```
本資料のうち，枠囲みの内容は商業機密の観点から公開できま
``` せん。
\begin{tabular}{|c|c|}
\hline 女川原子力発電所第 2 号機 工事計画審査資料 \\
\hline 資料番号 & 02 －工－B－02－0012＿改 0 \\
\hline 提出年月日 & 2021 年 6 月 10 日 \\
\hline
\end{tabular}

VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書

目次
（概要）

\section*{目次}
（胴板）
2．胴板の強度計算 2－1
2.1 一般事項 2－1
2．1．1 形状 • 寸法 •材料 2－1
2．1．2 解析範囲 2－1
2．1．3 計算結果の概要 2－1
2．2 計算条件 2－4
2．2．1 重大事故等時の条件 2－4
2．2．2 材料 2－4
2．2．3 荷重の組合せ及び運転状態 2－4
2．2．4 荷重の組合せ及び応力評価 2－4
2．2．5 許容応力 2－4
2．3 応力計算 2－4
2．3．1 応力評価点 2－4
2．3．2 内圧による応力 2－4
2．3．3 外荷重による応力 2－5
2．3．4 応力の評価 2－5
2．4 応力強さの評価 2－5
2．4．1 一次一般膜応力強さの評価 2－5
2．4．2 一次膜＋一次曲げ応力強さの評価 2－5

\section*{図表目次}
（胴板）
図2－1 形状•寸法•材料•応力評価点 2－2
表2－1 計算結果の概要 2－3
表2－2 一次一般膜応力強さの評価のまとめ・ 2－6
表2－3 一次膜 + 一次曲げ応力強さの評価のまとめ 2－7

\section*{目次}
（上部鏡板，鏡板フランジ及び胴板フランジ）
3．上部鏡板，鏡板フランジ及び胴板フランジの強度計算 3－1
3.1 一般事項 3－1
3．1．1 形状 • 寸法 •材料 3－1
3．1．2 解析範囲 3－1
3．1．3 計算結果の概要 3－1
3．2 計算条件 3－4
3．2．1 重大事故等時の条件 3－4
3．2．2 材料 3－4
3．2．3 荷重の組合せ及び運転状態 3－4
3．2．4 荷重の組合せ及び応力評価 3－4
3．2．5 許容応力 3－4
3．3 応力計算 3－4
3．3．1 応力評価点 3－4
3．3．2 内圧による応力 3－4
3．3．3 ボルト荷重による応力 3－5
3．3．4 応力の評価 3－5
3．4 応力強さの評価 3－5
3．4．1 一次一般膜応力強さの評価 3－5
3．4．2 一次膜 + 一次曲げ応力強さの評価 3－5
3．4．3 スタッドボルトの平均引張応力の評価 3－5
3．4．4 スタッドボルトの平均引張＋曲げ応力の評価 3－5

\section*{図表目次}
（上部鏡板，鏡板フランジ及び胴板フランジ）
図3－1 形状•寸法•材料•応力評価点 3－2
表3－1 計算結果の概要 3－3
表3－2 一次一般膜応力強さの評価のまとめ・ 3－6
表3－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 3－7
表3－4 スタッドボルトの平均引張応力の評価のまとめ 3－8
表3－5 スタッドボルトの平均引張＋曲げ応力の評価のまとめ・ 3－9

\section*{目次}
（下部鏡板）
4．下部鏡板の強度計算 4－1
4.1 一般事項 4－1
4．1．1 形状 • 寸法 •材料 4－1
4．1．2 解析範囲 4－1
4．1．3 計算結果の概要 4－1
4．2 計算条件 4－4
4．2．1 重大事故等時の条件 4－4
4．2．2 材料 4－4
4．2．3 荷重の組合せ及び運転状態 4－4
4．2．4 荷重の組合せ及び応力評価 4－4
4．2．5 許容応力 4－4
4．3 応力計算 4－4
4．3．1 応力評価点 4－4
4．3．2 内圧による応力 4－4
4．3．3 外荷重による応力 4－5
4．3．4 応力の評価 4－5
4． 4 応力強さの評価 4－5
4．4．1 一次一般膜応力強さの評価 4－5
4．4．2 一次膜＋一次曲げ応力強さの評価 4－5

図表目次
（下部鏡板）
図4－1 形状•寸法•材料•応力評価点 4－2
表4－1 計算結果の概要 4－3
表4－2 一次一般膜応力強さの評価のまとめ・ 4－6
表4－3 一次膜＋一次曲げ応力強さの評価のまとめ 4－7

> 目次
> (制御棒駆動機構ハウジング貫通孔)
5．制御棒駆動機構ハウジング貫通孔の強度計算 5－1
5.1 一般事項 5－1
5．1．1 記号の説明 5－1
5．1．2 形状•寸法•材料 5－1
5．1．3 解析範囲 5－1
5．1．4 計算結果の概要 5－1
5．2 計算条件 5－4
5．2．1 重大事故等時の条件 5－4
5．2．2 材料 5－4
5．2．3 荷重の組合せ及び運転状態 5－4
5．2．4 荷重の組合せ及び応力評価 5－4
5．2．5 許容応力 5－4
5.3 応力計算 5－4
5．3．1 応力評価点 5－4
5．3．2 内圧による応力 5－4
5．3．3 外荷重による応力 5－5
5．3．4 応力の評価 5－5
5．4 応力強さの評価 5－5
5．4．1 一次一般膜応力強さの評価 5－5
5．4．2 一次膜＋一次曲げ応力強さの評価 5－5
5． 5 特別な評価 5－6
5．5．1 外圧による座屈に対する評価 5－6
5．5．2 軸圧縮荷重による座屈に対する評価 5－7

\section*{図表目次}
（制御棒駆動機構ハウジング貫通孔）
図 5－1 形状•寸法•材料•応力評価点 5－2
表5－1 計算結果の概要 5－3
表5－2 一次一般膜応力強さの評価のまとめ・ 5－9
表5－3 一次膜＋一次曲げ応力強さの評価のまとめ 5－10
表5－4 座屈に対する評価に用いる荷重 5－11
表5－5 外圧による座屈に対する評価 5－11
表5－6 軸圧縮荷重による座屈に対する評価 5－11

> 目次
> (中性子束計測ハウジング貫通孔)
6．中性子束計測ハウジング貫通孔の強度計算 6－1
6.1 一般事項 6－1
6．1．1 形状•寸法•材料 6－1
6．1．2 解析範囲 6－1
6．1．3 計算結果の概要 6－1
6．2 計算条件 6－4
6．2．1 重大事故等時の条件 6－4
6．2．2 材料 6－4
6．2．3 荷重の組合せ及び運転状態 6－4
6．2．4 荷重の組合せ及び応力評価 6－4
6．2．5 許容応力 6－4
6．3 応力計算 6－4
6．3．1 応力評価点 6－4
6．3．2 内圧による応力 6－4
6．3．3 応力の評価 6－5
6．4 応力強さの評価 6－5
6．4．1 一次一般膜応力強さの評価 6－5
6．4．2 一次膜＋一次曲げ応力強さの評価 6－5

\section*{図表目次}
（中性子束計測ハウジング貫通孔）
図6－1 形状•寸法•材料•応力評価点 6－2
表6－1 計算結果の概要 6－3
表6－2 一次一般膜応力強さの評価のまとめ・ 6－6
表6－3 一次膜＋一次曲げ応力強さの評価のまとめ 6－7

\section*{目次}
（再循環水出口ノズル（N1））
7．再循環水出口ノズル（N1）の強度計算 7－1
7.1 一般事項 7－1
7．1．1 形状•寸法•材料 7－1
7．1．2 解析範囲 7－1
7．1．3 計算結果の概要 7－1
7．2 計算条件 7－4
7．2．1 重大事故等時の条件 7－4
7．2．2 材料 7－4
7．2．3 荷重の組合せ及び運転状態 7－4
7．2．4 荷重の組合せ及び応力評価 7－4
7．2．5 許容応力 7－4
7．3 応力計算 7－4
7．3．1 応力評価点 7－4
7．3．2 内圧による応力 7－4
7．3．3 外荷重による応力 7－5
7．3．4 応力の評価 7－5
7． 4 応力強さの評価 7－5
7．4．1 一次一般膜応力強さの評価 7－5
7．4．2 一次膜 + 一次曲げ応力強さの評価 7－5

\section*{図表目次}
（再循環水出口ノズル（N1））
図 7－1 形状•寸法•材料•応力評価点 7－2
表7－1 計算結果の概要 7－3
表7－2 一次一般膜応力強さの評価のまとめ・ 7－6
表7－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 7－7

\section*{目次 \\ （再循環水入口ノズル（N2））}
8．再循環水入口ノズル（N2）の強度計算 8－1
8． 1 一般事項 8－1
8．1．1 形状 • 寸法 •材料 8－1
8．1．2 解析範囲 8－1
8．1．3 計算結果の概要 8－1
8．2 計算条件 8－4
8．2．1 重大事故等時の条件 8－4
8．2．2 材料 8－4
8．2．3 荷重の組合せ及び運転状態 8－4
8．2．4 荷重の組合せ及び応力評価 8－4
8．2．5 許容応力 8－4
8．3 応力計算 8－4
8．3．1 応力評価点 8－4
8．3．2 内圧及び差圧による応力 8－4
8．3．3 外荷重による応力 8－5
8．3．4 応力の評価 8－5
8． 4 応力強さの評価 8－5
8．4．1 一次一般膜応力強さの評価 8－5
8．4．2 一次膜 + 一次曲げ応力強さの評価 8－5

\section*{図表目次}
（再循環水入口ノズル（N2））
図8－1 形状•寸法•材料•応力評価点 8－2
表8－1 計算結果の概要 8－3
表8－2 一次一般膜応力強さの評価のまとめ・ 8－6
表8－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 8－7

\title{
目次 \\ （主蒸気出口ノズル（N3））
}
9．主蒸気出ロノズル（N3）の強度計算 9－1
9.1 一般事項 9－1
9．1．1 形状•寸法•材料 9－1
9．1．2 解析範囲 9－1
9．1．3 計算結果の概要 9－1
9．2 計算条件 9－4
9．2．1 重大事故等時の条件 9－4
9．2．2 材料 9－4
9．2．3 荷重の組合せ及び運転状態 9－4
9．2．4 荷重の組合せ及び応力評価 9－4
9．2．5 許容応力 9－4
9．3 応力計算 9－4
9．3．1 応力評価点 9－4
9．3．2 内圧による応力 9－4
9．3．3 外荷重による応力 9－5
9．3．4 応力の評価 9－5
9．4 応力強さの評価 9－5
9．4．1 一次一般膜応力強さの評価 9－5
9．4．2 一次膜 + 一次曲げ応力強さの評価 9－5

\section*{図表目次}
（主蒸気出ロノズル（N3））
図9－1 形状•寸法•材料•応力評価点 9－2
表9－1 計算結果の概要 9－3
表9－2 一次一般膜応力強さの評価のまとめ・ 9－6
表9－3 一次膜＋一次曲げ応力強さの評価のまとめ 9－7

\section*{目次}
（給水ノズル（N4））
10．給水ノズル（N4）の強度計算 10－1
10．1 一般事項 10－1
10．1．1 形状•寸法•材料 10－1
10．1．2 解析範囲 10－1
10．1．3 計算結果の概要 10－1
10．2 計算条件 10－4
10．2．1 重大事故等時の条件 10－4
10．2．2 材料 10－4
10．2．3 荷重の組合せ及び運転状態 10－4
10．2．4 荷重の組合せ及び応力評価 10－4
10．2．5 許容応力 10－4
10．3 応力計算 10－4
10．3．1 応力評価点 10－4
10．3．2 内圧及び差圧による応力 10－4
10．3．3 外荷重による応力 10－5
10．3．4 応力の評価 10－5
10．4 応力強さの評価 10－5
10．4．1 一次一般膜応力強さの評価 10－5
10．4．2 一次膜＋一次曲げ応力強さの評価 10－5

\section*{図表目次}
（給水ノズル（N4））
図10－1 形状•寸法•材料•応力評価点 10－2
表10－1 計算結果の概要 10－3
表10－2 一次一般膜応力強さの評価のまとめ 10－6
表10－3 一次膜＋一次曲げ応力強さの評価のまとめ 10－7
目次
（低圧炉心スプレイノズル（N5））
11．低圧炉心スプレイノズル（N5）の強度計算 11－1
11．1 一般事項 11－1
11．1．1 形状•寸法•材料 11－1
11．1．2 解析範囲 11－1
11．1．3 計算結果の概要 11－1
11.2 計算条件 11－4
11．2．1 重大事故等時の条件 11－4
11．2．2 材料 11－4
11．2．3 荷重の組合せ及び運転状態 11－4
11．2．4 荷重の組合せ及び応力評価 11－4
11．2．5 許容応力 11－4
11.3 応力計算 \(11-4\)
11．3．1 応力評価点 11－4
11．3．2 内圧及び差圧による応力 11－4
11．3．3 外荷重による応力 \(11-5\)
11．3．4 応力の評価 \(11-5\)
11．4 応力強さの評価 \(11-5\)
11．4．1 一次一般膜応力強さの評価 11－5
11．4．2 一次膜 + 一次曲げ応力強さの評価 11－5

\section*{図表目次}
（低圧炉心スプレイノズル（N5））
図11－1 形状•寸法•材料•応力評価点 11－2
表11－1 計算結果の概要 11－3
表11－2 一次一般膜応力強さの評価のまとめ 11－6
表11－3 一次膜＋一次曲げ応力強さの評価のまとめ 11－7

\section*{目次}
（低圧注水ノズル（N6））
12．低圧注水ノズル（N6）の強度計算 12－1
12.1 一般事項 12－1
12．1．1 形状•寸法•材料 12－1
12．1．2 解析範囲 12－1
12．1．3 計算結果の概要 12－1
12．2 計算条件 12－4
12．2．1 重大事故等時の条件 12－4
12．2．2 材料 12－4
12．2．3 荷重の組合せ及び運転状態 12－4
12．2．4 荷重の組合せ及び応力評価 12－4
12．2．5 許容応力 12－4
12．3 応力計算 12－4
12．3．1 応力評価点 12－4
12．3．2 内圧及び差圧による応力 12－4
12．3．3 外荷重による応力 \(12-5\)
12．3．4 応力の評価 \(12-5\)
12．4 応力強さの評価 12－5
12．4．1 一次一般膜応力強さの評価 12－5
12．4．2 一次膜 + 一次曲げ応力強さの評価 12－5

\section*{図表目次}

> (低圧注水ノズル (N6))
図12－1 形状•寸法•材料•応力評価点 12－2
表12－1 計算結果の概要 12－3
表12－2 一次一般膜応力強さの評価のまとめ 12－6
表12－3 一次膜＋一次曲げ応力強さの評価のまとめ 12－7

\section*{目次}
（上蓋スプレイノズル（N7））
13．上蓋スプレイノズル（N7）の強度計算 13－1
13．1 一般事項 13－1
13．1．1 形状•寸法•材料 13－1
13．1．2 解析範囲 13－1
13．1．3 計算結果の概要 13－1
13．2 計算条件 13－4
13．2．1 重大事故等時の条件 13－4
13．2．2 材料 13－4
13．2．3 荷重の組合せ及び運転状態 13－4
13．2．4 荷重の組合せ及び応力評価 13－4
13．2．5 許容応力 13－413．3 応力計算13－4
13．3．1 応力評価点 13－4
13．3．2 内圧による応力 13－4
13．3．3 外荷重による応力 13－5
13．3．4 ボルト荷重による応力 13－5
13．3．5 応力の評価 13－5
13．4 応力強さの評価 13－5
13．4．1 一次一般膜応力強さの評価 13－5
13．4．2 一次膜 + 一次曲げ応力強さの評価 13－5

\section*{図表目次}

> (上蓋スプレイノズル (N7))
図 13－1 形状•寸法•材料•応力評価点 13－2
表13－1 計算結果の概要 13－3
表13－2 一次一般膜応力強さの評価のまとめ 13－6
表13－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 13－7

> 目次
> \((\) ベントノズル \((\mathrm{N} 8))\)
14．ベントノズル（N8）の強度計算 14－1
14．1 一般事項 14－1
14．1．1 形状•寸法•材料 14－1
14．1．2 解析範囲 14－1
14．1．3 計算結果の概要 14－1
14．2 計算条件 14－4
14．2．1 重大事故等時の条件 14－4
14．2．2 材料 14－4
14．2．3 荷重の組合せ及び運転状態 14－4
14．2．4 荷重の組合せ及び応力評価 14－4
14．2．5 許容応力 14－4
14．3 応力計算 14－4
14．3．1 応力評価点 14－4
14．3．2 内圧による応力 14－4
14．3．3 外荷重による応力 14－5
14．3．4 ボルト荷重による応力 14－5
14．3．5 応力の評価 14－5
14．4 応力強さの評価 14－5
14．4．1 一次一般膜応力強さの評価 14－5
14．4．2 一次膜 + 一次曲げ応力強さの評価 14－5

図表目次
（ベントノズル（N8））
図14－1 形状•寸法•材料•応力評価点 14－2
表14－1 計算結果の概要 14－3
表14－2 一次一般膜応力強さの評価のまとめ 14－6
表14－3 一次膜＋一次曲げ応力強さの評価のまとめ 14－7

\section*{目次}

\section*{（ジェットポンプ計測管貫通部ノズル（N9））}
15．ジェットポンプ計測管貫通部ノズル（N9）の強度計算 15－1
15． 1 一般事項 15－1
15．1．1 形状•寸法•材料 15－1
15．1．2 解析範囲 15－1
15．1．3 計算結果の概要 15－1
15．2 計算条件 15－4
15．2．1 重大事故等時の条件 15－4
15．2．2 材料 15－4
15．2．3 荷重の組合せ及び運転状態 15－4
15．2．4 荷重の組合せ及び応力評価 15－4
15．2．5 許容応力 15－4
15．3 応力計算 15－4
15．3．1 応力評価点 15－4
15．3．2 内圧による応力 15－4
15．3．3 外荷重による応力 15－5
15．3．4 応力の評価 15－5
15．4 応力強さの評価 15－5
15．4．1 一次一般膜応力強さの評価 15－5
15．4．2 一次膜 + 一次曲げ応力強さの評価 15－5
図表目次（ジェットポンプ計測管貫通部ノズル（N9））
図15－1 形状•寸法•材料•応力評価点 15－2
表 15－1 計算結果の概要 15－3
表15－2 一次一般膜応力強さの評価のまとめ・ 15－6
表15－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 15－7

\section*{目次}

\section*{（差圧検出・ほう酸水注入ノズル（N11））}
16．差圧検出・ほう酸水注入ノズル（N11）の強度計算 16－1
16． 1 一般事項 16－1
16．1．1 形状•寸法•材料 16－1
16．1．2 解析範囲 16－1
16．1．3 計算結果の概要 16－1
16．2 計算条件 16－4
16．2．1 重大事故等時の条件 16－4
16．2．2 材料 16－4
16．2．3 荷重の組合せ及び運転状態 16－4
16．2．4 荷重の組合せ及び応力評価 16－4
16．2．5 許容応力 16－4
16．3 応力計算 16－4
16．3．1 応力評価点 16－4
16．3．2 内圧による応力 16－4
16．3．3 外荷重による応力 16－5
16．3．4 応力の評価 16－5
16．4 応力強さの評価 16－5
16．4．1 一次一般膜応力強さの評価 16－5
16．4．2 一次膜＋一次曲げ応力強さの評価 16－5

\section*{図表目次}
（差圧検出・ほう酸水注入ノズル（N11））
図16－1 形状•寸法•材料•応力評価点 16－2
表16－1 計算結果の概要 16－3
表16－2 一次一般膜応力強さの評価のまとめ 16－6
表16－3 一次膜 + 一次曲げ応力強さの評価のまとめ 16－7
目次（計装ノズル（N12，N13，N14））
17．計装ノズル（N12，N13，N14）の強度計算 17－1
17．1 一般事項 17－1
17．1．1 形状•寸法•材料 17－1
17．1．2 解析範囲 17－1
17．1．3 計算結果の概要 17－1
17．2 計算条件 17－7
17．2．1 重大事故等時の条件 17－7
17．2．2 材料 17－7
17．2．3 荷重の組合せ及び運転状態 17－7
17．2．4 荷重の組合せ及び応力評価 17－7
17．2．5 許容応力 17－717．3 応力計算17－7
17．3．1 応力評価点 17－7
17．3．2 内圧による応力 17－7
17．3．3 外荷重による応力 17－8
17．3．4 応力の評価 17－8
17．4 応力強さの評価 17－8
17．4．1 一次一般膜応力強さの評価 17－8
17．4．2 一次膜 + 一次曲げ応力強さの評価 17－8

図表目次
（計装ノズル（N12，N13，N14））
図17－1 形状•寸法•材料•応力評価点 17－2
表17－1 計装ノズルの計算結果の概要 17－4
表17－2 計装ノズルの一次一般膜応力強さの評価のまとめ 17－9
表17－3 計装ノズルの一次膜＋一次曲げ応力強さの評価のまとめ 17－12

> 目次
> \((\) ドレンノズル \((\mathrm{N} 15))\)
18．ドレンノズル（N15）の強度計算 18－1
18． 1 一般事項 18－1
18．1．1 形状•寸法•材料 18－1
18．1．2 解析範囲 18－1
18．1．3 計算結果の概要 18－1
18．2 計算条件 18－4
18．2．1 重大事故等時の条件 18－4
18．2．2 材料 18－4
18．2．3 荷重の組合せ及び運転状態 18－4
18．2．4 荷重の組合せ及び応力評価 18－4
18．2．5 許容応力 18－4
18．3 応力計算 18－4
18．3．1 応力評価点 18－4
18．3．2 内圧による応力 18－4
18．3．3 外荷重による応力 18－5
18．3．4 応力の評価 18－5
18．4 応力強さの評価 18－5
18．4．1 一次一般膜応力強さの評価 18－5
18．4．2 一次膜 + 一次曲げ応力強さの評価 18－5

\section*{図表目次}
（ドレンノズル（N15））
図 18－1 形状•寸法•材料•応力評価点 18－2
表18－1 計算結果の概要 18－3
表18－2 一次一般膜応力強さの評価のまとめ 18－6
表18－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 18－7

> 目次
> (高圧炉心スプレイノズル \((\mathrm{N} 16)\))
19．高圧炉心スプレイノズル（N16）の強度計算 19－1
19．1 一般事項 19－1
19．1．1 形状 • 寸法 •材料 19－1
19．1．2 解析範囲 19－1
19．1．3 計算結果の概要 19－1
19．2 計算条件 19－4
19．2．1 重大事故等時の条件 19－4
19．2．2 材料 19－4
19．2．3 荷重の組合せ及び運転状態 19－4
19．2．4 荷重の組合せ及び応力評価 19－4
19．2．5 許容応力 19－4
19．3 応力計算 19－4
19．3．1 応力評価点 19－4
19．3．2 内圧及び差圧による応力 19－4
19．3．3 外荷重による応力 19－5
19．3．4 応力の評価 19－5
19．4 応力強さの評価 19－5
19．4．1 一次一般膜応力強さの評価 19－5
19．4．2 一次膜 + 一次曲げ応力強さの評価 19－5

\section*{図表目次}

> (高圧炉心スプレイノズル (N16))
図 19－1 形状•寸法•材料•応力評価点 19－2
表19－1 計算結果の概要 19－3
表19－2 一次一般膜応力強さの評価のまとめ 19－6
表19－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 19－7

1．概要
本計算書は，原子炉圧力容器の強度計算結果を示すものである。本計算書の各機器は，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」 （以下「応力解析の方針」という。）に基づき評価する。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（1））は以下「既工認」という。

2．胴板の強度計算
2.1 一般事項

本章は，胴板の強度計算である。

2．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図2－1に示す。

2．1．2 解析範囲
解析範囲を図2－1に示す。

2．1．3 計算結果の概要
計算結果の概要を表2－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載し ている。

図 2－1 形状•寸法•材料•応力評価点（単位：mm）

表 2－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 }
\end{aligned}
\] & 応力評価面 & \[
\begin{aligned}
& \text { 応力 } \\
& \text { 強さ }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 }
\end{aligned}
\] & 応力評価面 \\
\hline & V & 216 & 317 & P01－P02 & 216 & 476 & P01－P02 \\
\hline
\end{tabular}

\section*{2.2 計算条件}

2．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

2．2．2 材料
各部の材料を図2－1に示す。

2．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

2．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

2．2．5 許容応力

\section*{2．3．2 内圧による応力}
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）c．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{2．3．3 外荷重による応力}
（1）荷重条件（L21）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）c．に定めるとおりである。

2．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強 さを算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおり である。

\section*{2.4 応力強さの評価}

2．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表2－2に示す。
表2－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

2．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表2－3に示す。
表2－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 2－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 216 & 317 \\
\hline \begin{tabular}{c}
P01＇ \\
P02
\end{tabular} & 216 & 317 \\
\hline
\end{tabular}

表 2－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{c}
P01 \\
P02
\end{tabular} & 216 & 476 \\
\hline \begin{tabular}{c}
P01＇ \\
P02
\end{tabular} & 216 & 476 \\
\hline
\end{tabular}

3．上部鏡板，鏡板フランジ及び胴板フランジの強度計算
3.1 一般事項

本章は，上部鏡板，鏡板フランジ及び胴板フランジの強度計算である。

3．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図3－1に示す。

3．1．2 解析範囲
解析範囲を図3－1に示す。

3．1．3 計算結果の概要
計算結果の概要を表3－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載す る。

図 3－1 形状•寸法•材料•応力評価点（単位：mm）

\section*{表 3－1 計算結果の概要}
（単位：MPa）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|r|}{一次一般膜応力強さ＊1} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ＊2} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 }
\end{aligned}
\] & 応力評価面 \\
\hline 胴板フランジー胴板接続部 SFVQ1A & V & 217 & 317 & P01－P02 & 209 & 476 & P01－P02 \\
\hline 鏡板フランジー上部鏡板接続部 SFVQ1A & V & 209 & 317 & P03－P04 & 200 & 476 & P03－P04 \\
\hline 胴板フランジ SFVQ1A & V & 122 & 317 & P05－P06 & 114 & 476 & P05－P06 \\
\hline 鏡板フランジ SFVQ1A & V & 122 & 317 & P07－P08 & 114 & 476 & P07－P08 \\
\hline スタッドボルト SNB24－3 & V & 247 & 569 & ボルト上端 ボルト下端 & 401 & 854 & ボルト下端 \\
\hline
\end{tabular}

注記＊1 ：スタッドボルトに対しては平均引張応力の評価を示す。
＊2 ：スタッドボルトに対しては平均引張＋曲げ応力の評価を示す。

\section*{3.2 計算条件}

3．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

3．2．2 材料
各部の材料を図3－1に示す。

3．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

3．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

3．2．5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。

\section*{3.3 応力計算}

3．3．1 応力評価点
応力評価点の位置を図3－1に示す。

3．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）d．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{3．3．3 ボルト荷重による応力}
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）d． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）d．に定めるとおりである。

3．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{3.4 応力強さの評価}

3．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表3－2に示す。
表3－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

3．4．2 一次膜＋一次曲げ応力強さの評価運転状態Vにおける評価を表3－3に示す。

表3－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

3．4．3 スタッドボルトの平均引張応力の評価
運転状態Vにおける評価を表3－4に示す。
表3－4より，運転状態Vの平均引張応力は，「応力解析の方針」（2）強度評価編の 3.4 節に示す許容応力を満足する。

3．4．4 スタッドボルトの平均引張＋曲げ応力の評価
運転状態Vにおける評価を表3－5に示す。
表3－5より，運転状態Vの平均引張＋曲げ応力は，「応力解析の方針」（2）強度評価編の 3． 4 節に示す許容応力を満足する。

表 3－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 217 & 317 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 209 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 122 & 317 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 122 & 317 \\
\hline
\end{tabular}

表 3－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 209 & 476 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 200 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 114 & 476 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 114 & 476 \\
\hline
\end{tabular}

表 3－4 スタッドボルトの平均引張応力の評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V} \\
\cline { 2 - 3 } & 平均引張応力 & 許容応力 \\
\hline ボルト上端 & 247 & 569 \\
\hline ボルト下端 & 247 & 569 \\
\hline
\end{tabular}

表 3－5 スタッドボルトの平均引張＋曲げ応力の評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価点 } & \multicolumn{2}{|c|}{ 運転状態 V} \\
\cline { 2 - 3 } & 平均引張＋曲げ心力 & 許容応力 \\
\hline ボルト上端 & 265 & 854 \\
\hline ボルト下端 & 401 & 854 \\
\hline
\end{tabular}

4．下部鏡板の強度計算
4.1 一般事項

本章は，下部鏡板の強度計算である。

4．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図4－1に示す。

4．1．2 解析範囲
解析範囲を図4－1に示す。

4．1．3 計算結果の概要
計算結果の概要を表4－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 4－1 形状•寸法•材料•応力評価点（単位：mm）

表 4－1 計算結果の概要

\section*{4．2 計算条件}

4．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

4．2．2 材料
各部の材料を図4－1に示す。

4．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

4．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

4．2．5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。

\section*{4．3 応力計算}
4．3．1 応力評価点
応力評価点の位置を図 \(4-1\) に示す。

4．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）e．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{4．3．3 外荷重による応力}
（1）荷重条件（L21）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）e．に定めるとおりである。

4．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{4． 4 応力強さの評価}

4．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表4－2に示す。
表4－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

4．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表4－3に示す。
表4－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 4－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V} \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{c}
P01 \\
P02
\end{tabular} & 122 & 317 \\
\hline \begin{tabular}{c}
P01＇ \\
P02
\end{tabular} & 122 & 317 \\
\hline
\end{tabular}

表 4－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 115 & 476 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 115 & 476 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 47 & 476 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 47 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 51 & 476 \\
\hline \begin{tabular}{l}
P05＇ \\
P06，
\end{tabular} & 51 & 476 \\
\hline
\end{tabular}

5．制御棒駆動機構ハウジング貫通孔の強度計算
5.1 一般事項

本章は，制御棒駆動機構ハウジング貫通孔の強度計算である。

注：以下，制御棒駆動機構ハウジングを「ハウジング」，制御棒駆動機構ハウジング貫通孔 スタブチューブを「スタブチューブ」という。

\section*{5．1．1 記号の説明}

記号の説明を「応力解析の方針」（2）強度評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。
\begin{tabular}{|c|l|c|}
\hline 記号 & \multicolumn{1}{|c|}{ 記号の説明 } & 単位 \\
\hline \(\mathrm{P}_{\mathrm{a}}\) & 許容外圧 & MPa \\
t & スタブチューブの最小厚さ & mm \\
\(\mathrm{D}_{0}\) & スタブチューブの最小外径 & mm \\
L & スタブチューブの最大長さ & mm \\
\(\mathrm{R}_{\mathrm{i}}\) & スタブチューブの内半径 & mm \\
A & スタブチューブの断面積 & \(\mathrm{mm}^{2}\) \\
Z & スタブチューブの断面係数 & \(\mathrm{mm}^{3}\) \\
\(\sigma_{\mathrm{ca}}\) & 許容応力 & MPa \\
\hline
\end{tabular}

5．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図5－1に示す。

5．1．3 解析範囲
解析範囲を図5－1に示す。

5．1．4 計算結果の概要
計算結果の概要を表5－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 5－1 形状•寸法•材料•応力評価点（単位：mm）

表 5－1（1）計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{部分及び材料} & \multirow[b]{3}{*}{運転状態} & & & & \multicolumn{3}{|r|}{（単位：MPa）} \\
\hline & & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 }
\end{aligned}
\] & 応力評価面 \\
\hline ハウジング SUSF316 & V & 59 & 281 & P03－P04 & 28 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { スタブチューブ } \\
\text { NCF600-B }
\end{gathered}
\] & V & 6 & 334 & P05－P06 & 216 & 501 & P07－P08 \\
\hline \begin{tabular}{l}
下部鏡板 \\
リガメント \\
SFVQ1A
\end{tabular} & V & 179 & 317 & P09－P10 & 186 & 476 & P09－P10 \\
\hline
\end{tabular}

表5－1（2）計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{部分及び材料} & \multirow[t]{2}{*}{運転状態} & \multicolumn{2}{|l|}{外圧による座屈に対する評価} & \multicolumn{2}{|l|}{軸圧縮荷重による座屈に対する評価} \\
\hline & & 外圧 & 許容外圧 & 圧縮応力 & 許容応力 \\
\hline \[
\begin{gathered}
\text { スタブチューブ } \\
\text { NCF600-B }
\end{gathered}
\] & V & 10． 34 & 14． 29 & 7 & 123 \\
\hline
\end{tabular}

\section*{5．2 計算条件}

5．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

5．2．2 材料
各部の材料を図5－1に示す。

5．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

5．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

5．2．5 許容応力

5．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）f．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{5．3．3 外荷重による応力}
（1）荷重条件（L21）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）f．に定めるとおりである。

5．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{5．4 応力強さの評価}

5．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表5－2に示す。
表5－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

5．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表5－3に示す。
表5－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

\section*{5.5 特別な評価}

スタブチューブについて，外圧及び軸圧縮荷重による座屈に対する評価を行う。

5．5．1 外圧による座屈に対する評価
（1）荷重
運転状態 Vにおける外圧を表5－4に示す。
（2）許容外圧
運転状態 Vにおける許容外圧（ \(\mathrm{P}_{\mathrm{a}}\) ）は，告示第 13 条第 2 項第 1 号八を準用して計算する。
\[
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\frac{4 \cdot \mathrm{~B} \cdot \mathrm{t}}{3 \cdot \mathrm{D}_{0}} \times 1.5=\frac{4 \times \square}{3 \times \square} \times 1.5 \\
& =14.29 \mathrm{MPa}
\end{aligned}
\]

ここで，

これらを用いて，告示別図第9より
\(\mathrm{B}=82 \mathrm{MPa} \quad \square{ }^{\circ} \mathrm{C}\) における値）
（3）外圧による座屈に対する評価
運転状態Vにおける外圧による座屈に対する評価を表5－5に示す。
表5－5より，運転状態Vにおける外圧は，許容外圧を超えないため，座屈は発生しない。

5．5． 2 軸圧縮荷重による座屈に対する評価
スタブチューブには，制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメン トにより，圧縮応力が生じる。したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スタブチューブの内半径

スタブチューブの最小厚さ
t

スタブチューブの断面積

スタブチューブの断面係数
\[
\mathrm{Z}=\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{4}-\mathrm{R}_{\mathrm{i}}^{4}}{\mathrm{R}_{\mathrm{i}}+\mathrm{t}}=\frac{\pi}{4} \times \square
\]
（2）荷重
スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」（2）強度評価編 の4．1節に示す。
（3）圧縮応力
計算データ（断面性能）を基に，表5－4に示す運転状態Vの荷重によってスタブチューブ に発生する圧縮応力を表5－6に示す。
（4）許容応力
運転状態Vにおける許容応力の計算は，告示第13条第1項第1号ヌを準用して計算する。運転状態Vにおける許容応力 \(\sigma \mathrm{ca}\) は，次のように得られる。
\[
\sigma_{\mathrm{ca}}=1.5 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
\]

ここで，
\[
\mathrm{S}_{\mathrm{m}}=163 \mathrm{MPa}
\]
\(\mathrm{B}=82 \mathrm{MPa}\)
\[
\square{ }^{\circ} \mathrm{C} \text { における値) }
\]

このうち B 値は，告示第 13 条第1項第1号ヌより，次のようにして求める。告示別図第 9 より
\[
\frac{\mathrm{R}_{\mathrm{i}}}{100 \cdot \mathrm{t}}=\frac{\square}{100 \times \square}=\square
\]

を用いて，
\[
\mathrm{B}=82 \mathrm{MPa}
\]
\[
\begin{aligned}
& \text { よって, 許容応力 } \sigma_{\mathrm{ca}} \text { は, } \\
& \sigma_{\mathrm{ca}}=1.5 \cdot \mathrm{~B}=1.5 \times 82=123 \mathrm{MPa}
\end{aligned}
\]
（5）軸圧縮荷重による座屈に対する評価
運転状態Vにおける軸圧縮荷重による座屈に対する評価を表5－6に示す。
表5－6より，運転状態Vにおける圧縮応力は，許容応力を満足するため，座屈は発生し ない。

表 5－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } \begin{tabular}{|c|}
\hline P01 \\
P02
\end{tabular} & 11 & 281 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 11 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 59 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 59 & 281 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 6 & 334 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 6 & 334 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 3 & 334 \\
\hline \begin{tabular}{l}
P07 \\
P08，
\end{tabular} & 3 & 334 \\
\hline \begin{tabular}{l}
P09 \\
P10
\end{tabular} & 179 & 317 \\
\hline
\end{tabular}

表 5－3 一次膜＋一次曲げ応力強さの評価のまとめ
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 17 & 422 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 17 & 422 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 28 & 422 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 28 & 422 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 14 & 501 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 14 & 501 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 216 & 501 \\
\hline \begin{tabular}{l}
P07 \\
P08，
\end{tabular} & 216 & 501 \\
\hline \begin{tabular}{l}
P09 \\
P10
\end{tabular} & 186 & 476 \\
\hline
\end{tabular}

表 5－4 座屈に対する評価に用いる荷重
\begin{tabular}{|c|c|c|c|}
\hline 運転状態 & \begin{tabular}{c}
外圧 \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c}
鉛直力＊1 \\
\(\mathrm{V}(\mathrm{kN})\)
\end{tabular} & \begin{tabular}{c}
モーメント＊2 \\
\(\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})\)
\end{tabular} \\
\hline V & 10.34 & \multicolumn{2}{|c|}{} \\
\hline
\end{tabular}

注記 \(* 1\) ：「応力解析の方針」（2）強度評価編の4．1節に示す \(\mathrm{V}_{1}+\mathrm{V}_{2}\) の値
＊2：「応力解析の方針」（2）強度評価編の4．1節に示す \(\mathrm{M}_{1}+\mathrm{M}_{2}\) の値

表5－5 外圧による座屈に対する評価
（単位：MPa）

表5－6 軸圧縮荷重による座屈に対する評価
\begin{tabular}{|c|c|c|}
\hline 運転状態 & 外圧 & 許容外圧 \\
\hline V & 10.34 & 14.29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{c}{（単位：MPa）} \\
\hline 運転状態 & 圧縮応力 & 許容応力 \\
\hline V & 7 & 123 \\
\hline
\end{tabular}

6．中性子束計測ハウジング貫通孔の強度計算
6.1 一般事項

本章は，中性子束計測ハウジング貫通孔の強度計算である。

6．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図6－1に示す。

6．1．2 解析範囲
解析範囲を図6－1に示す。

6．1．3 計算結果の概要
計算結果の概要を表6－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載す る。

I d \(I-I-I-\varepsilon-\varepsilon-I \Lambda\)（\＆）\(\quad\) O

図 6－1 形状•寸法•材料•応力評価点（単位：mm）

表 6－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{部分及び材料} & \multirow[b]{3}{*}{運転状態} & & & & \multicolumn{3}{|r|}{（単位：MPa）} \\
\hline & & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ハウジング } \\
\text { SUSF316 }
\end{gathered}
\] & V & 54 & 281 & P03－P04 & 137 & 422 & P03－P04 \\
\hline 肉盛部高ニッケル合金 & V & － & － & － & 239 & 501 & P07－P08 \\
\hline
\end{tabular}

\section*{6．2 計算条件}

6．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

6．2．2 材料
各部の材料を図6－1に示す。

6．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

6．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

6．2．5 許容応力

6．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）g．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

6．3．3 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

6． 4 応力強さの評価
6．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表6－2に示す。
表6－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

6．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表6－3に示す。
表6－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 6－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V} \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 11 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 54 & 281 \\
\hline
\end{tabular}

表 6－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 19 & 422 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 137 & 422 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 140 & 501 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 239 & 501 \\
\hline
\end{tabular}

7．再循環水出口ノズル（N1）の強度計算
7.1 一般事項

本章は，再循環水出口ノズル（N1）の強度計算である。
\(\begin{aligned} & 7.1 .1 \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 7-1 \text { に示す。 }\end{aligned}\)

7．1．2 解析範囲
解析範囲を図7－1に示す。

7．1．3 計算結果の概要
計算結果の概要を表7－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 7－1 形状•寸法•材料•応力評価点（単位：mm）

表 7－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 } \\
& \hline
\end{aligned}
\] & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SUSF316 }
\end{gathered}
\] & V & 76 & 281 & P01－P02 & 72 & 422 & P01－P02 \\
\hline 溶接部
ステンレス鋼 & V & 62 & 281 & P03－P04 & 62 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 77 & 317 & P05－P06 & 42 & 476 & P05－P06 \\
\hline
\end{tabular}

\section*{7． 2 計算条件}

7．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

7．2．2 材料
各部の材料を図7－1に示す。

7．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

7．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

7．2．5 許容応力

7．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）h．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{7．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）h．に定めるとおりである。

7．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{7． 4 応力強さの評価}

7．4．1 一次一般膜応力強さの評価運転状態Vにおける評価を表7－2に示す。
表7－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

7．4．2 一次膜十一次曲げ応力強さの評価運転状態Vにおける評価を表7－3に示す。表7－3より，運転状態 V の一次膜 + 一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 7－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 76 & 281 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 76 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 62 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04，
\end{tabular} & 62 & 281 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 77 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 77 & 317 \\
\hline
\end{tabular}

表 7－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 72 & 422 \\
\hline \begin{tabular}{l}
P01＇ \\
P02，
\end{tabular} & 72 & 422 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 62 & 422 \\
\hline \begin{tabular}{l}
P03＇ \\
P04，
\end{tabular} & 62 & 422 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 42 & 476 \\
\hline \begin{tabular}{l}
P05， \\
P06
\end{tabular} & 42 & 476 \\
\hline
\end{tabular}

8．再循環水入口ノズル（N2）の強度計算
8.1 一般事項

本章は，再循環水入口ノズル（N2）の強度計算である。

8．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図8－1に示す。

8．1．2 解析範囲
解析範囲を図8－1に示す。

8．1．3 計算結果の概要
計算結果の概要を表8－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 8－1 形状•寸法•材料•応力評価点（単位：mm）

表 8－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 } \\
& \hline
\end{aligned}
\] & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SUSF316 }
\end{gathered}
\] & V & 105 & 281 & P01－P02 & 109 & 422 & P01＇－P02＇ \\
\hline \[
\begin{gathered}
\text { サーマル } \\
\text { スリーブ } \\
\text { SUSF316 }
\end{gathered}
\] & V & 28 & 281 & P05－P06 & 48 & 422 & P05－P06＇ \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 78 & 317 & P07－P08 & 42 & 476 & P07－P08＇ \\
\hline
\end{tabular}

\section*{8．2 計算条件}

8．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

8．2．2 材料
各部の材料を図8－1に示す。

8．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

8．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

8．2．5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。

\section*{8．3 応力計算}

8．3．1 応力評価点
応力評価点の位置を図8－1に示す。

8．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）i．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

\section*{8．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）i．に定めるとおりである。

8．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{8．4 応力強さの評価}

8．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表8－2に示す。
表8－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

8．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表8－3に示す。
表8－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 8－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 105 & 281 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 105 & 281 \\
\hline \[
\begin{aligned}
& \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 57 & 281 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 56 & 281 \\
\hline \[
\begin{aligned}
& \hline \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 28 & 281 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 28 & 281 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 78 & 317 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 78 & 317 \\
\hline
\end{tabular}

表 8－3 一次膜 + 一次曲げ応力強さの評価のまとめ

9．主蒸気出口ノズル（N3）の強度計算
9.1 一般事項

本章は，主蒸気出口ノズル（N3）の強度計算である。

9．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図9－1に示す。

9．1．2 解析範囲
解析範囲を図9－1に示す。

9．1．3 計算結果の概要
計算結果の概要を表9－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 9－1 形状•寸法•材料•応力評価点（単位：mm）

表 9－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & 許容応力 & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SFVC2B }
\end{gathered}
\] & V & 120 & 292 & P01－P02 & 107 & 438 & P01－P02 \\
\hline 溶接部炭素鋼 & V & 89 & 292 & P03－P04 & 85 & 438 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 89 & 317 & P05－P06 & 60 & 476 & P05－P06 \\
\hline
\end{tabular}

\section*{9．2 計算条件}

9．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

9．2．2 材料
各部の材料を図9－1に示す。

9．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

9．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

9．2．5 許容応力

9．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）j．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{9．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）j．に定めるとおりである。

9．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

\section*{9．4 応力強さの評価}

9．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表9－2に示す。
表9－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3．4節に示す許容応力を満足する。

9．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表9－3に示す。
表9－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 9－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 120 & 292 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 119 & 292 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 89 & 292 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 88 & 292 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 89 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 88 & 317 \\
\hline
\end{tabular}

表 9－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 107 & 438 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 106 & 438 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 85 & 438 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 84 & 438 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 60 & 476 \\
\hline \begin{tabular}{l}
P05＇ \\
P06，
\end{tabular} & 58 & 476 \\
\hline
\end{tabular}

10．給水ノズル（N4）の強度計算
10.1 一般事項

本章は，給水ノズル（N4）の強度計算である。
\(\begin{aligned} & \text { 10．1．} 1 \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 10-1 \text { に示す。 }\end{aligned}\)

10．1．2 解析範囲
解析範囲を図10－1に示す。

10．1．3 計算結果の概要
計算結果の概要を表10－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 10－1 形状•寸法•材料•応力評価点（単位：mm）

表 10－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & 許容
応力 & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SFVC2B }
\end{gathered}
\] & V & 101 & 292 & P01－P02 & 89 & 438 & P01－P02 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 64 & 317 & P05－P06 & 47 & 476 & P05－P06 \\
\hline \[
\begin{gathered}
\text { サーマル } \\
\text { スリーブ } \\
\text { SFVC2B }
\end{gathered}
\] & V & 13 & 292 & P07－P08 & 37 & 438 & P07－P08＇ \\
\hline
\end{tabular}

\section*{10.2 計算条件}

10．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

10．2．2 材料
各部の材料を図10－1に示す。

10．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

10．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

10．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）k．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

\section*{10．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）k．に定めるとおりである。

\section*{10．3．4 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。
10.4 応力強さの評価

10．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表10－2に示す。
表10－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

10．4．2 一次膜＋一次曲げ応力強さの評価運転状態Vにおける評価を表10－3に示す。表10－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 10－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

I U I－I－I－ \(\mathcal{E}-\varepsilon-I \Lambda\)
（a）
N
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 101 & 292 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 101 & 292 \\
\hline \[
\begin{aligned}
& \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 64 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 63 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 64 & 317 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 63 & 317 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 13 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 13 & 292 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 }
\end{aligned}
\] & 13 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' }
\end{aligned}
\] & 13 & 292 \\
\hline
\end{tabular}

表 10－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 89 & 438 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 87 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 33 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 33 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 47 & 476 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 29 & 476 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 34 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 37 & 438 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 } \\
& \hline
\end{aligned}
\] & 18 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' }
\end{aligned}
\] & 18 & 438 \\
\hline
\end{tabular}

11．低圧炉心スプレイノズル（N5）の強度計算
11.1 一般事項

本章は，低圧炉心スプレイノズル（N5）の強度計算である。
\(\begin{aligned} & \text { 11．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図11－1に示す。 }\end{aligned}\)

11．1．2 解析範囲
解析範囲を図11－1に示す。

\section*{11．1．3 計算結果の概要}

計算結果の概要を表11－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 11－1 形状•寸法•材料•応力評価点（単位：mm）

表 11－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & 応力強さ & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノブル } \\
\text { セーフエンド } \\
\text { SFVC2B } \\
\hline
\end{gathered}
\] & V & 104 & 292 & P01－P02 & 87 & 438 & P01－P02 \\
\hline \[
\begin{gathered}
\text { サーマル } \\
\text { スリーブ } \\
\text { SFVC2B }
\end{gathered}
\] & V & 19 & 292 & P09－P10 & 35 & 438 & P05－P06 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 77 & 317 & P11－P12 & 38 & 476 & P11－P12 \\
\hline
\end{tabular}

\section*{11.2 計算条件}

11．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

11．2．2 材料
各部の材料を図11－1に示す。

11．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

11．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

11．2．5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。
11.3 応力計算

11．3．1 応力評価点
応力評価点の位置を図11－1に示す。

11．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）り．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

\section*{11．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）l．に定めるとおりである。

\section*{11．3．4 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。
11.4 応力強さの評価

11．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表11－2に示す。
表11－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

11．4．2 一次膜 + 一次曲げ応力強さの評価運転状態Vにおける評価を表11－3に示す。
表11－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表11－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 104 & 292 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 103 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 } \\
& \hline
\end{aligned}
\] & 19 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' }
\end{aligned}
\] & 19 & 292 \\
\hline \[
\begin{aligned}
& \text { P11 } \\
& \text { P12 }
\end{aligned}
\] & 77 & 317 \\
\hline \[
\begin{aligned}
& \text { P11' } \\
& \text { P12 }
\end{aligned}
\] & 77 & 317 \\
\hline
\end{tabular}

表 11－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 87 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 86 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 40 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 40 & 438 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 35 & 438 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 35 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 30 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 30 & 438 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 } \\
& \hline
\end{aligned}
\] & 14 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' } \\
& \hline
\end{aligned}
\] & 10 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P11 } \\
& \text { P12 }
\end{aligned}
\] & 38 & 476 \\
\hline \[
\begin{aligned}
& \text { P11' } \\
& \text { P12 }
\end{aligned}
\] & 28 & 476 \\
\hline
\end{tabular}

12．低圧注水ノズル（N6）の強度計算
12.1 一般事項

本章は，低圧注水ノズル（N6）の強度計算である。
\(\begin{aligned} & \text { 12．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 12-1 \text { に示す。 }\end{aligned}\)

12．1．2 解析範囲
解析範囲を図12－1に示す。

12．1．3 計算結果の概要
計算結果の概要を表12－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

\section*{}

図 12－1 形状•寸法•材料•応力評価点（単位：mm）

表 12－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SFVC2B }
\end{gathered}
\] & V & 101 & 292 & P01－P02 & 85 & 438 & P01－P02 \\
\hline \[
\begin{gathered}
\text { サーマル } \\
\text { スリーブ } \\
\text { SFVC2B }
\end{gathered}
\] & V & 16 & 292 & P07－P08 & 34 & 438 & P05－P06 \({ }^{\prime}\) \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 77 & 317 & P09－P10 & 46 & 476 & P09－P10 \\
\hline
\end{tabular}

\section*{12.2 計算条件}

12．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

12．2．2 材料
各部の材料を図12－1に示す。

12．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

12．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

12．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）m．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

\section*{12．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編 の参照図書（1）m．に定めるとおりである。

\section*{12．3．4 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

12．4 応力強さの評価
12．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表12－2に示す。
表12－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

12．4．2 一次膜十一次曲げ応力強さの評価
運転状態Vにおける評価を表12－3に示す。
表12－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 12－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

I U I－I－I－ \(\mathcal{E}-\varepsilon-I \Lambda\)
（a）
\(\sim\)
0
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 101 & 292 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 100 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 14 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 14 & 292 \\
\hline \[
\begin{aligned}
& \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 }
\end{aligned}
\] & 77 & 317 \\
\hline \[
\begin{aligned}
& \text { P09' } \\
& \text { P10' }
\end{aligned}
\] & 77 & 317 \\
\hline
\end{tabular}

表 12－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 85 & 438 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 85 & 438 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 46 & 438 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 41 & 438 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 33 & 438 \\
\hline \begin{tabular}{l}
P05＇ \\
P06，
\end{tabular} & 34 & 438 \\
\hline \begin{tabular}{l}
P07 \\
P08
\end{tabular} & 28 & 438 \\
\hline \begin{tabular}{l}
P07， \\
P08＇
\end{tabular} & 28 & 438 \\
\hline \begin{tabular}{l}
P09 \\
P10
\end{tabular} & 46 & 476 \\
\hline \begin{tabular}{l}
P09＇ \\
P10＇
\end{tabular} & 29 & 476 \\
\hline
\end{tabular}

13．上蓋スプレイノズル（N7）の強度計算
13.1 一般事項

本章は，上蓋スプレイノズル（N7）の強度計算である。

13．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図13－1に示す。

13．1．2 解析範囲
解析範囲を図13－1に示す。

13．1．3 計算結果の概要
計算結果の概要を表13－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 13－1 形状•寸法•材料•応力評価点（単位：mm）

表 13－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline フランジ部 SFVQ1A & V & 49 & 317 & P01－P02 & 70 & 476 & P01＇－P02＇ \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 129 & 317 & P03－P04 & 141 & 476 & P05－P06 \\
\hline
\end{tabular}

\section*{13.2 計算条件}

13．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

13．2．2 材料
各部の材料を図13－1に示す。

13．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

13．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

13．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）n．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{13．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）n．に定めるとおりである。

13．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）n． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）n．に定めるとおりである。

13．3．5 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

13．4 応力強さの評価
13．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表13－2に示す。
表13－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

13．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表13－3に示す。
表13－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 13－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 49 & 317 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 49 & 317 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 129 & 317 \\
\hline \begin{tabular}{l}
P03 \\
P04，
\end{tabular} & 129 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 123 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 122 & 317 \\
\hline
\end{tabular}

表 13－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 68 & 476 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 70 & 476 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 132 & 476 \\
\hline \begin{tabular}{l}
P03＇ \\
P04＇
\end{tabular} & 132 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 141 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 108 & 476 \\
\hline
\end{tabular}

14．ベントノズル（N8）の強度計算
14.1 一般事項

本章は，ベントノズル（N8）の強度計算である。
\(\begin{aligned} & \text { 14．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 14 \text {－} 1 \text { に示す。 }\end{aligned}\)

14．1．2 解析範囲
解析範囲を図14－1に示す。

14．1．3 計算結果の概要
計算結果の概要を表14－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 14－1 形状•寸法•材料•応力評価点（単位：mm）

表 14－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & 応力強さ & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & 許容応力 & 応力評価面 \\
\hline フランジ部 SFVQ1A & V & 46 & 317 & P01－P02 & 47 & 476 & P01＇－P02＇ \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 96 & 317 & P03－P04 & 100 & 476 & P03－P04 \\
\hline
\end{tabular}

\section*{14.2 計算条件}

14．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

14．2．2 材料
各部の材料を図14－1に示す。

14．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

14．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

14．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）o．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{14．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編 の参照図書（1）o．に定めるとおりである。

14．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）o． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）o．に定めるとおりである。

\section*{14．3．5 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

14． 4 応力強さの評価
14．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表14－2に示す。
表14－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

14．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表14－3に示す。
表14－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 14－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 46 & 317 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 46 & 317 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 96 & 317 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 96 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 95 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 95 & 317 \\
\hline
\end{tabular}

表14－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 46 & 476 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 47 & 476 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 100 & 476 \\
\hline \begin{tabular}{l}
P03 \\
P04，
\end{tabular} & 85 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 98 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 81 & 476 \\
\hline
\end{tabular}

15．ジェットポンプ計測管貫通部ノズル（N9）の強度計算
15.1 一般事項

本章は，ジェットポンプ計測管貫通部ノズル（N9）の強度計算である。

15．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図15－1に示す。

15．1．2 解析範囲
解析範囲を図15－1に示す。

15．1．3 計算結果の概要
計算結果の概要を表15－1に示す。
なお，運転状態 Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 15－1 形状•寸法•材料•応力評価点（単位：mm）

表 15－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \[
\begin{aligned}
& \text { 応力 } \\
& \text { 強さ }
\end{aligned}
\] & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \[
\begin{aligned}
& \text { 応力 } \\
& \text { 強さ }
\end{aligned}
\] & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline ジェットポンプ計測管貫通部 シール SUSF316 & V & 33 & 281 & P01－P02 & 17 & 422 & P01－P02 \\
\hline 溶接部 ステンレス鋼 & V & 37 & 281 & P03－P04 & 32 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 59 & 317 & P05－P06 & 44 & 476 & P05－P06 \\
\hline
\end{tabular}

\section*{15.2 計算条件}

15．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

15．2．2 材料
各部の材料を図15－1に示す。

15．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

15．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

15．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）p．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

15．3．3 外荷重による応力
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）p．に定めるとおりである。

15．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

15．4．2 一次膜 + 一次曲げ応力強さの評価
運転状態Vにおける評価を表15－3に示す。
表15－3より，運転状態Vの一次膜＋——次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 15－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 33 & 281 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 33 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 37 & 281 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 37 & 281 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 59 & 317 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 59 & 317 \\
\hline
\end{tabular}

表 15－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 17 & 422 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 15 & 422 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 32 & 422 \\
\hline \begin{tabular}{l}
P03， \\
P04
\end{tabular} & 32 & 422 \\
\hline \begin{tabular}{l}
P05 \\
P06
\end{tabular} & 44 & 476 \\
\hline \begin{tabular}{l}
P05 \\
P06，
\end{tabular} & 43 & 476 \\
\hline
\end{tabular}

16．差圧検出・ほう酸水注入ノズル（N11）の強度計算
16.1 一般事項

本章は，差圧検出・ほう酸水注入ノズル（N11）の強度計算である。
\(\begin{aligned} & \text { 16．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図16－1に示す。 }\end{aligned}\)

16．1．2 解析範囲
解析範囲を図16－1に示す。

\section*{16．1．3 計算結果の概要}

計算結果の概要を表16－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 16－1 形状•寸法•材料•応力評価点（単位：mm）

表 16－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & 応力強さ & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & 許容応力 & 応力評価面 \\
\hline 肉盛部
高ニッケル合金 & V & 0 & 334 & P01－P02 & 112 & 501 & P03－P04 \\
\hline \[
\begin{aligned}
& \text { ノズル } \\
& \text { SUSF316 }
\end{aligned}
\] & V & 36 & 281 & P07－P08 & 21 & 422 & P07－P08 \\
\hline
\end{tabular}

\section*{16.2 計算条件}

16．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

16．2．2 材料
各部の材料を図16－1に示す。

16．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

16．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

16．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）q．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{16．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）q．に定めるとおりである。

16．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

16． 4 応力強さの評価
16．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表16－2に示す。
表16－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

16．4．2 一次膜十一次曲げ応力強さの評価運転状態Vにおける評価を表16－3に示す。

表16－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 16－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

O 2 （3） \(\mathrm{VI}-3-3-1-1-1 \quad \mathrm{R} 1\)

表 16－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

17．計装ノズル（N12，N13，N14）の強度計算
17.1 一般事項

本章は，計装ノズル（N12，N13及びN14）の強度計算である。
\(\begin{aligned} & \text { 17．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図17－1に示す。 }\end{aligned}\)

17．1．2 解析範囲
解析範囲を図17－1に示す。

\section*{17．1．3 計算結果の概要}

計算結果の概要を表17－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 17－1（1）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N12 及びN13））

図 17－1（2）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N14））

表 17－1（1）計装ノズル（N12）の計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 } \\
& \hline
\end{aligned}
\] & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SUSF316 } \\
\hline
\end{gathered}
\] & V & 26 & 281 & P01－P02 & 31 & 422 & P01－P02 \\
\hline 溶接部近傍 ステンレス鋼側 & V & 24 & 281 & P03－P04 & 33 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { NCF600-B }
\end{gathered}
\] & V & 22 & 334 & P05－P06 & 175 & 501 & P05－P06＇ \\
\hline
\end{tabular}

表 17－1（2）計装ノズル（N13）の計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \[
\begin{aligned}
& \text { 許容 } \\
& \text { 応力 } \\
& \hline
\end{aligned}
\] & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SUSF316 } \\
\hline
\end{gathered}
\] & V & 26 & 281 & P01－P02 & 31 & 422 & P01－P02 \\
\hline 溶接部近傍 ステンレス鋼側 & V & 24 & 281 & P03－P04 & 33 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { NCF600-B }
\end{gathered}
\] & V & 22 & 334 & P05－P06 & 175 & 501 & P05－P06＇ \\
\hline
\end{tabular}

表 17－1（3）計装ノズル（N14）の計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{部分及び材料} & \multirow[b]{3}{*}{運転状態} & & & & \multicolumn{3}{|r|}{（単位： MPa ）} \\
\hline & & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & 応力強さ & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SUSF316 }
\end{gathered}
\] & V & 49 & 281 & P01－P02 & 31 & 422 & P01－P02 \\
\hline 溶接部近傍 ステンレス鋼側 & V & 29 & 281 & P03－P04 & 23 & 422 & P03－P04 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { NCF600-B }
\end{gathered}
\] & V & 29 & 334 & P07－P08 & 169 & 501 & P05－P06＇ \\
\hline
\end{tabular}

\section*{17.2 計算条件}

17．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

17．2．2 材料
各部の材料を図17－1に示す。

17．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

17．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

17．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）r．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{17．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）r．に定めるとおりである。

\section*{17．3．4 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

17．4 応力強さの評価
17．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表17－2に示す。
表17－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

17．4．2 一次膜十一次曲げ応力強さの評価運転状態Vにおける評価を表17－3に示す。

表17－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 17－2（1）計装ノズル（N12）の一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 26 & 281 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 26 & 281 \\
\hline \[
\begin{aligned}
& \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 24 & 281 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 24 & 281 \\
\hline \[
\begin{aligned}
& \hline \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 22 & 334 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 22 & 334 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 22 & 334 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 22 & 334 \\
\hline
\end{tabular}

表 17－2（2）計装ノズル（N13）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 17－2（3）計装ノズル（N14）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 17－3（1）計装ノズル（N12）の一次膜＋一次曲げ応力強さの評価のまとめ

表 17－3（2）計装ノズル（N13）の一次膜＋一次曲げ応力強さの評価のまとめ

表 17－3（3）計装ノズル（N14）の一次膜＋一次曲げ応力強さの評価のまとめ

18．ドレンノズル（N15）の強度計算
18.1 一般事項

本章は，ドレンノズル（N15）の強度計算である。

18．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図18－1に示す。

\section*{18．1．2 解析範囲}

解析範囲を図18－1に示す。

\section*{18．1．3 計算結果の概要}

計算結果の概要を表18－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 18－1 形状•寸法•材料•応力評価点（単位：mm）

表 18－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVC2B }
\end{gathered}
\] & V & 55 & 292 & P01－P02 & 39 & 438 & P01－P02 \\
\hline 肉盛部炭素鋼 & V & 31 & 292 & P03－P04 & 143 & 438 & P03－P04 \\
\hline
\end{tabular}

\section*{18．2 計算条件}

18．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

18．2．2 材料
各部の材料を図18－1に示す。

18．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

18．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

18．2．5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。

18．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）S．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

\section*{18．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）S．に定めるとおりである。

\section*{18．3．4 応力の評価}

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおりで ある。

18．4．2 一次膜＋一次曲げ応力強さの評価運転状態Vにおける評価を表18－3に示す。

表18－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 18－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 55 & 292 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 55 & 292 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 31 & 292 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 31 & 292 \\
\hline
\end{tabular}

表 18－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 応力評価面 } & \multicolumn{2}{|c|}{ 運転状態 V } \\
\cline { 2 - 3 } & 応力強さ & 許容応力 \\
\hline \begin{tabular}{l}
P01 \\
P02
\end{tabular} & 39 & 438 \\
\hline \begin{tabular}{l}
P01＇ \\
P02
\end{tabular} & 37 & 438 \\
\hline \begin{tabular}{l}
P03 \\
P04
\end{tabular} & 132 & 438 \\
\hline \begin{tabular}{l}
P03＇ \\
P04
\end{tabular} & 143 & 438 \\
\hline
\end{tabular}

19．高圧炉心スプレイノズル（N16）の強度計算
19.1 一般事項

本章は，高圧炉心スプレイノズル（N16）の強度計算である。

19．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図19－1に示す。

19．1．2 解析範囲
解析範囲を図19－1に示す。

19．1．3 計算結果の概要
計算結果の概要を表19－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 19－1 形状•寸法•材料•応力評価点（単位：mm）

表 19－1 計算結果の概要
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{部分及び材料} & \multirow[b]{2}{*}{運転状態} & \multicolumn{3}{|c|}{一次一般膜応力強さ} & \multicolumn{3}{|l|}{一次膜＋一次曲げ応力強さ} \\
\hline & & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 & \begin{tabular}{l}
応力 \\
強さ
\end{tabular} & \begin{tabular}{l}
許容 \\
応力
\end{tabular} & 応力評価面 \\
\hline \[
\begin{gathered}
\text { ノズル } \\
\text { セーフエンド } \\
\text { SFVC2B }
\end{gathered}
\] & V & 104 & 292 & P01－P02 & 87 & 438 & P01－P02 \\
\hline \[
\begin{gathered}
\text { サーマル } \\
\text { スリーブ } \\
\text { SFVC2B }
\end{gathered}
\] & V & 19 & 292 & P09－P10 & 35 & 438 & P05－P06 \\
\hline \[
\begin{gathered}
\text { ノズルエンド } \\
\text { SFVQ1A }
\end{gathered}
\] & V & 77 & 317 & P11－P12 & 38 & 476 & P11－P12 \\
\hline
\end{tabular}

\section*{19.2 計算条件}

19．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

19．2．2 材料
各部の材料を図19－1に示す。

19．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の3．3節に示す。

19．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

19．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）t．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

\section*{19．3．3 外荷重による応力}
（1）荷重条件（L04）
外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（2）強度評価編の参照図書（1）t．に定めるとおりである。

19．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．2．2項に定めるとおり である。

19．4 応力強さの評価
19．4．1 一次一般膜応力強さの評価運転状態Vにおける評価を表19－2に示す。表19－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」（2）強度評価編 の3．4節に示す許容応力を満足する。

19．4．2 一次膜 + 一次曲げ応力強さの評価運転状態Vにおける評価を表19－3に示す。表19－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 19－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 104 & 292 \\
\hline \[
\begin{aligned}
& \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 103 & 292 \\
\hline \[
\begin{aligned}
& \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 77 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06, }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 16 & 292 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 }
\end{aligned}
\] & 19 & 292 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' }
\end{aligned}
\] & 19 & 292 \\
\hline \[
\begin{aligned}
& \text { P11 } \\
& \text { P12 }
\end{aligned}
\] & 77 & 317 \\
\hline \[
\begin{aligned}
& \text { P11 } \\
& \text { P12 }
\end{aligned}
\] & 77 & 317 \\
\hline
\end{tabular}

表 19－3 一次膜 + 一次曲げ応力強さの評価のまとめ
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{応力評価面} & \multicolumn{2}{|c|}{運転状態V} \\
\hline & 応力強さ & 許容応力 \\
\hline \[
\begin{aligned}
& \hline \text { P01 } \\
& \text { P02 }
\end{aligned}
\] & 87 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P01' } \\
& \text { P02 }
\end{aligned}
\] & 86 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03 } \\
& \text { P04 }
\end{aligned}
\] & 40 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P03' } \\
& \text { P04 }
\end{aligned}
\] & 40 & 438 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 35 & 438 \\
\hline \[
\begin{aligned}
& \text { P05 } \\
& \text { P06 }
\end{aligned}
\] & 35 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 30 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P07 } \\
& \text { P08 }
\end{aligned}
\] & 30 & 438 \\
\hline \[
\begin{aligned}
& \text { P09 } \\
& \text { P10 } \\
& \hline
\end{aligned}
\] & 14 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P09' } \\
& \text { P10' } \\
& \hline
\end{aligned}
\] & 10 & 438 \\
\hline \[
\begin{aligned}
& \hline \text { P11 } \\
& \text { P12 }
\end{aligned}
\] & 38 & 476 \\
\hline \[
\begin{aligned}
& \text { P11' } \\
& \text { P12 }
\end{aligned}
\] & 28 & 476 \\
\hline
\end{tabular}```

