント系を設ける設計とする。	
	a. 原子炉格納容器フィルタベント系は、フィルタ装置(フィル	タ 設備名称の相違
	容器,スクラバ溶液,金属繊維フィルタ,放射性よう素フィルタ),
	フィルタ装置出口側ラプチャディスク,配管・弁類,計測制御	装
	置等で構成し,原子炉格納容器フィルタベント系は,原子炉格	納
	容器内雰囲気ガスを原子炉格納容器調気系を経由して、フィル	· A
	装置へ導き,放射性物質を低減させた後に原子炉建屋屋上に設	け表現の相違
	る放出口から排出(系統設計流量10.0kg/s)することで,排気	(中 設計の相違
	に含まれる放射性物質の環境への放出量を低減しつつ, 原子炉	格 ・系統設計流量は原子炉定
	納容器内の圧力及び温度を低下させることができる設計とす	ら。 熱出力の 1%に相当しており
	フィルタ装置は3台を並列に設置し、フィルタ装置1台当たりの	ベ 二は約 13.4kg/s, 女川は
	ントガス流量が同等となる設計とし、ベントガス流量のばらつ	oき 10.0kg/s (理由②)
	による影響を防止するため以下について考慮した設計とする。	・東二はフィルタ装置1台
	 ・各フィルタ装置の設計条件(ベンチュリノズル個数,金属 	繊 あるが,女川はフィルタ装置
	維フィルタ個数,流量制限オリフィス個数,放射性よう素	フ 台を並列に設置し,流量が
	イルタの構造等)を同等とする。	等となるよう設計(理由③)
	・各フィルタ装置の気相部及び液相部をそれぞれ連通管で掛	続
	する。	
	・すべてのフィルタ装置を近接配置する。	
	・配管の分岐部をフィルタ装置近傍に設置する。	
	なお, 炉心の著しい損傷等を防止するため, 原子炉格納容器	マ 設備名称の相違
	ィルタベント系を使用した場合に放出される放射性物質の加	
	量に対して,設置(変更)許可において敷地境界での線量評価	
	行い,実効線量が5mSv以下であることを確認している。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考
		 b. フィルタ装置は、排気中に含まれる粒子状放射性物質、ガス状の無機よう素及び有機よう素を除去できる設計とする。また、無機よう素をスクラバ溶液中に捕集・保持するためにアルカリ性の 状態(待機状態においてpH13以上)に維持する設計とする。放射 性物質除去能力の設計条件を表2.1-1に示す。
		表2.1-1放射性物質除去能力の設計条件設計方針の相違粒子状放射性物質無機よう素有機よう素除染係数(DF)1000以上500以上500以上50以上
		c. 原子炉格納容器フィルタベント系は,サプレッションチェンバ 及びドライウェルと接続し,いずれからも排気できる設計とす る。サプレッションチェンバ側からの排気ではサプレッションチ ェンバの水面からの高さを確保し,ドライウェル側からの排気で は,ドライウェル床面からの高さを確保する設計とするとともに 有効燃料棒頂部よりも高い位置に接続箇所を設けることで,長期 的にも溶融炉心及び水没の悪影響を受けない設計とする。
		 d. 原子炉格納容器フィルタベント系は,排気中に含まれる可燃性 ガスによる爆発を防ぐため,可搬型窒素ガス供給系により,系統 内を不活性ガス(窒素)で置換した状態で待機させ,不活性ガス で置換できる設計とするとともに,系統内に可燃性ガスが蓄積す る可能性のある箇所にはバイパスラインを設け,可燃性ガスを連 続して排出できる設計とすることで,系統内で水素濃度及び酸素 濃度が可燃領域に達することを防止できる設計とする。
		e. 原子炉格納容器フィルタベント系は,他の発電用原子炉施設と は共用しない設計とする。また,原子炉格納容器フィルタベント 系と他の系統・機器を隔離する弁は直列で2個設置し,原子炉格 納容器フィルタベント系と他の系統・機器を確実に隔離すること で,悪影響を及ぼさない設計とする。

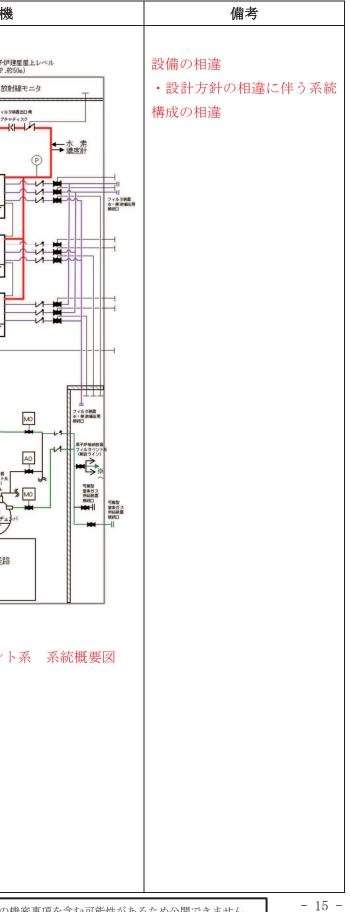
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		f. 原子炉格納容器フィルタベント系の使用に際しては,原子炉格	設備名称の相違
		納容器が負圧とならないよう,原子炉格納容器代替スプレイ冷却	
		系等による原子炉格納容器内へのスプレイは停止する運用を保	
		安規定に定めて管理する。原子炉格納容器フィルタベント系の使	表現の相違
		用後に再度,原子炉格納容器内にスプレイする場合においても,	
		原子炉格納容器内圧力が規定の圧力まで減圧した場合には,原子	
		炉格納容器内へのスプレイを停止する運用を保安規定に定めて	
		管理する。	
		g. 原子炉格納容器フィルタベント系使用時の排出経路に設置さ	設備名称の相違
		れる隔離弁は,遠隔手動弁操作設備(個数4)によって人力により	
		容易かつ確実に操作が可能な設計とする。	
		h. 排出経路に設置される隔離弁の電動弁については, 常設代替交	設備の相違
		流電源設備,可搬型代替交流電源設備, 所内常設蓄電式直流電源	・女川の隔離弁は直流電源よ
			り給電するが, <mark>直流変換する</mark>
		給電により、中央制御室から操作が可能な設計とする。	ことで交流電源からも給電可
			<mark>能</mark>
		i. 系統内に設けるフィルタ装置出口側ラプチャディスクは,原子	設備名称の相違
		炉格納容器フィルタベント系の使用の妨げにならないよう, 原子	
		炉格納容器からの排気圧力と比較して十分に低い圧力で破裂す	
		る設計とする。	
		j. 原子炉格納容器フィルタベント系のフィルタ装置は, 原子炉建	設備名称の相違
		<mark>屋原子炉棟内に設置し,</mark> 原子炉格納容器フィルタベント系使用後	設備の相違
		に高線量となるフィルタ装置等の周囲には <mark>遮蔽壁が設置される</mark>	・女川はフィルタ装置を原子
		ことから,原子炉格納容器フィルタベント系の使用時に本系統内	炉建屋原子炉棟のフィルタ装
		に蓄積される放射性物質から放出される放射線から作業員を防	置室内に設置(理由④)
		護する設計とする。	
		k. 原子炉格納容器フィルタベント系は,水の放射線分解により発	設備名称の相違
		生する水素がフィルタ装置内に蓄積することを防止するため,原	
		子炉格納容器フィルタベント系使用後にフィルタ装置スクラバ	設備の相違
		溶液をポンプを用いることなく, 自重によってサプレッションチ	・女川はベント後のスクラバ
		エンバへ移送できる設計とする。	溶液のサプレッションチェン

本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。

- 9 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			バへの移送を自重により実施 し,ポンプが不要な設計とし ている(理由⑤)
		 原子炉格納容器フィルタベント系は、淡水貯水槽から、大容量 送水ポンプ(タイプI)及び薬液補給装置(自主対策設備)によ りフィルタ装置にスクラバ溶液を補給できる設計とする。 	設備名称の相違 設備の相違 ・女川のフィルタ装置は,待機 時に十分な量の薬液を保有し ており,原子炉格納容器から 移行する酸の量を保守的に想 定しても,アルカリ性を維持 可能であるため,薬液補給装 置を自主対策設備として設置
		 m. 代替循環冷却系及び原子炉格納容器フィルタベント系は、共通 要因によって同時に機能を損なわないよう、原理の異なる冷却及び原子炉格納容器内の減圧手段を用いることで多様性を有する 設計とする。 	設備名称の相違
		n. 原子炉格納容器フィルタベント系は,人力により排出経路に設置される隔離弁を操作できる設計とすることで,代替循環冷却系に対して駆動源の多様性を有する設計とする。	設備名称の相違
		o. 代替循環冷却系の代替循環冷却ポンプは原子炉建屋付属棟内に、残留熱除去系熱交換器及びサプレッションチェンバは原子炉 建屋原子炉棟内に設置し、原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側ラプチャディスクは原子炉 建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を 図る設計とする。	・各設備の設置場所の相違
		p. 代替循環冷却系と原子炉格納容器フィルタベント系は, 共通要 因によって同時に機能を損なわないよう, 流路を分離することで 独立性を有する設計とする。	設備名称の相違

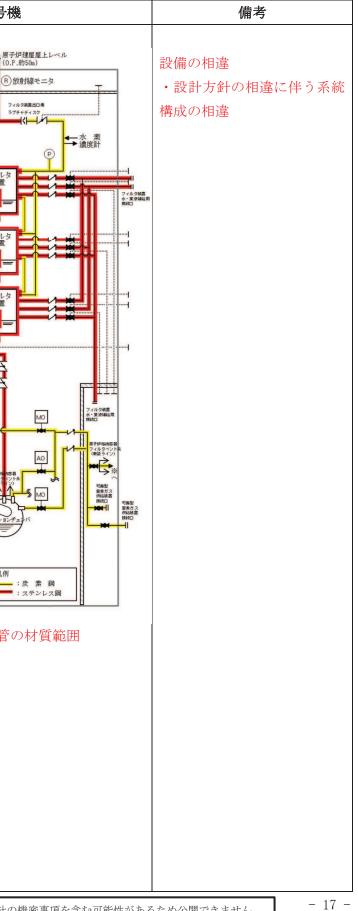
とする。 車駆動であるが、女川の可	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
大学校学科知定復として、可能な限りの独立社会有する文字とす。 5. 大学校学科知定復として、可能な限りの独立社会有する文字とす。 5. ・ からの貧しい損傷が発生した信念に知いて既子学校教育部内 たきので大規模学校で大規学び構成であたから、既子学校教育学校への学校でいた名が可能は使いていた。 たきので大規模学校会社会で見ての学校の上述名の たきので大規模学校会社会になった。 たきので大規模学校会社会社会会になった。 たきので大規模学校会社会社会会になった。 たきので大規模学校会社会社会会会社会会会社 により、日本学校学校会社会会会社会会会社 により、日本学校学校会会会社会会会社 により、日本学校会社会会社会会会社 にないためないたい、成子学校学校会会社会会会社 にないためないたい、成子学校学校会会社会会会社 にないためないたい、成子学校学校会会社会会社会会社会会会社 などのないためないたい、の学校学校会会社会会社会会社会会社 ないためないたい、現会社会社会会社会会社会会社会会社会会社会会社会会社 ないためないたい、現会社会社会会社会会社会会社会会社会会社 において成子校学校会会社会会社会会社会会社会会社会会社会会社会会社 により、対応な社会会社会会社会会社会会社会会社会会社会会社会会社 にないためな社会社会会社会会社会会社会会社会会社会会社会会社会会社会会社会会社会会社会会社			これらの多様性及び流路の独立性並びに位置的分散によって	,
5. 5. 2			代替循環冷却系と原子炉格納容器フィルタベント系は,互いに	重 設備名称の相違
 の「なの変しい石鹸が発生したならにおいて原子学校教育学校 においな水法を出こる決定なりませたろのかって、 の生きな大素文化学教育したなられて、原子学校教育 がに本部の方式大素文化学教育したな、 の生きな素素ズム「地理したるのかな」とし、 の生きな素素ズム「地理したるのかな」とし、 の生きな素素ズム「地理したるのかな」とし、 の生きな素素ズム「地理したるのかな」とし、 の生きな素素ズム「地理したるのかな」とし、 の生きな素素ズム「シージー」の生きな素素ズム、 からかなたよきななないで、 の生きな素素ズム「シージー」の生きな素素ズム、 からかなたいで、 のため着した。 いため着にして、のたちな素素ですなる。 ないのないで、 からかないで、 からかなたいで、 のたかき、 いていたままた。 ないかったいないで、 のたかき、 いていたままたないで、 のたかき、 いていたままた。 からかなた、 いていたままなまた。 からかなた、 いためまたいかで、 のたかさたいで、 のたかまにもおいて、 のたかきにないたままままた。 からかなた、 いていたままた。 いていたままたまままた。 のたかまにもおいて、 のまたたままままた。 いていたまなままままた。 いていたままままたまままするかにもおいたで、 のたかままがたきまままた。 のためまたでののまま いていたままままたたまままままままままままままままままま			大事故等対処設備として,可能な限りの独立性を有する設計と	1
ビジロでな効果毎年にとる確認を防止できるように、原ナが解除で 着内に滞留する水素及び濃くを入れて期行すたみのの設計とす。 こ、原子物解除容器となった期行すたみのの設計とす。 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作物の資源 ご菜塩本作品を含む、アメのクタンドネディング、建築 ご菜塩水作品を含む、アメのクタンドンネディングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェンジーを設めたいて、「「「市市場で着」の支援 ごジェンジーを設めため、「「「「「「」」」」」 ごご求の可認 ごご求の可認 ごご求のの ご ごご求した場合に「ご菜」のご飯」に、ごびごびごび」 ごご求の ご菜 ごご求のの ご菜 ごご求の ご菜 ごご求の ご菜 ごご求の ご菜 ごご求の ご菜 ごご 読む ごご 読む ごご 読む ごご 読む ごご 読む ご ご 認 ご 認 ご 認 ご ご 認 ご 認 ご 認 ご ご 認 ご 認 ご			る。	
ビジロでな効果毎年にとる確認を防止できるように、原ナが解除で 着内に滞留する水素及び濃くを入れて期行すたみのの設計とす。 こ、原子物解除容器となった期行すたみのの設計とす。 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作の回過 ご菜塩本作物の資源 ご菜塩本作品を含む、アメのクタンドネディング、建築 ご菜塩水作品を含む、アメのクタンドンネディングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェングの支援 ごジェンジーを設めたいて、「「「市市場で着」の支援 ごジェンジーを設めため、「「「「「「」」」」」 ごご求の可認 ごご求の可認 ごご求のの ご ごご求した場合に「ご菜」のご飯」に、ごびごびごび」 ごご求の ご菜 ごご求のの ご菜 ごご求の ご菜 ごご求の ご菜 ごご求の ご菜 ごご求の ご菜 ごご 読む ごご 読む ごご 読む ごご 読む ごご 読む ご ご 認 ご 認 ご 認 ご ご 認 ご 認 ご 認 ご ご 認 ご 認 ご				
범師に電管さる未素及び業者を人気へ掛けてならのの範疇とし、 、示子形教育感染イルクインドをを改ける就としてあ。 読者水の海途 ・ 原子が教育感染イルクインドをを改ける就としてあ。 読者水の海途 ・ 原子が教育感染イルクインドを改成しる就としてあ。 読者水の海途 ・ 原子が教育感染イルクインドを改成しる就としてあ。 読者水の海途 ・ 原子が教育感染のに確認する未来なび感染を入気へ構いてあった。 読者水の海道 ・ 原子が教育を聞いて、アンテクタな運んであった。 読者水の海道 ・ 日本のなどにたき、原子が最小調査がな話をした。 スクラインタンタン、シスクタな運んであった。 ・ 日本のなどのためていたのする 読むののないたいのかな ・ 日本のなどのためていたの アレートのないのないたいのかないのないのないたの ための相応 ・ 日本のなどのためにないためないのないためのないたののないたの アレートのないのないためなり 読むのれたいののないためのないためなり ・ 日本のないためにないためないためのないためなり 読むののないためないためのも ・ 日本のないためないためなりまた。 ************************************			q. 炉心の著しい損傷が発生した場合において原子炉格納容器	内
No. RETERNATEN. RETERNATERETERNATERETERNATER. RETERNATERETERNATERETERNATERETERNATERETERNATER. R			における水素爆発による破損を防止できるように,原子炉格納約	容
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			器内に滞留する水素及び酸素を大気へ排出するための設備と	L
ための重人事数等対処役値として、原子が移進客部フィルタベン 設備金都の伸進 トネ広、フィルク支援(フィルク支発)、メクシン学院、会属総理 設備金都の伸進 マルルク、放射性たり東フィルク)、フルク支援(山口のシブキンディアスク、配手・弁規)計測機装置をで構成し、砂心の支しい場象が発生した混合において、原子が移進客器内容原気ガス女 認知の推進 ビア市路治常器制度系を経由して、フルルク装置(小草の生産業)における気が振動したのい時間 (系数設計注意)の保心)することで、非気中に含まれる数料体 物質(商類な少加速を気味しつ、ジルニンラ・木反応及び水 の数材器分解等により多生でも取りで確約本本なび成 素を大気に排出できる数計とする。 設計の推進 ・ 可能型窒素ガス供給多は、可能性ガスによる発展なび原子学校 (小方体論) ごての理由のの、小方にきつ・木反応及び水 ・この変素供給装置とれる数料体 (この変素供給設置) 設備を称の加進 ・ 可能型窒素ガス供給多は、可能性ガスによる発展なび原子学校 (市存施制設内に不活性ガス(空気))の供給が可能な設計 ・定つ変素供給装置は表す、気能が可能な設計 とする。 設備を称の加進 ・ 「花心の著しい抗償が発生した場合において原子評価納容数合 における次素機発による彼社を防止するために必要素力な供給装置となる を取っためるが、女川の可 望識式力な保持装置になる を加えるため、女川の の をお、女は中心の として、可能型窒素ガス供給変量を取りる気計とする。 設備を称の加進 ・ 「花心の著しい抗償が発生した場合におな気が使用するためにと厚を始報の意味が可能な会計 ・定つ変素供給装置になる をするの、女川のろ の をお、なり供給設置とたな をする。 ごでのであり、原子学を納ますることで、外面か 設備を称の相差 ・ 「花心の著しい抗償が発生した場合におかて原子評価約容式のな特定になる 等対認識のうち、原子学を新聞な方式子供給 ごている。 ごている。 認備を称の相差 ・ 可能型電気ガス供給要素になる数社を行ったるための式伸 ごている。 認備を参の相差 認備を称の相差 認備を参の相差 ・ 同能型電気ガス供給要素になりためてになる数社を行ったるためにとている。 ・ ごている。 認備を参の相差			て、原子炉格納容器フィルタベント系を設ける設計とする。	設備名称の相違
ト系は、フィルク装置、スクラバ溶液、全点繊維 フィルタ、放然性ら着マイルのフ、フィルク装置山口(型フチ ギディスク、超管・外肌、料制研練呈等で構成し、成心等は) い街底が落生した場合において、原子炉格納客器内気ガスを 原子炉格納客器構気系を経由して、フィルク装置へ導き、放射性 物質で低減でかれ、DGインの支援で小導きした場合において、原子炉格納客器内の水素及び酸 原子炉格納客器内の水素及び酸、プリコーンムー水反な友び、 シンパンクが出こして、非常中に含まれる数料性 物質の度違いの批出を伝統しつう。ジルコーンムー水反な友び、 の放射約分解等により新中する原子炉格納客器内の水素及び酸 素を大気に詰出できる支持とする。 読得予約回査 読むの恒差 記の変換集合は注意した、可能型窒素ガス供給装置を引 読むすれの差異を構成し上するため、可能型窒素ガス供給装置を引 いて原子炉格納客器内に不活性ガス(選売)の供給が可能の変素 読むすれのご案を知ら読むすいて原子炉格納客器内の水素及びの 空気素ガス供給装置にを用 読むすれの 空気素が不供給装置になる数化を引していて原子炉格納客器内 における水素爆発による数化を引してきために必要な支付を改 等対処認知のうち、原子炉格納客器内に不活性ガスののご案内容 設備予約回意 読むりの道 空気素が不供給装置にを用 る数式をなるが、女川の可 空気素ガス供給装置を引 を引いている。 1 デがの考しい現場が発生した場合でおいて原子炉格納客器内を不活性化するための設確 として、可濃濃電素ガス供給装置を引きなみざいです。 設備予約回算 1 可能濃電気ガス供給装置を引きないの設まなす。 設備の相応			r. 原子炉格納容器内に滞留する水素及び酸素を大気へ排出す。	5
コーク・ルク、気外性よう素フィルク)、フィルク装置由ロ側シブチ キディスク、配合・井風、前後周装変画やできたし、がものさい い損傷が空をした場合において、原子伊格納容器内気のなど に実行体器容器開放えを経由して、フィルク変可いや透出 物質の変現から切除した。がらてして、対応につクムー水反反及び来 の成都後分類等によう発生する派子が格納容器内のホ素及び終 素を大気に特由できる設計とする。 読むの相声 ・2・1項の測由② ・ 可能型窒素ガス集雑表は、可燃性ガスによる体致及び原子伊格 約容認かり真確就上するため、可能型窒素ガス集雑表を出 いて原子炉格納容器内に不活性ガス(猛力)の供給・可能型変素ガス集雑表を出 いて原子炉格納容器内に不活性ガス(猛力)の供給・可能型変素ガス集雑表を出 いて原子炉格納容器内に不活性ガス(猛力)の供給・可能型変素ガス集雑表を出 いて原子炉格納容器内に不活性ガス(猛力)の供給・可能型変素ガス集雑表を出 いて原子炉格納容器内に不活性ガス(猛力)の供給・可能型変素ガス集雑表を出 を知い変合うが、女川の可 型変素ガス体給装置を出てありに必要なな手作す。 の変換の利用・ の変換の利用・ の変換の利用・ 			ための重大事故等対処設備として,原子炉格納容器フィルタベン	ン設備名称の相違
・・ディスク、配管・弁護、計測測測装置等で構成し、炉んの客しい消傷が発生した場合において、原子防結検客器内容測気ガスを ・・ディスク、配管・弁護、計測測構装置4000円 ・・ディアの支援にないののない ・・ディアの支援にないののない ・・ディアの支援にないののない ・・ディアの支援にないののない ・・ディアの支援にない ・・ディアの支援にない ・・ディアの支援にないたののない ・・ディアの支援にないたののない ・・ディアの支援にないたののない ・・ディアの支援にないたの ・・ディアの支援にない ・・ディアの支援にないたののない ・・ディアの支援にない ・・ディアの支援がない ・・ディのの支援のの ・・ディアの支援がない ・・ディアの支援がない ・・ディアの支援がない ・・ディアの支援がない ・・ディアの支援がない ・・ディアの支援がない ・・ディアの支援がない ・・ディのの ・・ディのの支援がない ・・・ディのの支援がない ・・・ディのの支援がない ・・ディアのの ・・ディの			ト系は、フィルタ装置(フィルタ容器、スクラバ溶液、金属繊維	隹
い損傷が発生した場合において、原子炉整納客器内変囲気ガスを 原子炉整納容器環策系を怒由して、フィルク実置へ考き、放射性 物質の現金への排用を低減しつんで、がしてきみたいて応認及び、 物質の現金への排用を低減しつく、ジルロマクム・水反応及び、 の放射線分解等により発生する原子炉格納容器内の水来及び降 素を大気に排出できる改計とする。 記400円違念 ・ 可搬型蜜素ガス供給系は、可燃性ガスによる場免及び原子炉格 約容器の負圧破損を防止するため、可搬型蜜素ガス供給装置を和 いて原子炉格納容器内に不活性ガス(筆素)の供給が可能な設計 とする。 設備名称の角違 設計の構定 記載するが、女川の可 型塗素ガス供給装置は、通道の手炉格納容器内を不活性がするために必要な重大事が 等対処設備のうち、原子炉格納容器内を不活性がするために必要な重大事が 等対処設備のうち、原子炉格納容器内を不活性がするためのに必要な重大事が 等対処設備のうち、原子炉格納容器内を不活性がするためのが考慮 として、可搬型蜜素ガス供給装置を引き設計とする。 設備名称の角違 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ <td></td> <td></td> <td>フィルタ,放射性よう素フィルタ),フィルタ装置出口側ラプ</td> <td>F</td>			フィルタ,放射性よう素フィルタ),フィルタ装置出口側ラプ	F
原子伊隆領容器演気系を編申して、フィルク装置へ導き、放射性 紛留を低減させた後に原子伊建屋屋上に設ける放出口から連出 (系統設計流量10.0m/x)することで、排気中に含まれる放射性 物質の環境への排出を低減しつった水反応及び先 から広射給分解等により多生うる原子伊格納容器内の木水反応及びた 家を入気に排出できる設計とする。 記書の知道の ・可鍵型窒素ガス供給乳を広 記録の知道を低減していたいにの子伊格納容器内会不太反応のないた 認備各称の相違 認識の知道の 第888の負圧破損を防止するため、可能型窒素ガス供給装置を用 いて原子伊格納容器内自て活性ガス(窒素)の供給が可能な設計 とする。 認備各称の相違 認識の相違 記述の 事業の次は希謝管告内 を新いたのましい損傷が発生した場合において原子伊格納容器内 における水素爆発による破損を防止するために必要な違大事故 影明としている。 認備各称の相違 認識の相違の ないため。 ・ ・ ・ ・ ・ ・ 車 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			ャディスク,配管・弁類,計測制御装置等で構成し,炉心の著	
物質を低減させた後に原子炉建屋屋上に設ける放出口から導出 (系統設計流量10.0kg/s)することで、排気中に含まれる放射性 物質の環境への非出を低減しつつ、ジルニニウムー水反応及び水 の放射線分解等により発生する原子炉格納容器内の水表及び鍵 素を大気に排出できる設計とする。 装計の福進 s. 可機型窒素ガス供給系は,可燃性ガスによる爆発及び原子炉格 納容器の負圧破損な防止するため、可使窒素ガス供給素度な田 いて原子炉格納容器内に不活性ガス(塗素)の供給が可能な設計 とする。 設備名称の相違 t. 炉心の茎しい損傷が発生した場合において原子炉格納容器内 における水素爆発による変損を防止するためのご要手が各純容器内 における水素爆発による変損を防止するためのご要手が各純容器内 における水素爆発による変損を防止するためのご要素ガス供給装置を設ける設計とする。 設備名称の相違 t. 炉心の茎しい損傷が発生した場合において原子炉格納容器内 における水素爆発による変損を防止するためのご要素ガス供給装置を設ける設計とする。 設備名称の相違 u. 可搬型窒素ガス供給装置な設しましたする。 設備の相違			い損傷が発生した場合において,原子炉格納容器内雰囲気ガス	È.
(系統設計流量10.0kg/s) することで、排気中に含まれる放射構物質の環境への排出を低減しつつ、ジルコニウムー衣反応及び、ないの構造 説計の相違 物質の環境への排出を低減しつつ、ジルコニウムー衣反応及び、ないなり、 2.1 項の理由② の放射線分解等により発生する原子炉格納容器内の水素及び酸素 設備各称の相違 素を大気に排出できる設計とする。 3. 可難型窒素ガス供給系は、可燃性ガスによる爆発及び原子炉格設置 読計の相違 2.1 項の理由③ 約50 (第二の窒素供給子の提供金 約50 (第二の窒素供給子) 約50 (第二次) 約50 (第二次) 約50 (第二次) 111 (第二次) 111 (第二次) 111 (第二次) 111 (第二次) 111 (第二次) 111 (第二次) 112 (第二次) 113 (第二次) 114 (第二次) 115 (第二次) 115 (第二次) 116 (第二次) 117			原子炉格納容器調気系を経由して、フィルタ装置へ導き、放射	生
物質の環境への排出を低減しつつ、ジルコニウムー水反応及び水 シニ1項の理由② の放射線分解等により発生する原子炉格納容器内の水素及び酸 シニ1項の理由③ 家 可艱型窒素ガス供給深は、可燃性ガスによる爆発及び原子炉格 約容器の負圧破損を防止するため、可要型窒素ガス供給装置を用 設計の相違 いて原子炉格納容器内に不活性ガス(窒素)の供給が可能な設計 設計の相違 ・取二の窒素供給装置は電電 *取回の窒素ガス供給装置は発電 とする。 ・取二の窒素供給装置は発電 を対応の者しい損傷が発生した場合において原子炉格納容器内を不活性化するための設備 シロマシン こおける水素爆発による破損を防止するために必要な未知為 シロマシン 本が知識値のうら、原子炉格納容器内を不活性化するための設備 設備名称の相違 として、可難型窒素ガス供給装置と、発電機を搭載することで、外部か 設備の相違			物質を低減させた後に原子炉建屋屋上に設ける放出口から排	出
 の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計とする。 第、可<u>範型窒素ガス供給表に</u>、可燃性ガスによる爆発及び原子炉格設置と研究 納容器の負圧破損を防止するため、可機型窒素ガス供給装置を研 いて原子炉格納容器内に不活性ガス(塗素)の供給が可能な設計 とする。 1. 炉心の著しい損傷が発生した場合において原子炉格納容器内を不活性化するための設置 を新動原としている。 1. 炉心の著しい損傷が発生した場合において原子炉格納容器内を不活性化するための設置 を新動原としている。 1. 炉心の著しい損傷が発出した場合において原子炉格納容器内を不活性化するための設置 として、可<u>∰型窒素ガス供給装置</u>になる を新動原としている。 1. 可<u>∰型窒素ガス供給装置</u>に、発電機を搭載することで、外部か設備の利達 2. 可<u>∰型窒素ガス供給装置</u>に、発電機を搭載することで、外部か認知道 			(系統設計流量10.0kg/s) することで,排気中に含まれる放射	生設計の相違
素を大気に排出できる設計とする。 素を大気に排出できる設計とする。 設備名称の相違 第<			物質の環境への排出を低減しつつ、ジルコニウムー水反応及び	水 ・2.1 項の理由②
 ・可搬型窒素ガス供給系は、可燃性ガスによる爆発及び原子炉格 納容器の負圧破損を防止するため、可搬型窒素ガス供給装置と用 いて原子炉格納容器内に不活性ガス(窒素)の供給が可能な設計 とする。 ・東二の窒素供給装置は電 車駆動であるが、女川の可 型窒素ガス供給装置は電 車駆動であるが、女川の可 型窒素ガス供給装置は電 を駆動源としている。 ・ ・ ・東二の窒素供給装置は電 車駆動であるが、女川の可 型窒素ガス供給装置は電 を駆動源としている。 ・ ・ ・			の放射線分解等により発生する原子炉格納容器内の水素及び	 骏
納容器の負圧破損を防止するため、可搬型窒素ガス供給装置を用 設計の相違 いて原子炉格納容器内に不活性ガス(窒素)の供給が可能な設計 ・東二の窒素供給装置は電電 とする。 理感素ガス供給装置は発電 とする。 理窒素ガス供給装置は発電 とする。 理窒素ガス供給装置は発電 とする。 空感動源としている。 1. 炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要な重大事故 空感動源としている。 ・ ロー			素を大気に排出できる設計とする。	
いて原子炉格納容器内に不活性ガス(鉴素)の供給が可能な設計 とする。 ・東二の窒素供給装置は電調 事動であるが、女川の可 型窒素ガス供給装置は発電 を駆動源としている。 t. 炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要な重大事故 等対処設備のうち,原子炉格納容器内を不活性化するための設 として,可搬型窒素ガス供給装置を設ける設計とする。 ・東二の窒素供給装置は発電 事動であるが、女川の可 型窒素ガス供給装置は発電 を駆動源としている。 u. 可搬型窒素ガス供給装置は、発電機を搭載することで,外部か 設備の相違			s. 可搬型窒素ガス供給系は,可燃性ガスによる爆発及び原子炉	各 設備名称の相違
とする。 車駆動であるが、女川の可 型窒素ガス供給装置は発電 を駆動源としている。 た、炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要なす大事 等対処設備のうち、原子炉格納容器内を不活性化するための設備 として、可搬型窒素ガス供給装置を設ける設計とする。 車駆動であるが、女川の可 型窒素ガス供給装置は発電 を駆動源としている。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			納容器の負圧破損を防止するため,可搬型窒素ガス供給装置を)	用 設計の相違
中国 型窒素ガス供給装置は発電 とい、炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要な重大事 等対処設備のうち、原子炉格納容器内を不活性化するための設備 として、可搬型窒素ガス供給装置は、発電機を搭載することで、外部の 設備の相違			いて原子炉格納容器内に不活性ガス(窒素)の供給が可能な設置	+ ・東二の窒素供給装置は電源
L. 炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要な重大事故 等対処設備のうち,原子炉格納容器内を不活性化するための設備 として,可搬型窒素ガス供給装置を設ける設計とする。を駆動源としている。u. 可搬型窒素ガス供給装置は,発電機を搭載することで,外部か 設備の相違設備の相違			とする。	車駆動であるが、女川の可
 た、炉心の著しい損傷が発生した場合において原子炉格納容器内 における水素爆発による破損を防止するために必要な重大事故 等対処設備のうち,原子炉格納容器内を不活性化するための設備 として,可搬型窒素ガス供給装置を設ける設計とする。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				型窒素ガス供給装置は発電
 における水素爆発による破損を防止するために必要な重大事故 等対処設備のうち,原子炉格納容器内を不活性化するための設備 として,可搬型窒素ガス供給装置を設ける設計とする。 u.可搬型窒素ガス供給装置は,発電機を搭載することで,外部か 設備の相違 				を駆動源としている。
 等対処設備のうち,原子炉格納容器内を不活性化するための設備 として,可搬型窒素ガス供給装置を設ける設計とする。 u.可搬型窒素ガス供給装置は,発電機を搭載することで,外部か 設備の相違 			t. 炉心の著しい損傷が発生した場合において原子炉格納容器	勺
として、可搬型窒素ガス供給装置を設ける設計とする。設備名称の相違u.可搬型窒素ガス供給装置は、発電機を搭載することで、外部か設備の相違			における水素爆発による破損を防止するために必要な重大事	汝 🛛
u. 可搬型窒素ガス供給装置は,発電機を搭載することで,外部か 設備の相違			等対処設備のうち,原子炉格納容器内を不活性化するための設	莆
			として,可搬型窒素ガス供給装置を設ける設計とする。	設備名称の相違
らの電源供給は不要な設計とし、原子炉格納容器内に窒素を供給・東二の窒素供給装置は電			u. 可搬型窒素ガス供給装置は,発電機を搭載することで,外部	か 設備の相違
			らの電源供給は不要な設計とし,原子炉格納容器内に窒素を供給	合 ・東二の窒素供給装置は電


柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発	電所第2号機	備考
			ド器内に発生する オ	反応及び水の放射線分解等により ×素及び酸素の濃度を可燃限界未	車駆動であるが,女川の可搬 型窒素ガス供給装置は発電機 を駆動源としている。
		2.2 設計条件 本系統における	る設備の設計条件を	を表2.2-1に示す。	
			表2.2-1	設計条件	設計条件の相違
			計条件	設定根拠 原子炉格納容器の限界圧力を考慮し,	・原子炉格納容器型式が, 東 二:MarkⅡ(1Pd:0.31MPa)に
		最高使用圧力 最高使用温度	854kPa[gage] 200°C	原子炉格納容器の限界温度を考慮し,	対し, 女川 : Mark-I 改良雪 (1Pd:0.427MPa)(理由⑥)
		設計流量	10.0kg/s (原子炉格納容器圧力 427kPa[gage] において)	200℃とする。 原子炉定格熱出力1%相当の飽和蒸気 量を,ベント開始圧力が低い場合 (427kPa[gage])であっても排出可能 な流量とする。	・原子炉格納容器型式の相違 に伴う設計条件の相違 ・よう素の炉内内蔵量につい て,女川はより熱出力が大き い代表炉心の評価結果をその まま適用している。
		フィルタ装置 内発熱量	370kW	想定されるフィルタ装置に捕集及び保 持される放射性物質の崩壊熱に対して 十分な余裕を見込み,原子炉定格熱出 力の0.015%に相当する発熱量とする。	
		エアロゾル 移行量	150kg	想定されるフィルタ装置に移行するエ アロゾルの量 (28kg) に対して十分な余 裕を見込み, 150kgとする。	
		よう素の炉内 内蔵量	kg	BWRプラントにおける代表炉心 (ABWR) の平衡炉心末期を対象としたORIGEN2 コードの計算結果*から, し kgとする。	
		を代表させて	ている。また, ORIGEN2=	基準地震動Ssにて機能を維持する。 大きくなることから,炉心熱出力が高いABWR コードでは,保守的に1サイクル13か月(395 (416日)の燃焼期間を仮定している。	
		2.3 原子炉格新 2.3.1 系統構成	納容器フィルタベン 成	/卜系	設備名称の相違
		本系統は, 原	子炉建屋原子炉棟	のフィルタ装置室内に設置するフ フィルタ装置までの入口配管,フ	
		ィルタ装置から	大気開放される出	口配管,フィルタ装置出口側ラプ	
				備,給水設備,可搬型窒素ガス供 備)で構成される。	設計の相違 ・女川はベント後にスクラ/

12

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			溶液を移送しなくても、フィ
			ルタ装置の機能性能を維持で
			きる設計としており、排水設
			備を自主対策設備としてい
			る。
		 (1) 配管等の構成 	
		入口配管は,原子炉格納容器のサプレッションチェンバ及びドラ	設備名称の相違
		イウェルに接続された原子炉格納容器調気系配管から分岐し, 弁を	設備の相違
		経由して3台並列に設置したフィルタ装置に接続する。	・設計方針の相違に伴う系統
		また、3台のフィルタ装置のスクラバ溶液の水位を等しくするた	構成の相違
		めに,各フィルタ装置の気相部及び液相部をそれぞれ連通管で接続	・2.1 項の理由③
		する。	
		フィルタ装置入口側及び出口側の配管は、各フィルタ装置のベン	
		トガス流量を同等とするため, 圧力損失の差を小さくするように配	
		管ルートを設計する。	
		出口配管には,系統待機時に窒素置換された系統と大気を隔離す	設備名称の相違
		るフィルタ装置出口側ラプチャディスクを設置する。フィルタ装置	
		出口側ラプチャディスクはベント開始時に微正圧で動作するもの	
		とし, 信頼性の高いものを使用する。	
		フィルタ装置には,外部からスクラバ溶液を補給できるよう給水	設備名称の相違
		配管を設置する。また、外部から系統に窒素を供給できるよう窒素	
		供給配管を設置する。	
		また,ベント後の放射性物質を含むスクラバ溶液を原子炉格納容	
		器(サプレッションチェンバ)に移送するため、及び、万一、放射	
		性物質を含むスクラバ溶液がフィルタ装置室内に漏えいした場合	設計の差異
		に,漏えい水を原子炉格納容器(サプレッションチェンバ)に移送	・2.1項の理由④及び⑤
		するための配管(自主対策設備)を設置する。	・女川はベント後にスクラバ
			溶液を移送しなくても、フィ
			ルタ装置の機能性能を維持で
			きるため,排水設備を自主対
			策設備としている。
		図2.3.1-1に原子炉格納容器フィルタベント系の系統構成を示	設備名称の相違
		Ţ.	

東海第二発電所	女川原子力発電所第2号機	備考
	の規定に準拠して設計する。材質は炭素鋼を基本とするが、使用環	
	境に応じて耐食性の高いステンレス鋼を使用する。屋内の炭素鋼配	表現の相違
	管及び屋外のステンレス鋼配管は腐食防止の観点から,外面に樹脂	
	系塗料を塗装する。	
		設備名称の相違
	構造とする。	
	フィルタ装置出口側ラプチャディスクについては、ベント開始時	設備名称の相違
	の原子炉格納容器圧力(427kPa[gage])と比較して十分低い圧力で	設計の相違
	動作するように設定し、材料はステンレス鋼を使用する。	・2.2 項の理由⑥
	系統を構成する主要な機器の仕様を表2.3.1-1に、フィルタ装置	
	及び配管の材質範囲を図2.3.1-2に示す。	
	(3) 系統の切替性	
	原子炉格納容器からフィルタ装置へ至る配管は、ベントを実施す	
	る際、接続する他系統と隔離し、流路を構成する必要がある。対象	
	となる系統は,非常用ガス処理系,原子炉建屋原子炉棟換気空調系	設備名称の相違
	及び耐圧強化ベント系である。これらの系統との取合いの弁は通常	
	全閉状態であるが,開状態の場合でも中央制御室からの操作によ	
	り、速やかに閉操作が可能である。	
	非常用ガス処理系及び原子炉建屋原子炉棟換気空調系との取合	
	いの弁は、フェイルクローズの空気作動弁であることから、全交流	
	動力電源喪失時には、全閉状態となる。また、耐圧強化ベント系と	
	の取合い弁は、電動弁であり、耐圧強化ベント系は原子炉格納容器	表現の相違
	フィルタベント系が使用できない場合に使用する系統であるため、	
	全閉状態を維持する。	
	東海第二発電所	 (2) 村営及び構造 配管及び用法, 此大車数等クラス2機器として、「日本機械学会 発電用原子力設備規格 設計・違設規格 (2005/2007)」のクラス2 の規定に準拠して設計する、村智は成素額を法本とするが、使用環境に応じて耐食性の高いステンレス類を使用する。医内の炭素額配 学及び最外のステンレス類配管目協長の美いの観点から、外面に動間系 楽艇科を塗掘する。 ご店でかど下ルスは汎用電動に見を取り付けて人力で操作できる 構造とする。 フィルク装置目口側ラブチャディスクについては、「ベント構造時の原子和移物容器圧力(421kha (ange))と比較して十分起い圧力で 動作するように設定し、材料はステンレス類を使用する。 系統を準備する主要な機器の仕様を表2.3.1-1に、フィルク装置及び配管の材質範囲を図2.3.1-2に示す。 (3) 系統の切替性 原子和移動容器からフィルク装置へ至る配管は、ベントを実施する際、接続する他系統にと隔離したの気がいの非は通常、 (4) 系統の切替性 原子和教育部からフィルク装置へ至る配管は、ベントを実施する際、接続する地系が、開放機の場合でも中央制御室からの操作により、逆やかに閉場作が可能である。 非常用ガス処理系及び原子排建屋原子所建築気空調系との取合いの非は、フェイルクローズの空気情勤学があることから、全交数 効力電源更大時には、全的状態となる。また、耐圧強化ペント系との取合いの非に、電動力電泳更大時には、全的状態となる。また、耐圧強化ペント系との取合いのたよ、電動力電泳更大時には、全的状態となる。また、耐圧強化ペント系


本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考
		表2.3.1-1 主要系統構成機器の仕様 設備の相違
		(1) 配管 ・設計方針の相違に伴う
		呼び後材質構成の相違
		a. 原子炉格納容器調気系配管から 400A 炭素鋼
		ベントライン分岐部
		b. ベントライン分岐部からフィル 200A 炭素鋼 夕装置 200A
		c. フィルタ装置から排気ライン合
		流部 400A 炭素鋼
		d. 排気ライン合流部からフィルタ 500A 炭素鋼
		装置出口側ラブチャディスク
		c. フィルタ装置出口側ラブチャデ 500A ステンレス鋼
		(2) 隔離弁
		型式 駆動方式 呼び径
		a. 原子炉格納容器第一隔離弁 電動駆動(直流)
		(サブレッションチェンバベント バタフライ并 600A 600A
		川山口隔離弁)
		電動駆動(直流) (ドライウェルベント用出口隔離 バタフライ弁 600A
		介) +遠隔手動介操作設備
		c. 原子炉格納容器第二隔離介 電動駆動(直流)
		(原子炉格納容器フィルタベント バタフライ弁 400A 400A
		系ベントライン隔離介(A)) 4. 原子炉格納容器第二隔離介
		(原子炉格納容器フィルタベント バタフライ弁 電動駆動(直流) 400A
		(A)
		(3) 遠隔手動弁操作設備
		原子炉格納容器第一隔離弁 原子炉格納容器第二隔離弁 原子炉格納容器 原子炉格納容器
		サブレッション ドライウェルベ フィルタベント フィルタベント
		チェンバベント ント用出口 系ベントライン 系ベントライン
		川出口隔離弁 隔離弁 隔離弁(A) 隔離弁(B) (600A) (600A)
		(400A) (400A)
		フレキシブル 約28m 約20m 約19m 約18m
		シャフト長さ 1 1 1 1
		(4) フィルタ装置出口側ラプチャディスク
		型式 設定破裂圧力 呼び径 材質 個数
		複合引張型100kPa500Aステンレス鋼1
		ラプチャディスク 100km 000km 1

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		<complex-block></complex-block>

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	2.3.2 フィルタ装置	
	(1) フィルタ装置仕様	
	フィルタ装置は、たて置円筒形の容器であり、常時スクラバ溶液	設備の相違
	を貯留する。また、1基(全3台)で構成し、3台のフィルタ装置	・女川のフィルタ装置は壁に
	は並列に設置し,原子炉建屋原子炉棟内のフィルタ装置室の壁に固	固定
	定する。容器下部にはベンチュリスクラバ(ベンチュリノズル及び	・2.1 項の理由③
	スクラバ溶液)、上部には金属繊維フィルタが設置され、これらを	設備名称の相違
	組み合わせて粒子状放射性物質を除去する。	
	さらに,金属繊維フィルタの後段に,容器内部に放射性よう素フ	
	ィルタを設け,有機よう素及び無機よう素を捕集する物質(銀ゼオ	表現の相違
	ライト)を収納している。	
	フィルタ装置の主な仕様を以下に示す。	
	a. 容器は,重大事故等クラス2容器として「日本機械学会 発電	
	用原子力設備規格 設計・建設規格(2005/2007)」クラス2容器の	
	規定に準拠して設計する。	
	b. 容器内に貯留するスクラバ溶液量は,捕集した放射性物質の崩	設備名称の相違
	壊熱による減少を考慮し,設計条件であるフィルタ装置内発熱量	
	370kWに対して、ベント開始後 はベンチュリスクラバによ	設計条件の相違
	る所定の放射性物質の除去性能が確保できるように設定する。	・原子炉定格熱出力の相違
	c. 容器及び内部構造物の材料は、スクラバ溶液に添加されるアル	設備名称の相違
	カリ性の薬剤に対して、耐性に優れるステンレス鋼を使用する。	
	d. 容器には、スクラバ溶液の減少分を補充するための注水用の管	設備名称の相違
	台,スクラバ溶液を採取するための試料採取用の管台及びスクラ	
	バ溶液を移送するためのドレン用の管台を設ける。	
	e. 容器は、ベンチュリノズル及び金属繊維フィルタを内蔵する。	設備名称の相違
	f. 容器内部には,放射性よう素フィルタを設け,銀ゼオライトを	設備名称の相違

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		g. 金属繊維フィルタと放射性よう素フィルタの連絡管には,流量 制限オリフィスを設け,原子炉格納容器より排出されるガスの体 積流量をほぼ一定に保つ設計とする。	設備名称の相違
		フィルタ装置の仕様を表2.3.2-1に,構造を図2.3.2-1に示す。	
			設備の相違 ・設計方針の相違に伴う設備 構成の相違
		N34 レベル計(狭帯城) N33 レベル計(狭帯城) N32 換気口(サンプリング) N31 連通管 N30 重大事故用給太ライン N29 サンプリング N28 運通管 N19 サンプリング N18 ペント N17 ドレン N16 ドレン N15 ドレン N14 排水移送ライン N13 薬液注入ライン N11 補給太ライン N10 温度計	
		注:フィルタ装置(A)のN28及びフィルタ装置(C)の N31は予備とする 108 正力計 (広帯域) 3 マンホール平板 2 100 N5 レベル計(広帯域) 1 胴板 100 N5 レベル計(広帯域) 1 胴板 100 N5 レベル計(広帯域) 1 一 100 N5 レベル計(広帯域) 1 一 100 100 N5 1 一 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100	
	[[本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がある	っため公開できません。 - 19 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(2) フィルタ仕様	
		a. ベンチュリスクラバ	
		ベンチュリスクラバは、ベンチュリノズル、スクラバ溶液で構成	設備名称の相違
		され,ベントガス中に含まれる粒子状放射性物質及び無機よう素を	表現の相違
		捕集し、スクラバ溶液中に保持する。	
		ベンチュリノズルは, 上部に行くにつれて緩やかに矩形断面の流	
		路面積を増やして断面変化させており、上端は閉じて、側面に出口	
		開口を設けている。また,ベンチュリノズル中低部の最も流路断面	表現の相違
		積が小さくなるスロート部の側面にスクラバ溶液を取り込む開口	
		を設けている。これにより、スロート部で高流速とすることで、ス	
		ロート部の圧力を周囲スクラバ溶液領域よりも低下させて側面開	
		ロからベンチュリノズル周囲のスクラバ溶液を吸込み、ベンチュリ	
		ノズル内に噴霧させる。ベンチュリノズル内ではガスと噴霧水滴の	
		流速の差で粒子状放射性物質の捕集効率を高め, 上端吐出部からス	
		クラバ溶液中に排出させる。	
		ベンチュリノズルは,分配管に設置し,分配管に対して直立させ	設備の相違
		るとともに,他のベンチュリノズルと離隔距離を確保した配置とす	・ベンチュリノズル配置の
		る。また、ベントガスは、スクラバ溶液中に に排出され	違(ベンチュリノズル個数
		たのち、減速し分配管の間を浮き上がっていく流れとなるため、隣	蒸気流量等により相違),
		接するベンチュリノズルヘ与える影響はない。	2.3.2-3 に記載
			表現の相違
		また,スクラバ溶液には放射性の無機よう素(I2)を捕集,保持	設備名称の相違
		するため,	
		が添加される。	
		↓ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
		う素イオン(I ⁻)に変化させ, は,	
		の効果を安定させるために、スクラバ溶液を高アルカリ性の	

		ベンチュリノズルの材質は, 耐アルカリ性に優れるステンレス鋼	
		とする。	
		ベンチュリノズルの機器仕様を表 2.3.2-1 に, スクラバ溶液の仕	
		様を表 2.3.2-2 に、概略図を図 2.3.2-2 に、配置を図 2.3.2-3 に、	
		ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に	
		示す。	

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		
		図2.3.2-2 ベンチュリノズル概
		L
		図2.3.2-3 ベンチュリノズルの
		(全3台のうち2台(残り1台は180°方位

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

機	備考
	図中の設備名称の相違
レ概略図	
	設備の相違
の配置図	・ベンチュリノズル配置の相
位が異なる。))	違(ベンチュリノズル個数は
	蒸気流量等により相違)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図2.3.2-4 ベンチュリノズルからのベント
		b. 金属繊維フィルタ 金属繊維フィルタは、ベンチュリスクラバで
		並 子状放射性物質を除去する。
		金属繊維フィルタは,必要なフィルタ面積と
		られるように, 容器の上部に縦向きに配置され
		タはステンレス鋼製で、プレフィルタとメイン であり、周囲の型枠により容器内部に直
		ベントガスは、スクラバ溶液を出た後、スク
		湿分(液滴)を含んでいる。長時間の運転でも
		するため, の間 設けられ,除去した液滴は,スクラバ溶液内に
		金属繊維フィルタの機器仕様を表2.3.2-1に
		タ装置内の配置を図2.3.2-5及び図2.3.2-6に示
		ł

幾	備考
、ガスの流れの概要	
で除去しきれなかった	設備名称の相違
	表現の相違
と最適なガス流速が得	
れる。金属繊維フィル /フィルタを	
直接取り付けられる。	
フラバ溶液から生じる あ高い除去効率を確保 引には湿分分離機構が にドレンされる。	設備名称の相違
こ,概略図及びフィル 示す。	
	- 22 -

女川原子力発電所第2号機	東海第二発電所	柏崎刈羽原子力発電所第7号機
図2.3.2-5 金属繊維フィルタ根		
図2.3.2−6 フィルタ装置の断面図(金属		
(a) プレフィルタ及び湿分分離機構 プレフィルタは、ベントガスに含まれる液滴		
トガスに含まれる液滴は、湿分分離機構		

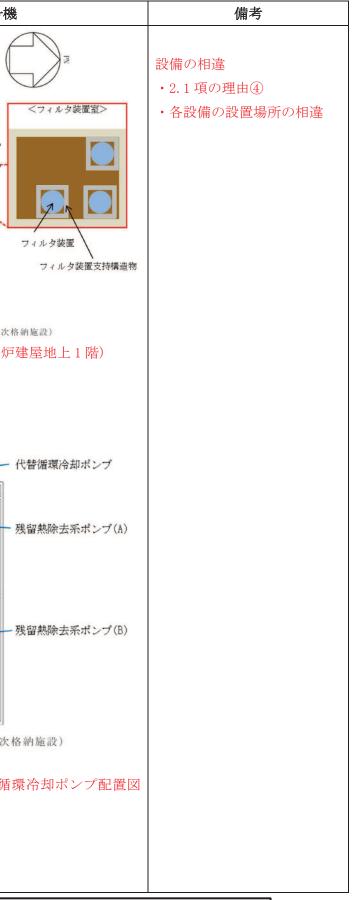
本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の

} 機	備考
	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
ダ概略図	
属繊維フィルタ)	
〔滴を凝集させる。ベン を通過	
:の機密事項を含む可能性がある	ため公開できません。 - 23 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		する際, し,
		分離される。分離した液滴は、金属繊維フィルク
		レン配管を介してスクラバ溶液中に戻る。
		プレフィルタは,約 μmの繊維径
		になっている。繊維の株
		ステンレス鋼を採用する。
		湿分分離機構の概要を図2.3.2-7に,ドレン西
		図2.3.2-8に示す。
		図2.3.2-7 湿分分離機構の概略
		因2.3.2 1 征力力时间对中小规则
		図2.3.2-8 ドレン配管接続部の構
		(b) メインフィルタ
		メインフィルタは,約µmの繊維
		になっている。繊維(
		ステンレス鋼を採用する。

機	備考
し, ベントガス中から	
ルタ下部に接続したド	設備名称の相違
経のものを使用し,	
の材質は,	
ン配管接続部の概要を	
概略図	
の概略図	
繊維径のものを使用し,	
維の材質は,	

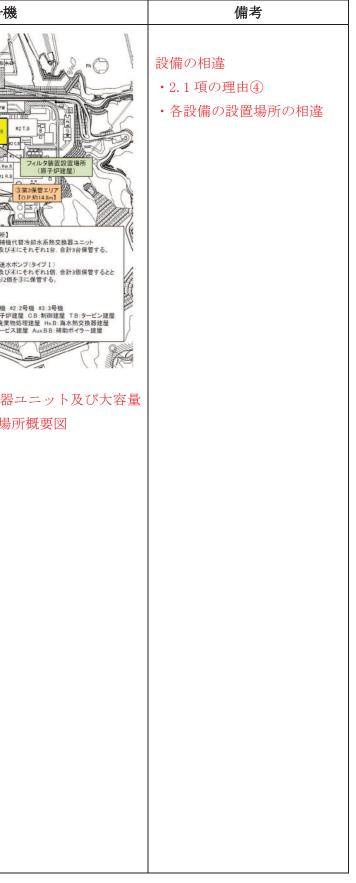
東海第二発電所	女川原子力発電所第2号機	備考
	c. 流量制限オリフィス	
	フィルタ装置内の体積流量をほぼ一定に保つため、金属繊維フィ	設備名称の相違
	ルタ下流に流量制限オリフィスを設置する。流量制限オリフィスの	
	穴径は,系統の圧力損失を考慮した上で,ベント開始時の原子炉格	表現の相違
	納容器圧力 (1Pd~2Pd) のうち, 低い圧力 (1Pd) において, 設計流	
	量が確実に排気できるよう設定する。	
	なお,ベントガスは, により,	
	となり、放射性よう素フィルタに供給される。	
	流量制限オリフィスの仕様を表2.3.2-1に示す。	
	d. 放射性よう素フィルタ	設備名称の相違
	放射性よう素フィルタには,銀ゼオライトを収納し,ベントガス	
	を通過させることで、ガス中に含まれる放射性のよう素を除去す	
	る。	
	銀ゼオライトの充填部は, ,各充填部に充填	設備の相違
	孔を設け、万一、銀ゼオライトの交換が必要になった場合は、容器	・設計方針の相違に伴う設備
	頂部のマンホールから充填孔を介して銀ゼオライトを充填若しく	仕様の相違
	は吸引回収できる構造とする。	
	放射性よう素フィルタの仕様を表2.3.2-1に, 概略図を図2.3.2-9	設備名称の相違
	に、フィルタ装置内の放射性よう素フィルタの配置を図2.3.2-10に	
	示す。	
		設備の相違
		・設計方針の相違に伴う設備
		仕様の相違
	図2.3.2-9 放射性よう素フィルタ概略図	
		 フィルク装置内の保積成量をはぼ一定に保つため、金属繊維フィルク下面に洗量制限オリフィスを設置する、洗量制限オリフィスを設置する、洗量制限オリフィスを設置する、洗量制、 新鮮素に上方(日本290 のうち、低い圧力(日40 において、設計洗量が確実に非気できるよう設定する。 なお、ベントガスは、[ここより、] こより、」により、] となり、放射性よう素フィルクに供給される。 洗量制限オリフィスの(上級を表2.3.2-1に示す。 4、放射性よう素フィルク 放射性よう素フィルクス 飯が生うイトの支援が必要になった場合は、容器 国際のマンホールから充填見を介して銀ゼオライトを実践若しく は吸引回収できる情況を介して銀ゼオライトを実践若しく は吸引回収できる情況を介して銀ゼオライトを実践若しく は吸引回収できる情況を介して銀ゼオライトを実践若しく こ、ガイルク装置内の放射性よう素フィルクの配置を図2.3.2-10に示す。


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設 仕様の相違
		図 2.3.2-10 フィルタ装置の断面図(放射性よう素フィルタ)	
		表2.3.2-1 フィルタ装置主要仕様 (1) 容器	設備の相違 ・設計方針の相違に伴う設 仕様の相違
		材 質 ステンレス鋼 個数 (3) 金属繊維フィルタ 材 質 ステンレス鋼 市さ約 高さ約 寸 法 横幅約 「「」」」 アレフィルタ約 繊維径 メインフィルタ約	
		個数 人工工具 総面積 約	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		(4) 流量制限オリフィス
		型式同心オリ
		材 質 ステンレス鋼
		個 数
		(5) 放射性よう素フィルタ
		充填量 約 ベッド厚さ 約
		ベッド厚さ 約
		表2.3.2-2 スクラバ溶液仕様(待
		項目
		Hq
		2.3.3 配置
		フィルタ装置は,原子炉建屋原子炉棟内のフ
		することにより, 地震, 津波, 飛来物の衝突等
		る。フィルタ装置等の周囲に設置される遮蔽
		ト製であり,原子炉格納容器フィルタベント系
		に蓄積される放射性物質から放出される放射
		する設計とする。また、最終ヒートシンクへ素
		計基準事故対処設備である残留熱除去系ポンプ
		換器,原子炉補機冷却水ポンプ,原子炉補機冷
		原子炉補機冷却海水ポンプ並びに重大事故等
		炉補機代替冷却水系熱交換器ユニット及び大約
		プI)に対して位置的分散を図っている。さ
		設備である代替循環冷却ポンプに対しても位
		る。
		フィルタ装置の配置を図2.3.3-1に,残留素
		替循環冷却ポンプの配置を図2.3.3-2に,残留
		配置を図2.3.3-3に,原子炉補機冷却水ポンフ
		田直を凶4.3.3 ⁻ 3に,尿丁炉備機位却水ホンノ

幾	備考
	設備の相違
フィス板	・設計方針の相違に伴う設備
	仕様の相違
ライト	
mm	
機水位時)	
設定値	
13以上	
フィルタ装置室に設置	設備の相違
等を考慮した設計とす	・2.1項の理由④
達 は,鉄筋コンクリー	表現の相違
系の使用時に本系統内	
け線から作業員を防護	
熱を輸送するための設	
プ,残留熱除去系熱交	
命却水系熱交換器及び	
[≨] 対処設備である <mark>原子</mark>	設備の相違
容量送水ポンプ(タイ	
うに,重大事故等対処	
Z置的分散を図ってい	設備名称の相違
熱除去系ポンプ及び代	表現の相違
留熱除去系熱交換器の	
プ,原子炉補機冷却水	

柏崎刈羽原子力発電所第7号機	東海第二発電所	備考
	系熱交換器及び原子炉補機冷却海水ポンプの配置を図2.3.3-4に,	
	原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポンプ	
	(タイプI)の保管場所を図2.3.3-5に示す。	
	原子炉格納容器フィルタベント系の配管については、ベント時に	設備名称の相違
	発生する蒸気凝縮で発生するドレン水による閉塞やこれに起因す	
	る水素及び酸素の滞留を防止するため、配置に留意する。具体的に	
	は配管ルートにUシール部ができないよう配置する。なお、新設部	
	分については、水平配管に適切な勾配を設ける。	
	原子炉格納容器フィルタベント系は、サプレッションチェンバ及	設備名称の相違
	びドライウェルと接続し、いずれからも排気できる設計とするた	
	め、サプレッションチェンバ側からの排気では、重大事故等時の最	
	大水位(0.P1.914m)よりも高い位置(0.P.1.352m)に接続箇所を	設備の相違
	設け、ドライウェル側からの排気では、有効燃料棒頂部(0.P.	
	16.51m)よりも高い位置(0.P.17.80m)に接続箇所を設ける。	仕様の相違
		表現の相違
	原子炉格納容器フィルタベント系の配管ルート図を図 2.3.3-6~	設備名称の相違
	10 に示す。	
	本資料のうち枠囲みの内容は、他社の機密事項を含む可能性がある	ため公開できません。 - 28 -


	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
図 2.3.3-2 残留熱除去系ボンブ及び代			
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		KINKYJJJERUJJRZ 4400 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	 設備の相違 ・2.1項の理由④ ・各設備の設置場所の相違
		図 2.3.3-4 原子炉補機冷却水ポンプ,原子炉補機冷却水系熱交換 器及び原子炉補機冷却海水ポンプ配置図(原子炉建屋 地下3階及び海水ポンプ室)	
	大容料の	うち枠囲みの内容は,当社の商業機密を含むため,又は他社の機密事項を含む可能性がある	- 30 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		4 1
		図2.3.3-5 原子炉補機代替冷却水系熱交換器 送水ポンプ(タイプI) 保管場

- 31 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
Γ			_
			設備の相違
			・設計方針の相違に伴う設
			設計の相違
		図 2.3.3-6 原子炉格納容器フィルタベント系 配管ルート図(⊿ 全
		体図)	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			設計の相違
		図 2.3.3-7 原子炉格納容器フィルタベント系 配管ルート拡大図 (1/4)	
		(1/4)	
		lr	
		図 2.3.3-8 原子炉格納容器フィルタベント系 配管ルート拡大図	
		(2/4)	
L_	Г	▲うち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がある。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図 2.3.3-9 原子炉格納容器フィルタベント系
		(3/4)
		図 2.3.3-10 原子炉格納容器フィルタベント
		図 (4/4)
	-t	

幾	備考
	設備の相違
	・設計方針の相違に伴う設備
	設計の相違
系 配管ルート拡大図	
、系 配管ルート拡大	
	- 34 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			 ・設計方針の相違に伴う設備 設計の相違
			双司 ジ油 単

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			 ・設計方針の相違に伴う設備 設計の相違
			設計の相連
	I		26

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			 ・設計方針の相違に伴う設備 設計の相違
			成市の作用
			27

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			 ・設計方針の相違に伴う設備 設計の相違

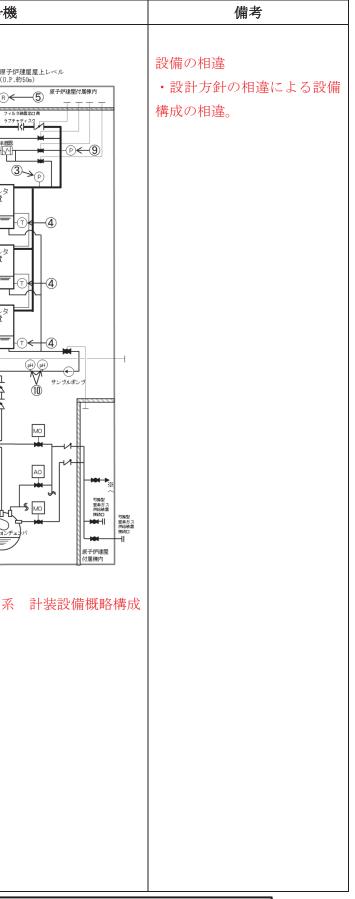
柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	2.4 付帯設備	
	2.4.1 計装設備	
	原子炉格納容器フィルタベント系の計装設備は,各運転状態にお	設備名称の相違
	いて,設備の状態を適切に監視するため,フィルタ装置出口水素濃	設備の相違
	度,フィルタ装置出口放射線モニタ及びフィルタ装置周り計装設備	・女川は, ベント停止後, 窒素
	にて構成する。	供給による系統パージ中にお
		いて系統内の水素濃度が低下
	(1) フィルタ装置出口水素濃度	していることを確認するため
	フィルタ装置出口水素濃度は,ベント停止後の系統内の水素濃度	に、系統内の窒素の流れを考
	が可燃限界4vo1%以下に維持されていることを監視するため、フィ	慮し,出口配管の水素濃度を
	ルタ装置出口配管に設置する。	監視する。 東二は,系統内の蒸
		気が凝縮してフィルタ装置に
		戻ると非凝縮性ガス濃度が上
		昇し、可燃限界に至るおそれ
		がある入口配管に系統パージ
		停止後に水素が長期的に滞留
		しないことを確認する。(理由
		⑦)
	ベント停止(原子炉格納容器第一隔離弁を閉止)後は、フィルタ	設備名称の相違
	装置の上流側から窒素を供給し、系統内に残留するガスを掃気する	表現の相違
	ことで、水素が可燃限界に至ることはない。また、フィルタ装置内	
	の放射性物質を保持するスクラバ溶液より放射線分解で発生する	設備名称の相違
	水素は,窒素供給することでフィルタ装置出口配管を通って掃気さ	
	れ、可燃限界に至ることはない。	
	水素濃度の計測は、ベント停止後の系統内への窒素供給時に実施	運用の相違
	する。	・ベント停止後の運用の相違
	フィルタ装置出口水素濃度の計測範囲は,0~30vo1%及び0~	設備の相違
	100vol%とする。計測した水素濃度は、中央制御室及び緊急時対策	・上記の理由⑦及び設備仕様
	所で監視可能な設計とする。	の相違
	フィルタ装置出口水素濃度は、系統待機時には非常用母線より受	
	電しているが,重大事故等時で非常用交流電源設備から受電できな	
	い場合には、常設代替交流電源設備であるガスタービン発電機及び	
	可搬型代替交流電源設備である電源車から給電可能な構成とする。	・給電する電源設備の相違
	本資料のうち枠囲みの内容は、他社の機密事項を含む可能性がある	20

柏崎刈羽原子力発電所第7号機	東海第二発電所		§2号機	備考				
		フィルタ装置出	フィルタ装置出口水素濃度の主要仕様を表2.4.1-1に示す。					
		表2.4.1	表2.4.1-1 フィルタ装置出口水素濃度の仕様					
		種類	熱伝導率君	式水素検出器	・理由⑦及び設備仕様の相違			
		計測範囲	0~30vo1%	0~100vol%				
		個 数	1	1				
		使用電源	交流電源	交流電源				
		度を監視する目的 るため,フィルタ フィルタ装置出 れる排気中の放射 の最大の放射線量	:気へ放出する放射性物質濃)質からのγ線強度を計測す 設置する。 別範囲は,ベント時に想定さ 置出口配管に内包された時 :して,10 ⁻² mSv/h~10 ⁵ mSv/h 計量率は,中央制御室及び緊	設備の相違				
		には所内常設蓄電 蓄電池(B)から 及び125V蓄電池(B 設備である125V 125V代替蓄電池, 可能な構成とする	式直流電源設備である 受電しているが,重大 3)から受電できない場 代替蓄電池又は可搬型 125V代替充電器及び電 。	-統待機時及び重大事故等時 5125V蓄電池(A)及び125V 事故等時で125V蓄電池(A) 合には、常設代替直流電源 型代替直流電源設備である :源車の組み合わせから給電 要仕様を表2.4.1-2に示す。	 ・給電する電源設備の相違 ・電源構成は2.4.2項に記載 			

- 40 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表2.4.1-2 フィルタ装置出口放射線モニタの仕様 種類 電離箱 計測範囲 10 ⁻² mSv/h~10 ⁵ mSv/h 個数 2 使用電源 直流電源	設備の相違 ・女川は記載の計測範囲で炉 心損傷前と炉心損傷後のどち らも計測可能である。
		(3) フィルタ装置周り計装設備 系統待機時,系統運転時及び事故収束時の各状態において,フィ ルタ装置の水位,圧力及び温度並びにスクラバ溶液のpHを監視する ため,フィルタ装置周辺に水位計,圧力計,温度計及びpH計を設置 し,中央制御室,緊急時対策所及び一部現場において監視できる設 計とする。	
		フィルタ装置周りの計装設備のうち水位計,圧力計及び温度計 は,系統待機時及び重大事故等時には所内常設蓄電式直流電源設備 である125V蓄電池(A)及び125V蓄電池(B)から受電しているが, 重大事故等時で125V蓄電池(A)及び125V蓄電池(B)から受電でき ない場合には,常設代替直流電源設備である125V代替蓄電池又は可 搬型代替直流電源設備である125V代替蓄電池,125V代替充電器及び 電源車の組み合わせから給電可能な構成とする。 また,pH計は,系統待機時には非常用母線より受電しているが, 重大事故等時で非常用交流電源設備から受電できない場合には,常 設代替交流電源設備であるガスタービン発電機及び可搬型代替交 流電源設備である電源車から給電可能な設計とする。	・給電する電源設備の相違
		なお、スクラバ溶液は系統待機時に十分な量の薬液を保有するこ とにより、ベントを実施した際に原子炉格納容器から移行する酸の 量を保守的に想定しても、アルカリ性を維持することができ、ベン ト中のpH監視は不要であるため、pH計は自主対策設備とする。また、 フィルタ装置水位(広帯域)、フィルタ装置入口圧力(広帯域)及びフ ィルタ装置出口圧力(広帯域)は、中央制御室にて監視が可能である ため、現場計器は自主対策設備とする。さらに、フィルタ装置水位 (狭帯域)、フィルタ装置入口圧力(狭帯域)及びフィルタ装置出口 圧力(狭帯域)は系統待機時に確認する計器であるため、自主対策	 ・電源構成は2.4.2項に記載 設備の相違 ・設計方針の相違に伴う設備 構成の相違 ・計装設備の主要な仕様は,表 2.4.1-3に記載

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

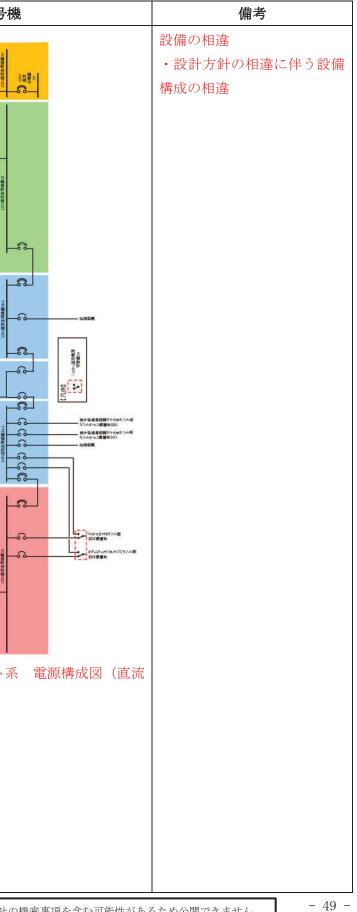

柏崎刈羽原子力発電所第7号機	東海第二発電所 東海第二発電所 女川原子力発電所 第2号機	備考
	設備とする。	
	(4) 各状態における監視の目的	
	a. 系統待機状態	
	原子炉格納容器フィルタベント系の系統待機時の状態を,以下の	設備名称の相違
	とおり確認する設計とする。	
	(a) フィルタ装置の性能に影響するパラメータの確認	
	フィルタ装置水位(狭帯域)にて、スクラバ溶液の水位が、系統	設備名称の相違
	待機時の設定範囲内 (mm) にあることを監視するこ	設備の相違
	とで,要求される放射性物質の除去性能が発揮できることを確認す	- ・設計方針の相違に伴う設備
	る。	仕様の相違
	系統待機時における水位の範囲は、ベント時のスクラバ溶液のカ	 表現の相違
	位変動を考慮しても放射性物質の除去性能を維持し、ベント開始後	
	7日間は水補給が不要な範囲である。	
	また、フィルタ装置内のスクラバ溶液のpHがアルカリ性の状態	
	(待機状態においてpH13以上)であることを確認することで、フィ	
	ルタ装置の性能維持に影響がないことを確認する。	
	(b) 系統不活性状態の確認	
	フィルタ装置入口圧力(狭帯域)及びフィルタ装置出口圧力(独	▲ 設備の相違
	帯域)にて,封入した窒素圧力 (□ kPa[gage] 程度)を継続監視す	
	ることによって、系統内の不活性状態を確認する。	構成の相違
		・計装設備の主要な仕様は,表
		2.4.1-3 に記載
	b. 系統運転状態	
	原子炉格納容器フィルタベント系の運転時の状態を,以下のとお	5 設備名称の相違
	り確認する設計とする。	
	(a) 原子炉格納容器内の雰囲気ガスがフィルタ装置へ導かれてW	N
	ることの確認	
	フィルタ装置入口圧力(広帯域)及びフィルタ装置出口圧力(広	、設備の相違
	帯域)にて、ベント開始により圧力が上昇し、ベント継続により原	 ・設計方針の相違に伴う設備
	子炉格納容器の圧力に追従して圧力が低下傾向を示すことで,原子	
	炉格納容器内の雰囲気ガスがフィルタ装置に導かれていることを	
	確認する。	2.4.1-3 に記載

柏崎刈羽原子力発電所第7号機	東海第二発電所
	また、フィルタ装置水温度にて、ベント開始によりスクラバ溶液 設備名称の相違
	が待機状態から飽和温度まで上昇することを監視することで,原子
	炉格納容器のガスがフィルタ装置に導かれていることを確認する。
	さらに,フィルタ装置出口放射線モニタが初期値から上昇するこ
	とを確認することにより、ガスが通気されていることを把握でき 表現の相違
	る。
	(b) フィルタ装置の性能に影響するパラメータの確認
	フィルタ装置水位(広帯域)にて、スクラバ溶液の水位が、ベン 設備名称の相違
	ト後の下限水位から上限水位の範囲内 mm) にあるこ 設備の相違
	とを監視することで,要求される放射性物質の除去性能が維持でき ・設計方針の相違に伴う設備
	ることを確認する。
	ベント後における下限水位については, ベンチュリノズルが水没
	していることを確認するため、上限水位については、金属繊維フィ 設備名称の相違
	ルタの性能に影響がないことを確認するためにそれぞれ設定する。
	(c) ベントガスが放出されていることの確認
	フィルタ装置出口放射線モニタにて,フィルタ装置出口を通過す
	るガスに含まれる放射性物質からのγ線強度を計測することで、フ
	ィルタ装置出口配管よりベントガスが放出されていることを確認
	する。
	c. 事故収束状態
	原子炉格納容器フィルタベント系の事故収束時の状態を以下の 設備名称の相違
	とおり確認する設計とする。
	(a) 系統内に水素が滞留していないことの確認
	フィルタ装置出口水素濃度にて、ベント停止後の系統内への窒素 設備の相違
	供給時において、水素が系統内に滞留していないことを確認する。 ・上記の理由⑦
	運用の相違
	・ベント停止後の運用の相違
	(b) フィルタ装置の状態確認
	フィルタ装置に異常がないことを確認するため、フィルタ装置水設備の相違
	位(広帯域)にて、スクラバ溶液の水位が確保されていること、フ ・設計方針の相違に伴う設備

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

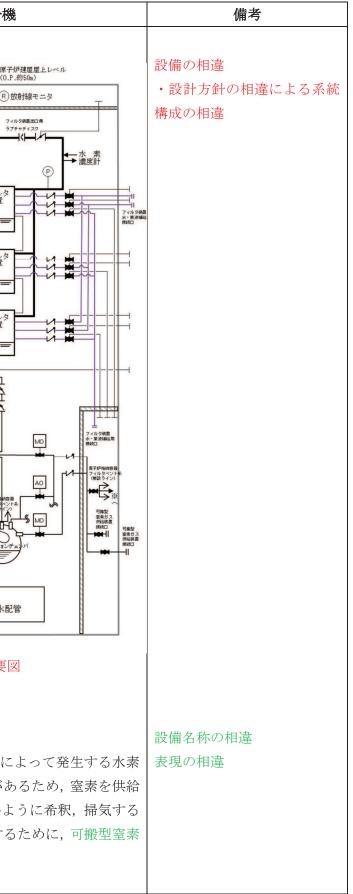
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		イルタ装置水温度にて温度の異常な上昇がないこと及びフィルタ 装置出口放射線モニタの指示値が上昇傾向にないことを確認する。	構成の相違 ・計装設備の主要な仕様は,表 2.4.1-3に記載 設備名称の相違 設備の相違 ・女川は,ベント後にフィルタ 装置のスクラバ溶液を移送し た後に水補給を実施し,移送 後にも水位を確認する。
		(5) 計装設備の仕様 フィルタ装置の水位について図 2.4.1-1 に,計装設備の概略構成 図を図 2.4.1-2 に,主要仕様を表 2.4.1-3 に示す。	
			設備の相違 ・設計方針の相違に伴う設備 設計の相違
		図 2.4.1-1 フィルタ装置水位	
			- 44 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		image: set in the set i

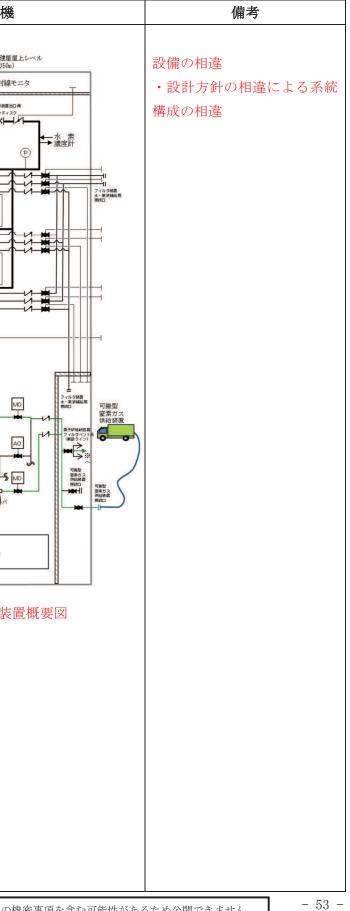


柏崎刈羽原子力発電所第7号機	東海第二発電所		女	川原子力	発電所第2号機			備考
			表2.4.1	-3 計媒	長設備主要仕様(1/	2)		設備の相違
		監視 パラメータ*1	設置目的	計測範囲	計測範囲の根拠	検出器 個数	監視場所	・設計方針の相違に伴う設備
		①フィルタ装②水位(広帯域)	系統運転時の 水位監視	0∼ 3650mm* ³	 系統運転時の下限水位 から上限水位の範囲 (3	中央制御室 緊急時対策所 現場*2	仕様の相違
			系統運転中に 原子炉格納容 器雰囲気ガス がフィルタ装 置に導かれて いることの確 認	-0.1MPa ~ 1.0MPa	系統の最高使用圧力 (0.854MPa[gage]) を監視できる範囲	1	中央制御室 緊急時対策所 現場*2	
			系統運転中に 原子炉格納容 器雰囲気ガス がフィルタ装 置に導かれて いることの確 認	-0.1MPa ~ 1.0MPa	系統の最高使用圧力 (0.854MPa[gage]) を監視できる範囲	1	中央制御室 緊急時対策所 現場* ²	
		④フィルタ装置水温度	フィルタ装置 内の水温度監 視		系統の最高使用温度 (200℃)を監視でき る範囲	3	中央制御室 緊急時対策所	
		⑤フィルタ装 置出口放射 線モニタ	系統運転中に 放出される放 射性物質濃度 の確認	10 mSv/h	想定される放射性物質 がフィルタ装置出口配 管に内包された時の最 大の放射線 最率(約 1.9×10 ³ mSv/h) を計 測できる範囲	2	中央制御室 緊急時対策所	

柏崎刈羽原子力発電所第7号機	東海第二発電所		女	川原子力	発電所第2号機			備考
			表2.4.1	-3 計媒	長設備主要仕様(2/	2)		設備の相違
		監視 パラメータ*1	設置目的	計測範囲	計測範囲の根拠	検出器 個数	監視場所	・設計方針の相違に伴う設備
		⑥フィルタ装〇世山口水素濃度	and the second sec	0~ 30vol% 0~ 100vol%	想定される水素濃度の - 変動範囲を計測できる 範囲	1	中央制御室 緊急時対策所	仕様の相違
		The second second second	系統待機時の フィルタ装置 の水位監視	1180mm~ 1580mm**	 系統待機時のフィルタ 装置の水位の範囲 (mm^{*3}) を監視できる範囲 	3	中央制御室 緊急時対策所	
		③フィルタ装置入口圧力(狭帯域) *2	系統待機時の 窒素封入によ る不活性状態 の確認	0∼ 100kPa [gage]	封入した窒素圧力 (<mark>]</mark> kPa[gage]程度) を監視できる範囲	1	中央制御室 緊急時対策所	
		③フィルタ装 置出口圧力 (狭帯域) *2	 系統待機時の 窒素封入による る不活性状態の確認 	0~ 100kPa [gage]	封人した窒素圧力 (<mark>]</mark> kPa[gage]程度) を監視できる範囲	1	中央制御室 緊急時対策所	
		⑪スクラバ溶 液pll* ²	フィルタ装置性能維持のためのpH監視	pH0~14	想定されるpllの変動範 囲を計測できる範囲	2	中央制御室 緊急時対策所	
		*2:自主			-2の丸数字に対応する。 ▶部鏡板底部。			
		2.4.2 電源設備 ベントガスの流路となる配管に設置される電動弁及び計装						
					常用母線より受電 できない場合には			
		源設備であ	るガスター	ビン発電	機,可搬型代替交	流電源	原設備である	
		型代替直流		ある電源	源設備である125V 車, 125V代替蓄電 。			
		電源構成	2.4.	2-1, 义	2.4.2-2 に示す。			
								– 4'


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設備 構成の相違
		図 2.4.2-1 原子炉格納容器フィルタベント系 電源構成図(交流	充
		大盗乳のうた枕田ひの内容は、仙社の歴密東頂を会志可能研が	h. スため公開できません - 48 -

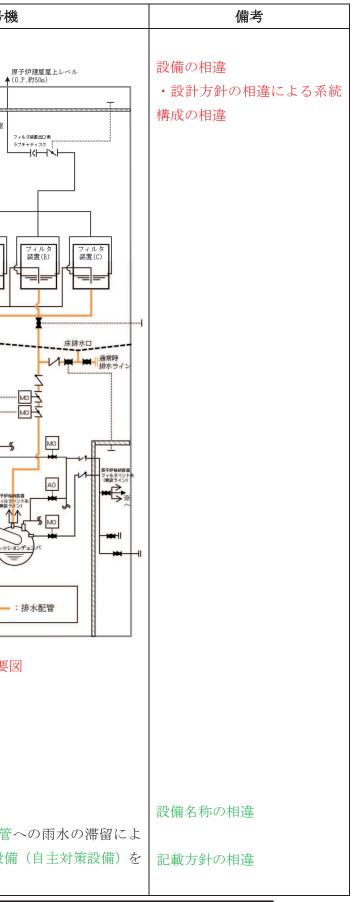
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		Image: Contrast of the state of the s
		l



柏崎刈羽原子力発電所第7号機	東海第二発電所		女川	原子力発電所第2号機	備考
		いる状態である ベント系を使用 ラバ溶液が蒸発	急において るが,重大 目した場合 きし,水合	て、フィルタ装置はスクラバ溶液を貯留して 、事故等時において原子炉格納容器フィルタ 合、保持した放射性物質の崩壊熱によりスク 立が低下する。 え、フィルタ装置には、屋外から給水できる	
		よう接続口を設 置(自主対策部	设け,大名 <mark>没備</mark>)から	客量送水ポンプ(タイプI)及び薬液補給装 らの水及び薬液の補給が可能な設計とする。 2.4.3-1に,概要を図2.4.3-1に示す。	設備の相違
		呼 び 材	《径	2.4.3-1 給水配管仕様 50A ステンレス鋼(SUS316LTP)	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
				りうち枠囲みの内容は, 他社の機密事項を含む可能性があ	- 50 ·

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
和畸刈β 割 原 子 力 発 電 所 第 7 号 機 - - - - - - - - - - - - -	東海第二発電所	女川原子力発電所第2号機 「「FFF#編集7FF####525##~」」」」 「「FFF#編集7FF###552##~」」」」 「「FFF#編集7F###552##~」」」」 「「FFF#編集7F###552##~」」」」 「FFF#編集7F###552##~」」」 S2.4.3-1 Ahx設備概要E 2.4.4 可搬型窒素ガス供給装置 べント開始後、スクラバ溶液の放射線分解に により系統内の水素濃度が日素する可能性があ し、系統内の水素濃度が日素部の負圧破損を防止する ガス供給装置を設ける。

東海第二発電所		1	女川原-	子力発電所第2号機	備考
	付属棟内及	及び屋外に	接続口		
					設備の相違 ・東二の窒素供給装置は電源 車駆動であるが,女川の可搬 型窒素ガス供給装置は発電機 を駆動源としている。
	仕様を表2	2.4.4-212,	可搬	型窒素ガス供給装置の概要を図2.4.4-1	設備名称の相違
		表2 4 4	1—1 वॉ	搬型突素ガス供給装置仕様	設備の相違
	;			压力変動吸着方式 正力変動吸着方式	・設計方針の相違に伴う設備
				220m ³ /h[norma1]	仕様の相違
		窒素純度		99.0vol%(不活性ガス)	
	,	供給圧力		427kPa[gage]	
	,	個 数		1(予備1)	
		表	2.4.4-	2 窒素供給配管仕様	
				50A	
				炭素鋼(STS410)	
		室素の代 付属棟内2 ホースにつ なお、車 電源供給() 可搬型3 仕様を表2 に、可搬3	窒素の供給は、可 付属棟内及び屋外に ホースにて接続する なお、可搬型窒素 電源供給は不要な設 可搬型窒素ガス供 仕様を表2.4.4-2に、 に、可搬型窒素ガス 麦2.4.4 種 類 容 量 窒素純度 供給圧力 個 数 野 び 径	窒素の供給は、可搬型窒 付属棟内及び屋外に接続口 ホースにて接続する。 なお、可搬型窒素ガス供給装置 電源供給は不要な設計とす 可搬型窒素ガス供給装置 仕様を表2.4.4-2に、可搬型 に、可搬型窒素ガス供給装置 麦2.4.4-1 面 室 重 窒素純度 供給圧力 個 数 麦2.4.4-1 呼び径	窒素の供給は、可搬型窒素ガス供給装置により行う。原子炉垫屋 付属棟内及び屋外に接続口を設け、可搬型窒素ガス供給装置を可搬 ホースにて接続する。 なお、可搬型窒素ガス供給装置には発電機を搭載し、外部からの 電源供給は不要な設計とする。 可搬型窒素ガス供給装置の仕様を表2.4.4-1に、窒素供給配管の 仕様を表2.4.4-2に、可搬型窒素ガス供給装置の概要を図2.4.4-1 に、可搬型窒素ガス供給装置の構成概略を図2.4.4-2に示す。 麦2.4.4-1 可搬型窒素ガス供給装置の構成概略を図2.4.4-2に示す。 麦2.4.4-1 可搬型窒素ガス供給装置 種類 圧力変動吸着方式 容量 220m ³ /h (Inormal]] 窒素純度 99.0vol% (不活性ガス) 供給圧力 427kPa[gage] 個数 1(予備1) 表2.4.4-2 窒素供給配管仕様

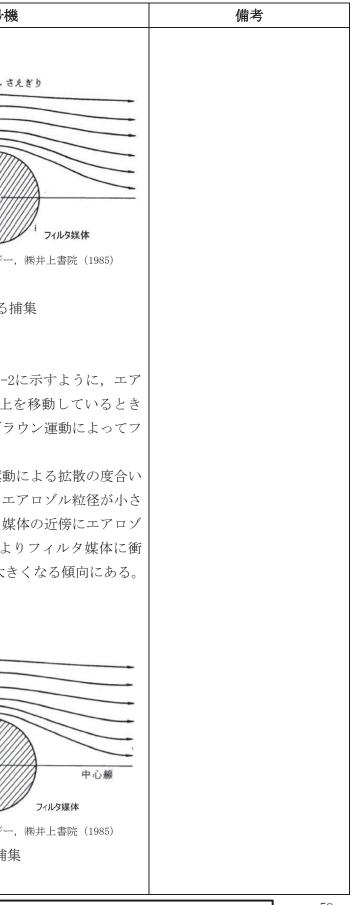


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		<	設備の相違 ・設計方針の相違による系統 構成の相違
		2.4.5 排水設備(自主対策設備)	設計の相違 ・女川はベント後にスクラバ 溶液を移送しなくても,フィ ルタ装置の機能性能を維持で きる設計としており,排水設 備を自主対策設備としてい る。
		ベント終了後の放射性物質を含んだスクラバ溶液を原子炉格納 容器(サプレッションチェンバ)に移送するための配管,さらに, 万一,放射性物質を含むスクラバ溶液がフィルタ装置室に漏えいし た場合に,漏えい水を原子炉格納容器(サプレッションチェンバ) に移送するための配管を設置する。	・女川では水位調整のために 排水設備を使用しない。
		フィルタ装置からの排水及び漏えい水の移送は, 排水設備に設置 する弁の操作により行い, フィルタ装置及びフィルタ装置室より低 い位置にあるサプレッションチェンバへ排水する。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		:設備の主要な仕様を表2.4.5-1に,排水設備の概要を図 -1に示す。	表現の相違
		表2.4.5-1 排水設備仕様	設備の相違 ・2.1 項の理由⑤
		呼び径50A材質ステンレス鋼(SUS316LTP)	
		本資料のうち枠囲みの内容は、他社の機密事項を含む可能性がある	ろため公開できません。 - 55 -

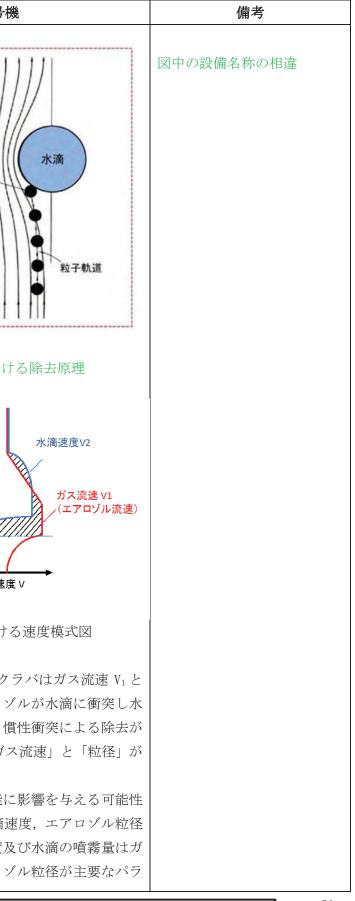
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		Fridade Baseline Fri
		2.4.6 排気管排水設備(自主対策設備) 原子炉格納容器フィルタベント系の排気管 る配管腐食等を防止するため,排気管排水設備 設置する。

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。



柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		排気管排水設備は、ドレンポット、配管、弁及び水位監視設備で	設備の相違
		構成する。ドレンポットには <mark>水位検出器を設置し、中央制御室でド</mark>	・設計方針の相違に伴う設備
		レンポットの水位確認が可能な設計とすることで, 定期的にドレン	構成の相違
		ポットの水位を確認し, 必要に応じてドレンポット下端に設置する	
		弁の操作によって排水を行う。	
		ドレンポットの容量については,原子炉設置変更許可申請書添付	
		書類六に示す石巻特別地域気象観測所において観測された降水量	
		のうち,最も降水量が多い7月の平均降水量148.2mmに放出口の開	
		口面積約 1.89×10 ⁵ mm ² を乗じることで算出した流入量約 28L に対	
		し、約50Lを確保し、1ヶ月分の降水量を考慮しても十分な容量を	
		有する設計とする。ここで,放出口が鉛直上向きと仮定して雨水の	
		流入量を算出しているが、実際の放出口は横向きであることから、	
		流入量は更に少ない。	
		また, 凍結によるドレンポット等の機器損傷防止の観点より凍結	
		防止対策を講じる。	
		排気管排水設備の概要を図2.4.6-1に示す。	設備名称の相違
		#Q幣放出」 (凡例) ・ 能温材施工範囲 ・ 照下炉格納容器フィルタベント系の系統の流れ ・ マイルク装置出ロ側ラブチャディスク破裂彼 ・ 照子炉格納容器フィルタベント系の系統の流れ ・ フィルタ装置出ロ側ラブチャディスク破裂彼 ・ 「アレンポット ・ 「アレンポット ・ 「アケ制御室 ・ 「大 (1)」」	
		図 2.4.6-1 排気管排水設備概要図	設備の相違
			 ・設計方針の相違に伴う設備
			構成の相違

- 57 -


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3. フィルタ性能	
		3.1 フィルタ装置による放射性物質の除去原理	
		3.1.1 エアロゾルの除去原理	
		エアロゾルの除去原理は、一般にフィルタ媒体 (ベンチュリスク	
		ラバの場合は水滴、金属繊維フィルタの場合は金属繊維)の種類に	設備名称の相違
		よらず、主に以下の3つの効果の重ね合わせとして記述できる。	
		 ・さえぎり効果 (Interception): 粒径が大きい場合に有効 	
		・拡散効果 (Diffusion): 流速が遅い場合, 粒径が小さい場合に有	
		效	
		・慣性衝突効果 (Inertia effect): 流速が早い場合, 粒径が大きい	
		場合に有効	
		(1)~(3)に、それぞれの除去効果についてその特性を記載する。	
		これらの除去原理はフィルタ媒体が水滴でも金属繊維でも作用す	
		るが、フィルタの種類や系統条件により効果的に除去できる粒径、	
		流速の範囲が異なることから、幅広い粒径、流速のエアロゾルを除	
		去するためには異なる種類のフィルタを組み合わせることが有効	
		である。	
		(4),(5)に、ベンチュリスクラバ及び金属繊維フィルタにおける	
		エアロゾルの除去原理を示す。	
		(1) さえぎり効果	
		さえぎりによるエアロゾルの捕集は,図3.1.1-1に示すように,	
		エアロゾルが流線にそって運動している場合に、フィルタ媒体表面	
		から1粒子半径以内にエアロゾルが達したときに起こる。	
		エアロゾル粒径が大きい場合、より遠くの流線に乗っていた場合	
		でもフィルタ媒体と接触することが可能であるため、さえぎりによ	
		る除去効果は、エアロゾル粒径が大きい程大きくなる傾向にある。	

施線 中心線 引用文献:W.C.ハインズ,エアロゾルテクノロジー 図 3.1.1-1 さえぎりによるま (2) 拡散効果
中心線 引用文献:W.C.ハインズ、エアロゾルテクノロジー 図 3.1.1-1
中心線 引用文献:W. C. ハインズ, エアロゾルテクノロジー 図 3.1.1-1 さえぎりによる
中心線 引用文献:W. C. ハインズ, エアロゾルテクノロジー 図 3.1.1-1 さえぎりによる
中心線 引用文献:W. C. ハインズ, エアロゾルテクノロジー 図 3.1.1-1 さえぎりによる
中心線 引用文献:W.C.ハインズ,エアロゾルテクノロジー 図 3.1.1-1 さえぎりによる:
図 3.1.1-1 さえぎりによる
図 3.1.1-1 さえぎりによる
(2) 拡散効果
拡散によるエアロゾルの捕集は,図3.1.1-
ロゾルがフィルタ媒体をさえぎらない流線上
でも、フィルタ媒体近傍を通過する際に、ブラ
ィルタ媒体に衝突することで起こる。
エアロゾル粒径が小さい場合、ブラウン運動
が大きくなるため、拡散による除去効果は、
い程大きくなる傾向にある。また,フィルタダ ルが滞在する時間が長い程ブラウン運動によ
突する可能性が高まるため、流速が遅い程大
流 線、
Die nor
ore too
初期粒子流線 (さえぎりはない) ブラウン運動に よる粒子の軌跡
引用文献:W. C. ハインズ, エアロゾルテクノロジー
図3.1.1-2 拡散による捕

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第 7 号機	東海第二発電所	 (3) 慣性衝突効果 ff性衝突によるエアロゾルの捕集は、図3.1.1-3に示すように、 エアロゾルがその慣性のために、フィルタ媒体の近傍で急に変化す ふ流線に対応することができず、流線を横切ってフィルタ媒体に衝 突するときに起こる。 エアロゾル粒径が大きい場合又はエアロゾルの流れが早い場合 にエアロゾルの慣性が大きくなり、フィルタ媒体と衝突する可能性 が高まるため、慣性衝突による除去効果はエアロゾル粒径が大きい 程大きく、流速が速い程大きくなる傾向がある。 <i>使着</i> では、、、、、、、、、、、、、、、、、、、、、、、、、	備考

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		慣性衝突 流線
		図3.1.1-4 ベンチュリノズルにおける
		高さ方向
		スロート部 エアロゾル ガス 図3.1.1-5 ベンチュリノズルにおける
		図 3.1.1-5 に示すとおり, ベンチュリスクラ
		水滴速度 V₂が異なることで,ガス中のエアロゾ, 滴に付着する現象を利用していることから,慣 支配的と考えられる。慣性衝突効果では「ガス 主な影響因子である。
		以上より、ベンチュリスクラバの除去性能に のある主要なパラメータは、ガス流速、水滴速 及び水滴の噴霧量が考えられるが、水滴速度及び
		ス流速に依存するため,ガス流速及びエアロゾ)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		メータとなる。	
		図 3.1.1-6 にベンチュリスクラバにおける除去原理の模式図る	Ť
		示す。	
		 ベンチュリノズル下方よりベントガスが流入する。 	
		② ベンチュリノズルのスロート部(絞り機構)によってベン	
		ガスの流速が加速される。	
		③ ガス流速を大きくすることで発生する負圧によりスクラノ	ジ 設備名称の相違
		溶液が吸入され、ガス流中に水滴を噴霧(いわゆる霧吹き)	
		る。	
		④ 噴霧によって、微小水滴にすることでエアロゾルが水と接触	
		する面積が大きくなり,エアロゾルがフィルタ媒体と衝突し,	
		ベントガスから捕集される。	
		⑤ ベンチュリノズルの出口に設置した板によってベントガス	
		及び水滴の方向が変わり,エアロゾルはスクラバ溶液に保持さ	2 設備名称の相違
			おおたりのおき
		⑥ 吐出より噴出した気泡はスクラバ溶液中を浮上する。	記載方針の相違
			・記載の明確化であり,実質に な相違なし
			は相連なし
		図 3.1.1-6 ベンチュリスクラバにおける除去原理の模式図	
		(5) 金属繊維フィルタにおけるエアロゾルの除去原理	設備名称の相違
		金属繊維フィルタは、ベンチュリスクラバの後段に設置され、	t
	 	本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がる	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		り粒径の小さいエアロゾルを除去する。	
		金属繊維フィルタの除去原理は、図3.1.1-7に示すように、さえ	設備名称の相違
		ぎり、拡散、慣性衝突効果の重ね合わせにより、エアロゾルを金属	
		繊維表面に付着させ捕集する。さえぎり、拡散、慣性衝突効果では	
		「粒径」と「ガス流速」が主な影響因子である。	
		以上より、金属繊維フィルタの除去性能に対して、影響を与える	
		可能性のある主要なパラメータとしては、ガス流速、エアロゾル粒	
		径を考慮する必要がある。	
		③慣性衝突 ②拡散	
		金属	
		tin orth	
		ーガスの流れ	
		図3.1.1-7 金属繊維フィルタにおける除去原理	設備名称の相違
		3.1.2 ガス状放射性よう素の除去原理	
		重大事故等時に発生する放射性よう素は, 粒子状よう素 (CsI:よ	
		う化セシウム等)と,ガス状よう素として無機よう素(I2:元素状	
		よう素)と有機よう素(CH ₃ I:よう化メチル等)の形態をとる。大	
		部分のよう素は粒子状よう素として原子炉格納容器内へ放出され、	
		残りは無機よう素として原子炉格納容器内に放出されるが, 無機よ	
		う素の一部は原子炉格納容器内の有機物(塗装等)と結合し、有機	
		よう素へ転換する。粒子状よう素については、エアロゾルの除去原	
		理に基づき、ベンチュリスクラバと金属繊維フィルタで捕集する。	設備名称の相違
			NUM H 14 17 1HAE
		無機よう素については、スクラバ溶液に添加された薬剤と化学反	設備名称の相違
		応させることによりベンチュリスクラバで捕集し、吸着材と化学反	
		応させることにより、放射性よう素フィルタで捕集する。有機よう	
		素については、吸着材と化学反応させることにより、放射性よう素	
		アイルタで捕集する。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		(1) フィルタ装置内におけるベントガスの流
		フィルタ装置内の下部にベンチュリスクラ
		ル,スクラバ溶液等),上部に金属繊維フィルタ
		フィルタの下流側に流量制限オリフィスを介
		ィルタを設置する。
		ベントガスの流れを図3. 1. 2-1に示す。
		ベントガスは、流量制限オリフィスを通過す
		とす。
		の排気配管は大気に接続されており, 放射性よ
		る圧力は大気圧に近い状態となることから,オ
		が高いベント開始初期は,
		オリフィス通過時の蒸気の状態変化のイメー
		す。
		図3.1.2-1 フィルタ装置内のベント

幾	備考
in	
バ (ベンチュリノズ	
タを設置し, 金属繊維	設備名称の相違
して放射性よう素フ	
する際,	
なる。オリフィス下流	
にう素フィルタにおけ	設備名称の相違
トリフィス上流の圧力	
ージを図3.1.2-2に示	
	・フィルタ装置の各部の仕様
、ガスの流れ	は異なるが、ベントガスの流
	れに差異はない。
)機密事項を含む可能性がある	ため公開できません。 - 64 -

ベントガスがベンチュリスクラバを通過	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ジ) (2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過する際、揮発 素3.1.2-1 スクラバ溶液への 薬剤 (化学式 ベンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			図 9 1 9 9 法具制阻子 リフィス 温味の 装写
(2) ベンチュリスクラバにおけるよう素の ベントガスがベンチュリスクラバを通過 学反応によりスクラバ溶液中に効果的に捕 クラバ溶液には表3.1.2-1 スクラバ溶液への ま3.1.2-1 スクラバ溶液への 素剤 化学末 ・ ・ ・ ンチュリスクラバを通過する際、揮発 添加薬剤との化学反応により非揮発性のよ			
ベントガスがベンチュリスクラバを通過 学反応によりスクラバ溶液中に効果的に捕 クラバ溶液には表3.1.2-1 スクラバ溶液への ま3.1.2-1 スクラバ溶液への 東利 化学式 ベンチュリスクラバを通過する際,揮発 添加薬剤との化学反応により非揮発性のよ			
学反応によりスクラバ溶液中に効果的に捕 クラバ溶液には表3.1.2-1に示す薬剤を添加 表3.1.2-1 スクラバ溶液への <u>薬剤 化学式</u> ベンチュリスクラバを通過する際, 揮発 添加薬剤との化学反応により非揮発性のよ			(2) ベンチュリスクラバにおけるよう素の除去
クラバ溶液には表3.1.2-1に示す薬剤を添加 表3.1.2-1 スクラバ溶液への <u>薬剤 化学</u> 式 ベンチュリスクラバを通過する際, 揮発 添加薬剤との化学反応により非揮発性のよ			ベントガスがベンチュリスクラバを通過する
表3.1.2-1 スクラバ溶液への <u>薬剤</u> (化学式) ベンチュリスクラバを通過する際, 揮発 添加薬剤との化学反応により非揮発性のよ			学反応によりスクラバ溶液中に効果的に捕集・
薬剤 化学式 薬剤 化学式 ベンチュリスクラバを通過する際,揮発 添加薬剤との化学反応により非揮発性のよ			クラハ溶液には表3.1.2-1に示す薬剤を添加する
薬剤 化学式 薬剤 化学式 ベンチュリスクラバを通過する際,揮発 添加薬剤との化学反応により非揮発性のよ			表3.1.2-1 スクラバ溶液への添加
添加薬剤との化学反応により非揮発性のよ			
添加薬剤との化学反応により非揮発性のよ			
添加薬剤との化学反応により非揮発性のよ			
添加薬剤との化学反応により非揮発性のよ			パンゴー リュタニッチ マロトス 欧 年が山の
の添加によって, スク			の添加によって, スクラバネ
			件下となるため、式(2)により、無機よう素を排

}機	備考
7 134	UH ~7
気の状態変化(イメー	
除去 する際, 無機よう素を化 集・保持するために, ス する。	設備名称の相違
添加薬剤 ^{目的}	設備名称の相違
生の高い無機よう素は, う素イオンに変化し, ス と学反応式を示す。	設備名称の相違
・バ溶液はアルカリ性条 を捕集する。	設備名称の相違 - 65 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		L したがって, ベンチュリスクラバにおける無
		に影響を与える因子として「スクラバ溶液のpl
		なお、一般的に有機よう素は、無機よう素に
		応しにくいため, ベンチュリスクラバでの有機
		していない。
		(3) 放射性よう素フィルタにおけるよう素の限
		L
		吸着材は、たた
		にを添加して粒状に成形したも
		タ装置内の放射性よう素フィルタに充填するこ
		形成している。
		ベントガスの滞留時間は, ベントガスが吸着
		に要する時間であり、長い程反応の効率が高ま
		吸着ベッドを通過するベントガスの温度と飽和
		L
		L.したがって,放射性よう素フィルタにおける
		影響を与える因子として「ベントガスの滞留時
		挙げられる。

}機	備考
	設備名称の相違
っ無機よう素の除去効率 DpH」が挙げられる。 転に比べ活性が低く,反 「機よう素の除去は期待	設備名称の相違
の除去	設備名称の相違
ために こもので, これをフィル	
こもので, これをフィル ることで, 吸着ベッドを 後着ベッドを通過するの 高まる。また, 過熱度は 抱和温度との差であり, であれば,	設備名称の相違
*るよう素の除去効率に 留時間」と「過熱度」が	設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
	3.2 運転	 範囲
	3.1.1 項	で、エアロゾルの除去原理において
	したガス液	流速及びエアロゾル粒径に加え, ベン
		あるガス温度及びガス蒸気割合につい
		、ト実施中に想定する運転範囲を表 3
		,ガス状放射性よう素の除去原理に
		, メハベ派が住より乗りばムホ建住。
	時に想定	ける運転範囲を表 3. 2−1 に示す。
		表3.2-1 ベント実施中における運
	パラメ	ータ 想定運転範囲
	ĬスŬ	なお、金属繊維フィルタにおけるガス
	エアロゾ	となるよう 金属繊維 フィルタの表面和 サプレッションチェンパからのペント
		 <i> </i>
	ガス	▶ kPa[gage]となり,このときの~
	ガス蒸	フィルタ装置に流入するガス蒸気割合
	スクラバ	る。
	ガス過	 ベント開始圧力の上限(2Pd)からほ 熱度 器圧力(kPa[gage])に対応する, おけるベントガスの過熱度は,約
		m/sはベントから静定した時の原子炉格納容器圧力 あり,最大圧力(2Pd)の時の流速を m/sとし
		検証試験結果
		能検証試験の概要
		me社製のフィルタ装置は、大規模な
		後使用条件を考慮した性能検証試験を
	果に基づき	き装置設計を行っている。以下に試験

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

幾	備考
 ※	備考 設備名称の相違 設備の相違 ・設備設計の相違に伴う設備 仕様の相違
ほぼ静定した原子炉格納容 5, 放射性よう素フィルタに Kとなる。 カーkPa[gage]における流 している。	
↓セクター試験装置に を行っており,その結 験の概要を示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		 エアロゾルの除去性能試験(JAVA試験)
		Framatome(当時Siemens)社は, 1980年代カ
		ドイツのカールシュタインにある試験施設(以
		にて,電力会社,ドイツ原子力安全委員会 (RS
		機関立会の下,フィルタ装置のエアロゾルに対
		行っている。
		試験装置には,実機に設置するものと同一形
		ルと、実機に設置するものと同一仕様の金属
		し,試験条件として,実機の想定事象における利
		力,温度,ガス流量等の熱水力条件及びエアロ
		エアロゾル条件) について試験を行うことによ
		使用条件において所定の性能が発揮されること
		験装置の概要を図3.3.1-1に,試験条件を表3.
		試験にはエアロゾルを模擬するため,
		使用している。図 3.3.1-2 に示すように,試験
		質量中央径は約 µm, 空気中 の質量
		蒸気中の質量中央径は約µm, ウラニ
		μ m となっている。
		J

幾	備考
から1990年代にかけ, 以下「JAVA」という。) SK) 及びその他第三者 対する除去性能試験を	
形状のベンチュリノズ 属繊維フィルタを設置 種々のパラメータ(圧 ロゾル粒径,濃度等の より,フィルタ装置の とを確認している。試 .3.1-1に示す。	設備名称の相違
験で使用した の :中央径は約 μm, ニンの質量中央径は約	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 3.3.1-1 JAVA 試験装置概要	
		表3.3.1-1 JAVA試験条件(エアロゾル除去性能試験)	記載方針の相違
		試験条件	
		約 bar[abs] 圧 力 (約 kPa[abs])	
		温度約℃	
		流量約 m³/h 蒸気割合 %	
		エアロゾル	
	* 佐平!. イ	■ Dうち枠囲みの内容は,当社の商業機密を含むため,又は他社の機密事項を含む可能性;	があるため小園できません。 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図3.3.1-2 試験用エアロゾルの料
		(2) 無機よう素の除去性能試験(JAVA 試験)
		Framatome社はJAVA試験装置を使用し,(1)に
		除去性能試験と同時期に電力会社、RSK及びそ
		の下,無機よう素の除去性能試験を実施してい
		試験条件として,種々のパラメータ(圧力,
		熱水力条件,スクラバ溶液の pH 等の化学条件
		とにより、フィルタ装置における無機よう素の
		認している。JAVA 試験における無機よう素の語
		2に示す。
		表3.3.1-2 JAVA試験条件(無機よう素障
		試験条件
		丘 力
		(約
		温度 約 流量 約
		pH 約
		物 質

幾	備考
粒径分布	
こ示したエアロゾルの その他第三者機関立会 いる。 温度,ガス流量等の 牛)にて試験を行うこ D除去性能について確 試験条件を表 3.3.1-	設備名称の相違
除去性能試験) bar[abs] kPa[abs]) ℃ m ³ /h	
)機変事項を会む可能性がある	ため公開できません。 - 70 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		(3) 有機よう素の除去性能試験 (JAVA PLUS詞
		実機使用条件を想定した有機よう素の除去性
		Framatome社はJAVA試験装置に有機よう素フィ
		PLUS試験装置を用いて,2013年より有機よう素
		施している。
		試験装置には,実機に使用する吸着材を実機
		し、試験条件として種々のパラメータ(圧力、
		水力条件)にて試験を行うことにより、フィル
		よう素の除去性能について確認している。
		試験装置の概要を図3.3.1-3に,試験条件を
		表3.3.1-3 JAVA PLUS試験条件(有機よう
		武験条件
		圧力 (約)
		温度約
		蒸気割合 約 9
		過 熱 度 約 K
		物 質
		177 54
	L	

幾	備考
試験)	
生能を確認するため,	
ィルタを設けたJAVA	設備名称の相違
素の除去性能試験を実	
幾と同一の密度で充填	
温度,過熱度等の熱	
レタ装置における有機	
:表3.3.1-3に示す。	
素除去性能試験)	
bar[abs]	
kPa[abs])	
°C	
%	
K	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
]	
		図 3.3.1-3 JAVA PLUS 試験装置概要	
	大盗判の	うち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がある	- 72 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3.3.2 エアロゾルの除去性能試験結果	
		JAVA試験における性能検証試験結果を表3.3.2-1~表3.3.2-3に	
		示す。エアロゾルの除去原理では、3.1.1に示すとおり、「流速」と	
		「粒径」が主な影響因子であるため、ガス流速とエアロゾル粒径に	
		対しての性能評価を行った。さらに、その他の試験条件に用いたパ	
		ラメータについてもフィルタ装置のエアロゾルの除去性能への影	
		響を確認するため,ガス温度及びガス蒸気割合に対しての性能評価	
		を行った。試験の結果,エアロゾルの除去能力がDF1000以上である	
		ことを確認した。	記載方針の相違
			・エアロゾルの除去性能試験
			結果の項のため,女川2号で
			は無機よう素及び有機よう素
			については記載していない。
		(1) ガス流速	
			表現の相違
		図3.3.2-1及び図3.3.2-2にベンチュリノズル及び金属繊維フィ	設備名称の相違
		ルタにおけるガス流速に対して整理した性能検証試験結果を示す。	
		DFについては,装置の入口と出口のエアロゾル濃度を測定すること	
		で算出している。	
		ここで,ガス流速は,体積流量を,図3.3.2-3に示すベンチュリノ	記載箇所の相違
		ズルの最小断面積であるスロート部の総断面積又は金属繊維フィ	・東二は注記に記載
		ルタの総断面積で割ることにより, ベンチュリノズルのガス流速と	
		金属繊維フィルタのガス流速に換算して確認した。	
		この結果から、ベンチュリスクラバにて想定する運転範囲(約	
		m/s)と金属繊維フィルタにて想定する運転範囲全域	設備の相違
		にわたって要求されるDF1000以上を満足していることがわかる。	 ・設計方針の相違に伴う設備
		なお、運転範囲よりも小さいガス流速においても、ベンチュリス	
		クラバ及び金属繊維フィルタの組合せで、DF1000 以上を満足して	
		いるため、フィルタ装置はガス流速によらず十分な性能を有してい	
		ると言える。	
			記載箇所の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号格
		図 3.3.2-1 ベンチュリノズルにおけるガス液
		(JAVA 試験)

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

機	備考
	記載方針の相違
	設備の相違
	・JAVA 試験結果は同一である が,運転範囲がプラントによ り異なる。
流速に対する除去係数	
	74 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・JAVA 試験結果は同一である
			が,確認する運転範囲がプラ
			ントにより異なる。
		図 3.3.2-2 金属繊維フィルタにおけるガス流速に対する除去係数	
		(JAVA 試験)	
			設備の相違
			 ・設計方針の相違に伴う設
			設計の相違
		図 3.3.2-3 ベンチュリノズルスロート部及び金属繊維フィルタの 転転時	
		断面積	
		(2) エアロゾル粒径	
		図 3.3.2-4 に試験用エアロゾル (エアロゾルの粒径) に対して整	
		理した性能検証試験結果を示す。この結果からエアロゾル粒径(質	
		量中央径:約 μm)の違いによって除去性能に影響が	
	本資料の	うち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がある	- 75

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		出ているような傾向は見られず,いずれの試験結果においても要求	
		される DF1000 を満足していることがわかる。	
		サプレッションチェンバからのベント実施時に想定する質量中	設備名称の相違
		央径は <mark>約 μm</mark> である。試験用エアロゾルとしては質量中央径約	設備の相違
		μmの を使用し, DF1000 以上を満足していることから, フ	・設計方針の相違による系統
		ーー ィルタ装置はエアロゾル粒径に対して十分な性能を有していると	構成の相違
		言える。	
		図 3.3.2-4 粒径に対する除去係数(JAVA 試験)	
		(3) ガス温度	
		図3.3.2-5にガス温度に対して整理した性能検証試験結果を示	
		す。この結果から、ガス温度の違いによって除去性能に影響が出て	
		いるような傾向は見られず,試験を実施した全域にわたって要求さ	
		れるDF1000以上を満足していることがわかる。	
		したがって、ガス温度の運転範囲 ℃)に対して、フ	設備の相違
		ィルタ装置はガス温度に対して十分な性能を示していると言える。	 ・設計方針の相違に伴う設備
			仕様の相違
			- 76

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図 3.3.2-5 ガス温度に対する除去係数
		 (4) ガス蒸気割合 図3.3.2-6にガス蒸気割合に対して整理した 示す。この結果から、ガス蒸気割合の違いによ
		が出ているような傾向は見られず,試験を実施 要求されるDF1000以上を満足していることがれ ガス蒸気割合の運転範囲(0~100%)で性能
		おり,フィルタ装置はガス蒸気割合に対して十 ると言える。
		図 3.3.2-6 蒸気割合に対する除去係数

幾	備考
 株 (JAVA 試験) た性能検証試験結果を たって除去性能に影響 適した全域にわたって わかる。 E検証試験が行われて 一分な性能を有してい 	備考 設備の相違 ・JAVA 試験結果は同一である が、運転範囲がプラントによ り異なる。
文(JAVA 試験)	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

	P
	Total Removal Efficienc y (%)
	Norm.MFF Velocity (%)
	AVA 試驗) Venturi Velocity (m/s)
	除去性能試験結果(JAVA 試験) Volumetric tantainated Venturi Steam traction tage venturi (%) (mg/m ³) (m/s)
	除去性能試 Volumetric Steam fraction (%)
	Gas Com- position
	エアロゾル (cmp. GasFlow (℃) (m ³ /h)
	表 3.3.2-1 Pressure (bar abs)
	(ш 77) (Ш 77)
	Tost Aerosol
	Test-No.

-	
	設備の相違 ・Norm. MFF Velocity につい ては, プラント毎の運転範囲 に応じて MFF での最大速度を
	100%とするようにデータが 規格化されているため,同じ
	JAVA 試験の結果であっても差 異が生じる。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			きまた
			設備の相違 ・Norm. MFF Velocity につい
	tal ovul fiency \$		ては、プラント毎の運転範囲
	Total Removal Efficiences		に応じて MFF での最大速度を
	Norm. MFF (S)		100%とするようにデータカ
	N. Kel		規格化されているため、同じ
	試驗) Venturi Velocity (m/s)		JAVA 試験の結果であっても表
	A Particular A P		異が生じる。
	太殿結果(JAV/ Contaminated Contaminated concentration (ms/m)		
	格格 和 meentr meentr meentr meentr meentr		
	「「「」」「」」「」」」「」」」」」」」」」」」」」」」」」」」」」」」」」		
	除去性能試驗結果 (JAVA 試驗) 吃Jumetric Contaminated Veture Stearm Concentration (m/s) (如) (m/s)		
	ais our trior		
	$\mathcal{J}_{\mathcal{L}} \xrightarrow{\mathcal{L}} \mathcal{L} \xrightarrow{\mathcal{L}} \mathcal{J}_{\mathcal{L}} \xrightarrow{\mathcal{L}} \overset{\mathcal{L}}{\underset{(\mathfrak{m}^{2},\mathfrak{l})}{(\mathfrak{m}^{2})}$		
	.2-2 (C)		
	表 3.3.2-2 ^{sure} ^{Tem}		
	速3 (bar abs)		
	(m //)		
	Test		
	test -∆o		

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
	ä		・Norm. MFF Velocity につい
	t d		ては, プラント毎の運転範囲
	Tolal Removal	8	に応じて MFF での最大速度を
			100%とするようにデータカ
	Norm. MFF Velocity	8	規格化されているため、同し
			JAVA 試験の結果であっても割
	长敏) Vantari Valetty	(m/s)	異が生じる。
	me		
	聚給界(JAVA Contanting ted Concontration	und (, m,)	
	、 题 給計 Contectioneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee		
	除. 五件能器 Solume reference		
	П		
	Gus Com-	0031	
	2 × × * * * * * * * * * * * * * * * * *		
	上アログル Gastios (m ² /h)	s. 3.	
		5	
	50		
	表 3. (bar abs)		
	Pres (be		
	(m M)		
	Test		
	Test- No.		
			- 80

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		3.3.3 ガス状放射性よう素の除去性能試験結果
		(1) ベンチュリスクラバにおける無機よう素除
		JAVA試験における無機よう素の除去性能試験
		示す。無機よう素のベンチュリスクラバ (スクラ
		は化学反応によるものであり,その反応に影響を
		クラバ溶液のpH」である。図 3.3.3-1 に,スクラ
		る無機よう素の除去性能試験結果を示す。
		この結果から、スクラバ溶液がpH 🚺 の状態
		件である除去効率 99% (DF100) 以上であること
		フィルタ装置全体としての無機よう素の除去
		3.3.3 (3) 項に示す。
		図3.3.3-1 pHに対する無機よう素防

₿ 機	備考
結果	
素除去性能試験結果	設計方針の相違
弌験結果を表3.3.3−1に	・1.2項の理由①
クラバ溶液) への捕集	設備名称の相違
響を与える因子は,「ス	
クラバ溶液のpHに対す	
状態においても設計条	
ことを確認した。	
除去性能については,	設計方針の相違
	・1.2項の理由①
素除去係数	
の機应市西た合も、可化地がもフ	- 81 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		表3.3.3-1 ベンチュリスクラバにおける無機。
		結果(JAVA試験)
		(2) 有機よう素除去性能試験結果
		JAVA PLUS 試験における有機よう素の除去性能語
		2 に示す。JAVA PLUS 試験で得られた除去係数
		たものを図 3.3.3-2 に示す。
		図 3.3.3-2 JAVA PLUS 試験結
		ここで, JAVA PLUS試験装置と実機において
		なるため、ベントガスの吸着ベッドにおける滞
		の補正をするために以下に示す関係を用いる。

2 号機	備考
う無機よう素除去性能試験	
*性能試験結果を表 3. 3. 3-	
玉係数を,過熱度で整理し	
試験結果	
Sいては、ベッド厚さが異	
ナる滞留時間が異なる。そ いる。	
(. v ₀	
	- 82 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図 3.3.3-3 JAVA PLUS 試験結果(褚

機	備考
	設備の相違
	・設計方針の相違に伴う設備
	仕様の相違
	設備の相違 ・運転範囲における過熱度の
	相違
(補正後)	
-の機変裏頂を今む可能性がある	- 83 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表3.3.3-2 有機よう素除去性能試験結果(JAVA PLUS試験)	
			- 84

2021年6月8日 02-工-B-08-0005_改2

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(3) 無機よう素除去性能試験結果	設計方針の相違
		一般的に無機よう素は、有機よう素と比べ活性が高く、反応しや	・1.2項の理由①
		すいため、放射性よう素フィルタでも捕集されやすい。したがって、	
		無機よう素に対しても有機よう素と同程度の DF50 以上が期待でき	
		る。	
		また, 前段のベンチュリスクラバでは, 無機よう素の DF が 100	
		以上であるため、フィルタ装置全体として無機よう素に対して	
		DF500以上の性能が期待できる。	
		なお, JAVA 試験においてスクラバ溶液の pH がの時, DF500	
		以上の結果が得られているのに対し, 女川原子力発電所第2号機の	
		フィルタ装置は、系統待機時の pH が 13 以上であるため、フィルタ	
		装置全体の除去係数は DF500 以上が期待できる。	
		3.3.4 フィルタ装置の継続使用による性能への影響	
		フィルタ装置を継続使用することにより,放射性物質の除去性能	
		に影響する可能性のある因子について検討する。	
		(1) エアロゾルの再浮遊	
		a. ベンチュリスクラバ	表現の相違
		(a) 想定する状態	
		フィルタ装置を継続使用すると、ベンチュリスクラバで捕集され	
		たエアロゾルにより、ベンチュリスクラバ内のエアロゾル濃度は	
		徐々に上昇する。 スクラバ溶液の水面近傍には,水沸騰やベンチュ	設備名称の相違
		リノズルを通るベントガスによる気流により、細かい飛沫(液滴)	
		が発生するが、その飛沫にエアロゾルが含まれていると、エアロゾ	
		ルがベンチュリスクラバの後段に移行することが考えられる。	
		(b) 影響評価	
		ベンチュリスクラバの後段には、金属繊維フィルタが備えられて	設備名称の相違
		おり、この金属繊維フィルタには、ベンチュリスクラバからの飛沫	
		(液滴)を除去するための機構 (プレフィルタ及び湿分分離機構)	
		と除去したドレン水をスクラバ溶液内に戻すためのドレン配管が	
		設置されている。そのため、ベンチュリスクラバで発生した飛沫(液	
		滴)は、メインフィルタに到達する前に除去される。また、飛沫(液	
		滴)の微細化や蒸発によってエアロゾルが放出される可能性がある	
		が、メインフィルタにて補集される。	

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		以上のとおり、フィルタ装置は、ベンチュリスクラバでのエアロ	
		ゾルの再浮遊に対して考慮した設計となっている。	
		b. 金属繊維フィルタ	設備名称の相違
		(a) 想定する状態	
		金属繊維フィルタで捕集されたエアロゾルが蓄積すると, 崩壊熱	
		により金属繊維フィルタの温度が上昇し,放射性物質の融点/沸点	
		を超えた場合に液体/気体となる。これらの液体/気体がベントガ	
		ス流により下流に流された場合,フィルタ装置下流側にエアロゾル	
		を放出することが考えられる。	
		(b) 影響評価	
		金属繊維フィルタに捕集されたエアロゾルの崩壊熱は、ベント中	設備を称の相違
		金属繊維ノイルクに捕集されたエノロノルの崩壊熱は、ハント中 はベントガスの流れによって冷却され、ベント後はベンチュリスク	14人114/114/114/11年
		ラバに捕集したエアロゾルの崩壊熱により発生する蒸気によって	
		冷却されることから、金属繊維フィルタの温度は、エアロゾルの再	
		将歩されることから、金属繊維ショルクの温度は、エノロノルの存 浮遊が起こるような温度(参考:CsOHの融点:272.3℃)に対し十分	
		低く抑えることができる。	
		(2) ガス状放射性よう素の再揮発	
		a. ベンチュリスクラバにおける無機よう素の再揮発	
		(a) 想定する状態	
		フィルタ装置を継続使用すると,スクラバ溶液の温度は上昇す	設備名称の相違
		る。スクラバ溶液の温度上昇に伴い、スクラバ溶液中に捕集した無	
		機よう素が気相中に再揮発することが考えられる。	
		(b) 影響評価	
		気液界面(フィルタ装置水面)における無機よう素の平衡につい	
		ては温度依存性があり、スクラバ溶液の水温が高い方が気相の無機	設備名称の相違
		よう素の割合が増える。しかし、アルカリ環境下では、無機よう素	
		とよう素イオンの平衡により液相中に存在する無機よう素が極め	
		て少なく、無機よう素の気相部への移行量は、スクラバ溶液の温度	
		が上昇しても十分小さい値となる。	
		JAVA試験は、高温のベントガスを用いて、無機よう素が気相中に	
		JAVA武験は、高温のペントガスを用いて、無機より系が気相中に 移行しやすい条件での試験を実施しており、温度上昇による影響に	
		移行してりい来件での試験を美施しており、温度上升による影響に 配慮したものとなっている。	

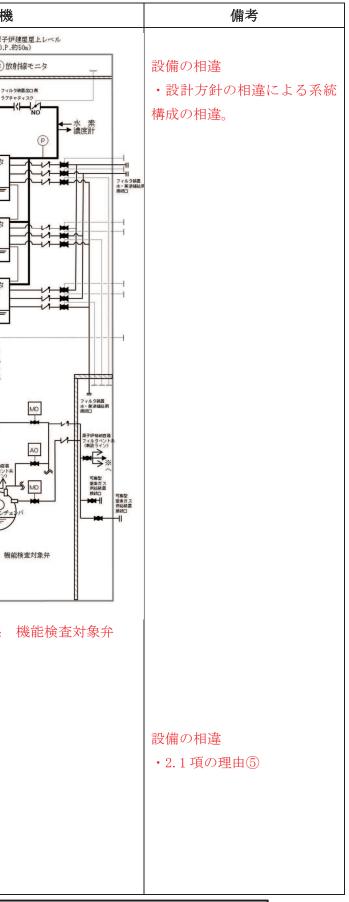
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		b. 放射性よう素フィルタにおける放射性よう素の再揮発	設備名称の相違
		6. 放射性より蒸りイルクにおける放射性より蒸り件揮発 (a) 想定する状態	区III-11-11-12-11-11
		(a) 心足りる状態 化学工業の分野ではゼオライトに高温の水素を通気することに	
		より捕集されているよう素を再揮発させる技術がある。放射性よう	
		素フィルタに充填された銀ゼオライトに、ベントガスに含まれる水	
		素が通気されると、捕集された放射性よう素が再揮発することが考	
		えられる。	
		(b) 影響評価	
		水素によるよう素の再浮遊は400℃以上の高温状態で数時間程	
		度,水素を通気した場合に起こることが知られている。一方フィル	
		タ装置に流入するガスは200℃以下であり、銀ゼオライトに水素を	
		含むガスが通過したとしても、ゼオライトに捕集されているよう素	
		が再揮発することはない。	
		また、放射性よう素フィルタで捕集した放射性よう素の崩壊熱	設備名称の相違
		は、ベント中はベントガスにより冷却され、ベント後は系統を不活	
		性化するために供給される窒素により冷却されることから、放射性	
		よう素フィルタの温度上昇は、放射性よう素の再揮発が起こるよう	
		な温度(400℃)に対して、十分低く抑えることができる。	
		(3) フィルタの閉塞	
		a. 想定する状態	
		炉心損傷後のベント時には,溶融炉心から発生するエアロゾルに	
		加え、炉内構造物の過温などによるエアロゾル、コアコンクリート	
		反応により発生するCa02等のコンクリート材料に起因するエアロ	
		ゾル及び保温材等の熱的・機械的衝撃により発生する粉塵が,フィ	
		ルタ装置に移行する可能性がある。これらのエアロゾルの影響によ	
		り、ベンチュリノズルの狭隘部や金属繊維フィルタに付着し、閉塞	設備名称の相違
		することが考えられる。	
		b. 影響評価	
		ベンチュリノズルの狭隘部を通過するガス流速は、高速となる。	
		ベンチュリノズルの狭隘部寸法に対して,エアロゾルの粒子径は極	
		めて小さく、ベンチュリノズルが閉塞することはない。	

東海第二発電所	女川原子力発電所第2号機	備考
	金属繊維フィルタには、ベンチュリスクラバで捕集されなかった	設備名称の相違
	エアロゾルが移行する。移行するエアロゾル量は、金属繊維フィル	
	タの許容負荷量に対して十分小さく,金属繊維フィルタが閉塞する	
	ことはない。	
	(4) 薬剤の容量減少	
	a. 想定する状態	
	無機よう素はベンチュリスクラバにて薬剤	
	との反応により捕集されるが, 薬剤の容量を超える無機よう素	
	が流入した場合には, 無機よう素は捕集されずに下流に流出される	
	ことが考えられる。	
	b. 影響評価	
	スクラバ溶液に含まれる の量は、原子炉格納	設備名称の相違
	容器から放出される無機よう素の量に対して十分大きいことから、	
	容量に達することはない。	
	(5) 放射性よう素フィルタの容量減少	設備名称の相違
	a. 想定する状態	
	ガス状放射性よう素は,銀ゼオライトに捕集されるが,銀ゼオラ	
	イトの吸着容量に達した場合には、ガス状放射性よう素は捕集され	
	ずに系外に放出されることが考えられる。	
	b. 影響評価	
	放射性よう素フィルタで保持が可能なガス状放射性よう素の吸	設備名称の相違
	着容量(銀分子数)は、原子炉格納容器から放出されるよう素量に	
	対して十分大きいことから吸着容量に達することはない。	
	(6) ベント時に生じるスウェリングによる放射性よう素フィルタ	設備名称の相違
	への影響	
	a. 想定する状態	
		設備名称の相違
	昇する。その結果、スクラバ溶液の水位は系統待機時に比べ上昇し	
	となり、スクラバ溶液の温度による除去性能に影響することが考え	
	東海第二発電所	

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	b. 影響評価	
	ベントガスの温度はベンチュリスクラバ(スクラバ溶液)を通	過設備名称の相違
	することで,スクラバ溶液の水温と同じになっているものと考え	6
	れ,	
	こととなる。よって、スクラバ溶液と接する放射性よう素フ	イ
	ルタの外壁はスクラバ溶液から入熱されるため,放射性よう素フ	イ
	ルタで蒸気が凝縮することはなく、よう素の除去性能への悪影響	は
	ない。	
	(7) 吸着材の変質	
	a. 想定する状態	
	放射性よう素フィルタの吸着材として使用する銀ゼオライトは	, 設備名称の相違
	放射線の照射環境に長期間晒されると,変質してよう素除去性能	
	低下することが考えられる。	
	b. 影響評価	
	フィルタ装置で想定される照射量以上の放射線を照射した銀	ゼ
	オライトの性能試験結果から捕集性能を確認しており、よう素の	
	去性能への悪影響はない。	
	4. 設備の維持管理	
	(1) 点検方法	
	a. 機械設備	
	原子炉格納容器フィルタベント系の機械設備については、女川	原設備名称の相違
	子力発電所の他設備の点検実績等を参考に、設置環境や動作頻度	
	対する故障及び劣化モード等を考慮して、適切な周期で点検(時	
	基準保全)を行うことにより、設備の健全性を確保する。	
	本平床主/ 21)ことにより,設備の健主住を確保する。 一方,女川原子力発電所として保全の経験がない設備として,	
	アルカリ性のスクラバ溶液に接液する設備が挙げられる。これら	
	設備については、劣化モード(腐食等)を考慮した材料選定を行	
	ており、有意な劣化が発生する可能性は小さいと考えているが、	
	ずは初回定期検査時に点検を実施し,その結果を基に点検周期を	正
	めるものとする。	-
	スクラバ溶液の分析については,海外プラントにおいて窒素封	
	環境下で 間薬液濃度の有意な変化は認められていない実	績

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		があり、性状に有意な変化はないものと考えら
		とに実施することとする。
		また,放射性よう素フィルタに充填される銀
		は, 試験を行い, スクラバ溶液による飽和蒸気
		保管した後も性能基準を満たしていることを確
		女川原子力発電所第2号機のフィルタ装置で
		のサンプリングが可能な設計としており、先す
		に性状の確認を行い、その結果を基にサンプリ
		ものとする。
		機械設備の点検内容を表4-1に示す。
		なお、点検周期については、今後の保全活動
		な周期の見直しを行うこととする。

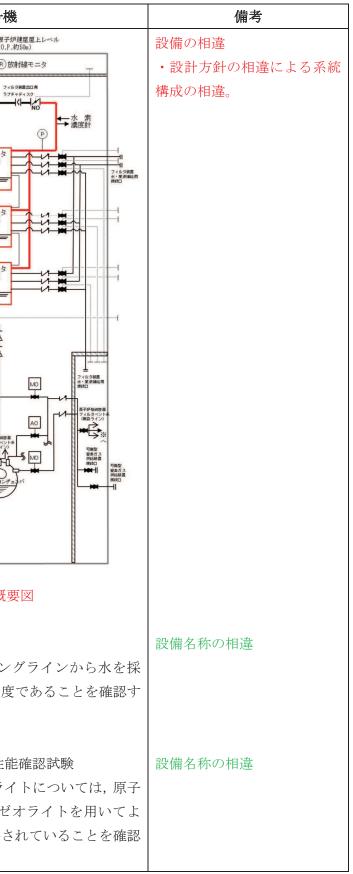

幾	備考
られるが、定期検査ご	
眼ゼオライトについて	
気環境下で 間	
確認した。	
では、銀ゼオライト	
ずは初回定期検査時 リング周期を定める	
ソマン 向知を足のる	
動を実施する中で適切	表現の相違
	- 90 -
)機密事項を含む可能性がある	- 90 - ため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力	倦電所第2号 相	幾	備考
			表4-1 機械	設備の点検内	容	設備の相違
		設備名	1	点検内容	点検周期・時期(計画)	・2.1 項の理由⑤
			木体	外観点検(内面)	初回定検(結果によりそ の後の周期を決定)	・各プラントの他設備の点
		フィルタ装置	機能確認	漏えい確認	本体内部点検に合わせて 実施	実績等を参考に、設置環境、
			スクラバ溶液	水質確認	1 定検毎	動作頻度に対する故障及び
		内部構造物 ・ベンチュリノズル	本体	外観点検		化モード等を考慮して点検) 期を定めている。
		・金属繊維フィルタ ・流量制限オリフィス	機能確認(放 射性よう素フ	サンプル性状確	初回定検(結果によりその後の周期を決定)	
		・放射性よう素フィルタ	イルタ)	認 外観点検		
		フィルタ装置出口側 ラブチャディスク	本体	フランジ面手入 れ	 人 初回定検(結果によりその後の周期を決定) 	
			機能確認	漏えい確認外観点検		
		配管	木体	フランジ部点検 手入れ		
			機能確認	テスル 漏えい確認		
				弁箱内面点検手 1.5	弁 入れ 2 定検毎	
			本休	入れ 弁体,弁座,弁		
		弁		棒等点検手入れ パッキン類交換		
			機能確認	外観目視点検 漏えい確認 作動試験	-	
		b. 電気設備				
					備については,女川原 設置環境や動作頻度に	
					のな周期で点検(時間	
		基準保全)を行うこ 電気設備の点検内			を確保する。	
			ついては, 4	今後の保全活動	かを実施する中で適切	表現の相違
		*☆/町初∨/元臣して1]	,	~ ₀		マンクロンション - 9]

東海第二発電所	女川原-	子力発電所第2号	機	備考
	表4-2 電気設備の点検内容			設備の相違
	設備名	点検内容	点検周期・時期 (計画)	・2.1 項の理由⑤
	1915 - 174, 4486	外観点検	1 定検毎	・各プラントの他設備の点検
	電動機	分解点検	5 定檢毎	実績等を参考に、設置環境や
	トルクスイッチ	動作確認	1 24/2	
	トルクスイッナ	設定値確認	— 1 定検毎	動作頻度に対する故障及び劣
		動作確認		化モード等を考慮して点検周
電動介見	リミットスイッラ 動部	取付状態確認	— 1 定検毎	期を定めている。
电频力表	電気室	結線点検	1 定検师	
	الحاصي بالإ	外観点検	1.266	
	開度計	指示值確認	— 1 定檢毎	
	試験・測定	作動試験	1 定検毎	
		電流測定		
子 力 発 対 す る 基 準 保 計 装 な お	電所の他設備の点検領 牧障及び劣化モード を行うことによ 設備の点検内容を表	実績等を参考に,	・備については,女川原 設置環境や動作頻度に 切な周期で点検(時間 まを確保する。 動を実施する中で適切	プラント名の相違
I				

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機			
		表4-3 計装設備の点検内容			設備の相違
	設備名		点検内容	点検周期・時期 (計両)	・各プラントの他設備の点
	水位計	特性試驗	外観点検 単体・ループ校正	-1 定檢毎	実績等を参考に、設置環境
	圧力計	特性試験	単体・ルーフ校正 外観点検	-1定検毎	動作頻度に対する故障及び
			単体・ループ校正 外観点検		化モード等を考慮して点材
	温度计	特性試験	単体・ループ校正	-1 定検毎	期を定めている。
	放射線モニタ	特性試験	外観点検単体・ループ校正	1 定検毎	
			線源校正 外観点検		
	水素濃度計	特性試驗	単休・ループ校正	- 1 定検毎	
		外観検査	ガス校正 外観点検	1 定検毎	
	サンプリング機器	特性試験	計器校正	1 定検毎	
	「サンソリンク機器	機能・性能試験	¢ 作動試験	1 定検毎	
		分解点検	ポンプ分解点検	1 定検毎	
	制御盤	外観検査	外観点検	1 定検毎	
			フバ溶液水質確認語 ト)性能確認試験_	式験」及び「放射性よ 」を実施する。	設備の相違 ・2.1項の理由⑤
	a. 弁開閉試驗	矣			
	系統が所定の	⊃機能を発揮→	することを確認す	るため,以下の弁につ	
			ý 図4-1に対象弁を示		
			チによる弁開閉試験		
			る人力での弁開閉調		設備名称の相違
		本海乳のうた	林田 ひの内容は 仲社	の機密事項を含む可能性があ	ろため小朋できません。 - (

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第29機「「「」」」」」「」」」「」」「」」」「」」」「」」」「」」」「」」「」」 <t< td=""></t<>
1		

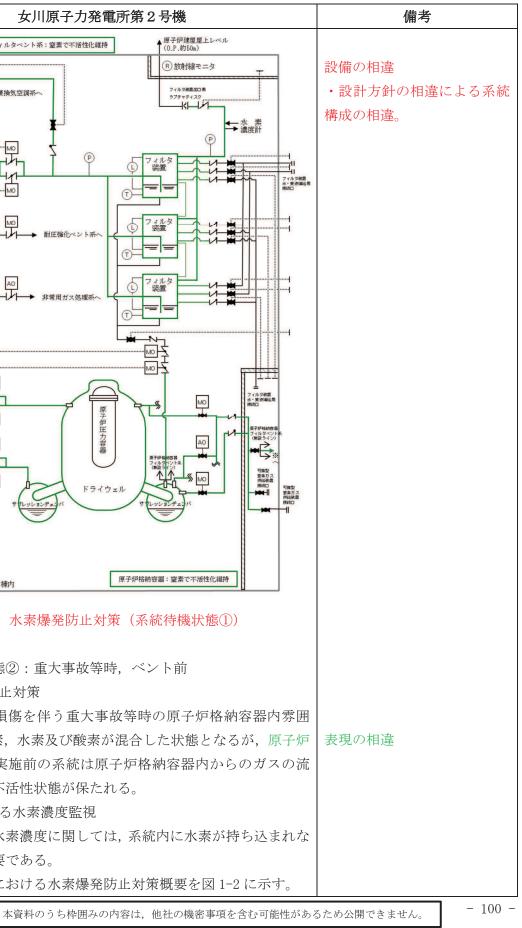


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・2.1項の理由⑤
		b. 漏えい試験(主配管)	
		漏えい試験の試験条件・方法を表 4-4 に,試験概要図を図 4-2 に	
		示す。	
		漏えい試験の各条件について下記(a)~(c)に整理する。	
		(a) 加圧媒体	
		ベント開始時の系統内は窒素が支配的であること、また、ベント	記載方針の相違
		継続中に漏えい防止対象となる放射性物質は窒素又は空気より分	設計方針の相違
		子量が大きいことから、窒素 <mark>又は空気</mark> を加圧媒体とすることは妥当	・女川は加圧媒体を窒素
		であると判断する。	空気とすることで計画
		なお,事故時に発生する水素については,フィルタ装置のフラン	
		ジ部等から漏えい試験の検出限界値の水素が漏えいした場合にお	
		いても、長期にわたってフィルタ装置室内が可燃限界に到達しない	設備の相違
		こと、系統内から水素が漏えいした場合においても、建屋内につい	・2.1 項の理由⑤
		ては静的触媒式水素再結合装置による処理が, 建屋外については外	
		気への拡散が期待できること,また,試験時の安全性確保の観点か	
		ら、水素を加圧媒体とした漏えい試験は行わない。	
		(b) 試験圧力	
		漏えい試験では,系統内が不活性状態で維持できることを確認す	
		るため窒素封入圧力 kPa[gage]以上を試験圧力とする。また、系	
		統の使用時にバウンダリ機能を維持できることを確認するため最	
		高使用圧力 854kPa[gage]を試験圧力とする。	設備の相違

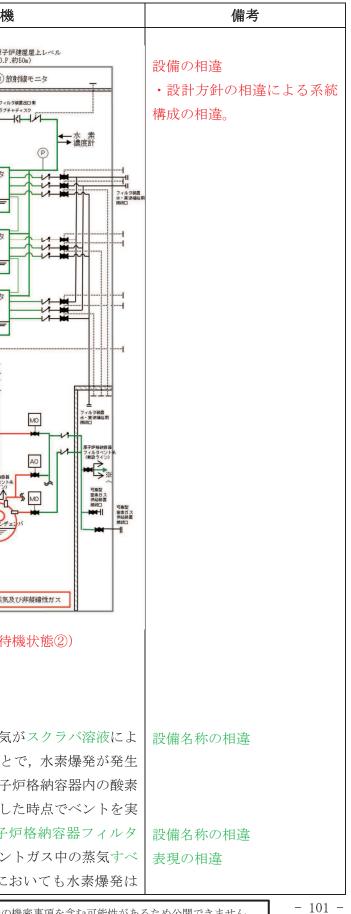
柏崎刈羽原子力発電所第7号機	東海第二発電所			女川原子力	発電所	毻2 号機
		 (c) 試験温度 漏えい試験では、系統の最高使用温 難となることから約180℃低い常温彩 が、試験温度については、環境温度が 状態となり、フランジ部パッキンに圧 りシール性が向上するものとなること 保守的となる。 			約20℃での 高い場合 縮荷重が :から,常	
			表 加圧	€4-4 漏えい試験	の 試験 試験	条件・目
			媒体	試験圧力	温度	
		簡易 点検	窒素	┃ kPa[gage]以上 (窒素封入圧力)	常温	系統内を とを目的 力(待機 えいのない
		本格 点検	窒素 又は 空気	854kPa[gage]以上 (最高使用圧力)	常温	使用時に れている 統全体を しい漏えい

幾	備考	
	・2.2項の理由⑥	
Cを模擬することが困		
の漏えい確認となる		
合,配管が熱膨張した		
が付加されることによ		
常温での試験環境は,		
目的・方法	設備の相違	
試験目的・方法	・2.2項の理由⑥	
を不活性状態に維持するこ		
りに,系統全体を窒素封入圧		
幾状態)に加圧し、著しい漏 ないことを確認する。		
こバウンダリ機能が維持さ		
ることを確認するために,系		
を最高使用圧力に加圧し,著 えいのないことを確認する。		
		_ 06
D機密事項を含む可能性がある	ため公開できません。	- 96 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		原子炉建屋原子炉棟内 原子炉建屋 図4-2 漏えい試験の試験概要
		c. スクラバ溶液水質確認試験 スクラバ溶液水質確認試験は、サンプリン 取・分析を実施し、スクラバ溶液が規定の濃度 る。
		d. 放射性よう素フィルタ(銀ゼオライト)性能 放射性よう素フィルタに充填される銀ゼオライ 炉停止期間中にフィルタ装置内の試験用銀ゼ う素除去性能試験を行い,規定の性能が確保さ する。



柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙	1
		可燃性ガスの爆発防止対策について	
		「「「「「「「「「「」」」」で	司供なみの相当
		1. 原子炉格納容器フィルタベント系	設備名称の相違
		原子炉格納容器フィルタベント系の系統内で可燃性ガスの爆発	
		が発生した場合、当該系統に期待している放射性物質の低減効果な	
		喪失するおそれ又はフィルタ装置内で保持している放射性物質の	
		外部への放出のおそれがあるため,設計及び運用により系統内での	
		可燃性ガスの爆発を防止する。	
		(1) 考慮する可燃性ガスの種類及び対策	
		炉心の著しい損傷を伴う重大事故等時に発生するおそれのある	5
		可燃性ガスとして、ジルコニウム-水反応、水の放射線分解及び4	
		属腐食により発生する水素が考えられる*。これらの反応によって	
		原子炉格納容器内水素濃度は,可燃限界濃度である 4vol%を大き	
		く上回るが、原子炉格納容器内雰囲気は通常運転時から不活性化	
		(ドライ条件で酸素濃度 2.5vo1%以下に管理) することに加え,	
		の放射線分解によって発生する酸素を考慮しても酸素濃度を可燃	
		限界であるドライ条件で 5vo1%未満に管理することで、水素及び	
		酸素が同時に可燃限界に到達することを防止する。原子炉格納容器	
		フィルタベント系については、待機状態から系統内を窒素で不活性	
		化することにより, 原子炉格納容器内の水素が排出経路を通過する	
		際における水素爆発を防止する。	
		また、原子炉格納容器フィルタベント系の配管については、ベン	/ 設備名称の相違
		ト時に発生する蒸気凝縮で発生するドレン水による閉塞やこれに	
		起因する水素及び酸素の滞留を防止するために,配管ルートにUS	/
		ール部ができないように配置する。新設部分については水平配管に	
		適切な勾配を設ける。	
		なお、水素爆発の条件として、水素濃度 4vo1%かつ酸素濃度	Ŧ
		5vo1%以上の条件に加えて、着火源又は 500℃以上の発熱源が必要	
		となるが、原子炉格納容器内における着火源又は 500℃以上の発熱	
		源の不確かさが大きいため、酸素濃度を管理することで水素爆発を	
		防止することとしている。	-
		注記*:溶融炉心・コンクリート相互作用によって,可燃性ガスで	~
		ある一酸化炭素が発生することが考えられるが、有効性調	

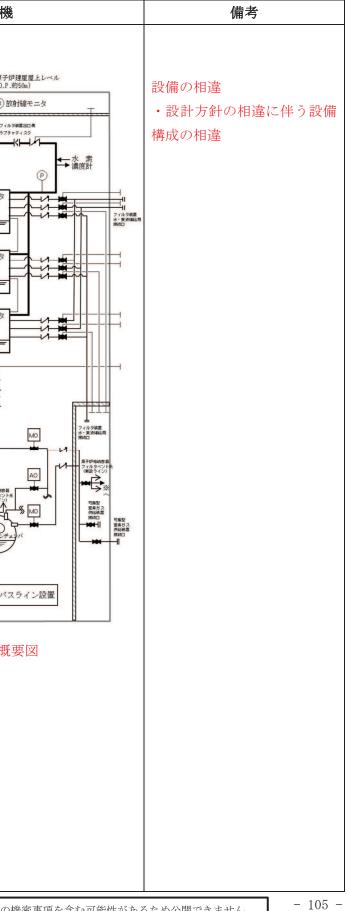

本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		価の格納容器破損モード「溶融炉心・コンクリート相互作	
		用」における評価事故シーケンス「過渡事象+高圧注水失	
		敗+低圧 ECCS 失敗+損傷炉心冷却失敗(+デブリ冷却失	
		敗)」での一酸化炭素の発生量は 1kg 未満(0.1vo1%未満)	
		であり,また,一酸化炭素の可燃限界濃度が空気中におい	表現の相違
		て 12.5vo1%であることを踏まえると,考慮不要と考えら	
		れる。	
		(2) 系統の各運転状態における設計上の考慮	
		a. 系統待機状態①:プラント通常運転中	
		(a) 水素爆発防止対策	
		プラント通常運転中においては,原子炉格納容器と同様に系統内	
		を窒素で不活性化する設計とする。フィルタ装置から放出口へ至る	表現の相違
		配管上には,窒素置換時に大気と隔離するため,フィルタ装置出口	
		側ラプチャディスクを設けている。このフィルタ装置出口側ラプチ	
		ャディスクは,原子炉格納容器からの排気と比較して,十分低い圧	
		カで開放する設計とする。	表現の相違
		(b) 系統における水素濃度監視	<u>私</u> 死的相连
		系統における水素濃度に関しては、水素の発生がないため、監視	
		不要である。	
		この系統状態における水素爆発防止対策概要を図 1-1 に示す。	
		本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があ	るため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		 ■FFP建屋 図 1-1 水素爆発防止対策(系統待例 b. 系統待機状態②:重大事故等時,ベント前 (a) 水素爆発防止対策 炉心の著しい損傷を伴う重大事故等時の原 気は,蒸気,窒素,水素及び酸素が混合した状 格納容器ベント実施前の系統は原子炉格納容 入はないため,不活性状態が保たれる。 (b) 系統における水素濃度監視 系統における水素濃度に関しては,系統内に いため,監視不要である。 この系統状態における水素爆発防止対策概要

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		 c. 系統運転状態①:ベント実施直後 (a) 水素爆発防止対策 ベント開始時において、ベントガス中の蒸気 って凝縮された場合、酸素濃度が上昇すること するおそれがあるが、ベント実施前から、原子 濃度をドライ条件で監視し、4.3vo1%に到達し 施する判断基準を設定していること及び原子 ベント系は不活性化されているため、仮にベン てがスクラバ溶液によって凝縮された場合に

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

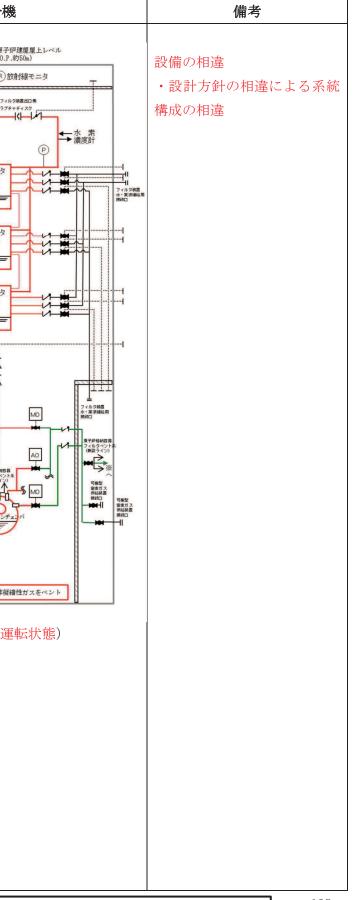

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		発生しない。なお、このベント実施判断基準については、酸素濃度	
		の可燃限界である 5vo1%に対し,酸素濃度監視設備(格納容器内雰	設備名称の相違
		囲気酸素濃度)の測定誤差である±0.6vol%に0.1vol%の余裕を考	表現の相違
		慮して設定した。また、原子炉格納容器内の気体については、原子	
		炉格納容器スプレイ及び温度差による自然対流効果によって均一	
		に撹拌されており、濃度分布がないため、酸素濃度監視設備(格納	設備名称の相違
		容器内雰囲気酸素濃度)により原子炉格納容器全体の濃度を代表し	
		て監視することができる。	
		(b) 系統における水素濃度監視	
		系統における水素濃度に関しては、原子炉格納容器から可燃限界	
		を超えた水素が流入するが,原子炉格納容器内の酸素を可燃限界未	
		満で管理していることから監視不要である。	
		(c) 対向流による空気の流入	
		フィルタ装置内が負圧に至るような状況下では,対向流が発生す	
		ることにより、フィルタ装置内に空気が流入するおそれがある。し	
		かしながら,原子炉格納容器ベント実施時におけるスクラバ溶液沸	表現の相違
		騰までの間, ベントガス中の蒸気がスクラバ溶液によって凝縮され	設備名称の相違
		た場合においても, 蒸気の供給が継続的に行われるためフィルタ装	
		置内が負圧にならないこと及び非凝縮性ガスの排出は継続される	
		ことから、対向流は発生しない。	
		(d) 枝管における水素及び酸素の蓄積について	
		原子炉格納容器内の酸素濃度については、ドライ条件に換算し	表現の相違
		て、5vo1%未満に管理することから、ベント実施中において、仮に	
		枝管におけるベントガスの蓄積があった場合においても,枝管での	
		水素爆発は発生しないと考えられるが、万が一、枝管内での成層化	
		等によって混合ガスの濃度が変化した場合,枝管での水素爆発の脅	
		威が存在する。そのため, 枝管内での混合ガスの蓄積評価を実施す	
		る。枝管における水素及び酸素の混合ガスの蓄積の評価について	
		「BWR 配管における混合ガス(水素・酸素)蓄積防止に関するガイド	
		ライン(第3版)」(日本原子力技術協会)に基づき、上向きの枝管	
		に対して評価を実施する。なお、ガイドラインでは、下向き及び水	表現の相違
		平の枝管に対しては、水封されることで混合ガスが蓄積しないと評	
		価されているため対象外とした。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		枝管長さ(L)を枝管内径(D)で除することによって規格化した	
		不燃限界長さ(L/D)の数値によって,枝管内に混合ガスが蓄積する	
		可能性の有無を判断する。不燃限界長さ(L/D)が「BWR 配管におけ	設計方針の相違
		る混合ガス(水素・酸素)蓄積防止に関するガイドライン(第3版)」	・女川では, 運転範囲内で最も
		に規定される換気限界長さ以下であれば混合ガスの蓄積が発生し	流速が遅い場合の換気限界長
		ないとされている。	さをしきい値としている。
		主ラインから分岐する枝管の分岐方向及び評価結果を,表 1-1 に	表現の相違
		示す。	
		表 1-1 より, 非常用ガス処理系ライン及び耐圧強化ベント系ライ	設備の相違
		ンについては、混合ガスが蓄積する可能性がある結果となった。そ	・評価結果によるバイパスラ
		のため,図1-3~図1-5に示すように,バイパスラインを設置し,	イン設置個所の相違
		混合ガスが蓄積することのない設計とする。また、フィルタ装置に	設備名称の相違
		接続される枝管については、下向き又は水平に設置する設計とす	設備の相違
		る。	・女川ではフィルタ装置に接
			続される枝管については、バ
			イパスラインが不要な設計と
			している。
		(e) フィルタ装置出口側ラプチャディスクの下流における水素爆	設備名称の相違
		発について	
		原子炉格納容器からフィルタ装置出口側ラプチャディスクまで	
		は不活性化されていること及び原子炉格納容器内の酸素濃度をド	
		ライ条件で可燃限界未満に維持することで,高濃度の水素雰囲気に	
		おいても水素爆発は発生しないが,フィルタ装置出口側ラプチャデ	
		ィスク以降については,不活性化していない範囲であるため,高濃	
		度の水素と空気が触れることで水素爆発のおそれがある。しかしな	
		がら,ベント実施直後は,原子炉格納容器からのベントガスによっ	
		て系統内の窒素が押し出され,フィルタ装置出口側ラプチャディス	設備名称の相違
		ク以降の空気が排出されることから,放出口までの範囲で高濃度の	
		水素が空気と触れず、水素爆発が発生することはないと考えられ	
		る。また、放出口から先については、大気であるものの、大気中に	表現の相違
		は着火源等がなく、水素爆発は発生しないと考えられる。なお、放	
		出口は、逆火防止として金網を設置する。	

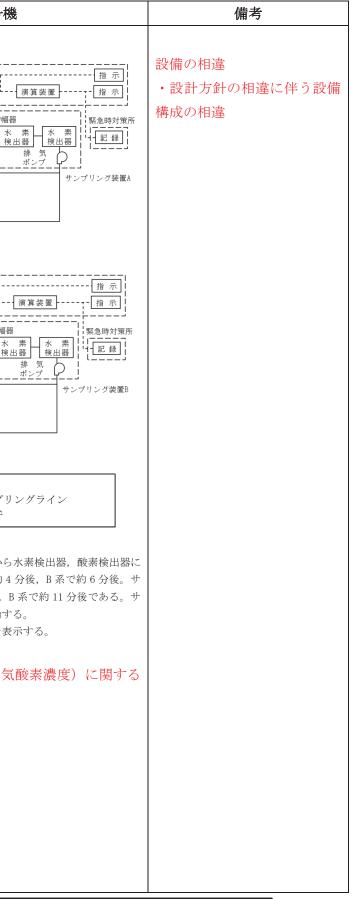
柏崎刈羽原子力発電所第7号機	東海第二発電所		女	川原	子力発電	፪ 所第2	号機			備考
		表 1-1 主ラインから分岐する枝管の閉止端までの長さと口径等			設備の相違					
				配管	訪 際星文	枝管内径	L/D	*: 换気限界	混合ガス	・設計方針の相違に伴う設
			分岐箇所*1	分岐 方向	I. (m)	D (m)	(-)	扱気限外長さ	蓄積 可能性	仕様の相違
	-		ドライウェルベント用出	-			211 1 1 1 1 1 1 1		2.0	
		(D)	11隔離弁バイパスライン(上流側)	水平			評価対象外	-	無	
			ドライウェルベント用出							
		2	ロ隔離弁バイパスライン (下流側)	水平	-	-	評価対象外	-	無	
			非常用ガス処理系ライン		7.653	0.2979	25.69	5	有	
		(4)	原子炉建屋原子炉棟換気 空調系ライン	水平	-	-	評価対象外	-	無	
			原子炉格納容器フィルタ		0.005	0.0010	0.00		-	
			ベント系ベントライン隔 離弁(B)(上流側)	科上	2, 405	0, 3810	6.32	8	無	女川は想定運転範
	- I - I - I - I - I - I - I - I - I - I		原子炉格納容器フィルタ	-		+				のうち主ラインの流速が最
		1000	ベント系ベントライン隔	斜上	2.910	0.3810	7.64	8	無	低くなる条件で求めた枝管
		-	離介(B)(下流側)							数に応じた換気限界長さ(
			サプレッションチェンバ							
			ベント用出口隔離弁バイ パスライン(上流側)	水平	_	-	評価対象外	-	無	は8)を設定している。
			サプレッションチェンバ							
		1000 C	ベント用出口隔離弁バイ パスライン(下流側)	水平			評価対象外	-	無	
	-		耐圧強化ベント系ライン	Ŀ*:	27.952	0. 2979	93.84	5	有	
		:	*1:フィルタ装置に接続 する。 *2:原子炉格納容器フィル 低くなる条件で求め 酸素) 蓄積防止に関 値。 *3:分岐方向は水平であ 変更前	ルタへ たする ス うるが,	ジト系の? FRe数を用 ガイドライ 分岐直後	想定運転縦 引いて「BW ン (第 3 片 瓮に上向き	6囲のうち主 R 配管におけ 友)」解説図 となる。 変更後	ラインのð る混合ガ 3.3-7より	 流速が最も ス (水素・)算出した jůž 	
		 	厚子炉格納音器より まライン 【1−3 枝管へのバー		^{ルタ装置へ} → スライン	の追設	主ライン	↓ フィルタ ス蓄積隊	→	設備名称の相違

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

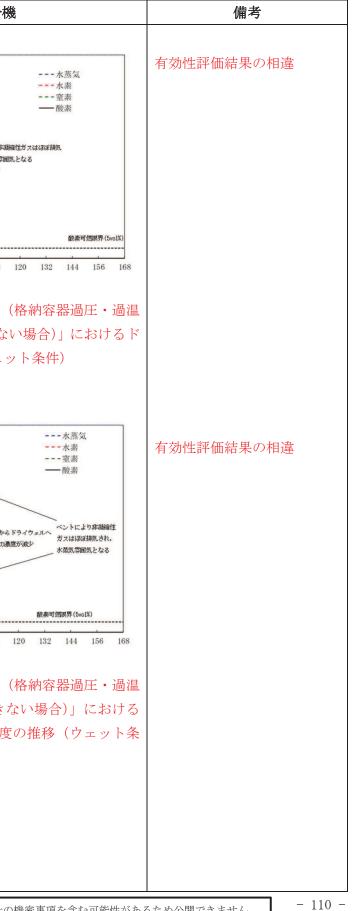
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		<complex-block></complex-block>



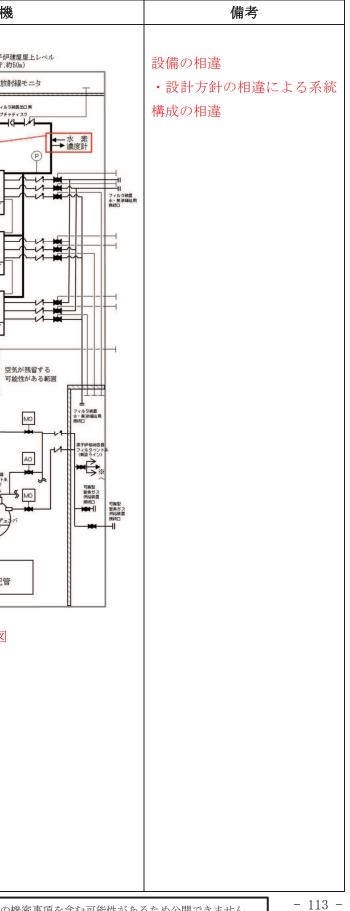
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設
			構成の相違
		図 1-5 枝管へのバイパスラインの追設配管鳥瞰図	

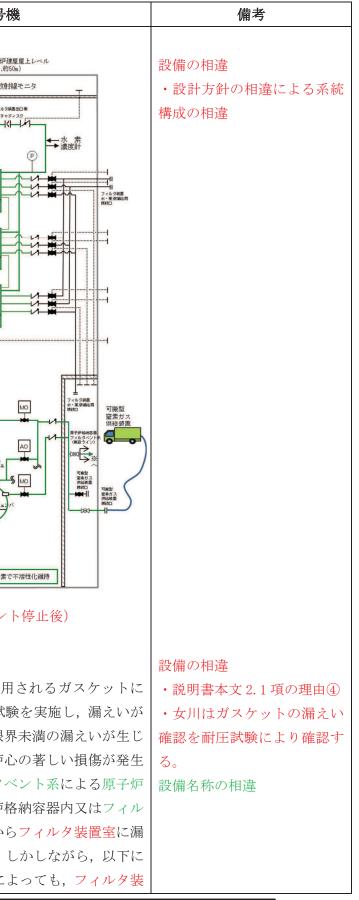

この表彰大学に公共らた。な数争以に対象形成学校のでした。参いで、 物味の作用で、 常性出現した。で数字に立て変更ない、 常性出現した。ごを知っていて、 生心ないれた。この支援していて、 のは、たちがあるのご思想です。 生心ないれた。 に、「必須能力」、 のは、たちがあるのご思想です。 生心ないれた。 たいで、 市で、「おける」ので、 ないた、 たいで、 たいで、 のは、たちがあるのご思想です。 した、 たいで、 たいで、 たいで、 たいで、 たいで、 たいで、 たいで、 たい	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	柏崎刈羽原子力発電所第7号機	東海第二発電所	この系統状態における水素爆発防止対策概要を図1-6に,酸素濃 度監視設備(格納容器内雰囲気酸素濃度)の概要図を図1-7に,有 効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過 圧・過温破損)(代替循環冷却系を使用できない場合)」における原 子炉格納容器の気相濃度の推移を図1-8及び図1-9に示す。なお, 図に示す原子炉格納容器の水素及び酸素の気相濃度については, MAAP解析に基づく水ージルコニウム反応により発生する水素に加 え, MAAP解析で考慮していない水の放射線分解によって発生する	設備の相違 ・設計方針の相違に伴う設備 構成の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		<complex-block><complex-block></complex-block></complex-block>


本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

	<u>中央制御室</u> H
第7世年3年 第7世年3年 日 日 日 第7世年3年 日 日 日 日 日 日 日 日 日 日 日 日 日	イウェル (冷却器) の 前置増幅器 (冷却器) (除湿器) (快速) (次) (ウェル) (ウェンチェンバ) (中央制御室) (ウェル) (ウェンチェンバ) (次) (ウェル) (ウェンチェンバ) (次) (ウェル) (ウェンチェンバ) (次) (ウェル) (ウェル) (ウェンチェンバ) (次) (ウェル) (orthorder) (ortho
図1-7 酸素濃/系統概要	€監視設備(格納容器内雰囲気 ⋮図


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		100 100 90 0004発生に伴い水蒸気 0 ドライウェルへの演 0ドライウェルへの演 入により上昇 格納留器スウレイによる格 約60 次により上昇 20 ジルコニウムー水反応に より突生した水素の読入 20 ジルコニウムー水反応に より突生した水素の読入 20 10 0 12 24 36 25 10 10 12 24 36 25 10 10 12 24 36 25 10 10 12 24 36 25 10 10 12 24 36 25 10 10 12 24 36 25 10 26 10 10 12 24 36 25 10 26 10 10 12 24 36 25 10 26 10 37 10 38 10 27 84 28 96 29 10 20 10 21
		ライウェルの気相濃度の推移(ウェッ ************************************
		 図 1-9 「雰囲気圧力・温度による静的負荷(破損)(代替循環冷却系を使用できた サプレッションチェンバの気相濃度 件)


柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	d. 系統運転状態②:非凝縮性ガス排出(ベント開始後1時間程度)	
	後	
	(a) 水素爆発防止対策	
	ベント実施に伴うサプレッションプール水の減圧沸騰により,可	設備名称の相違
	燃性ガスを含む非凝縮性ガスが排出された以降の原子炉格納容器	
	は、ほぼ水蒸気で満たされた状態となり、系統へ流入するベントガ	
	スもほぼ水蒸気となることから、水素爆発は発生しない。	
	(b) 系統における水素濃度監視	
	系統における水素濃度については、ベントガスがほぼ蒸気となっ	
	ていることから、監視不要である。	
	(c) 対向流による空気の流入	
	原子炉格納容器及び系統から非凝縮性ガスが排出された以降は、	
	仮に対向流が発生した場合であっても,原子炉格納容器及び系統内	
	はほぼ蒸気で満たされている状態となるため,水素爆発は発生しな	
	د <i>۲</i> ۰.	
	この系統状態における水素爆発防止対策概要は図 1-6 と同様で	
	ある。	
	e. 原子炉格納容器ベント停止後	表現の相違
	(a) 水素爆発防止対策	
	原子炉格納容器ベント停止後, スクラバ溶液の放射線分解により	設備名称の相違
	水素及び酸素が発生するため, 原子炉格納容器第二隔離弁の下流か	設備の相違
	ら可搬型窒素ガス供給装置による窒素供給を実施し,系統のパージ	・設計方針の相違による設備
	を継続することで、水素爆発を防止する。	構成の相違。
		設備名称の相違
	(b) 系統における水素濃度監視	
	系統における水素濃度に関しては、窒素供給による系統パージ中	運用の相違
	において,水素が系統内に滞留しないことを確認するため,監視を	・ベント停止後の運用の相違
	実施する。	
	(c) スクラバ溶液の放射線分解による酸素発生	設備名称の相違
	ベント停止後において,スクラバ溶液の放射線分解によって発生	
	する酸素については,スクラバ溶液中の放射性物質の崩壊熱によっ	
	て発生量が変化するが,蒸気の発生量も崩壊熱によって変化する比	
	例関係にあり、以下のとおり、酸素濃度は 0.1vol%未満となるため	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		系統内で水素爆発することはない。	
		酸素濃度の計算条件は以下のとおりとする。	表現の相違
		 ・スクラバ溶液は沸騰しているものと想定し、酸素発生量のG値は 	
		0.2 (分子/100eV) とする。	
		・スクラバ溶液の放射線吸収割合は1.0とする。	
		・崩壊熱はQ(MW)とする。	表現の相違
		・1eV=1.602×10 ⁻¹⁹ (J),アボガドロ数は6.022×10 ²³ とする。	
		○蒸気発生量= [崩壊熱 (MW)] ×1000/([飽和蒸気比エンタルピ] -	
		[飽和水比エンタルピ]) ×1000/分子量×22.4×10 ⁻³ ×3600	
		$= Q \times 1000 / (2675.53 - 418.99) \times 1000 / 18 \times 22.4 \times 10^{-3} \times 3600$	設計条件の相違
			・女川は,日本機械学会 蒸気
		=1985.4×Q m ³ /h[normal]	表<1999>の比エンタルピにより計算
		○酸素発生量=[崩壊熱(MW)]×10 ⁶ ×[G値]/100/(1.602×10 ⁻¹⁹)/	
		(6.022×10 ²³) ×22.4×10 ⁻³ ×3600× [放射線吸収割合]	
		$= \mathbf{Q} \times 10^{6} \times 0.2 / 100 / (1.602 \times 10^{-19}) / (6.022 \times 10^{23})$	
		$\times 22.4 \times 10^{-3} \times 3600 \times 1.0$	
		=1.68×Q m^3/h [normal]	
		○酸素濃度 =酸素発生量/(蒸気発生量+酸素発生量)×100	
		=0.085%	
		(d) 排水配管使用時における原子炉格納容器内への空気流入の影	設備名称の相違
		響について	
		原子炉格納容器ベント停止後は、図 1-10 に示すとおり、自重に	表現の相違
		てスクラバ溶液をサプレッションチェンバへ移送することとして	設備の相違
		いる。スクラバ溶液を移送する際には、排水配管の一部に残留した	・説明書本文 2.1 項の理由⑤
		空気がスクラバ溶液とともにサプレッションチェンバへ流入する	設備名称の相違
		が,ベント停止後の原子炉格納容器は窒素供給により不活性化され	
		ており,原子炉格納容器内の水素濃度を可燃限界未満に維持するた	設備の相違
		め,空気の流入による影響はない。	・女川はベント後の原子炉格
			納容器内の不活性化につい
			て、可燃性ガス濃度制御系に
			期待しない。
		この系統状態における水素爆発防止対策概要を図 1-11 示す。	

原子炉建屋原子炉棟内

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		原子炉建屋原子炉横纳 原子炉堆屋原子炉横纳 原子炉建屋 図 1-11 水素爆発防止対策(ベン) 2. フィルタ装置室 フィルタ装置に設置するフランジ部に使用 ついては、耐圧試験における発泡法による試験 検出されないことを確認するものの、検出限界 ている可能性は否定できない。このため、炉心した場合において、原子炉格納容器マィルタベ 格納容器ベントを実施する場合には、原子炉格
		格納容器ペントを実施する場合には,原子炉格 タ装置内で発生した水素が,フィルタ装置から えいし,可燃限界に到達するおそれがある。し 示すとおり,保守的な条件を仮定した評価によ

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		置室内の水素濃度は、事象発生7日後において、約5.6×10 ⁻³ vol%	解析結果の相違
		程度であり、長期にわたり可燃限界である 4vol%に到達すること	
		はない。さらに、事象発生7日後以降については、外部支援等によ	
		って,原子炉格納容器除熱機能を復旧させ,原子炉格納容器ベント	表現の相違
		の停止及びスクラバ溶液の移送によるフィルタ装置室への水素漏	設備名称の相違
		えい防止並びにフィルタ装置室の入口扉の開放によるフィルタ装	設備の相違
		置室の換気が実施できる。	 説明書本文 2.1 項の理由④
		以上のことから、フィルタ装置室で水素爆発が発生することはな	
		v_{o}	
		(1) 評価シナリオ	
		評価シナリオは、炉心損傷を伴う有効性評価事象のうち、原子炉	表現の相違
		格納容器ベント実施時のウェット条件における水素濃度が最も高	
		いシナリオである「雰囲気圧力・温度による静的負荷(格納容器過	
		圧・過温破損)(代替循環冷却系が使用できない場合)」とする。	
		また,当該シナリオでは,図1-12及び図1-13に示すとおり,原	
		子炉格納容器ベント実施 4 時間程度で原子炉格納容器内雰囲気は	有効性評価結果の相違
		水蒸気 100vo1%雰囲気となるものの,保守的に高濃度の水素が7日	
		間継続して通過することを仮定して評価を実施する。	
		(2) 評価	
		評価条件を表 1-2 に示す。	
		a. 漏えい条件	
		漏えい条件は、「雰囲気圧力・温度による静的負荷(格納容器過	
		圧・過温破損)(代替循環冷却系が使用できない場合)」における原	表現の相違
		子炉格納容器ベント実施前の最大水素濃度である 25vo1% (ウェッ	有効性評価結果の相違
		ト条件)とし、その他のガス組成については、水蒸気として取り扱	
		う。また、漏えいした水蒸気については、保守的にすべて凝縮する	
		ものとして評価を実施する。なお,原子炉格納容器ベント実施時の	
		水素濃度は、ドライ条件においても 25vo1%以下であり、漏えいし	
		た水蒸気の凝縮を考慮する場合, ウェット条件の方が保守的な評価	
		となる。	
		漏えい率については、JISZ2330(2012)「表1-漏れ	設計方針の相違
		試験方法の種類,適用方法及び特徴」の「圧力変化法(加圧)」に基	・女川は,ガスケットの試験結
		づき,保守的に 854kPa[gage],200℃の条件下において,検出限界	果よりも当該JISの検出限
		本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があ	るため公開できません。 - 115 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
Г		値の水素漏えいがあるものと仮定する。	界値が保守的であるため、後
			者を使用
		スクラバ溶液の放射線分解によって発生する水素については,発	設備名称の相違
		生量が少なく、フィルタ装置を通過する水素濃度 25vo1%の保守性	記載表現の相違
		に包絡されるため、考慮しない。	有効性評価結果の相違
		b. フィルタ装置室の条件	設備の相違
		フィルタ装置室の条件は、乾燥空気におけるガス組成とする。	 説明書本文 2.1 項の理由④
		空間容積については、躯体図から算出した数値(フィルタ装置分	記載表現の相違
		を除く。)に対し、機器配管分の低減率として、0.7を乗じて算出す	
		100 水蒸気 90 水蒸気 90 水蒸気 90 水蒸 91 水蒸 92 水蒸 96 水蒸 97 空蒸 96 空蒸 97 空蒸 98 空蒸 99 公式 100 空蒸 90 空蒸 11 空蒸 11 空蒸 11 空 11 空 11	有効性評価結果の相違
		図 1-12 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温	
		破損)(代替循環冷却系を使用できない場合)」における	
		ドライウェルの気相濃度の推移(ウェット条件)	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		100 サ 90 レ 90 100 100 100 100 100 100 100 1
		 図 1-13 「雰囲気圧力・温度による静的負荷 破損)(代替循環冷却系を使用できた サプレッションチェンバの気相濃度 件)

機	備考
水蒸気 水素 	有効性評価結果の相違
窒素 酸素	
いらドライウェルへ ベントにより非議論性 ガスはほぼ接張され、 連度が彼少 水蒸気雰囲気となる	
酸素可燃現界(5vol%)	
120 132 144 156 168	
(格納容器過圧・過温	
ない場合)」における	
度の推移(ウェット条	

備考	2 号機	川原子力発電所第2	女り		柏崎刈羽原子力発電所第7号機 東海第二発電所	
評価条件の相違	革価における評価条件	表 1-2 フィルタ装置室の水素濃度評価における評価条件				
・有効性評価結果の相違	備考	項目条件備考				
	炉心損傷を伴う事象のうち,原	and the second s				
	か 心頃 勝 を 伴 う 争 家 の う ら ,					
	エット条件における水素濃度が	그 정영성과 방법을 위해도 가장에 관심을 받았다.	+ 11 *	評価シ		
	ALCINE STATE ALC					
	原子炉格納容器ベント実施前の					
	最大水素濃度として設定	最大水素濃度として設定 水蒸気濃度 保守的な条件として、フィルタ				
	保守的な条件として、フィルタ					
	装置から漏えいする水素以外の	75vol%	(漏えい時)			
	気体は、すべて水蒸気として取	水蒸気濃度 (漏えい後) Ovo1% 気体は、すべて水蒸気として 扱い、漏えい後は水蒸気がす				
	扱い, 漏えい後は水蒸気がすべ					
	て凝縮することを仮定して設定					
		0vo1%	窒素濃度	個えい、米什		
	保守的に7日間継続して高濃度					
	の水素が通過することを仮定し	168 時間	漏えい時間			
	て設定					
	JIS Z 2330 (2012)					
	7.7 \times 10 ⁴ m ³ /h	漏えい率				
	℃,水素条件)を踏まえて設定					
	躯体図から算出した空間容積に	空間容積 564m ³ 対1. 機器配管分の低減率 0				
	対し,機器配管分の低減率 0.7	$564m^3$	空間容積	フィルタ装置		
	を考慮して設定	70 10/	We de Smith	室の条件		
	空気中のガス組成を踏まえて設	79vol%	窒素濃度 			
	定	21vo1%	酸素濃度			
	標準状態の条件として設定	水素の密度 0.0887kg/m ³				
		1. 234kg/m ³	窒素の密度	濃度算出条件		
		酸素の密度 1.410kg/m³ フィルタ装置室から大気への 水素の漏えい 考慮しない 保守的な条件として設定				
	保守的な条件として設定					
	フィルタ装置を通過する水素濃					I
	度 25vo1%の保守性に包絡され	スクラバ溶液の放射線分解 考慮しない				
	ることを踏まえて設定	TO PERSON CONTRACTO	生する水素	によって発		
設備の相違		の漏えい評価	タ装置室への	c. フィル		
 ・説明書本文 2.1 項の理由(えいする水素量は,以下の	ィルタ装置室へ漏え	装置からフィ	フィルタ		
表現の相違						
45.76ック1日2年		式で算出する。				
	€×漏えい時間・・・・ 式(1)	扇えい率×水素濃度	い量 = ※	水素漏え		
評価条件の相違	.68	7. $7 \times 10^{-4} \times 0.25 \times 10^{-4}$	= 7			
		$= \Re 3.2 \times 10^{-2} \text{m}^3$				

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		フィルタ装置室内での水素濃度を評価するため,式(1)で得た結	設備の相違
		果を mol 数に換算する。	・説明書本文 2.1 項の理由④
		水素の物質量 = 密度×体積×割合/分子量・・・・・・ 式(2)	
		$= 0.0887 \times 3.2 \times 10^{-2} \times 1 / (2 \times 10^{-3})$	評価条件の相違
		= 約1.4mol	
		次に、フィルタ装置室側の気体の物質量を算出する。	設備の相違 ・説明書本文 2.1 項の理由④
		酸素の物質量 = 密度×体積×割合/分子量・・・・・・ 式(3)	
		= 1.410×564×0.21/ (32×10 ⁻³)	評価条件の相違
		= 約 5.219×10 ³ mol	
		窒素の物質量 = 密度×体積×割合/分子量・・・・・・ 式(4)	
		$= 1.234 \times 564 \times 0.79 / (28 \times 10^{-3})$	
		$=$ $\%$ 1.964 \times 10 ⁴ mol	
		式(1)~式(4)の結果を踏まえ,フィルタ装置室の水素濃度は以下	設備の相違
		のとおりとなる。	 説明書本文 2.1 項の理由④
		水素濃度 = 水素の物質量/(水素の物質量+酸素の物質量	
		+窒素の物質量) ×100 · · · · · · · 式(5)	
		$= 1.4 / (1.4+5.219 \times 10^{3}+1.964 \times 10^{4}) \times 100$	評価条件の相違
		$=$ $\% 5.6 \times 10^{-3} \text{ vol}\%$	
		3. 可搬型窒素ガス供給装置の容量	設備名称の相違
		可搬型窒素ガス供給装置の容量は,下記のうち供給量が多くなる	記載方針の相違
		①を考慮して設定している。	
		① ベント後,中長期的に除熱機能が復旧し,原子炉格納容器内の	運用の相違
		除熱を開始する前に窒素供給を開始し、除熱中の原子炉格納容器	・女川はベント停止前に原子
		内の水素濃度を可燃限界(4vol%)未満に維持	炉格納容器窒素供給を開始
			表現の相違
			設計方針の相違
			・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界 (4vol%) 未満に維持でき

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

- 119 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			るように窒素供給容量を設定
		② ベント停止後の原子炉格納容器フィルタベント系の水素滞留	設備名称の相違
		防止のため、窒素の供給を行い、系統内の水素濃度を可燃限界	
		(4vol%) 未満に維持	設計方針の相違
			・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界(4vo1%)未満に維持でき
			るように窒素供給容量を設定
		可搬型窒素ガス供給装置の主要な仕様を表 1-3 に示す。	設備名称の相違
		表 1-3 可搬型窒素ガス供給装置の主要仕様	設備の相違
		供給容量 220m ³ /h[normal]	・設計方針の相違に伴う設備
		純度 99.0vol% (不活性ガス)	仕様の相違
		供給圧力 427kPa[gage] (可搬型窒素ガス供給装置出口にて)	
		以下に, 可搬型窒素ガス供給装置の窒素供給容量の設定について	設備名称の相違
		示す。	
			表現の相違
		ベント開始後に原子炉格納容器内で発生する水素は, サプレッシ	設計方針の相違
		ョンチェンバに移行した放射性物質による水の放射線分解による	設備名称の相違
		ものが支配的となる。	
		このため、水素発生量は、サプレッションチェンバへの放射性物	表現の相違
		質の移行量が大きい事象である格納容器破損モード「雰囲気圧力・	
		温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を	
		使用できない場合)」における評価事故シーケンス「大破断 LOCA+	
		HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失」時において、ベ	
		ント開始後、ドライウェル圧力が 427kPa[gage]まで低下した時点	
		(事故発生約45時間後)の水の放射線分解による発生を想定する。	
		格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容	
		器過圧・過温破損)(代替循環冷却系を使用できない場合)」におけ る証価事故シーケンス「大破断LOCA + UPCS た敗+低圧 PCCS た敗+	
		る評価事故シーケンス「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+	心止している。
		全交流動力電源喪失」時における,事故発生後約45時間経過時点の水素発生量及び酸素発生量を図1-14に示す。	
		シル米光土単次の政米光土単な凶1-14に小り。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		30	表現の相違
		可搬型窒素ガス供給装置の窒素供給容量は,格納容器破損モード 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代 替循環冷却系を使用できない場合)」における評価事故シーケンス 「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失」 時における水素発生量及び酸素発生量に対して,原子炉格納容器内 の水素濃度を可燃限界(4vo1%)未満に維持できるように,180m ³ /h [norma1] 以上と設定している。 窒素供給量は以下の式を用いて算出する。	設計方針の相違 ・女川は,除熱復旧後の原子炉 格納容器内の水素濃度を可燃 限界(4vol%)未満に維持でき

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
		るように窒素供給容量を設定
	水素発生量=Q×10 ⁶ ×G値 ^(分子/100eV) /100/ (1.602×10 ⁻¹⁹) *1	表現の相違
	\checkmark (6. 022×10 ²³) * ² ×22. 4×10 ⁻³ ×3600	
	×放射線吸収割合 ·················式(6)	
	窒素供給容量= (水素発生量-水素発生量×0.04	
	/0.04 式(7)	
	酸素発生量= (水素発生量) / 2m ³ /h [normal] ······式(8)	
	Q :崩壊熱(MW)	
	注記*1:1eV=1.602×10 ⁻¹⁹ (J)	
	*2:アボガドロ数 6.022×10 ²³	
	水素発生量の計算には以下の条件及びMAAP解析結果を適用する。	
	・除熱機能の復旧により原子炉格納容器内は冷却されており、水	
	は非沸騰状態となっていることを想定し水素発生量のG値は	
	0.25(分子/100eV)とする。	
	・放射線吸収割合は炉心部では 0.1, 原子炉格納容器では 1.0 と	
	する。	
	・放射線分解に寄与する発熱量は, MAAP 解析結果より炉心部では	解析結果の相違
	約8.71MW, 原子炉格納容器では約2.61MW とする。	
	炉心部水素発生量=8.71×10 ⁶ ×0.25/100/(1.602×10 ⁻¹⁹)	
	$/ (6.022 \times 10^{23}) \times 22.4 \times 10^{-3} \times 3600 \times 0.1$	
	$=1.83m^{3}/h \text{ [normal]}$	
	原子炉格納容器水素発生量=2.61×10 ⁶ ×0.25/100	
	$/ (1.602 \times 10^{-19}) / (6.022 \times 10^{23})$	
	$\times 22.4 \times 10^{-3} \times 3600 \times 1.0$	
	$=5.46m^{3}/h$ [norma1]	
	合計水素発生量=1.83+5.46	
	$=7.29 \text{m}^3/\text{h} \text{[normal]}$	
	酸素発生量=7.29/2	
	$=3.65m^{3}/h$ [normal]	
		<u> </u>

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		窒素供給容量= (7.29-7.29×0.04-3.65×0.04) /0.04	設計方針の相違
		$=171.31m^{3}/h$ [normal]	・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界 (4vol%) 未満に維持でき
			るように窒素供給容量を設定
			解析結果の相違
			設計方針の相違
			・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界 (4vol%) 未満に維持でき
			るように窒素供給容量を設定

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違
			・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界(4vol%)未満に維持でき
			るように窒素供給容量を設定
		<u> </u>	

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子	力発電所第2号機	備考
				別紙 2	
		<u>原子炉格納</u> <u>て</u>	昭器フィルタベン	/ ト系の系統設計条件の考え方につい	設備名称の相違
		象での使用	納容器フィルタベ 条件下において,	シト系については, 想定される事故事 性能を発揮できる設計とするため, 系 な系統設計条件を表 2-1 に示す。	設備名称の相違
		表 2-1	原子炉格納容器	フィルタベント系の系統設計条件	設計条件の相違
			設計条件	設定根拠	・原子炉格納容器型式が
		最高使用圧力	854kPa[gage]	原子炉格納容器の限界正力を考慮し、2Pd(最高 使用圧力427kPa[gage]の2倍)とする。	二:MarkⅡ (1Pd:0.31MPa 対し, 女川:Mark-I改
		最高使用温度	200°C	原子炉格納容器の限界温度を考慮し、200℃とす る。	(1Pd:0.427MPa) (理由
		設計流量	10.0kg/s (原子炉格納容器圧力 427kPa[gage] において)	原子炉定格熱出力1%相当の飽和蒸気量を、ベン ト開始圧力が低い場合(427kPa[gage])であっ ても排出可能な流量とする。	・原子炉格納容器型式の に伴う設計条件の相違 ・よう素の炉内内蔵量に
		フィルタ装置 内発熱量	370k₩	想定されるフィルタ装置に捕集及び保持される 放射性物質の崩壊熱に対して十分な余裕を見込 み,原子炉定格熱出力の0.015%に相当する発熱 量とする。	て, 女川はより熱出力が い代表炉心の評価結果を まま適用している。
		エアロゾル 移行量	150kg	想定されるフィルタ装置に移行するエアロゾル の量(28kg)に対して十分な余裕を見込み, 150kgとする。	
		よう素の炉内 内蔵量	kg	BWRプラントにおける代表炉心 (ABWR) の平衡炉 心末期を対象としたORIGEN2コードの計算結果* から,kgとする。	
		耐震条件	<u> </u> 基準地震動 S s にて機能維持	基準地震動Ssにて機能を維持する。	
		ABWR	を代表させている。また 95 日)に対して,1 サ~	内蔵量が大きくなることから,炉心熱出力が高い -, ORIGEN2 コードでは,保守的に 1 サイクル 13 か イクル 10000 時間(416 日)の燃焼期間を仮定して	
		原子炉格 に示す。	納容器フィルタ~	ジト系の各設計条件の考え方を以下	設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2. 最高使用圧力及び最高使用温度	
		原子炉格納容器フィルタベント系は,炉心の著しい損傷が発生し	設備名称の相違
		た場合において, 原子炉格納容器の破損を防止するため, 原子炉格	
		納容器内のガスを排気することにより,原子炉格納容器内の圧力及	
		び温度を低下させることができる設計とし,原子炉格納容器圧力が	表現の相違
		原子炉格納容器の限界圧力 854kPa[gage] (2Pd:最高使用圧力の2	設計条件の相違
		倍)に到達するまでにベント操作を実施することとしている。	・説明書本文 2.2 項の理由⑥
		有効性評価における原子炉格納容器圧力及び原子炉格納容器温	表現の相違
		度の推移から、ベント時に原子炉格納容器圧力及び原子炉格納容器	
		温度は限界圧力 854kPa[gage]及び限界温度 200℃を下回ることか	
		ら, 2Pd, 200℃を最高使用圧力及び最高使用温度としている。	
		有効性評価のうち格納容器破損モード「雰囲気圧力・温度による	表現の相違
		静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用できな	
		い場合)」における原子炉格納容器圧力及び原子炉格納容器温度の	
		推移を図 2-1 及び図 2-2 に示す。	
		原子炉格納容器圧力の最大値は約 640kPa[gage],原子炉格納容器	有効性評価結果の相違
		の最高温度は約178℃であり、原子炉格納容器の限界圧力及び限界	・女川の原子炉格納容器圧力
		温度を下回っている。	及び原子炉格納容器温度の最
			大値は, それぞれ原子炉格納
			容器限界圧力及び原子炉格網
			容器限界温度を下回る。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		1 0.6400Pa.soselictにに「雪塔納要菌代ラスプシア資却菜(可根 型)たち各納約第355-7シア資却菜(可根 型)たち各納約第35-7シアラガ事業(可根 型)たち各納約第35-7-7-755-755-755-755-7555-7555-7555-7
		 ^{下位後の時間(h)} 図 2-1 「雰囲気圧力・温度による静的負荷(破損)(代替循環冷却系を使用できな) 子炉格納容器圧力の推移
		300
		0 0 12 24 36 48 60 72 84 96 14 4&&OPH (h) 図 2-2 「雰囲気圧力・温度による静的負荷(破損)(代替循環冷却系を使用できない 子炉格納容器温度の推移

幾	備考
 ★存存の(B×K) (T 力 0, 85 (B*n (2020)) ドライウェル サブレッションチェンバ サブレッションチェンバ 	有効性評価結果の相違
F篇-0.4rt道 シンイ体止 108 120 132 144 156 168	
(格納容器過圧・過温 い場合)」における原	
イウェル レッションチェンパ 設置F譜-0. 1g (近常 ウレパや止 料約容器の限量進度 200°C ×> ト系に	有効性評価結果の相違
(1788 ⁻¹⁰) 108 120 132 144 156 168	
(格納容器過圧・過温 :い場合)」における原	
の機成車でた合き可能性がもって	(ため公開できませ) - 127 -

3. 系統流量(ベントガス流量)	
原子炉格納容器フィルタベント系の系統流量は,原子炉定格熱出	設備名称の相違
力の1%相当の蒸気流量をベント開始圧力が低い場合(1Pd)におい	
ても排出できるよう以下のとおり設定している。	
(1) 蒸気流量の設定	
重大事故等発生後の数時間で原子炉格納容器フィルタベント系	設備名称の相違
が使用されることはないが,保守的に原子炉停止後2時間~3時間後	
に原子炉格納容器フィルタベント系が使用されると考え、その時点	
に相当する蒸気流量とする。	
(2) 原子炉格納容器圧力の設定	表現の相違
	政備和初初和建
ິ ລ _°	
(3) 系統流量の算出	
(1)及び(2)の組合せにより、系統流量を設定する。系統流量は式	
(1)により算出する。崩壊熱は、保守的に注水された水を蒸発させ	
るエネルギーに全て寄与する評価とし、サプレッションプール等へ	設備名称の相違
の熱の移行は考慮しない。さらに、原子炉圧力容器に注水された水	
の蒸発によって発生した蒸気についても、保守的にサプレッション	
プール等による凝縮を考慮せず、系統流量として取り扱う。	
$W_{Vent} = Q_R \times 0.01/(h_s - h_w) \times 3600/1000 \cdots $ 式(1)	
ここで,	
W _{Vent} :系統流量 (t/h)	
<i>Q_R</i> :定格熱出力(2436×10 ³ k₩)	設備の相違
h _s : 1Pd における飽和蒸気の比エンタルピ(2750kJ/kg)	・原子炉定格熱出力の相違
<i>h</i> _w : 1Pd, 60℃*における水の比エンタルピ (252kJ/kg)	・定格圧力が異なることに。
	設備の相違
	 ・女川は復水貯蔵タンクの道
	 (1) 蒸気流量の設定 重大事故等発生後の数時間で原子炉格納容器フィルタベント系が使用されることはないが、保守的に原子炉停止後2時間へ3時間後に原子炉格納容器フィルタベント系が使用されると考え、その時点での原子炉の崩壊熱として原子炉定格熱日かの1%を設定し、それに相当する蒸気流量とする。 (2) 原子炉格納容器圧力の設定 有効性評価において原子炉格納容器ワイルタベント系のベント開始圧力を 1Pd〜2Pd としており、原子炉格納容器圧力が低い方が蒸気排出条件が厳しくなるため、原子炉格納容器圧力は 1Pd とする。 (3) 系統流量の算出 (1)反び(2)の組合せにより、系統流量を設定する。系統流量は式 (1)により算出する。崩壊熱は、保守的に注水された水を蒸発させるエネルギーに全て寄与する評価とし、サブレッションブール等への熱の移行は考慮したい、さらに、原子炉圧力容器に注水された水の蒸発によって発生した蒸気についても、保守的に止水された水の蒸発によって発生した蒸気についても、保守的にナブレッションブール等による凝縮を考慮せず、系統流量として取り扱う。 Wyent = Q_R × 0.01/(h_s - h_w) × 3600/1000・・・・・・、式(1)ここで、Wyent : 系統流量 (c/h) Q_R : 定格熱出力 (2436×10%) h_s : 1Pd における飽和蒸気の比エンタルビ (2750kJ/kg)

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
		転時最高温度として設定
	以上より,系統流量は 35t/h となることから, 35t/h をkg/s へ	単設備の相違
	位換算し,保守的に切り上げた10.0kg/sを原子炉格納容器圧力1	Pd ・式(1)より算出した系統流量
	の時の系統流量とする。系統流量は、配管設計やオリフィスの設	計の相違
	条件として使用する。	
	なお,原子炉格納容器圧力が 1Pd より高い圧力でベントする場	合表現の相違
	には,その時の原子炉格納容器圧力と系統全体の圧力損失から系	統
	流量が決まり,原子炉格納容器圧力が1Pd以上になれば系統流量	ŧ
	10.0kg/s以上となり、より蒸気を排出しやすい状況となる。	
	4. フィルタ装置内発熱量	
	原子炉格納容器フィルタベント系のフィルタ装置内発熱量は,	原 設備名称の相違
	子炉定格熱出力の 0.015%に相当する崩壊熱である 370kW に設定	し設備の相違
	ている。	・原子炉定格熱出力の相違
	NUREG-1465における原子炉格納容器ソースターム	こ 表現の相違
	基づき、ドライウェルベント時に原子炉格納容器からフィルタ装	置
	に移行する FP による崩壊熱を評価する。	
	フィルタ装置内発熱量は以下の式で表される。	
	【フィルタ装置内発熱量】	
	= 【①ベント時の原子炉の崩壊熱】	
	×【②FPの原子炉格納容器への放出割合】	
	÷【③原子炉格納容器内のDF】	
	×【④フィルタ装置に蓄積する FP の崩壊熱への寄与割合	
	① ベント時の原子炉の崩壊熱	
	重大事故等発生後の数時間で原子炉格納容器フィルタベント	系設備名称の相違
	が使用されることはないが,保守的に原子炉停止後約2時間~3時	
	後に原子炉格納容器フィルタベント系が使用されると考え、その	持
	点での原子炉の崩壊熱として、原子炉定格熱出力の1%とする。	
	② FP の原子炉格納容器への放出割合	
	NUREG-1465に基づき, 揮発性核種のうち原子炉格納	容
	器への放出割合が最も大きい Halogen(I)の放出割合である61%	
	代表させる。(表2-2)	
	③ 原子炉格納容器内の DF	表現の相違
	海外で行われたFPエアロゾルの自然除去効果に関する試験(NS	
	本資料のうち枠囲みの内容は、他社の機密事項を含む可能性が	120

柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	試験等)では、原子炉格納容器のエアロゾルは数時間程度で1/10程	
	度まで減少している結果が得られており, 原子炉格納容器内のエア	
	ロゾルに対する除去効果として、ドライウェルベント時は DF:10*	
	とする。	
	注記*:事象発生から約45時間(有効性評価におけるベント開始	解析結果の相違
	時間)後の MAAP 解析結果から, DF は 10000 程度であるこ	
	とを確認しており, DF: 10 としている発熱量評価の設定は	
	保守的である。	
	④ フィルタ装置に蓄積する FP の崩壊熱への寄与割合	
	NUREG-1465に基づき,揮発性が比較的高く,炉心損傷	
	を伴う事故時に有意な放出割合となり, フィルタ装置に蓄積する核	
	種として, Halogen (I), Alkali metal (Cs), Te, Ba及びSrを想	
	定し、これら核種の崩壊熱への寄与割合は22%とする。(表2-3)	
	したがって, 定格熱出力に対する崩壊熱は以下のように評価され	
	る。	
	ドライウェルベント: 0.01×0.61÷10×0.22=0.01342%	
	以上より、フィルタ装置内発熱量は、上記割合を包絡する条件と	
	し,原子炉定格熱出力の 0.015% である 370kW(2436MW×0.015%)	設備の相違
	と設定する。	・原子炉定格熱出力の相違
	フィルタ装置内発熱量は,スクラバ溶液の初期保有量及びフィル	設備名称の相違
	タ装置の寸法設定に使用される。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考
		表 2-2 NUREG-1465における原子炉格納容器内への放出
		割合
		Farly-In-
		元素グループ Gap Release vessel Ex-vessel caterin 合計
		Noble gases*1 0.05 0.95 0 0 1.00
		Halogens (I) 0.05 0.25 0.30 0.01 0.61
		Alkali metal 0.05 0.20 0.35 0.01 0.61 (Cs)
		Te 0 0.05 0.25 0.005 0.305
		Ba, Sr 0 0.02 0.1 0 0.12
		Noble metals 0 0.0025 0.0025 0 0.005
		(Mo, Ru, Sb)
		Ce 0 0.005 0.005 0 0.0055 La 0 0.0002 0.005 0 0.0052
		注記*1:希ガスはフィルタ装置内に蓄積しないため,評価対象外とする。
		表 2-3 放出割合が大きい揮発性核種の崩壊熱寄与割合
		元素グループ*2 放出割合 ①放出割合 ②崩壊熱寄与割合 崩壊熱寄与割合
		(ハロゲン比) (炉停止後約2時間) ①×②
		Halogens (I) 0.61 1.0 0.18 0.18 Alkali metal
		Alkali metal 0.61 1.0 0.02 0.02 (Cs) 0.02 0.02 0.02 0.02
		Te 0.305 0.5 0.02 0.01
		Ba, Sr 0.12 0.2 0.06 0.01
		合計 0.22
		注記*2:希ガスはフィルタ装置内に蓄積しないため、評価対象外とする。また、放出
		割合が小さい核種は放出量として無視できるため、評価対象外とする。
		5. エアロゾル移行量
		有効性評価シナリオのうち、エアロゾル移行量の最も厳しい「雰
		囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循
		環冷却系を使用できない場合)」における原子炉格納容器からフィ 表現の相違
		ルタ装置に移行するエアロゾルの重量を表 2-4 に示す(参考)。
		表 2-4 原子炉格納容器からフィルタ装置に移行するエアロゾル重 有効性評価結果の相
		エアロゾル重量
		シーケンス (事象) ウェットウェルベント ドライウェルベント
		雰囲気圧力・温度による静的負荷
		(格納容器過圧・過温破損) 2.6g 1200g
		(代替循環冷却系を使用できない場合)

2021年6月8日 02-工-B-08-0005_改2

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	一方,原子炉格納客	容器からのエアロゾルの移行量を保守的に評価	
	するため,サプレッシ	ンョンプールによるスクラビング効果がないド	設備名称の相違
	ライウェルベント時	の原子炉格納容器からフィルタ装置に移行す	
	るエアロゾル量につい	いて,核分裂生成物の炉内内蔵量とNUREG	
	-1465に基づく	炉心から原子炉格納容器へ放出される核分裂	
	生成物の割合を用い	て評価した結果,約 <mark>28kg</mark> となるが,エアロゾ	解析結果の相違
	ルに係る海外規制の対	規定 <mark>を踏まえ,150kg</mark> として設計する。	・設計条件の相違にともなう
			エアロゾル量の相違
			設計方針の相違
			・エアロゾル量の設定につい
			て, 女川は 150kg で保守的て
			あると整理, 詳細は後述の (参
			考) 1. 項に記載
	想定するエアロゾ	ル移行量の評価方法と海外規制におけるエア	
	ロゾル移行量を以下に	に示す。	
	(1) 核分裂生成物の	炉内内蔵量	
	各核種グループの	FP の炉内内蔵量を表 2-5 に示す。	
	(2) 核分裂生成物の	の原子炉格納容器への放出割合	
	NUREG -14	65に基づき,各核種グループの放出割合を設	
	定する(表 2-2)。		
	(3) 原子炉格納容器	尋内の DF	
	保守的にドライウ:	ェルベントの場合を想定し,崩壊熱の設定と同	
	様に, DF:10とする。		表現の相違
	以上より、想定する	るエアロゾル量を計算した結果,約 28kg とな	解析結果の相違
	る。		
	評価式を以下に示	す。	
	【エアロゾル量】:	=	
	$\sum_{\substack{2 核種グループ}}$ [(核	亥種グループの炉内内蔵量)	
		・プの原子炉格納容器への放出割合)/10]	
	(4) 海外規制におけ	「るエアロゾル移行量	
	ドイツ RSK の勧告	では,フィルタ装置に移行するエアロゾル量と	
	して PWR については	60kg, BWR については 30kg としている。また,	
	スイスの原子力施設	とガイドラインにおいては, エアロゾル量は	
	150kg と規定されてい		

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機			備考		
		表 2-5 核分裂生成物の炉内内蔵量		解析結果の相違			
			代表 炉内内		原子炉格納容器への	エアロゾル 砂石県 (レー) *	
			L学形態 (kg CsI	g)	放出割合(-) 0.61	移行量(kg)*	
			CsOH		0.61		
		Te Te	°e02, Sb		0.305		
		Ba, Sr Ba	a0, Sr0		0.12		
			MoO ₂		0.005		
			CeO ₂ La ₂ O ₃	ŀ	0.0055		
		La	La ₂ 03		合計	2.8E+01	
		注記* : エアロゾル	レ移行量は、金属繊	└	Stright Process	使用される。	
		6. 引用文献					
		(1) NUREG-	-1465,"	Accide	ent Source Term	s for Light-	
		Water Nuclear	Power Plants	".199	95		
		(2) "Aerosol				Somiannual	
		Progress Repor				NUKEG/	
		C R – 3 8 3 0) Vol.1,ORNL/	TM-92	17/V1		
		(参考)					
		1. エアロゾルの)保守性につい	て			
		(1) 原子炉格納容	容器フィルタイ	ペント)	系の設計条件に	ついて	設備名称の相違
		原子炉格納容器	ポフィルタベン	ト系の)設計条件として	は、エアロゾ	
		ル移行量を 150kg				,	設計方針の相違
		(2) 事故シナリス	オに応じたエス	アロゾ	ル移行量につい	C	
		a. エアロゾルが					
		ベント実施時に					
		よう素)を除く核					
		格納容器フィルタ	マベント系に流	入する	5。エアロゾルが	発生する事故	
		シナリオは,格納	容器破損防止	対策の	有効性評価の対	象とする事故	
		シーケンスのうち	5,以下に示す	MAAP	解析上の特徴を	踏まえ,原子	
		炉圧力容器が健全	な事故シーケ	ンスて	「ある「雰囲気圧	力・温度によ	

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		る静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用でき	
		ない場合)」を選定している。	
		(a) 原子炉圧力容器内に溶融炉心が存在する場合は、炉心が再冠	
		水し溶融炉心の外周部が固化した後でも、溶融炉心中心部は溶	
		融プール状態を維持する。一方,原子炉圧力容器破損時は,原子	
		炉圧力容器破損前に水張りしたペデスタル部で溶融炉心の一部	
		が粒子化するとともに、最終的にはクエンチする。エアロゾル	
		移行量は溶融炉心の温度が高い方がより多くなるため、原子炉	
		圧力容器が健全な場合がより保守的な評価となる。	
		(b) 原子炉圧力容器内に溶融炉心が存在する場合は、溶融炉心冠	
		水時において溶融炉心上部の水によるスクラビング効果を考慮	
		していない。一方、溶融炉心がペデスタル部に存在する場合は、	
		溶融炉心上部の水によるスクラビング効果を考慮している。以	
		上より、スクラビング効果を考慮していない原子炉圧力容器が	
		健全な場合がより保守的な評価となる。	
			設備の相違
			・女川は原子炉格納容器下部
			からドライウェル床ドレンサ
			ンプに通じるドレン配管内に
			コリウムシールドを設置(自
			主対策設備) しており, ペデス
			タル全面に設置するものでは
			ないため、コリウムシールド
			については記載していない。
		b. 対象シーケンスにおけるエアロゾル移行量について	
		「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
		(代替循環冷却系を使用できない場合)」シーケンスにおける原子	設備名称の相違
		炉格納容器フィルタベント系へ流入するエアロゾル移行量を表 2-6	
		に示す。本シーケンスの有効性評価ではウェットウェルベントを優	表現の相違
		先して実施することとしているが、ここではドライウェルベントを	
		実施した場合のエアロゾル移行量も併せて示している。表 2-6 よ	
		り,エアロゾル移行量はウェットウェルベント時よりドライウェル	
		ベント時の方が多く1.2kg であるが,原子炉格納容器フィルタベン	解析結果の相違
		ト系で設計上想定するエアロゾル移行量はこれを十分上回る 150kg	
		である。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発	電所第2号機	備考
			における FP エアロゾル移行量	
		放出する系統	FP エアロゾル移行量 (kg)	
		ウェットウェルベント ドライウェルベント	0.0026	
		F749±2000	1.2	

2021年6月8日 02-工-B-08-0005_改2

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

- 135 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 3	
		流量制限オリフィスの設定方法について	
		1. 流量制限オリフィスの設定方法	
		原子炉格納容器フィルタベント系は,原子炉格納容器の過圧破損	
		を防止するため、原子炉格納容器内で発生する蒸気量以上のガスを	表現の相違
		ベントできる必要がある。	
		一方,原子炉格納容器圧力の上昇に伴い,ベントガスの質量流量	末祖の扣法
		一万,原子炉格約谷器圧力の工弁に住い,ベンドガスの貢重加重 が増加する場合においても、ベンチュリノズルの流速を適正な条件	衣苑の相連
		に保持するため、フィルタ装置の下流に流量制限オリフィスを設置	
		に保持するため, フィルク装置の下流に流量制限オリフィスを設置 することにより, 体積流量をほぼ一定に保つ設計としている。	
		、 、 、 、 、 、 、 、 、 、 、 、 、 、	設備の相違
		854kPa[gage])の時に開始する運用としており、流量制限オリフィ	・説明書本文 2.1 項の理由⑥
		スの設計に当たっては、ベント時において原子炉格納容器圧力が低	
		い状態(原子炉格納容器と大気の差圧が低い状態)を考慮し、原子	<u>太元》相连</u>
		「炉格納容器圧力 1Pd の時に原子炉定格熱出力の 1%相当の蒸気を排	
		出できるよう、以下のとおり設定する。	
		なお,原子炉格納容器圧力 1Pd で必要量を排出可能な設計として	
		いるため,より差圧が大きくなる原子炉格納容器圧力 2Pd によるべ	
		ントの場合においても必要量は排出できる。	
		① 流量制限オリフィス上流の流路の圧力損失を計算し,流量制限	
		オリフィス上流の圧力を算出する。	
		② 流量制限オリフィス下流の流路の圧力損失を計算し,流量制限	
		オリフィス下流の圧力を算出する。	
		③ ①及び②で算出した流量制限オリフィスの上流及び下流の圧	
		力条件下で,原子炉定格熱出力の1%相当の蒸気を排出できるよ	
		うな流出断面積を算出する。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		オリフィスの流出断面積は、以下の式に基~
		<u>ا</u> ــــــــــــــــــــــــــــــــــــ
		ここで
		V:体積流量
		m:質量流量
		σ :比体積
		概算評価結果を表 3-1 及び図 3-1 に, 原子炉
		チュリノズル入口における体積流量の関係を図
	L	<u> </u>

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		 オリフィス以外の圧力損失 オリフィス以外の圧力損失については、以下 (1)入口配管、出口配管 配管の圧損は、損失係数に実機を想定して直 一及び弁等を考慮して以下の式に基づき計算す
		 (2) フィルタ装置 フィルタ装置内圧力損失は JAVA 試験の結果 実験式に基づき計算する。

导機	備考
	設備名称の相違
以下に示す。 て直管部, エルボ, ティ 算する。	
	表現の相違
吉果から導出した以下の	設備名称の相違
	設備の相違 ・JAVA 試験結果を実機に適用 するための実験式であるた め,各項の係数はプラントに よって異なる。

(1Pd 時) とする。 表 3-1 原子炉格納容器圧力に対する体積 原子炉格納 人口配容 7(%装置内 <u>177(X</u> <u>上方祖失</u> 上方祖失 <u>床74</u> (<u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>水Pa</u> (<u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>水Pa</u> (<u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上方祖失</u> <u>上日</u> <u>正</u> <u>正</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u> <u>日</u>	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
	柏崎刈羽原子力発電所第7号機	東海第二発電所	ここで (3) 放射性よう素フィルタ 放射性よう素フィルタの圧力損失は、試験結(1Pd 時)とする。 麦 3-1 原子炉格納容器圧力に対する体積(2Pd) 「原子炉格納入口配管 74ル9装置内 店力損失 」に力損失」 「原子炉格納 入口配管 74ル9装置内 店力損失」 「原子炉格納 人口配管 74ル9装置内 店力損失」 「原子炉格納 人口配管 74ル9装置内 店力損失」 「日本市 一日 「日本市 一日 「日本市 一日 「日本市 日 「日 「日 「日 「日 「日 「日 「日 「日 「日 <tr< td=""></tr<>

幾	備考
	設備の相違 ・設計条件の相違により,フィ ルタ装置上流でのガス流速及 びフィルタ装置入口の密度が 異なる。
吉果に基づき約 <mark>)</mark> kPa <mark>流量(概算評価)</mark>	設備名称の相違 設備の相違 ・設計条件の相違により,各圧 力損失の値が異なる。
1 配管 1 損失 1 用管 1 損失 1 相対 1 相対 1 相対 1 相対比 1 相対比 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	設備の相違 ・表 3-1 の圧力損失の評価結 果をプロットしており,圧力 勾配が異なる。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・表 3-1 の圧力損失及び流量
			評価結果をプロットしてお
			り,流量特性が異なる。
			J
		図 3-2 原子炉格納容器フィルタベント系の流量特性	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 4	
		<u>スクラバ溶液の保有水量の設定根拠及び健全性について</u>	設備名称の相違
		ベンチュリスクラバのスクラバ溶液について,その保有水量の設 定根拠を示すとともに,その健全性が維持されることを確認する。	
		 保有水量の設定根拠 スクラバ溶液の保有水量は、ベント開始後24時間はベンチュリ スクラバによる所定の放射性物質の除去性能が得られる水量(以下 「最小水量」という。)から、ベント開始初期に発生する蒸気凝縮に よる水位上昇時において、金属繊維フィルタが水没しない水量(以) 	
		よる水位上升時において、並属繊維ノイルタが水及しない水重(以下「最大水量」という。)を考慮して、約 t と設定している。なお、初期水量(系統待機時)は上記を考慮し、補給 期間の確保の観点から水量を大きく、かつ、上限水位にも余裕を持った値として、約 t と設定している。	設備の相違 ・設計方針の相違に伴う設備
		スクラバ溶液の水量の設定根拠を以下に示す。また、フィルタ装 置水位の概略図を図 4-1 に示す。 (1) 最大水量について	設備名称の相違
			表現の相違
			設備の相違 ・設計方針の相違に伴う設備

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			仕様の相違
			設備名称の相違
			設備の相違
			・以下①~③の値の合計に
			る。
			表現の相違
			設備の相違
			・設計方針の相違に伴う記
			仕様の相違
			表現の相違
			設備の相違
			・設計方針の相違に伴う記
			仕様の相違
			設計方針の相違
			・女川は,水量の評価を精練
			するため、蒸気の凝縮に
			する構造材として配管を考
			り 気情迫的 として印音を本
			設備の相違
			・設計方針の相違に伴う
			仕様及び各パラメータの林
			表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			仕様及び各パラメータの相違
			表現の相違
			設備名称の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
		(2) 最小水量について	
			設備名称の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			設備名称の相違
			胶 III 石 初心 211 连
			設備の相違
			・以下①~③の値の合計によ
			る。
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			表現の相違
			設備の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機

幾	備考
	 ・設計方針の相違に伴う設備 仕様の相違
	設計方針の相違 ・女川は,水量の評価を精緻化 するため,蒸気の凝縮に寄与 する構造材として配管を考慮
	設備名称の相違 設備の相違 ・設計方針の相違に伴う設備 仕様の相違
	設計方針の相違 ・女川は水量の評価を精緻化 するため,放射性物質の発熱 量を24時間一定とせず,24時 間分の積算値で評価

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
	L	

持機	備考
	設備の相違 ・設計方針の相違に伴う設備 仕様及び各パラメータの相違 表現の相違
	表現の相違
	設備の相違 ・設計方針の相違に伴う設備 仕様の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		■ 図 4-1 フィルタ装置水位の概■

機	備考
	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
概略図	
	- 146 -

せん。 📔 🦳

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 4-1 ベント時における物性値	設計方針の相違
			・女川は水量の評価を精緻化
			するため,放射性物質の発熱
			量を24時間一定とせず,24時
			間分の積算値で評価
		(3) スクラバ溶液の補給期間について	設備名称の相違
		フィルタ装置の設計条件に基づいているスクラバ溶液の初期保	
		有水量(フィルタ装置の寸法)は、他の設計条件と同様に、大きな	
		保守性を確保し設定(設計)している。一方、スクラバ溶液の補給	
		期間は、運用に係るものであり、有効性評価に基づく運用を考慮し	
		て評価することとし、有効性評価のうちベント時間を厳しく評価す	
		る大破断 LOCA を想定した「雰囲気圧力・温度による静的負荷(格	
		納容器過圧・過温破損)」におけるフィルタ装置内の発熱量を用い	
		たスクラバ溶液の水位挙動より評価する(表 4-2)。	
		スクラバ溶液の補給期間の評価条件及び評価結果を以下に示す。	
			- 147

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		a. 評価条件	
		(a) 初期水量: kg	設備の相違
			・女川は,上限水位及び下限水
			位の評価を踏まえ,初期水位
			を設定
		(b) 室温: <mark>25℃*</mark> 1	設計方針の相違
			・女川では,フィルタ装置の水
			量計算ではすべて室温 25℃を
			条件として評価している。
		(c) ベント時の原子炉格納容器圧力:図 4-2 のとおり	
		(d) フィルタ装置内発熱量: <mark>□ kW*</mark> ²	設計方針の相違
			・女川はウェットウェルベン
			ト及びドライウェルベントの
			両方において,フィルタ装置
			内発熱量は一定として評価し
			ている。
		注記*1:ベント実施前のスクラバ溶液の初期水温としても使用。	設備名称の相違
		系統待機時の原子炉建屋原子炉棟内の平均温度として	設備の相違
		設定した値	 ・説明書本文 2.1 項の理由④
	l		- 148 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2	2 号機	備考
				設備の相違 ・説明書本文 2.1 項の理由④
		*2:45 時間後のベントを想定し, 炉 から算出したフィルタ装置へ流 機よう素の発熱量の最大値(約 た値	記入するエアロゾル及び無	解析条件の相違
		 ・評価結果 スクラバ溶液の水量挙動を図 4-3 に示す 液の水位は最高水位,最低水位に至らず, 発生後7日間(168時間)運転員による水の 	想定事故においては事象	
		表 4-2 設備設計と運用の主な	条件設定の差異	解析条件の相違
		設計条件 【フィルタ装置寸法】 ペント時間 2時間~3時間後 プィルタ装 370kW 置内発熱量 【ベント時間:2時間~3時間ベース】 注記*3:水補給の運用の評価のほか,被ばく評価もベント		
				- 149

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違
			・女川は水量の評価を精緻(するため,原子炉格納容器)
			9 るため, 原子炉格納谷都ら 力について, MAAP による解材
			結果を適用
			J
		図 4-2 ベント時の圧力推移図	
			· · · · · · · · · · · · · · · · · · ·

東海第二発電所	女川原子力発電所第2号機	備考
	F	初七冬川の七き
		解析条件の相違
	ント時のスクラバ溶液の水量変動	
		図 4-3 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温 政復)(代替循環治知系を使用できない場合)」におけるべ

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2. スクラバ溶液の健全性	設備名称の相違
		2.1 スクラバ溶液の pH	
		スクラバ溶液は, 無機よう素をスクラバ溶液中に捕集・保持する	5
		ためにアルカリ性の状態(pH7以上)に維持する必要があるが,	
		大事故等発生時においては,原子炉格納容器内のケーブルから放射	4
		線分解,熱分解等により塩化水素(HC1)等の酸が放出され,ベン	表現の相違
		実施により原子炉格納容器からフィルタ装置(スクラバ溶液)に利	\$
		行するため, pH が低下する可能性がある。	
		これに対して、スクラバ溶液は、待機時における重大事故等時	_
		発生する可能性がある酸の量に対して十分な塩基量を確保する	-
		とにより、ベント実施中の pH 監視を実施することなく、確実に	7
		ルカリ性の状態を維持することとしている。	
		なお,スクラバ溶液の pH については,定検時にサンプリング	き 表現の相違
		実施し、性状を確認する。	
		(1) 原子炉格納容器内の酸性物質及び塩基性物質	
		重大事故等時に原子炉格納容器内において発生する酸性物質。	
		塩基性物質については、NUREG/CR-5950において検討	4
		が実施されており、その発生源として燃料(核分裂生成物),原子(Ē
		水,サプレッションプール水溶存窒素,原子炉格納容器内ケーブル	
		原子炉格納容器下部コンクリートが掲げられている。これに加え	
		原子炉格納容器内の塗料についても成分元素に窒素が含まれて	
		り,酸として硝酸,塩基としてアンモニア等の発生源となる可能	
		がある。主な酸性物質、塩基性物質を発生源ごとに表 4-3 に示す。	
			- 152

柏崎刈羽原子力発電所第7号機	東海第二発電所	女	川原子力発	電所第2号機		備考
		表 4-3	主な酸性	物質と塩基性物質	۶ ۶	
		発生源	酸性物質	塩基性物質	備考	
		燃料 (核分裂生成物)	よう化水素	水酸化セシウム		
			(HI)	(CsOH)等	ほう酸水注入系によ	
		原子炉水		五ほう酸ナトリウム	りほう酸水を原子炉	
				(Na ₂ B ₁₀ O ₁₆)	へ注入した場合	
		サプレッションプール水溶	硝酸			
		存窒素	(IINO ₃) 塩化水素			
		原子炉格納容器内ケーブル	(IIC1)			
		原子炉格納容器下部コンク	二酸化炭素	_		
		リート(溶融炉心落下時)	(CO ₂)			
		原子炉格納容器內塗料	硝酸 (HNO ₃)	アンモニア (NH ₃)		
			(111/037	(141137		
		これらのうち, 酸性	物質が発生	することが知られ	していろサプレッ	設備名称の相違
		ションプール水溶存窒				
		炉圧力容器が破損した				
		え、pH への寄与が大き				
		の放射線分解及び熱分	_			
		で分解する際に塩基を			スクラバ溶液の	
		塩基量を評価する上で	重要である	ことから,以下	では、これらの発	
		生量を評価することと	する。			
		a. 原子炉格納容器内	ケーブルに	起因する酸の発	生量	設計方針の相違
						・女川は酸の起因となり得る
		原子炉格納容器内の	ケーブルに	ついて,酸の起因	日となり得る元素	元素の量を調査し、ベント前
		の量を調査し, ベント	前に全て原	子炉格納容器内	こ放出されると仮	に全て原子炉格納容器内に加
		定すると、約 mc	1の酸性物	質が原子炉格納線	容器内で生成され	出される仮定で酸の発生量を
		ると評価した。調査し				評価
				(C),) °		

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違
			・女川は酸の起因となり得る
			 元素の量を調査し、ベント前
			に全て原子炉格納容器内に放
			出される仮定で酸の発生量を
			評価
			le 1. Unei
		図 4-4 原子炉格納容器内のケーブルに起因する酸の量	
		b. サプレッションプール水での放射線分解により発生する硝酸	
		の量	表現の相違
		重大事故等時において、サプレッションプール水中ではサプレッ	
		ションプール水溶存窒素の放射線の照射によって硝酸が生成され	
		る。	
		なお,原子炉格納容器内に放出されたエアロゾルの一部はフィル	
		タ装置のスクラバ溶液に移行し、フィルタ装置内での硝酸の発生に	設備名称の相違
		寄与すると考えられるが、ここでは、原子炉格納容器内に放出され	
		た放射性よう素を全てエアロゾル (CsI) とし, サプレッションプー	
		ル内に全てのエアロゾルが移行するものとして,硝酸の発生量を評	
		価した上で、発生した硝酸は全てフィルタ装置に移行し、スクラバ	
		溶液の塩基と反応するものとして評価している。このため、ラジオ	
		リシスによるスクラバ溶液のpHの影響は保守的に評価されている。	
		NUREG-1465, Reg.Guide.1.183及びNUREG/CR	
		-5950に基づき、サプレッションプール水の積算吸収線量から	設備名称の相違
		硝酸の生成量を評価した結果,事象発生7日後に約 mol とな	設計方針の相違
		る。	・東二においては, 薬液の補給
			設備を設置しないため、ベン
			ト後60日後までの評価を実施
			しているが、女川は自主対策
			設備として薬液補給装置を設
			置するため,7日後までの評価

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			としている。(理由⑧)
		$HNO_3 = G_w \times D \times V_S$	記載方針の相違
		ここで,	・単位換算方法の相違
		HNO ₃ :積算硝酸生成量 (mol)	
		G _w :水の硝酸生成G値に相当する換算係数(mol/L/Mrad(Water))	
		D:サプレッションプール水の積算吸収線量 (Mrad(Water))	
		Vs:サプレッションプール水体積(L)	
		c. MCCIにより発生する二酸化炭素の量	
		原子炉格納容器内には玄武岩系のコンクリート*1を使用してい	設備の相違
		ることから, MCCI により発生する二酸化炭素の発生量は少ないと	・東二は, コリウムシールド
		考えられるものの,有効性評価での重大事故等時のコンクリート侵	MCCI 対策としてペデスタル
		食量約 cm に対して保守的に約 cm のコンクリート侵食を見込	面に設置するが,女川は,コ
		み評価する。	ウムシールド(自主対策設(
			を原子炉格納容器下部から
			ライウェル床ドレンサンフ
			通じるドレン配管内に設置
			るため、有効性評価上コン
			リート侵食が生じる。
		MCCI により発生する二酸化炭素は、高温環境下において溶融炉	
		心に含まれる金属元素によって酸性物質ではない一酸化炭素に還	
		元されるが、全て二酸化炭素として評価した結果、二酸化炭素の発	
		生量は約 mol ^{*2} となる。	解析条件の相違
		注記*1:コンクリートの組成例は以下のとおり。	・女川は,発生する一酸化炭
		成分 玄武岩系コンクリート(重量%)	をすべて二酸化炭素とし,2
		SiO ₂ 54.84 TiO ₂ , MnO, MgO 7.21	の物質量として評価するこ
		CaO 8.82 Na ₂ O 1.80	で保守的な評価としている
		K20 5.39 Fe20a 6.26	
		<u>Å l₂O₃ 8.32</u> C r ₂ O ₃ 0.00	
		CO ₂ 1.50	
		H ₂ O(自由水,結合水) 5.86 *2:二酸化炭素は二価の酸のため,2倍の物質量とした。	
		本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性がある	- 155

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		二酸化炭素は塩化水素ほど溶解度が大きくないため、フィルタ装	
		置内では全量がスクラバ溶液に溶解することはなく,また弱酸のた	設備名称の相違
		め,酸性物質としてスクラバ溶液に与える影響は小さいと考える	
		が、本評価では保守的にスクラバ溶液の pH に影響を与える酸性物	
		質として評価する。	
			設計方針の相違
			・女川は, 無機よう素の捕集に
			より消費される塩基量が微小
			であること及び当該消費量が
			スクラバ溶液の初期濃度の認
			計余裕の中に収まることか
			ら、全体の消費量に見込んで
			いない。
			× . 6. × 0
		d. の分解により消費される塩基の量	
		dの分解により消費される塩基の量 スクラバ溶液に含まれる は,酸素が存在する場	設備を称の相違
			び 佣 石 朴 の 相 遅

本資料のうち枠囲みの内容は,当社の商業機密を含むため,又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		合,水酸化物イオンと下記の反応により分解することが知られてお	
		り、分解されるの量は、スクラバ溶液の積算吸収線	設備名称の相違
		量の増加に伴って増加する。	
			設備名称の相違
		に含まれる 全量が分解したとして、塩基の消費量を	表現の相違
		評価した結果, の分解により消費される塩基の量は	
		約 mol となる。	設計方針の相違
			・設計方針の相違に伴う設備
			設計の相違
		(スクラバ溶液に含まれるの量)	設備名称の相違
			設計方針の相違
			・設計方針の相違に伴う設備
		の分解により消費される塩基の量)	設計の相違
		(2) フィルタ装置での塩基の消費量	
		(1)項で生成した酸性物質は、ほとんどが液相に溶解してサプレ	設備名称の相違
		ッションプールに移行し、ベント時にはサプレッションプールに残	
		留してフィルタ装置には移行しない可能性もあるが、保守的に全量	
		が移行するとして評価する。スクラバ溶液の消費される塩基の量	設備名称の相違
		は、以下のとおりとなる。	
		【フィルタ装置での塩基の消費量(約 mol)】	設計方針の相違
		・原子炉格納容器内ケーブルに起因する酸で消費される塩基の量	・別紙4 2.1(1)b. の理由(8
			解析結果の相違
		・サプレッションプール水から発生する硝酸で消費される塩基の量	設備名称の相違
		約 [mol	
		・MCCI で発生する二酸化炭素で消費される塩基の量 約 mol	
		 ・ の分解により消費される塩基の量 約 mol 	
			設計方針の相違
			・別紙4 2.1(1)b. の理由(8
			- 157

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			解析結果の相違
			・別紙4 2.1(1)b. の理由⑧ 設備の相違
		度は,待機時水量(約) じなることから,これに余裕を考慮し て,スクラバ溶液の待機時濃度はwt%以上 とする。	
		この場合,初期のスクラバ溶液のpHは約 事象発生7日後 のスクラバ溶液のpHは約 であり,スクラバ溶液はアルカリ性 の状態を維持できる。	
		(4) 薬液の劣化・濃度均一性 フィルタ装置スクラバ溶液に添加するの水系の相平衡については、「工業用水便覧」より、図 4-5 のとおり示されている。	設備名称の相違 出典図書の相違 - 158 -

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機 図 4-5 より、フィルタ装置スクラバ溶液の湖 では、水温が 0℃以上であれば相換まり析出することはない)ことがわかる。フィ 星原子炉棟内のフィルタ装置室に設置すること、 パ溶液は 10℃以上となる。よって、フィルタ製 析出することはない。 また、 □ま非常に安定な化学種であり、フ フィルタ装置はフィルタ装置出口側ラプチャーと隔離され、窒素雰囲気に置かれることから、 において、薬液が変質することはない。 また、フィルタ装置を使用すると、ベンチュ れるベントガスによりバブリングされ、 と考えられる。
		図 4-5の水系相平衡

幾	備考
添加濃度である	設備名称の相違
変化は起こらない(つ	
ィルタ装置は <mark>原子炉建</mark> ととしており, スクラ	
装置待機中に	前的首本文 2.1 項切哇田语
フィルカ壮平住地市	
フィルタ装置待機中, ・ディスクにより外界	設備名称の相違
フィルタ装置待機中	84 /m /1 // // // /王
ュリノズルから噴射さ	
は均一に拡散される	
	山中回事の扫法
新 図	出典図書の相違
小松皮市石ナ、今ナーマが山ンシャッ	ため八明でもナルノ - 159 -
)機密事項を含む可能性がある	にの公開でさません。

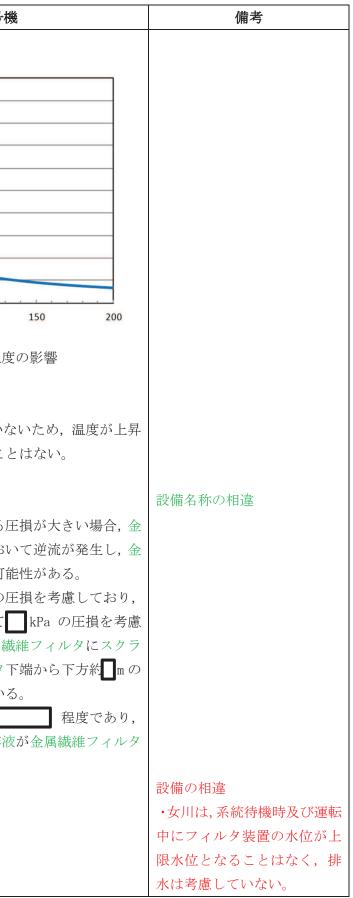
柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	(5) スクラバ溶液の管理について	設備名称の相違
	(3)に記載したとおり、スクラバ溶液は待機時に十分な薬剤の量	
	を確保しておくことで、ベントを実施した際に原子炉格納容器から	
	酸が移行した場合においても、スクラバ溶液はpH7以上を維持でき	
	る。以上を踏まえ、スクラバ溶液の管理について以下に示す。なお、	
	系統待機時の管理については、原子炉施設保安規定に規定する。	
	a. 系統待機時の管理	
	・施設定期検査時にのの濃度が wt%以上であ	設備の相違
	ること及び pH が 13 以上であることを確認する。	・本項(3)に記載のとおり
	・スクラバ溶液が通常水位の範囲内であることを確認する。	設備名称の相違
	b. ベント中の管理	
	 ・スクラバ溶液の水位を監視し、下限水位に至る場合においては、 	設備名称の相違
	水及び薬液を補給する。	表現の相違
		設計方針の相違
		・別紙4 2.1(1)b. の理由⑧
	c. ベント停止後(隔離弁閉止後)	
	 ・ベント停止後において、フィルタ装置に異常がないことを確認す 	
	るため、フィルタ装置水位計にて、スクラバ溶液の水位が確保さ	設備名称の相違
	れていることを確認する。	設備の相違
		・女川は、ベント後にフィルタ
		装置のスクラバ溶液を移送し
		た後に水補給を実施し、移送
		後にも水位を確認する。
	2.2 スクラバ溶液の粘性	設備名称の相違
	ベントにより原子炉格納容器からフィルタ装置にエアロゾルが	
	移行すると、スクラバ溶液の粘性は、エアロゾルが可溶性の場合は	
	そのエアロゾルの水和性と溶解する量によって、不溶性の場合はス	
	クラバ溶液に分散する固体粒子の量によって変化する。可溶性エア	
	ロゾル又は不溶性エアロゾルの影響によるスクラバ溶液の粘性率	
	の変化を保守的に評価した結果、その変化は十分小さく、DFへの影	
	響がないことを確認した。	

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子	·力発電所第2号機		備考
		(1) フィルタ	装置内に移行	するエアロゾル等の影響		
		重大事故等	時に原子炉格約	内容器内へ放出されるエ	アロゾルがべ	
		ントによりフ	ィルタ装置に移	行することから, NUR	EG-146	
		5に記載され				
		タ装置内へ移行するエアロゾル量を基にスクラバ溶液への影響を 評価する。なお、NUREG-1465では原子炉格納容器への放 出過程(Early In-Vessel, Late In-Vessel等)ごとに原子炉格納				
				50,本評価では事故後長		
				するため,放出過程ごと	の放出割合の	
				第出に使用している。		
				は,可溶性エアロゾルと		
		ゾルがそれぞれ	1存在すること	となる。エアロゾルの種	類と溶解の可	
		否を表 4-4 にき	示す。			
		表 4-4	エアロゾル(設計条件)の種類と溶解	の可否	設計条件の相違
		核種グループ	代表化学形態	FP エアロゾル移行量 (kg)	溶解の可否	・設備仕様の相違に伴う認
		Halogens	CsI	_	可溶性	条件の相違
		Alkali metal Te	CsOH TeO ₂ , Sb	-	 不溶性	
		Ba, Sr	Ba0, Sr0	-	可溶性	
		Noble metals	MoO ₂		不溶性	
		Ce	CeO ₂	_	不溶性	
		La 構造材	La ₂ 0 ₃ Si0 ₂ 等	-	不溶性 大半は不溶性	
		117211	合計	150	-	
		司次州ナマ	コンルして次州	エアロゾルでは, スクラ	が流行の生い	乳供々分の扣法
				ることから、可溶性エア	ロソル、个浴	
				与える影響を確認する。		
		なお、流体な	「流動する際の	抵抗を示す粘性の大きさ	は,粘性率 η	
		[mPa·s] で表	され、水の粘性	生率は水温 10℃の場合は	約1.3mPa·s,	
		80℃の場合は約	約0.3mPa・s でる	ある。(引用文献(8))		引用文献の相違
		a. 可溶性工	アロゾルの影響	3		
		エアロゾルフ	バスクラバ溶液	に溶解すると,分解して	イオンとして	設備名称の相違
		存在し、溶解	したイオンの周]囲に水分子が水和しやす	-い場合には,	
				振る舞うため移動しにく		
					, , , , , , , , , , , , , , , , , , ,	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		率が大きくなる。一方,溶解したイオンの周囲に
		くい場合には、イオンや水分子が移動しやすく
		くなる。(引用文献(4))
		ベント実施後にフィルタ装置に含まれる主な
		K ⁺ , Cs ⁺ があり, 陰イオンにはOH ⁻ , Cl ⁻ , Br ⁻ , I ⁻ ,
		がある。これらイオンのうち,水和しやすく粘性
		与する陽イオンは , 陰イオンは OH-であり,
		率の減少に寄与する陽イオンは Cs ⁺ , 陰イオンは
		れる。(引用文献(3), (5))
		このため、フィルタ装置にエアロゾルが移行
		は,エアロゾルの全量を
		とき最も大きく,よう化セシウム (CsI) として評
		さくなる。
		スクラバ溶液として低温(粘性率が高い)の2
		とよう化セシウムが水に溶解した場
		を図 4-6 に示す。
		図 4-6と CsI が水に溶解した場合の粘性
		(: 引用文献(6), CsI:引用文
		スクラバ溶液に添加している化学薬剤は
		であり,このスクラバ溶液の粘性率に
		として評価すると,図4-6よ

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

2021年6月8日 02-工-B-08-0005_改2


}機	備考
囲に水分子が水和しに	
-くなり,粘性率が小さ	
Eな陽イオンには I ⁻ , CO ₃ ²⁻ , HCO ₃ ⁻ , SO ₄ ²⁻ 粘性率の増加に最も寄	
り、水和しにくく粘性	
ンは I であると考えら	
移行した場合の粘性率	
て評価したときには小	
の 25℃における	設備名称の相違
た場合の粘性率の変化	
粘性率の変化(25℃)	
用文献(7))	
	設備名称の相違
]	設備の相違
上率は, 化学薬剤を全て	 ・設計方針の相違に伴う設備
5 より約 mPa·s とな	仕様の相違
	- 162 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		る。 また、スクラバ溶液の粘性率の変化を保守的に評価するため、仮 にフィルタ装置に移行するエアロゾルが全て (150kg=3750mol)と想定とすると、その溶液のモル濃度は約 mol/L上昇し、約 mol/L (=)となり、可溶 性エアロゾルが溶解したスクラバ溶液の粘性率は、図 4-6 より約 mPa・s となる。 以上より、可溶性エアロゾルが溶解した場合のスクラバ溶液の粘 性率の変化は、フィルタ装置待機時のスクラバ溶液の粘性率に比べ て、わずかに(約 mPa・s)大きくなると評価できる。	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
		 b. 不溶性エアロゾルの影響 エアロゾルが不溶性の場合、スクラバ溶液中ではコロイド等の懸 濁粒子濃度が上昇すると考えられる。このような懸濁粒子が分散し た溶液の粘性率はアインシュタインの粘度式等によって評価する ことができる(引用文献(3))。 η/η₀-1=2.5¢ ここで、η: 懸濁粒子溶液の粘性、η₀:分散溶媒の粘性、φ: 懸 濁粒子の容積分率を示す。上式を用いて、懸濁粒子濃度が粘性率に 及ぼす影響を評価した結果を図 4-7 に示す (アインシュタインの粘 度式の成立限界である容積分率 2vo1%までを記載)。 	設備名称の相違
			- 163 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3 (****) (*****) (************************************	の相違 計方針の相違に伴う設備

2 18 16 14 12 1 08 06 04 02 0 0 50 100 温度(℃) 図 4-8 木の粘性率に及ぼす温度
なお、エアロゾルには有機物が含まれていな した場合にも粘性率を著しく大きくさせること 2.3 スクラバ溶液の逆流防止 金属繊維フィルタのプレフィルタにおける日 属繊維フィルタに設置されるドレン配管におい 属繊維フィルタに設置されるドレン配管におい 属繊維フィルタ装置の設計では、プレフィルタの日 想定される圧損に対して余裕のある値として している。具体的には、ドレン配管から金属繊 バ溶液が流入しないよう、金属繊維フィルタ 位置にスクラバ溶液の水位上限を設定している 実機ではプレフィルタの圧損は ドレン配管の逆流を考慮しても、スクラバ溶液 まで逆流するおそれはないと評価できる。

2021年6月8日 02-工-B-08-0005_改2

- 165 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		また、金属繊維フィルタのドレン配管の内径は約 🔲 🚥であり、	設備名称の相違
		金属繊維フィルタに流入するベントガスに含まれるエアロゾルの	
		粒径は極めて小さい ことから、ドレン配管の閉塞が発生す	・設計方針の相違に伴う設備
		るおそれはないと言える。	仕様の相違
		フィルタ装置のスクラバ溶液水位の概要を図 4-9 に示す。	
		図 4-9 フィルタ装置のスクラバ溶液水位	
		3. 引用文献	
		 (1) NUREG∕CR−5950 "Iodine Evolution and pH 	
		Control", Dec. 1992	
		(2) NUREG/CR - 5 5 6 4 "Core-Concrete	
		Interactions Using Molten UO ₂ With Zirconium on A	
		Basaltic Basement", Apr. 1992	
		(3) 化学便覧第5版	引用文献の相違
			・版の相違であり,引用した内
			容に相違はない。
		(4) 上平恒,「水の分子工学」	1日11-1日1年14(4)(-0
	l		- 166 -

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		 (5) 横山晴彦,田端正明「錯体の溶液化学」 (6) Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M⁺ = Na⁺, K⁺, Li⁺, Cs⁺, (CH₃)₄N⁺) at 25.0°C, J. Chem. Eng. Data, 45, 613-617 (2000) (7) Grinnell Jones and Holmes J. Fornwalt, The Viscosity of Aqueous Solutions of Electrolytes as a Function of the Concentration. III. Cesium Iodide and Potassium Permanganate, J. Am. Chem. Soc., 58(4), 619-625(1936) 	引用文献の相違 ・女川では本図書を引用して いない。
		(8) 日本機械学会 蒸気表<1999>	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器フィルタベント系隔離弁の人力操作について	設備名称の相違
		 原子炉格納容器フィルタベント系隔離弁の人力操作 原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの 	
		操作ができない場合には,現場の隔離弁操作場所から遠隔手動弁操 作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作 場所について,図 5-1~図 5-4 に示す。	設備名称の相違
		ベントは、ベント準備作業として、原子炉格納容器フィルタベン	運用の相違
		ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ ンバベント用出口隔離弁又はドライウェルベント用出口隔離弁を 開操作し,開始する。	
		操作場所は,原子炉建屋付属棟内(非管理区域)であり,弁操作 時の放射線防護対策として遠隔手動弁操作設備遮蔽を設置する。遠 隔手動弁操作設備遮蔽は,躯体面を除き鉛厚さ2mmの遮蔽厚さを有	射性物質を含むガスを原子炉
		する遮蔽板,出入口の鉛毛マットによって囲われた小屋型の遮蔽と し,架台には炭素鋼を使用する。 また,基準地震動Ssにて機能維持する設計とし,耐震評価につ	設計の相違
		いては,添付書類「VI-2-9-4-6-1-4 遠隔手動弁操作設備遮蔽の耐 震性についての計算書」に示す。	の相違。なお,女川では操作場 所の陽圧化設備は不要として
		実際の操作にあたっては、現場へのアクセス時間及び必要な操作 時間を考慮し、緊急時の線量限度である 100mSv を超えることがな いように管理を行う。	いる。
		遠隔手動弁操作設備遮蔽の概要図を図 5-5 及び図 5-6 に示す。	

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2

幾	備考
	設備の相違
:原子炉建屋	・各設備の設置場所の相違
 :原子炉建屋原子炉楝 :原子炉建屋付属楝(非管理区城) 	
: 遠隔手動弁操作設備	
力遠隔操作場所(原子	
	- 169 -

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		原子炉建屋 地下1階 (0.P.6000) 注記*:地下1階の天井は50:m 「「「」」」」「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」

幾	備考
· · · · · · · · · · · · · · · · · · ·	備 お 備 の 相 違
	- 170 -

本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号根
		原子师雄星 地上1幣 (0.P.1500) 日本: 許證置你里の水雨レくみば 置中1時(0.P.1150) 日本: 中1時(0.P.1150) 日本: 中1時(0.P.1500) 日本: 中1(1.P.1500) 日本: 中1(1.P.1500)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		原子炉建屋 地上2階 (0. P. 22500)
		原子炉格納容器フィルタベント系ベントライン隔離弁 T63-F002 設置位置(0.P.29212)
		図 5-4 隔離弁設置位置及び現場における人力 炉建屋地上2階)

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		12 3030 T48-F022 操作位置 630 770
		注記:図5-2のA矢視に対応 図 5-5 遠隔手動弁操作設備遮蔽 (原子炉建屋地下1階)
		1860 3545 1860 3545 1860 3545 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1860 1867 1860 1867 1860 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1867 1877 1877 1877 1877 1877 1877 1877 1877
		図 5-6 遠隔手動弁操作設備遮蔽 (原子炉建屋地上1階)

- 173 -

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	別紙 6	
	いいしませいかいこれを思っていています。	本田の切法
	<u>ベント実施に伴う作業等の作業員の被ばく評価</u>	表現の相違
	1. ベント実施に伴うベント操作時の作業員の被ばく評価	
	炉心の著しい損傷時においても、現場において、人力で原子炉格	設備名称の相違
	納容器フィルタベント系の隔離弁の操作ができるよう,放射線防護	
	対策として原子炉格納容器第一隔離弁(サプレッションチェンバベ	放射線防護対策の相違
	ント用出口隔離弁及びドライウェルベント用出口隔離弁)作業場所	(以下,同様の差異は記載を
	には鉛厚さ 2mm の遮蔽厚さを有する遠隔手動弁操作設備遮蔽を設	省略)
	け,鉛2mm相当のタングステンベストを着用して作業することで放	
	射性物質のガンマ線による外部被ばくを低減する設計とする。ベン	
	ト実施に伴うベント操作を手動で行う場合の作業員の被ばく評価	
	を行い, 遠隔手動弁操作設備遮蔽は作業員を防護するために必要な	
	遮蔽厚さ等を有しており,作業員の実効線量は緊急作業時の線量限	
	度である 100mSv 以下となることを確認した。	
		表現の相違
	ベント操作としてサプレッションチェンバからのベントを行う	設備名称の相違
	場合及びドライウェルからのベントを行う場合のそれぞれにおけ	
	る原子炉格納容器第一隔離弁(サプレッションチェンバベント用出	設備名称の相違
	口隔離弁及びドライウェルベント用出口隔離弁)及び原子炉格納容	
	器第二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離	
	弁(A)/(B))の開操作時の被ばく評価を行った。	
	(1) 評価条件	
	a. 放出量評価条件	
	格納容器破損防止対策の有効性評価で想定している炉心損傷を	事故シーケンスタ称の相違
	前提とした事象のうち、炉心損傷時間が早く、格納容器ベントを実	(以下,同様の差異は記載を
	施する「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+全交流動力電源	(以),问你 ⁰ / 上共体化戦 2 省略)
	喪失」の代替循環冷却系を使用できない場合が最も放射性物質の放	
	丧天」の代替循環市却未を使用できない場合が取り放射性物質の放 出量が多くなるため、この事象をベント実施に伴うベント操作時の	
	山重か多くなるため、この事家をマント実施に伴うマント操作時の作業員の被ばく評価で想定する事象として選定する。	
	「「未負の被はく評価で忍足する事家として選足する。 また、放出量評価条件を表 6-1、大気中への放出過程及び概略図	
	を図 6-1~図 6-4 に示す。大気中への放出経路については図 6-5 に	
		実現の知識
	示すとおりであり、非常用ガス処理系等が起動し原子炉建屋原子炉	
	棟の負圧達成するまで(事象発生から 70 分間)は原子炉建屋から	評価余件の相違 - 174・

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所 女川原子力発電所第2号機	備考
	の漏えいを想定し地上放出するとし、原子炉建屋原子炉棟の負圧が	・非常用ガス処理系の起動時
	達成した以降(事象発生から 70 分間以降)は排気筒からの放出を	間の相違
	想定する。また、ベント実施時は原子炉格納容器フィルタベント系	表現の相違
	からの放出を想定し原子炉建屋屋上の原子炉格納容器フィルタベ	設備名称の相違
	ント系排気管放出とする。	
	b. 被ばく評価条件	
	被ばく経路は、図 6-6 及び図 6-7 に示すとおりであり、経路ごと	評価条件の相違
	に以下に示す評価を行った。	・東二は屋外移動時及び屋外
	1	作業時の被ばく経路を考慮
	大気中へ放出される放射性物質については,表 6-2 及び表 6-3 に	
	示すように, ガウスプルームモデルを用いて拡散効果を考慮して外	
	部被ばく及び内部被ばくの評価を行った。	表現の相違
	外気から作業場所内へ流入した放射性物質による被ばくについ	
	ては, 屋外の放射性物質の濃度と作業場所の放射性物質の濃度を同	
	じとし、外部被ばくについては、表 6-4 に示すとおり作業場所の空	
	間体積と等価な半球状とし、半球の中心の線量で行い、内部被ばく	表現の相違
	については、表 6-5 に示す線量換算係数、呼吸率及びマスクの効果	
	を考慮し評価を行った。なお、原子炉格納容器第一隔離弁の操作に	設備名称の相違
	ついては、作業場所に遠隔手動弁操作設備遮蔽を設け、タングステ 7	放射線防護対策の相違
	ンベスト及び自給式呼吸器を着用して作業することを考慮し評価	(以下、同様の差異は記載を
	を行った。	省略)
	大気中に放出され地表面に沈着した放射性物質からのガンマ線	
	による外部被ばくについては, ガウスプルームモデルを用いて拡散	
	効果を考慮して放射性物質の濃度を求めた後,表 6-5 に示す地表面	
	への沈着速度を考慮し評価を行った。	
	原子炉格納容器フィルタベント系配管, 原子炉格納容器フィルタ	設備名称の相違
	ベント系フィルタ装置,原子炉建屋原子炉棟等からの直接ガンマ線	評価条件の相違
	による被ばくについては、表 6-6~表 6-8 に示す原子炉建屋壁、作	・女川はフィルタ装置からの
	業場所に設置する遠隔手動弁操作設備遮蔽の遮蔽効果を考慮し評	線量影響を考慮しているが、
	価を行った。なお、評価で考慮するコンクリート遮蔽は、建築工事	東二は考慮していない(以下、
I	標準仕様書 JASS5N・同解説(原子力発電所施設における鉄筋コンク	同様の差異は記載を省略)
	リート工事,日本建築学会)に準拠して施工しているため,公称値	表現の相違
	からマイナス側許容差(-5mm)を引いた値を適用し、その密度は	記載箇所の相違
		・東二は表中にのみ記載

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

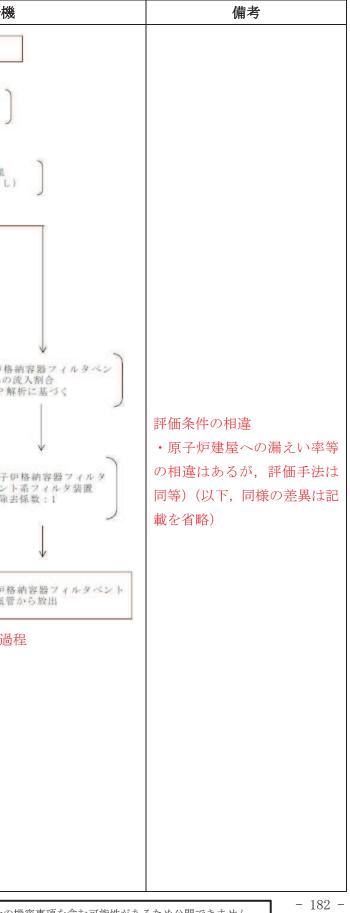
- 175 -

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		c. アクセスルート	
		原子炉格納容器第一隔離弁(サプレッションチェンバベント用出	設備名称の相違
		口隔離弁)のベント操作を行う場合のアクセスルートは、図 6-8~	
		図 6-11 に示すとおりである。原子炉格納容器第一隔離弁(ドライ	
		ウェルベント用出口隔離弁)のベント操作を行う場合のアクセスル	
		ートは、図 6-12~図 6-14 に示すとおりである。原子炉格納容器第	
		二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離弁	
		(A)/(B))のベント操作を行う場合のアクセスルートは図 6-12~図	
		6-14に示すとおりである。	
		d. 評価点	
		評価点は、図 6-15 に示すとおりであり、ベント操作の作業場所	表現の相違
		を評価点とする。	
		アクセスルートの評価点は、作業場所と同じ評価点とする。作業	
		場所は原子炉格納容器第一隔離弁(サプレッションチェンバベント	
		用出口隔離弁)のベント操作時は地下1階非常用電気品室(B),原	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		子炉格納容器第一隔離弁(ドライウェルベント用出口隔離弁)では	
		地上1階DG(B)室,原子炉格納容器第二隔離弁(原子炉格納容器フ	
		ィルタベント系ベントライン隔離弁(A)/(B))のベント操作時は地	
		上1階DG(B)室である。なお、作業及び移動に必要な時間は常に上 記の評価もにいてすのトレー 並ばく評価な行った	
		記の評価点にいるものとし、被ばく評価を行った。	
		e. 作業時間	
		原子炉格納容器第二隔離弁(原子炉格納容器フィルタベント系ベ	設備を称の相違
		ントライン隔離弁)の開操作は、ベント実施前に行うものとし、サ	
		プレッションチェンバ側及びドライウェル側共通で原子炉格納容	
		器第二隔離弁の作業時間は66分(移動時間(往復)12分+作業時	
		間 54 分)とする。また、原子炉格納容器第一隔離弁(サプレッシ	
		ョンチェンバベント用出口隔離弁及びドライウェルベント用出口	
		隔離弁)の開操作は、作業時間は96分(移動時間(往復)12分+	
		作業時間(原子炉格納容器第一隔離弁作業場所滞在)84分)とする。	

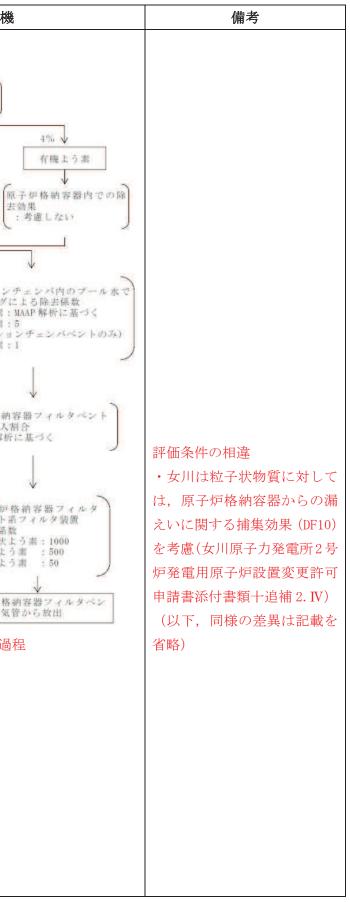
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		 (2) 評価結果 ベント実施に伴うベント操作を手動で行う場合の作業員の被ば く評価結果は以下に示すとおりであり、ベント実施に伴うベン ト操作を手動で行うことができることを確認した。また、実効線量 の内訳を表 6-9~表 6-11 に示す。 サブレッションチェンバからのベント操作時の作業員の実効 線量 作業員の実効線量は原子炉格納容器第二隔離弁(原子炉格納容器 フィルタベント系ベントライン隔離弁)で約0.012mSv、原子炉格納容器第二隔離弁(サブレッションチェンバベント用出口隔離弁)で約78mSvとなった。 ドライウェルからのベント操作時の作業員の実効線量 作業員の実効線量は原子炉格納容器第二隔離弁(原子炉格納容器 フィルタベント系ベントライン隔離弁)で約0.012mSv、原子炉格納 容器第一隔離弁(ドライウェルベント用出口隔離弁)開操作時で約 71mSvとなった。 	評価結果の相違

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所	備考	
		表 6-1 放出量評価系	条件(1/4)	評価条件の相違
	」 「 」 「 」 」 」 「 」 」 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」	目 評価条件	選定理由	・熱出力,炉内内蔵量等に差異
	評価事	「大破断LOCA+HPCS失敗+低圧 BCCS失敗+全交流動力電源喪失」	格納容器破損防止対策の有効性評価 で想定する格納容器破損モードのう ち,中央制御室の運転員又は対策要 員の被ばくの観点から結果が最も厳 しくなる事故収束に成功した事故シ ーケンスを選定	はあるが評価方法は同等(以 下,同様の差異は記載を省略)
	炉心熬	出力 2436 WW	定格熱出力	
	江重申运日号		1 サイクル13ヶ月	
	取替奶	10000時間(約416日) 1サイクル:0.229 心の 2サイクル:0.229 3サイクル:0.229 4サイクル:0.229	(395日)を考慮して設定 取替炉心の燃料装荷割合に基づき設 定	
	炉内内	5サイクル:0.084 希ガス類:1.6×10 ¹⁰ Bq よう素類:2.1×10 ¹⁰ Bq Cs類:8.4×10 ¹⁷ Bq Te類:6.0×10 ¹⁵ Bq Ba類:1.8×10 ¹⁹ Bq Ce類:5.5×10 ¹⁹ Bq La類:4.1×10 ¹⁹ Bq (核種毎の炉内内蔵量を核種グ ループ毎に集約して記載)	「単位熱出力当たりの炉内内蔵量 (Bq/MW)」×「2438MW(定格熱出力)」 (単位熱出力当たりの炉内内蔵量 (Bq/MW)は,BWR 共通条件として,女 川2号機と同じ装荷燃料(9×9燃料), 運転時間(10000時間)で算出した ABWRのサイクル末期の値を使用)	
	放出開	原子炉格納容器漏えい:事故発生 直後(なお,放射性物質は,MAAP解 析に基づき事故発生約5分後から 漏えい) 原子炉建屋原子炉棟漏えい:事故 発生直後 非常用ガス処理系による放出:事 故発生から70分後 原子炉格納容器フィルタベント	原子炉建屋原子炉棟漏えい:原子炉 建屋原子炉棟の負圧達成までの期間 非常用ガス処理系による放出:原子 炉建屋原子炉棟の負圧達成時刻 原子炉格納容器フィルタベント系に よる原子炉格納容器内の減圧及び除	

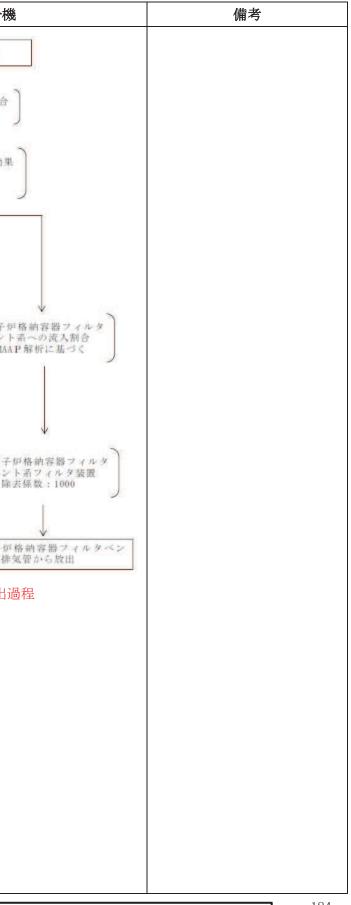
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機		備考
		表 6-1 放出量評価条件(2/4	4)	
	- Tật	[] 評価条件	選定理由	
		条納容器四 来来」 たい、	原子炉格納容器pH調 整系は、重大事故等 対処設備と位置付け ていないため、保守	
	よう素の	粒子状よう素:5% 無機よう素:91% 有機よう素:4%	的に設定 R.G.1.195に基づき 設定	
	漏えい率	車建屋への 1Pd 以下 :1.0Pd で 0.9%/日 い(希ガス, 1~1.5Pd :1.5Pd で 1.1%/日 気射性物質 1.5~2Pd :2.0Pd で 1.3%/日	MAAP解析にて原子炉 格納容器の開口面積 を設定し原子炉格納 容器圧力に応じ漏え い率が変化するもの とし、原子炉格納容 器の設計漏えい率 (0.9Pdで0.5%/日) 及びAECの式等に 基づき設定	
	ら原子炉	各納容器か ¹ 建屋への ¹ (無機よ 1.5~2Pd :1.1%/日(一定) 1.5~2Pd :1.3%/日(一定)	原子炉格納容器の設 計漏えい率, AEC の式等に基づき設定	
	原子 炉 格 らの 漏え る 捕集効 係数)	 A納容器か 希ガス:1 たいに関す 粒子状放射性物質:10 b果(除去 無機よう素:1 有機よう素:1 	粒子状物質に対して は、原子炉格納容器 からの漏えいに関す る捕集効果を考慮	
	での除去 子状放射	各納容器内 MAAP 解析に基づく(沈着,サブレッション 示効果(粒 エンパ内のブール水でのスクラビング及 1性物質) 格納容器スプレイ)	チ び NAAPのFP 挙動モデ ル	
		各納容器内 E効果(有考慮しない E)	保守的に設定	
		☆効果 (無 ^(で)	Plan b. b. 2に基づき 設定	
	機よう素)	 サブレッションチェンバ内のブール水の クラビングによる除去効果:5(ウェットウ ルベントのみ) 		


2021年6月8日 02-工-B-08-0005_改2

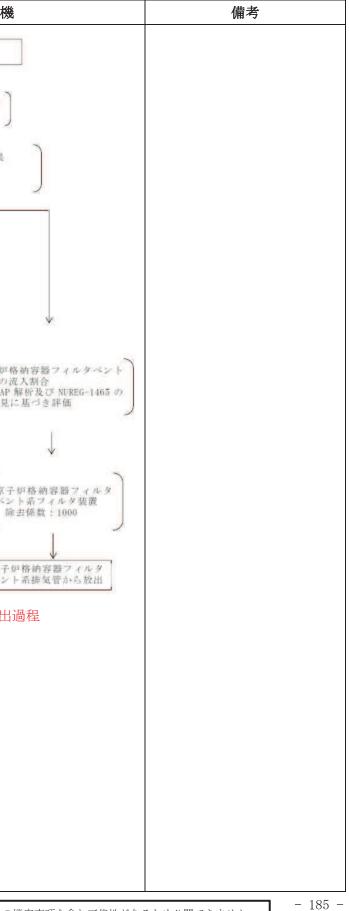
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		
			表 6-1 放出量評価条件(3/	4)	
		項目	評価条件	選定理由	
			ウェットウェ ドライウェカ ルベント ベント 希ガス類:約2.2×10 ⁻² 約2.2×10 ⁻²		
			$\begin{array}{ccccccc} 1 & 5 \\ 1 & 5 \\ 2 & 5 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	MAAP 解析結果及び NUREG-1465 に基づき 設定	
		大気への漏えい 宰(非常用ガス 処理系の起動 前)	無限大(回/日)(地上放出) (原子炉建量原子炉棟負圧維持期間以外は、 原子炉格納容器から原子炉建屋へ漏えいした 放射性物質は、即座に大気へ漏えいするもの として評価)	: 保守的に設定	
· 梁 - 始 - 力	<u></u> 家 放 力	非常用ガス処理 系から大気への 女出率(非常用 ガス処理系の起 防後)	0.5(回/日)(排気筒放出) (原子炉建屋原子炉棟負圧維持期間)	設計値に基づき設定 (非常用ガス処理系の ファン容量)	
		非常用ガス処理 系の起動時間	事 献 発 生 から イリ 分 依	起動操作時間(60分) + 負圧達成時間(10 分)(保守的に負圧達成 時間として10分を想 定)	
	系の		考慮しない	保守的に設定	
ーアウト	ーアウト	パネル	開状態	原子炉建量原子炉棟内 の急激な圧力上昇等に よる原子炉建量ブロー アウトパネルの開放が	
原子炉建屋ブロ ーアウトパネル の開閉状態	ーアウトパネル 閉状態			の急激な圧力上昇等に よる原子炉建量ブロー	


2021年6月8日 02-工-B-08-0005_改2

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考	
		表 6-1 放出量評価条件(4/4)		
		項目 評価条件 遷定理由		
		原子炉格納容器 からベントライ ンへの放出割合 ウェットウェル 希ガス類: 1000 ドライウェルペ (ペント ドライウェルペ シト MAAP 解析結果及び 約9.5×10 ⁻¹ 原子炉格納容器 からベントライ ンへの放出割合 名 1.2×10 ⁻⁶ 約3.3×10 ⁻² MAAP 解析結果及び NUREG-1465 に基づ き設定 福 類: Ru 類: 約9.4×10 ⁻⁸ 約2.6×10 ⁻⁶ 522 80.4×10 ⁻⁸ 約9.4×10 ⁻⁸ 約3.2×10 ⁻⁶		
		La 類: 約9.4×10 ⁻¹⁰ 約2.6×10 ⁻⁷ Ce 類: 約2.4×10 ⁻⁹ 約6.4×10 ⁻⁷ 原子炉格納容器 希ガス:1 (1)		
		フィルタベント 有機よう素:50 設計値に基づき設 系フィルタ装置 無機よう素:500 定 の除去係数 粒子状放射性物質:1000 1000		


《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		希ガスの炉内内蔵量
		「原子炉格納容器への放出割合 : MAAP 解析に基づく 」
		\downarrow
		原子炉格納容器内での除去効果 : MAAP 解析に基づく(除去効果なし)
		▼ 原子炉格納容器から原子炉建量原子炉棟への 漏えい率: 1Pd以下 :1.0Pd で 0.9%/日 1~1.5Pd :1.5Pd で 1.1%/日 1.5~2Pd :2.0Pd で 1.3%/日
		原子炉建屋原子炉棟への流入割合 : MAAP 解析に基づく : MAAP 解
		原子炉建屋原子炉棟か ら大気中への潮えい 潮えい率:無限大/日 第二、第虚し ない
		\downarrow \downarrow \downarrow
		原子炉建量原子炉棟から漏えい又は 排気筒から放出 原子炉格 系排気管
		図 6-1 希ガスの大気放出過
	ł	

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		よう素の炉内内蔵量 ↓ 原子炉格納容器への放出割合
		□ 示 デ 沪 裕 朝 谷 語 へ 50 放 出 割 音 : MAAP 解析に 基 づ く 5% √ 91% √
		粒子状よう素 無機よう素 ↓
		原子炉格納容器内での 除去効果 : MAAP 解析に基づく (格納容器スプレイ等) 原子炉格納容器内での自然 沈着率:9.0×10 ⁻⁴ (1/s) (積算放出量の1/200まで)
		「原子炉格納容器から原子炉建屋原子炉 棟への漏えい率: 【粒子状よう素,有機よう素】 IPd以下:1.0Pdで0.9%/目 1~1.5Pd:1.5Pdで0.1%/日 1.5~2Pd:2.0Pdで1.1%/日 [無機よう素] IPd以下:0.9%/日(一定) 1~1.5Pd:1.1%/日(一定) 1.5~2Pd:1.3%/日(一定)
		 「原子炉建屋原子炉棟への流入割合 :MAAP 解析に基づく ↓ 「原子炉格納容器からの満えい孔にお ける捕集効果(除去係数) 粒子状よう素:10 無機よう素:1
		有機よう素:1 原子炉建量原子炉棟 から大気中への放出 漏えい率:無限大/日 (原子炉建量原子炉棟) 株常用ガス処理系から た気への放出 換気率:0.5回/日 除去係 強気率:考慮しない
		■ 原子炉建屋原子炉棟から漏えい又は 排気筒から放出 ト系排気
		図 6-2 よう素の大気放出過



《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		セシウムの炉内蔵量
		原子炉格納容器への放出割合 :MAAP解析に基づく
		¢ ↓
		原子炉格納容器内での除去効果 : MAAP 解析に基づく (格納容器スプレイ等)
		「原子炉格納容器から原子炉建量原子炉
		棟への漏えい率: 1Pd以下 :1.0Pdで0.9%/日 1~1.5Pd :1.5Pdで1.1%/日
		1.5~2Pd :2.0Pd で 1.3%/日
		
		● 「原子炉格納容器からの漏えいに関す」
		ろ捕集効果(除去係数):10
		原子炉建屋原子炉棟から 大気中への漏えい (原子の放出)
		大気中への漏えい 漏えい率:無限大/日 検気率:0.5回/日 除去効率:考慮しない
		原子炉建屋原子炉棟から漏えい又は 排気筒から放出 ト系排
		図 6-3 セシウムの大気放出i

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	文の他核種の炉内内蔵型 (原子炉格納容器への放出物合) (原子炉格納容器への放出物合) (原子炉格納容器内での除去効果) (原子炉格納容器内での除去効果) (原子炉格納容器内での除去効果) (原子炉格納容器内での除去効果) (原子炉格納容器内での除去効果) (原子炉格納容器内での除去効果) (原子炉格納容器力を成果すり様本の成入約合) (日本) (日本)

2021年6月8日 02-工-B-08-0005_改2

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	<complex-block></complex-block>

۶.	備考
効果	
^{30 元} 格納容器スプレイ等	
プール水でのスク ウェットウェルベン	
第子炉格納容器フィルタ ベント系排気管からの放 出(約45時間から)**	
放出率:1Pd で 10.0kg/s	
フィルタペント系 星の除去係数 ス:1	
 ○ ○.素:50 >素:500 子状よう素含む):1000 	
\$5時間*3 168時間▼	
素】 . 1.5~2Pd:2.0Pd で 1.3%/日	
5~2Pd:1.3%/日(一定)	
となるため、事象発生 70 分以	
子炉格納容器フィルタベント系 メージ)	評価条件の相違
×->)	・原子炉建屋への漏えい率や
	設置場所等の相違はあるが,
	評価手法は同等(以下,同様の 差異は記載を省略)
	左共は叱戦で目間)
の機密事項を含む可能性があ	- 186 - るため公開できません。

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		*** *** ***

幾	備考
彼ばく経路	
(射性物質からのガシマ線による被ばく (る外部被ばく) (入した放射性物質による被ばく いる放射性物質による内部及び外部被は	
(ハビに次用に砂点による内部及び外部被は いる放射性物質による内部及び外部被は)を考慮) (物質からのガンマ線による被ばく 部故ばく) を描に比着した放射性物質からのガンマ線 (ないなかになる)	
シャインによる外部被ぼく)	
西経路イメージ(屋内 弁開操作時)	設備名称の相違

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	

幾	備考
被ばく経路 (羽性物質からのガンマ線による液ばく ころ外部被ぼく) にした放射性物質による液ばく いち放射性物質による液が、遠隔 メタングステンベスト着用に伴う遮蔽効果 (甲吸器の使用により内部液ばくはないも に、ないものガンマ線による液(く ・は液(く) (四の放射性物質からのガンマ線による外 ト素塩度のみ考慮する。) (面には着した放射性物質からのガンマ線 ジャインによる外部液ばく)	
西経路イメージ(屋内 弁開操作時)	設備名称の相違
	- 188 -

項目 評価条件 運定理由 ・気 大気拡散評価 モデル ガウスブルームモデル 発電用原子炉施設の安全解析に関 する気象指針に基づき評価 が,目	備考	2号機	女川原子力発電所第		東海第二発電所	《参考》柏崎刈羽原子力発電所第7号機
人転回販用 ウスメールモデク 日本のか 日本のの 日本の 日本の <td>評価条件の相違</td> <td>価条件</td> <td>表 6-2 大気拡散評</td> <td></td> <td></td> <td></td>	評価条件の相違	価条件	表 6-2 大気拡散評			
人気に思想の ウスパーームモデル 中国の 中国 中国の 中国の 中国の 中国の <t< td=""><td>・気象データ等の相違はあ</td><td></td><td></td><td>78.0</td><td></td><td></td></t<>	・気象データ等の相違はあ			78.0		
中学ル ジベル・ベーダン やな気電声に広くなりない 中学の場合 やな気電声に広くなりない 中学の場合 レーダのない アメリン ロージのない アメリン ロージのない ロージのない <thロ< td=""><td></td><td></td><td></td><td></td><td></td><td></td></thロ<>						
第二日 第二日 </td <td></td> <td>する気象指針に基づき評価</td> <td>ガウスブルームモデル</td> <td></td> <td></td> <td></td>		する気象指針に基づき評価	ガウスブルームモデル			
 ・出版していたします。 ・したいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたい		排気管及び原子炉建屋からの放出 は地上風(地上10m)の気象データ を使用。排気筒からの放出は排気 筒風(地上71m)の気象データを使 用	1 年間の気象データ(2012 年 1月~2012 年 12月) 地上風 :地上約 10m 排気筒風:地上 71m			
実効数日繊硬時 1時間 的学校に表しない次効な出繊硬時 間を逆に、ないないないないのです。 基値出度頻度 小ろか・方方・507 % S番田野に基づき設定 原子が増量関点ないうきよう。 原子が増量関点ないうきようの建築によるきき込み 数日点からご近難間によるきき込み 単星の影響 デイの単体的容器フィルターへの 数日点からごご加速の建築の登場を 中ないためためための文化は、考慮 中なるための文化は、考慮 中なるための文化は、考慮 中ないためためきを込みの 酸を込みを生じる代 表地な 原子が増量目 取用から発も近くのき込みの 数目のの使用の準備の必要になるたきが、 ないためためためきを込みの 影響を受けない たちい増量とてのないためためたが、 まためたい増量とての変 を受けない 第一部かるたちのごく着き込みの 数目ののを構成になりままのののなどの 第二部のから発も近くのき込みの 数量なりない 第二部のから発も近くのき返みの 数目のから見まの表したたのは単点の方面を使い通用の 手が増量したのではなりままのからのなどの 第二部のから発も近くの 単面があるためが増量といつ楽 ないのです 第二部のか発も近くのなどの ないではなり服用の手が通知の方面といつなど ないではなり配合いする方を なりましたのではなり服用の手が通知の方面というなど なりないでする方面を なりたいではなり服用の手が通知の子のなどの手が ためのに登録の子ののこのため なりましたのではなり服用の手が通知の方面といろい とかるたいのなどの服用の手の方面を なりたいではなり服用の手の加合いなど なりたいでする 単面影響 2050m2 第二部の一本の子のと 報告とする 単面影響 2050m2 第二部のでのなどが についてはなり服用の手の子の とからいではなり服用のを たかっためためで のとなったためでする のでするとなっための となる 単面影響 2050m2 第二部のでする ののではなりたつうのど となったためのでする のでする のでする のでする のでのでのでする のでのでのでのでする のでのでのでのでする のでのでのでのでする のでのでのでのでのでする のでのでのでのでのでの ためのでのでのでのでする のでのでのでのでのでする のでのでのでのでのでのでのでの とのでのでのでのでのでの いてのでのでのでのでのでの とのでのでのでのでのでのでのでの とのでのでのでのでので		排気管からの放出は建屋影響を考 慮し原子炉建屋屋上からの放出と 想定し設定 なお、建屋巻込みの影響を受けな い排気筒の放出源高さは、敷地境	原子炉格納容器フィルタベン ト系排気管からの放出:地上 36m			
 国備出現額定 小さい方から37% 気象指針に基づき設定 報告の影響 報告の影響 報告の影響 報告の影響 報告の影響 電子が地電器通えい:考慮する 年子が地電器通えい:考慮する 定けで統的容器フィレタベン と消からの近田湾の 定けで統的容器フィレタベン と消からの放田:考慮しな 定されによるきを込み 報告のの数曲:考慮した でする 報気筒からの放田:考慮した でしてにては高さみ周囲の準 根気筒については高さみ周囲の準 根気筒については高さみ周囲の準 根気筒のの放田:考慮した 報査のの数曲:考慮した 報の高にのなたの参えの ま込みの ま響超 なのの放田:考慮した		保守的に最も短い実効放出継続時		実効放出継続時間		
建屋の影響 原子伊格納容響フィルダベン 設出点から近距滑の建屋の影響を (中文前については高さが周囲の建 声などのの放出:考慮しな) 建屋の影響 デる方の、建国に含むため、 (中文前からの放出:考慮しな) 現象を考慮 (中文前からの放出:考慮しな) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) </td <td></td> <td></td> <td>小さい方から 97 %</td> <td></td> <td></td> <td></td>			小さい方から 97 %			
表地風 原子が地屋 影響が最も大きい建屋として遷定 大気拡散評価点 図 6-15 参照 屋内移動時の評価点は作業場所と 同一とする 第 単気筒:1方位 単気筒:Cかび建屋通えい及び原子炉 着目方位 第マイルタベント系排気管: 9方位 シングの中 2050m ² 原子町建屋の最小投影断面積を設定で 定 小型 東北松野 2050m ² 原金電用原子炉地屋の最小投影断面積を設定 形林松野 0.5 発電用原子炉地屋の安全解析に関		受けるため、建屋による巻き込み 現象を考慮 排気筒については高さが周囲の建 屋 2.5倍以上あるため巻き込みの	原子炉格納容器フィルタベン ト系排気管からの放出:考慮 する	建屋の影響		
大成低配計価点 国ーとする		影響が最も大きい建屋として選定	原于炉建屋			
番目方位 掛気筒:1方位 原子炉建屋湖えい及び原子炉 掛気筒:1方位 原子炉建屋湖えい及び原子炉 着目方位 第一大小女ペント系排気管: 的方位 については放出際が評価点に近い ことから、180度をカバーを方位 建屋影響 2050m ² 原子炉建屋の最小投影断面積を設 定 形世 低物 の5 原子炉建屋の最小投影断面積を設			図 6-15 参照	大気拡散評価点		
建屋影響 2050m ² 原子炉建屋の最小投影断面積を設定 率サ46 % 0.5 発電用原子炉施設の安全解析に関		排気筒については評価点の方位と し、原子炉建屋漏えい及び原子炉 格納容器フィルタベント系排気管 については放出源が評価点に近い ことから、180度をカバーする方位	原子炉建量及び原子炉格納容 器フィルダベント系排気管:	着目方位		
		($2050 \mathrm{m}^2$	建屋影響		
			0.5	形状係数		

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		川原子力発電所第2	2 号機	備考	
	表	表 6-3 評価に使用する相対濃度 (χ/Q) 及び相対線量 (D/Q)				
		作業内容	放出源	相対濃度及び相対線量		
	原子炉格	S 纳 安	原子炉格納容器フィル タベント系排気管	χ/Q (s/m ²) 約9,5×10 ⁻⁴ D/Q (Gy/Bg) 約6,7×10 ⁻¹⁸		
	器第一隔 (サブレ ヨンチェ	 	原子炉建屋プロー アウトバネル	ズ/Q (s/m ³) 約1.9×10 ⁻³ D/Q		
	ベント用 隔離弁 開機	弁)	排気筒	(Gy/Bq) 約7,0×10 ⁻¹⁸ ス/Q (s/m ³) 約2,9×10 ⁻⁶		
			原子炉格納容器フィル	D/Q (Gy/Bq) 約1.2×10 ⁻¹⁹ 文/Q (s/m ³) 約9.5×10 ⁻⁴		
	原子炉格器第一隔	鬲雕弁 昆肉移動時	タベント系俳気管	D/Q (Gy/Bq) 約6.7×10 ⁻¹⁸ 太/Q		
	 (ドライ ルベント 口隔離: 開換: 	ト 日 出 作業時	原子炉建量プロー アウトパネル	D/Q (Gy/Bq) 約7, 0×10 ⁻¹⁸		
			排気筒	χ/Q (s/m^3) 約2.9×10 ⁻⁶ D/Q (Gy/Bq) 約1.2×10 ⁻¹⁹		
	原子炉格 器第二隔 (原子炉		原子炉建屋ブローアウ トバネル			
	容器フィ ベント系 トライン	イルタイルタ系ベン作業時ン隔離	排気筒	(Gy/Bq) 約7.0×10 ⁻¹⁸ 次/Q (s/m ³) D/Q 約2.9×10 ⁻⁶		
	· 弁) [開 打	控制作用		(6y/Bq) 約1.2×10 ⁻¹⁹		

2021年6月8日 02-工-B-08-0005_改2

本資料のうち枠囲みの内容は,他社の機密事項を含む可能性があるため公開できません。

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機		備考
	表 6-4	建屋内に流入した放射性物質による外部被	皮ばく評価条件	評価条件の相違
		(1/2)		・作業場所の空間体積,放射線
	項目		選定理由	防護対策等の相違はあるが、
		D = 6.2×10 ⁻¹⁴ ・Q _v ·X/Q・E _v ·(1-e ^{-µ·R})・3600 D : 放射線量率 (Sv/h) Q _v : 大気に放出された放射性物質放出率 (Bq/s) (0.5MeV換算値)		評価手法は同等(以下,同様の 差異は記載を省略)
	評価大	$(3.9 \times 10^{-3} \text{/m})$	_	
		 R:作業エリア等の空間体積と等価な半球の半径(m) R= ³ √3.VR 2-π 		
	作 美 場 等 の 空 体積 (Vg)	Vg::作業エリア等の空間体積(m ³) <サブレッションチェンパからのベントを行う場合> ・原子炉格納容器フィルタベント系ベントライン隔離弁 操作場所 :1860m ³ :日内移動アクセスルート :サブレッションチェンパベント用出口隔離弁 操作場所 :1540m ³ :サブレッションチェンパベント用出口隔離弁 操作場所 :1540m ³	アクセスルート となる建屋内の 国の高くなる区 画の空間体積で	

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
	表(屋内に流入した放射性物質による外部被 2/2)	皮ばく評価条件	
		項目	評価条件	遷定理由	
	屋 内 所 演 考慮		考慮しない	保守的に外気濃度 と同一濃度とする	
	ョン バハ 出 し ひ 立 下 月 離 角	プンベロびェ用弁マン 開かる の の の の の の の の の の の の の の の の の の の	鉛 2mm	設計値に基づき設 定	
	サンベス	ングステン ストの考慮	鉛2mm相当のタングステンベストの着用による遮蔽効 果及び不均等被ばくを考慮して評価 【不均等被ばくの評価式】 Hgg=0.11Ha+0.89Hb Hgg: 外部被ばくの実効線量 Ha : タングステンベストの着用による遮蔽効果を 考慮しない実効線量 Hb : タングステンベストの着用による遮蔽効果を 考慮した実効線量	炉心損シント 損シンパ 備シント用 び ペ 御 ウ レ パ 開 ウ ン ト の 用 開 オ シ ト の 用 開 オ シ ト の 用 開 オ シ ト の 用 開 オ シ ト の 用 開 オ シ ト の 用 開 オ シ ト の 用 開 オ む に 、 評 部 に つ ら 、 評 二 の ら 、 評 二 の の に に ま え 、 の の に に に ま え 、 の の に に に ま え 、 の の に に に に た 、 評 に に ち 、 の に に に た 、 部 に に に に の の 、 部 に に に た 、 部 部 に に に の の が い に に に の の が い に に に に の の が い に に に の の が い に に の の が 新 部 油 は び の 部 部 前 ら に に こ え く の の 新 部 油 に に こ え く の の 新 部 前 ら に し こ え く の の 新 部 前 ら に し こ え く の の 新 部 前 ら ち い し い た 、 の 部 部 的 い ら に ら 、 の 部 部 的 い い 日 ち 4 い こ こ く の の 新 部 一 、 よ く の の 新 部 当 た ら ら 、 の 部 い ら ち ら し こ く の 、 の 一 、 し っ ら っ ん い の 一 、 う 、 の 、 の う っ ん の の 、 、 う 、 の 、 の っ の 、 の の 、 う 、 う 、 の の っ の 、 の う 、 の の っ の 、 の う 、 う う の の の っ の っ の の の っ し こ く の っ の 、 う う う う う う う う う う う う	
					- 192

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
			表 6-5 線量換算係数,呼吸率	等	
		項目	評価条件	選定理由	
			成人実効線量換算係数を使用 (主な核種を以下に示す) I-131 : 2.0×10 ⁻⁸ Sv/Bq I-132 : 3.1×10 ⁻¹⁰ Sv/Bq I-133 : 4.0×10 ⁻⁹ Sv/Bq I-133 : 4.0×10 ⁻⁹ Sv/Bq I-135 : 9.2×10 ⁻¹⁰ Sv/Bq Cs-134 : 2.0×10 ⁻⁸ Sv/Bq Cs-136 : 2.8×10 ⁻⁹ Sv/Bq Cs-137 : 3.9×10 ⁻⁸ Sv/Bq L記以外の核種は1CRP Pub. 71, 72に基づく	ICRP Publication 71. 72に基づく	
		呼吸率	1.2m ³ /h	成人活動時の呼吸率 を設定	
		マスクの除染 係数	DF50	性能上期待できる値 から設定	
		自給式呼吸器 の考慮	原子炉格納容器第一隔離弁操作時に着用 (内部被ばくの影響を受けない)	現場での隔離弁開操 作時に着用する 運用に合わせて設定	
		地表面 ~ の 沈 着速度	粒子状放射性物質 : 0.4 cm/s 無機よう素 : 0.4 cm/s 有機よう素 : 1.4×10 ⁻³ cm/s	女川原子力発電所の 実気象から求めた沈 着速度から保守的に 設定	

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所			女川原子	力発電所	第2号機		備考
		表 6-6	原子炉格納	容器フィ	ルタベン	ト系配管フ	からの直接ガンマ線	評価条件の相違
				作業場	所における	評価条件		・遮蔽厚さ等の相違はあるが
			項目	配管	配管	遮蔽厚さ	選定理由	評価手法は同等(以下,同様の
				位置	向き*i	及び距離		差異は記載を省略)
			地下1階 非常用	地下1階 地上1階	上下方向 南北方向	cm.*2	-	
			電気品室 (B)	地上1階 地上1階	東西方向 上下方向	cm * 3	ベント操作エリアにお	
		連蔽厚さ		地上1階 地上1階	南北方向 東西方向	_	- ける原子炉建屋原子炉 棟壁等を考慮(図6-8〜 図6-14参照)	
			地上1階 DG(B)室	地上1階 地上2階	上下方向 南北方向	cm.* 2		
					東西方向	-	建築工事標準仕様書	
			許容差	評価で考り	慮するコンク はいくコンク	↓リート遮蔽 ⊢ス側許容差	JASS5N・同解説(原子 力発電所施設における	
			可省左	(-5mm	₪からマイク i)を引いた	「ス両計査差 値を適用	事,日本建築学会)に基	
							づき設定 建築工事標準仕様書	
			クリート密度		2.15g/cm ³	1	JASS5N・同解説(原子 力発電所施設における	
			クリート出度		Z.198/ Cm		鉄筋コンクリート工事,日本建築学会)	
				地下1階	上下方向	2.7m	に基づき設定	
			地下1階 非常用 電気品室	地上1階	南北方向	8.8m	-	
		配管中のから評合	(B)	地上1階 地上1階	東西方向 上下方向	2.7m 2.7m	-	
		い。 いでま点 勝珥	D 地上1階	地上1階 地上1階	南北方向 東西方向	8.8m 2.7m		
			DG(B)室	地上1階 地上2階	上下方向 南北方向	2.7m 1.8m	-	
		注: *1			東西方向 ント系配管に	1.8m ま方向毎に評f	 Æ	
		* 2	: 原子炉建屋原子	*炉棟躯体1棟	汝に対して▽	マイナス側許る	容差を考慮	
		*3	:原子炉建屋原子	♪炉棟躯体 2 枚	次に対して、	マイナス側許智	容差を考慮	
							NRの車石た合も可始HPがます	- 194

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発	電所第2号	機	備考
		表 6-7 原子炉格斜	内容器フィルター	ベント系フィ	ィルタ装置からの	
		直接ガンー	マ線			
			· · · · · · · · · · · · · · · · · · ·	線源からの	123 - F m - F-	
		評価点	遮蔽厚さ*1	距離	選定理由	
		地下1階 非常用電気品室(B)	cm*z	46.Om	ベント操作エリアにお ける原子炉建屋原子炉	
		地上1階 DG(B)室	cm * 8	45.3m	棟壁等を考慮(図 6-8 ~図 6-14参照)	
		引いた値を適 *2:原子炉建屋原		してマイナス側		
		表 6	8 原子炉建屋;	からの直接に	ガンマ線	
		項目	評価条	晔	選定理由	
		遮蔽厚さ	cm~		原子炉建屋原子炉棟外 壁(2次しゃへい壁)の厚 さを設定	
		原子炉建屋原子炉棟内 線源強度分布	原子炉建屋原子炉: た放射性物質が均-	棟内に放出され →に分布	, 審査ガイドに示された とおり設定	
		原子炉建屋原子炉棟の モデル	原子炉建屋原子炉: モデル化	棟の幾何形状を	原子炉建屋原子炉棟外 壁を遮蔽体として考慮 原子炉建屋の評価モデ ルを図 8-16及び図 8-17 に示す	
		直接ガンマ線評価コー ド	直接ガンマ線評価:	QAD — CGGP2R	現行許認可(添十)に同 じ	
		 注記 *4:評価で考慮す 引いた値を適		は,公称値から、	 マイナス側許容差(-5mm)を	

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		図 6-8 原子炉格納容器第一隔離弁(サプレッジ
		ト用出口隔離弁)の操作場所及びアクセスルー
		上3階及び制御建屋地上3階)
		図 6-9 原子炉格納容器第一隔離弁(サプレッ・ ト用出口隔離弁)の操作場所及びアクセスルー
		上2階、タービン建屋地上2階及び制御建屋地
	Į	1

号機	備考
レッションチェンバベン	評価条件の相違
ルート(原子炉建屋地	・操作場所,アクセスルート等
レッションチェンバベン	の相違はあるが,評価手法は
ルート(原子炉建屋地	同等(以下,同様の差異は記載
屋地上2階)	を省略)

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-10 原子炉格納容器第一隔離弁(サプレッションチェンバベント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋	
		地上1階,タービン建屋地上1階及び制御建屋地上1階)	
		図 6-11 原子炉格納容器第一隔離弁(サプレッションチェンバベ	
		ント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋	
		地下1階,タービン建屋地下1階及び制御建屋地下1階)	
			- 197

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-12 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベン	
		トライン隔離弁(A)/(B))の操作場所及びアクセスルート(原子炉 建屋地上3階及び制御建屋地上3階)	
		建建地工3階及0°mm冲建建地工3階/	
		図 6-13 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベン	
		トライン隔離弁(A)/(B))の操作場所及びアクセスルート(原子炉	
		建屋地上2階,タービン建屋地上2階及び制御建屋地上2階)	
	<u> </u>		- 198 -

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-14 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベント	
		ライン隔離弁(A)/(B))の操作場所及びアクセスルート(原子炉建 屋地上1階,タービン建屋地上1階及び制御建屋地上1階)	
			- 199 -

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

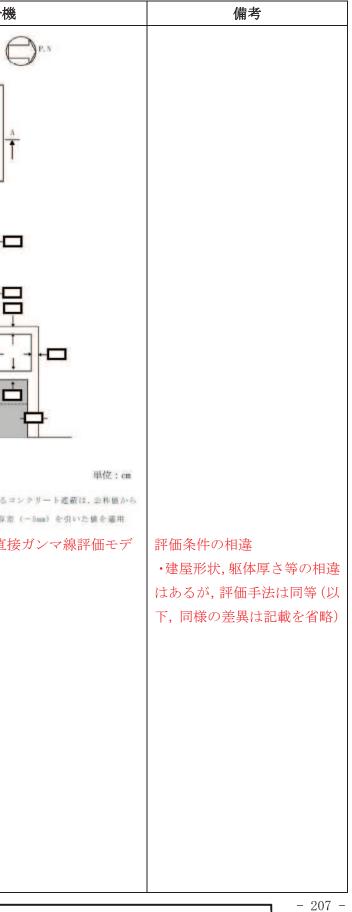
2021年6月8日 02-工-B-08-0005_改2

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

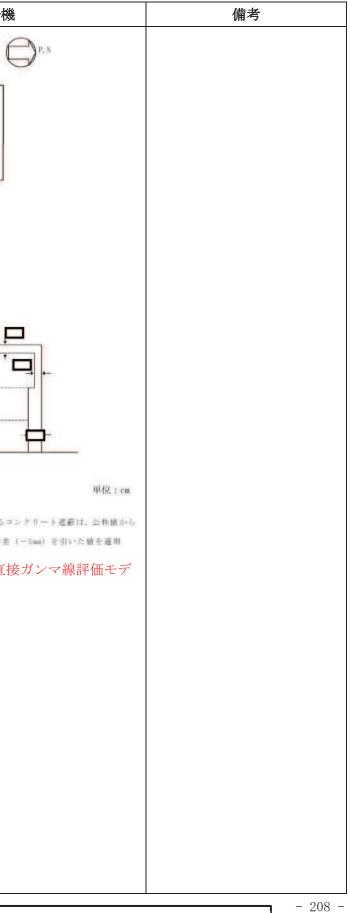
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
Г			
			1

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考


	女川原子力発電所第2号機	備考

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考


《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-15 大気中に放出された放射性物質の濃度評価点	

本資料のうち枠囲みの内容は、当社の商業機密を含むため、又は他社の機密事項を含む可能性があるため公開できません。

第 2 号機 タービン建卓 0. P. 50	第2号機 原子炉建量 ▲
	4:評価で考慮するコ マイナス側許容差

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機
		第2号機 1 第2号機 第2号機 第2号機 第2号機 第2号機 第子炉堆量 第2号機 第子炉堆量
		0, P. 5087. 3
		0.P. 3994.5 0.P. 3994.5 0.P. 3994.5 0.P. 3994.5 0.P. 3994.5 0.P. 3994.5 0.P. 3996.5 F 0.P. 2996.5 F 0.P. 1500 F F 0.P. 1500 F F 0.P. 1500 F F 0.P. 1500 F F F F F F F F F F F F F
		A-A 即面 注:評価で考慮するコ マイナス側許容差
		図 6-17 原子炉建屋内の放射性物質からの直接 ル (2/2)

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-9 原子炉格納容器第二隔離弁(原子炉格納容器フィルタベン	
		ト系ベントライン隔離弁)開操作に伴う移動時及び作業時の線量	
		(単位: mSr/h) 原子炉格納容器第二隔離弁* (照子炉格納容器第二隔離弁*(()))	
		被ばく経路 (原子炉格納容器フィルタベント系ベントライン隔雎弁(A)/(B)) 作类時 (中央制御室)作業場所) (相内移動時) (中央制御室)作業場所) (作業場所当中央制御室)	
		原子炉建屋内の放射性物質からのガンマ線による 外部被ぼく 約2.0×10 ⁻³ 約2.0×10 ⁻³ 約2.0×10 ⁻³ 約2.0×10 ⁻³	
		大気中へ放出された放射性物質 外部被ばく 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ による被ばく 内部被ばく 屋内に流入する放射性物質の影響に包絡される	
		大気中へ放出され地表面に沈着した放射性物質か らのガンマ線による被ばく 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 外気から作業場所内へ流入した 外常被ばく 約6.6×10 ⁻⁴ 約8.9×10 ⁻⁴ 約8.9×10 ⁻⁴	
		外気から作業場所内へ読入した 外活被ばく 約 6.6×10 ⁻⁴ 約 8.9×10 ⁻⁴ 約 8.9×10 ⁻⁴ 放射性物質による被ばく 内部被ばく 約 7.5×10 ⁻³ 約 7.5×10 ⁻³ 約 7.5×10 ⁻³ 原子炉格納容器フェルウダント素フェルク支援内	
		の広射性物質からのガンマ線による外部被ばく 原子炉格納容器フィルタベント系配管内の放射性 ペント実施前の作業のため対象外	
		物質からのガンマ線による外部被ぼく 作業線量率 約1.1×10 ^{-z} 約1.1×10 ^{-z} 約1.1×10 ^{-z}	
		作業時間及び移動時間 54 分 6 分 6 分 作業員の実効線量 約 9. 1×10 ⁻³ mSv 約 1. 1×10 ⁻³ mSv 約 1. 1×10 ⁻³ mSv	
		(作業時及び移動時) 第2.1×10 mSV 第1.1×10 mSV 第1.1×10 mSV 作業員の実効線量 (合計) 約1.2×10 ⁻² mSV	
		注記 ※:原子炉格納容器第二隔離弁開操作はベント実施前に行う。	
		表 6-10 原子炉格納容器第一隔離弁(サプレッションチェンバベ	
		ント用出口隔離弁)開操作に伴う移動時及び作業時の線量	
		(単位:mSv/h)	
		原子炉格納容器第一隔離弁 彼ばく経路 (サプレッションチェンバペント用出口隔離弁)	
		作業時 (中央制御室) 超口特勢加厚 超口特勢加厚	
		原子炉建屋内の放射性物質からのガンマ線による 外部被ばく 約6.6×10 ⁻⁶ 約2.0×10 ⁻² 約6.6×10 ⁻⁶ 大気中へ放出された放射性物質 外部被ばく 約2.9×10 ⁻⁶ 約1.4×10 ⁻¹⁹ 約2.9×10 ⁻⁶	
		による数はて、内留数はく、 日本の中では地帯したの時代物質の影響に包括される	
		らのガンマ線による被ばく 約3.3 < 10 約3.3 < 10 約3.3 < 10	
		外気から作業場所内へ流入した 外部被ばく 約4.6×10 ¹ 約3.1×10 ⁻⁴ 約1.4×10 ² 放射性物質による被ばく 内部被ばく* 0 0 0 原子炉格納容器フィルタベント系フィルタ支置内 約3.9×10 ⁻¹⁰ (1.4×10 ²) (1.4×10 ²)	
		の広知住物員からのガンマ線によるか品度は人 ペード表面側の作業のため 対象外 約,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	
		物質からのガンマ銀による外部波ばく 刺1.1×10 刺1.1×10 作業級最佳 約.4.6×10 ⁴ 約2.3×10 ⁻³ 約.1.4×10 ² 作業時間及び移動時間 84.分 6.分 6.分	
		作業員の実効報量 約 約 約 約	
		作業員の実効線量 (合計) 約7.8×10 ⁴ mSv	
		注記 *:自給式呼吸器の使用により内部被ぼくはないものとする。	

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-11 原子炉格納容器第一隔離弁(ドライウェルベント用出口 隔離弁)開操作に伴う移動時及び作業時の線量 (#2 : str):	
		 引用文献 Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors", May 2003 Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007 Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants", 1995 	