本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －他－F－01－0069＿改 0
提出年月日	2021 年 6 月 7 日

先行プラントとの差異に係る概要リスト
 （浸水防止設備•津波監視設備）

目 次

1．貯留堰1－1

2．水密扉••••••••••••••••••••••••••••••••••2－1
3．浸水防止蓋••••••••••••••••••••••••••••••••3－1
4．浸水防止壁••••••••••••••••••••••••••••••••4－1
5．逆止弁付ファンネル・•••••••••••••••••••••••••••5－1
6．貫通部止水処置••••••••••••••••••••••••••••••6－1
7．津波監視設備•••••••••••••••••••••••••••••••7－1
先行プラントとの差異に係る概要リスト（浸水防止設備•津波監視設備） 1．貯留堰

柏崎刈羽原子力発電所第 6 号機海水貯留堰の強度計算書に関する補足説明		女川原子力発電所第2号機貯留堰の強度計算書に関する補足説明		差異の有無 （○：有） （一：無）	差異の概要
1.	概要	1.	概要		女川は取水口と一体となった鉄筋コンクリート構造であるのに対
2.	基本方針		基本方針		し，柏崎は独立した鋼管矢板（ $\phi 1100$ 炭素鋼鋼管）構造であり，海
2.1	位置	2.1	位置		底に打ち込み設置されている。
2.2	構造概要	2.2	構造概要		柏崎は本体と取水護岸接続部に区分されるため，本体である鋼管矢板，取水護岸接続部の止水ゴム及び止水ゴム取付部鋼材の 3 部材に より構成される。 構造の違いはあるが，両地点共， 2 次元静的フレーム解析により荷重を算出し，発生応力と許容限界（短期許容応力度）とを比較する という照査手順•内容については基本的に同様である。
2.3	評価方針	2.3	評価方針		
2．3．1	概要			－	（女川は鉄筋コンクリートの健全性評価のみであるのに対し，柏崎は は鋼管•接続部の健全性及び止水ゴムの変形性評価を実施する方針と している。）
2．3．2	津波時及び重畳時の解析手法				女川では「3．5．1 解析方法」に記載
2.4	適用基準	2.4	適用基準	－	（構造が異なるため，適用基準も異なる）
3.	強度評価方法	3.	強度評価方法	，	－－
3.1	記号の定義	3.1	記号の定義	－	
3.2	評価対象断面および部位	3.2	評価対象	，	女川では「3．5．1 解析方法」に記載
3．2．1	評価対象断面			－	両社とも，代表性を踏まえたて評価対象（断面）を設定しており女川は貯留堰 6 基が近接しているため， 6 基の中心を，一方，柏崎は岩盤上面標高が最も高い・低い 2 断面を地震応答解析用断面として選定。 構造の違いにより，女川では「3．2 評価対象」にまとめて記載。
3．2．2	評価対象部位			－	（女川は鉄筋コンクリート単一構造あるのに対し，柏崎では複合構造で あることを踏まえ，（1）鋼管矢板，（2）止水ゴム取り付け部鋼材，（3）止水ゴ ムの3項目を対象に評価を実施。）
3.3	荷重及び荷重の組合せ	3.3	荷重及び荷重の組合せ		
3．3．1	荷重	3．3．1	荷重	－	
3．3．2	荷重の組合せ	3．3．2	荷重の組合せ	－	女川と柏崎の鋼管矢板部で考慮する荷重は同じ。 （柏崎では止水ゴム取付部鋼材に作用する荷重として，鋼管矢板を対象に考慮する荷重から衝突荷重を除いた組合せを考慮。）
3.4	許容限界	3.4	許容限界		（構造の違いを踏まえ，柏崎は機能の維持が可能な止水ゴム変形量も許
3．4．1	鋼管矢板				容限界に設定。）

先行プラントとの差異に係る概要リスト（浸水防止設備•津波監視設備）
2．水密扉

$\lceil V-2-10$	羽原子力発電所第 7 号機 3－1 水密扉の耐震性について の計算書」	女川原子力発電所第2号機 「VI－2－10－2－7－1 水密扉（浸水防止設備）の耐震性についての計算書」		$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無) } \\ (\triangle: \text { 女のみ) } \end{gathered}$	差異の概要
2.5	適用規格•基準等	2.5	適用規格•基準等	\bigcirc	女川では「原子力発電所耐震設計技術指針」を適用していない。 また，柏崎では固有振動数の算出に適用している「土木学会構造力学公式集」を記載していないが，女川では適用している「日本機械学会機械工学便覧」を記載している。
2.6	記号の説明	2.6	記号の説明	－	－
3.	固有値解析	3.	固有値解析	－	（3．1～3．3 に示す。）
3.1	固有振動数の算出方法	3.1	固有振動数の算出方法	－	－
3．1．1	解析モデルの設定	3．1．1	解析モデルの設定	\bigcirc	柏崎は扉閉止時のモデル化について，両端固定梁又は四辺支持としてい るが，女川は両端ヒンジ梁又は四辺支持としている。
3.2	固有振動数の算出条件等	3.2	固有振動数の算出条件等		（3．2．1～3．2．3 に示す。）
3．2．1	記号の説明	3．2．1	記号の説明	－	－
3．2． 2	固有振動数の算出方法	3．2．2	固有振動数の算出方法	\bigcirc	柏崎は「土木学会構造力学公式集」の公式を用いているが，女川は他の類似設備に合わせて「日本機械学会機械工学便覧」を用いている。柏崎は扉閉止時の芯材を両端固定梁としているが，女川は両端ヒンジ梁 としている。
3．2．3	固有振動数の算出条件	3．2．3	固有振動数の算出条件	－	－
3.3	固有振動数の算出結果	3.3	固有振動数の算出結果	－	－
4.	耐震評価	4.	耐震評価	兂	（4．1～4．6に示す。）
4． 1	評価対象部位	4． 1	評価対象部位	\triangle	女川はくぐり戸付扉を採用していることに伴い，評価対象部位に扉固定部を追加している。
4． 2	荷重及び荷重の組合せ	4.2	荷重及び何重の組合せ		（4．2．1～4．2．2 に示す。）
4．2．1	荷重の組合せ	4．2．1	荷重の組合せ	－	－－
4．2．2	荷重	4．2．2	荷重	－	－
4． 3	許容限界	4． 3	許容限界	，	（4．3．1～4．3．2 に示す。）
4．3．1	使用材料	4．3．1	使用材料	－	－
4．3．2	許容限界	4．3．2	許容限界	－	－

柏崎刈羽原子力発電所第7号機「V－3－別添 3－1－5 水密扉の強度計算書」		女川原子力発電所第 2 号機 「VI－3－別添 3－2－6 水密扉の強度計算書」		$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
1.	概要	1.	概要	\bigcirc	柏崎は内郭防護のみであり，女川は外郭防護及び内郭防護の水密扉で ある。
2.	一般事項	2.	一般事項	－	（2．1～2．6に示す。）
2.1	検討対象水密扉一覧	2.1	検討対象水密扉一覧	－	－－
2.2	配置概要	2.2	配置概要	－	－
2.3	構造計画	2.3	構造計画	\bigcirc	柏崎は締付装置，女川はカンヌキと表現。
2.4	評価方針	2.4	評価方針		女川はくぐり戸付扉を採用していることに伴い，評価対象部位に扉固定部を追加している。
				\triangle	
					女川は45 方向配置のアンカーボルトなし。
2.5	適用規格•基準等	2.5	適用規格•基準等	\bigcirc	女川は「鉄筋コンクリート構造計算規準•同解説」を適用していな い。また，応力算定で適用している「日本機械学会機械工学便覧」を記載している。

柏崎刈羽原子力発電所第 7 号機「V－3－別添 3－1－5 水密扉の強度計算書」		女川原子力発電所第 2 号機 「VI－3－別添 3－2－6 水密扉の強度計算書」		差異の有無 （○：有） （一：無） （ \triangle ：女川のみ）	差異の概要
2.6	記号の説明	2.6	記号の説明	－	－
3.	強度評価方法	3.	強度評価		（3．1～3．6に示す。）
3.1	評価対象部位	3.1	評価対象部位	\triangle	女川はくぐり戸付扉を採用していることに伴い，評価対象部位に扉固定部を追加している。
3.2	荷重及び荷重の組合せ	3.2	荷重及び荷重の組合せ		（3．2．1～3．2．2 に示す。）
3．2．1	荷重の設定	3．2．1	荷重の設定	－	－－
3．2．2	荷重の組合せ	3．2．2	荷重の組合せ	－	－
3.3	許容限界	3.3	許容限界		（3．3．1～3．3．2 に示す。）
3．3．1	使用材料	3．3．1	使用材料	－	－
3．3．2	許容限界	3．3．2	許容限界	－	
3.4	評価方法	3.4	評価方法		（3．4．1～3．4．2に示す。）
3．4．1	応力算定	3．4．1 応力算定		\bigcirc	柏崎は扉板のモデル化について，芯材で囲まれた部分を両端固定の一方向板としているが，女川は四辺支持の矩形板としている。
				柏崎はカンヌキ部の静水圧荷重は（扉の上端の荷重＋扉の下端の荷重） $/ 2$ の荷重を等分布で作用させているが，女川は扉の下端の荷重を等分布 で作用させている。	
				\triangle	女川はカンヌキ装置受けピンが点接触するピンとなる構造のみである ため点接触の評価のみ行っている。
				\bigcirc	柏崎はアンカーボルトの静水圧荷重は（扉の上端の荷重＋扉の下端の荷重）／ 2 の荷重を等分布で作用させているが，女川は扉の下端の荷重を等分布で作用させている。
					女川はアンカーボルトが 0° 方向と 90° 方向が複合配置されている扉が あるため， 0° 方向と 90° 方向が複合配置されている場合の評価を記載 している。
				\triangle	女川の扉付固定ボルト及び枠付固定ボルトはボルトに一方向の荷重が作用する構造であるため，「カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルト」と記載し，同じ項目としている。

柏崎刈羽原子力発電所第 7 号機 「V－3－別添 3－1－5 水密扉の強度計算書」		女川原子力発電所第 2 号機 「VI－3－別添 3－2－6 水密扉の強度計算書」		$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ) } \end{gathered}$	差異の概要	
3．4．2	断面検定	3．4．2 断面検定		\bigcirc	女川は扉板のモデル化を四辺支持の矩形板としているため，曲げ応力度 の算定に「日本機械学会機械工学便覧」の公式を用いている。	
				柏崎はカンヌキ受けピンについて，組合せ応力度で評価しているが，女川は両端ヒンジ梁で評価しており，最大曲げモーメントと最大せん断力 の発生場所が異なることから組合せ応力度は評価していない。		
				\triangle	女川はアンカーボルトが 0° 方向と 90° 方向が複合配置されている扉が あるため， 0° 方向と 90° 方向が複合配置されている場合の評価を記載 している。	
				女川の扉付固定ボルト及び枠付固定ボルトはボルトに一方向の荷重が作用する構造であるため，「カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルト」と記載し，同じ項目としている。		
3.5	評価条件	3.5	評価条件		－	－
3.6	評価結果	3.6	評価結果	－	－	

先行プラントとの差異に係る概要リスト（浸水防止設備•津波監視設備）

国 $\underset{~}{x}$

水防止䒧（浸水防止䒧（第 3 号機補機冷却海水系放水ピット））については，上記浸水防止蓋と構造が異なるとともに，女川の他設備で採用している構造や評価方法が含まれることから，「3．3 浸水防止蓋（浸水防止蓋（第 3 号機補機冷却海水系放水ピット））」で整理する。

> 目次は，柏崎刈羽原子力発電所第 7 号機取水槽閉止板の構造計画，評価対象部位及び評価対象設備と同様の浸水防止蓋（第 3 号機海水熱交換器建屋）を代表に整理する。

柏崎刈羽原子力発電所第 7 号機取水槽閉止板（耐震） （添付書類）		女川原子力発電所第 2 号機浸水防止蓋（耐震） （補足説明資料）	$\begin{aligned} & \text { (1) } \\ & \text { ダ } \\ & \text { ク } \\ & \text { ト } \\ & \text { 蓋 } \end{aligned}$		$\begin{gathered} \hline \text { 是の有 } \\ \text { : 有 } \\ -: \text { 午 } \\ \text { 女川 } \\ \hline \text { (3) } \\ 2 \\ \text { 号 } \\ \text { 井 } \\ \text { 戸 } \\ \text { 蓋 } \end{gathered}$	無 ） ） のみ） （4） 3 号 井 戸 蓋	$\begin{gathered} \hline(5) \\ 2 \\ \text { 号 } \\ \text { 軽 } \\ \text { 油 } \\ \text { タ } \\ \text { ン } \\ \text { ク } \\ \text { 蓋 } \end{gathered}$	差異の概要
1．概要	1.	概要	－	－	－	－	－	－
2．一般事項	2.	一般事項					\square	（2．1～2．5に示す。）
2.1 配置概要	2.1	配置概要	－	－	－	－	－	各設備の浸水防止範囲よって配置は異なる。

柏崎刈羽原子力発電所第 7 号機取水槽閉止板（耐震） （添付書類）	女川原子力発電所第 2 号機浸水防止蓋（耐震） （補足説明資料）	（1） ダ ク ト 蓋		$\begin{gathered} \hline \text { の有 } \\ : ~ \text { 有 } \\ \text { : 無 } \\ \text { 女川 } \\ \hline \text { (3) } \\ 2 \\ \text { 号 } \\ \text { 井 } \\ \text { 戸 } \\ \text { 蓋 } \end{gathered}$	無 ） のみ （4） 3 号 井 戸 蓋	⑤ 2 号 軽 油 夕 ン ク 蓋	差異の概要
5．5．5 アンカーボルト	5．5．4 固定ボルト（2）	－	－	－	－	\bigcirc	「発電用原子力設備規格 設計•建設規格」，「原子力発電所耐震設計技術指針」に基づき評価を実施している。
5.6 評価条件	5.6 評価条件	－	－	－	－	\bigcirc	「発電用原子力設備規格 設計•建設規格」，「原子力発電所耐震設計技術指針」に基づき評価を実施している。
6．評価結果	6．評価結果	－	－	－	－	－	－

柏崎刈羽原子力発電所第7号機 サブドレンシャフト（耐震） （添付書類）		女川原子力発電所第2号機揚水井戸（耐震） （補足説明資料）		$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (一 \text { 無) } \\ (\triangle: \text { 女川のみ) } \end{gathered}$	差異の概要
		7.	揚水井戸（第 3 号機海水ポン プ室防潮壁区画内）の耐震評価		（7．1～7．2（女川）に示す。）
1.	概要	7.1	概要	－	－
2． 3	評価方針	7.2	評価方針	\bigcirc	女川は揚水井戸の構造部材の健全性及び基礎地盤の支持性能を評価項目とし，柏崎はサブドレンシャフトの構造強度及び機器•配管系等の設備の支持機能の維持を評価項目としている。
2.4	適用規格•基準等	7.3	適用基準	\bigcirc	女川は「道路橋示方書•同解説」及び「原子力発電所耐震設計技術指針」 を適用している。柏崎は「道路橋示方書•同解説」，「原子力発電所耐震設計技術指針」に加え，「鋼構造設計規準」を適用している。
		8.	地震応答解析		（8．1～8．5（女川）に示す。）
2.1	位置	8.1	位置	－	－－
2.2	構造概要	8.2	構造概要	－	女川は全長 30m，内径 1.5 m ，材質 SM570 の鋼管構造であり，柏崎は全長約 $25 \sim 30 \mathrm{~m}$ ，内径 $1.7 \sim 1.9 \mathrm{~m}$ ，材質 SS400 の鋼管である。
3.1	評価対象部位及び評価方針	8.3	評価方針	－	－
3．2＊	地震応答解析モデル	8.4	地盤の応答解析モデル	－	＊：「V－2－2－別添1－2－1 地下水排水設備設置位置の地盤応答」に記載。
$\begin{aligned} & 3.4 .2 \\ & 3.4 .3 \end{aligned}$	地震動の選定 地盤物性の不確かさを考慮し た検討に用いる地震動	8.5	地盤応答	－	$-$
		9.	耐震評価		（9．1～9．6（女川）に示す。）
2． 3	評価方針	9． 1	評価方針	\bigcirc	女川は揚水井戸の構造部材の健全性及び基整地盤の支持性能を評価項目とし，柏崎はサブドレンシャフトの構造強度及び機器•配管系等の設備の支持機能の維持を評価項目としている。
3.2	荷重及び荷重の組合せ	9.2	荷重及び荷重の組合せ		（9．2．1～9．2．3（女川）に示す。）
		9．2．1	耐震評価上考慮する状態	\triangle	女川は，耐震評価において地震以外に考慮する状態を記載。
3．2．1	荷重	9．2．2	荷重	\bigcirc	女川は積載荷重及び積雪荷重を考慮している。
3．2．2	荷重の組合せ	9．2． 3	荷重の組合せ	\bigcirc	女川は積載荷重及び積雪荷重を組合せている。
		9.3	地下水位	\triangle	女川は，地下水位の設定位置を記載。
		9.4	許容限界		（9．4．1～9．4．2（女川）に示す。）

柏崎刈羽原子力発電所第 7 号機 サブドレンシャフト（耐震） （添付書類）	女川原子力発電所第 2 号機揚水井戸（耐震） （補足説明資料）		差異の有無 （○：有） （一：無） （ \triangle ：女川のみ）	差異の概要
3.3 許容限界	9． 4.1	構造部材の健全性に対する許容限界	\bigcirc	女川は「道路橋示方書•同解説」に基づく短期許容応力度を用いてい る。柏崎は，「鋼構造設計規準」に基づく弾性限強度を用いている。
	9． 4.2	基礎地盤の支持性能に対する許容限界	\triangle	女川は，基礎地盤の支持性能を評価している。
	9.5	評価方法	－	（9．5．1～9．5．2（女川）に示す。）
3．4．1（1）管応力解析方法	9．5．1	構造部材の健全性評価	－	－－
	9．5．2	基礎地盤の支持性能評価	\triangle	女川は，基礎地盤の支持性能を評価している。
	9． 6	評価結果	，	（9．6．1～9．6．2（女川）に示す。）
3．5．1 管軸方向断面の最大応答値 4．1 管軸方向断面の評価結果	9．6． 1	構造部材の健全性評価結果	－	－－
	9．6．2	基礎地盤の支持性能照査結果	\triangle	女川は，基礎地盤の支持性能を評価している。

先行プラント及び女川の他の浸水防止蓋は直接躯体に固定する構造であり，上記構造とは異なるため，先行プラントや女川の鋼構造物等で採用している評価方法等と比較し，差異を桯细

なお，第 3 号機補機冷却海水系放水ピットは女川で実績のある岩盤上に MMRを介して設置される箱型構造物であり，屋外重要土木構造物の評価方法等と比較し，差異を整理した。

	女川原子力発電所第 2 号機浸水防止蓋 （第3号機補機冷却海水系放水ピット） （耐震） （補足説明資料）	先行プラント及び女川他設備で採用し ている評価方法等と の差異の有無 （○：有） （一：無）	差異の概要等
1.	概要	－	－
2.	一般事項		（2．1～2．5に示す。）
2.1	配置概要	－	－－
2.2	構造計画	\bigcirc	－浸水防止蓋は，第 3 号機補機泠却海水系放水ピットからの浸水を防止するため，近接する第 3 号機海水熱交換器建屋側面に鋼製ブラケットを介して固定ボルトにて固定する構造であ り，躯体に直接固定する構造ではない。 なお，第 3 号機補機冷却海水系放水ピットとの境界部には止水ジョイント（M 型ジョイン ト）を設置することで止水性を確保する構造としているが，止水構造としては杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様の接続構造である。 また，浸水防止蓋には配管貫通部が設置されるが，配管の荷重は浸水防止蓋に加わらない構造である。
2.3	評価方針	－	－杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様に「評価対象部位の応力評価」及び「止水 ジョイントの変形性評価」を実施する方針。
2.4	適用規格•基準等	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に鋼構造設計規準や各種合成構造設計指針•同解説を適用。
2.5	記号の説明	－	－－
3.	評価対象部位及び評価対象設備		（3．1～3．2に示す。）
3.1	応力評価の評価対象部位	\bigcirc	2.2 に記載のとおり，構造を踏まえ設定。
3.2	変形性評価の評価対象部位	\bigcirc	2.2 に記載のとおり，構造を踏まえ設定。
4.	固有値解析		－「東海第二原子力発電所 海水ポンプ室エリア防護対策施設（ネット用架構）」と同様に 3 次
4.1	固有値解析のモデルの設定及び解析手法	－	元フレーム解析による固有値解析を実施。 －固有値解析の結果，固有振動数は 20 Hz 以上であることから剛構造であることを確認。
4.2	固有振動数の解析結果		
5.	耐震評価		（5．1～5．2 に示す。）

女川原子力発電所第 2 号機浸水防止蓋 （第3号機補機冷却海水系放水ピット） （耐震） （補足説明資料）	先行プラント及び女川他設備で採用し ている評価方法等と の差異の有無 （○：有） （一：無）	差異の概要等
5.1 応力評価方法		（5．1．1～5．1．5に示す。）
5.1 .1 荷重及び荷重の組合せ	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に設定。
5．1．2 許容限界	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に設定。
5．1．3 設計用地震力	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に第 3 号機海水熱交換器建屋の地震応答解析結果を使用。
5．1．4 計算方法	－	－「東海第二原子力発電所 海水ポンプ室エリア防護対策施設（ネット用架構）」と同様に 3 次元フレーム解析により鋼製ブラケットの断面力及びボルトの反力を算出し，評価。
5.1 .5 計算条件	－	－－
5.2 変形性評価方法		（5．2．1～5．1．4に示す。）
5．2．1 第3号機補機冷却海水系放水ピットの地盤応答解析方法	－	－浸水防止蓋の変位量は浸水防止蓋を支持する第 3 号機海水熱交換器建屋と第 3 号機補機冷却海水系放水ピットの地震時最大変位量の和としており，杭基礎構造防潮壁（鋼製遮水壁（鋼
5．2．2 第3号機補機冷却海水系放水ピットの解析断面	－	板））の異種構造物間と同じ評価である。別紙 1 にて第 3 号機補機冷却海水系放水ピットの地震時最大変位量の算出方法を説明。
5．2．3 許容限界	－	－杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様に止水ジョイントの許容限界を設定。（止水 ジョイントは同じ仕様を使用）
5．2．4 計算方法	－	－杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様に各止水ジョイント部材の開き方向とせん断方向の変位量を算出し，許容限界以下であることを確認。
6．評価結果	－	－－

	女川原子力発電所第2号機浸水防止蓋 第 3 号機補機冷却海水系放水ピット） （強度） （補足説明資料）	先行プラント及び女川他設備で採用し ている構造や評価方法等との差異の有無 （○：有） （一：無）	差異の概要等
1.	概要	－－	－
2.	基本方針		（2．1～2．5に示す。）
2.1	配置概要	－	－－
2.2	構造計画	\bigcirc	－浸水防止蓋は，第 3 号機補機泠却海水系放水ピットからの浸水を防止するため，近接する第3号機海水熱交換器建屋側面に鋼製ブラケットを介して固定ボルトで固定する構造であ り，躯体に直接固定する構造ではない。なお，第 3 号機補機冷却海水系放水ピットとの境界部には止水ジョイント（M 型ジョイント）を設置することで止水性を確保する構造としてい るが，止水構造は杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様の接続構造である。 また，浸水防止蓋には配管貫通部が設置されるが，配管の荷重は浸水防止蓋に加わらない構造である。
2． 3	評価方針	－	－杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様に「評価対象部位の応力評価」及び「止水 ジョイントの変形性評価」を実施する方針。
2.4	適用規格•基準等	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に鋼構造設計規準や各種合成構造設計指針•同解説を適用。
2.5	記号の説明	－	－－
3.	評価対象部位		（3．1～3．2に示す。）
3.1	応力評価の評価対象部位	\bigcirc	2．2に記載のとおり，構造を踏まえ設定。
3.2	変形性評価の評価対象部位	\bigcirc	2.2 に記載のとおり，構造を踏まえ設定。
4.	固有値解析		－「東海第二原子力発電所 海水ポンプ室エリア防護対策施設（ネット用架構）」と同様に 3 次
4.1	固有値解析のモデルの設定及び解析手法	－	元フレーム解析による固有値解析を実施。
4.2	固有振動数の解析結果		－固有値解析の結果，固有振動数は20Hz 以上であることから剛構造であることを確認。
5.	構造強度評価		（5．1～5．2 に示す。）
5.1	応力評価方法		（5．1．1～5．1．5 に示す。）
5．1．1	1 荷重及び荷重の組合せ	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に設定。
5．1．2	許容限界	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に設定。
5．1．3	3 余震荷重	－	－浸水防止蓋（第 3 号機海水熱交換器建屋）と同様に第 3 号機海水熱交換器建屋の地震応答解析結果（S d－D 2）を使用。
5.1 .4	4 計算方法	－	－「東海第二原子力発電所 海水ポンプ室エリア防護対策施設（ネット用架構）」と同様に 3 次元フレーム解析により鋼製ブラケットの断面力及びボルトの反力を算出し，評価。
5．1．5	5 計算条件	－	－－
5.2	変形性評価方法		（5．2．1～5．1．2 に示す。）
5．2．1	1 許容限界	－	－杭基礎構造防潮壁（鋼製遮水壁（鋼板））と同様に許容限界（重畳時）を設定。
5．2．2	2 設計用地震力における最大変位量	－	－－
6.	評価結果	－	－

先行プラントとの差異に係る概要リスト（浸水防止設備•津波監視設備）

	柏崎刈羽原子力発電所第 7 号機取水槽閉止板		女川原子力発電所第 2 号機浸水防止壁（耐震）	$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
1.	概要	1.	概要	－	－
2.	一般事項	2.	一般事項	－	（2．1～2．5に示す）
2.1	配置概要	2.1	配置概要	－	浸水防止範囲により記載が異なる。
2.2	構造計画	2.2	構造計画	対象外	設備相違のため。
2.3	評価方針	2.3	評価方針	－	－
2.4	適用基準	2.4	適用规格•基漼等	\bigcirc	女川の設備が屋外であり，風力係数算出のため「建築物荷重指針•同解説」を適用。
2． 5	記号の説明	2.5	記号の説明	\bigcirc	設備構造や設置場所により記載の差異はあるが設計方針は同等であ る。
3.	評価部位	3.	評価対象部位	対象外	設備相違のため。
4.	固有値解析	4.	固有值解析		（4．1～4．3 に示す）
4.1	固有振動数の計算方法	4.1	固有振動数の計算方法	－	
4.2	固有振動数の計算条件	4.2	固有振動数の計算条件	－	形状により算出方法の差異はあるが，「土木学会 構造力学公式集」の公式を用いて算出する設計方釔差異はない。
4.3	固有振動数の計算結果	4.3	固有振動数の計算結果	－	
5.	構造強度評価	5.	構造強度評価		（5．1～5．6 に示す）
5.1	構造強度評価方法	5.1	構造強度評価方法	－	－
5.2	荷重及び荷重の組合せ	5.2	荷重及び荷重の組合せ	\bigcirc	女川は屋外設置のため風荷重を考慮。
5.3	許容限界	5.3	許容限界	－	－
5.4	設計用地震力	5.4	設計用地震力	－	剛構造に対する設計震度の設定に差異なし。
5.5	評価方法	5.5	評価方法	－	女川，柏崎ともに「各種合成構造設計指針•同解説」及び「鋼構造設
5.6	評価条件	5.6	評価条件	－	計基準」に基づき評価。
6.	評価結果	6.	評価結果	－	－

柏崎刈羽原子力発電所第 7 号機取水槽閉止板		女川原子力発電所第 2 号機浸水防止壁（強度）		$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女のみ }) \end{gathered}$	差異の概要
1.	概要		概要	－	－
2.	一般事項	2.	一般事項	－	（2．1～2．5に示す）
2． 1	配置概要	2.1	配置概要	－	浸水防止範囲により記載が異なる。
2． 2	構造計画	2． 2	構造計画	対象外	設備相違のため。
2． 3	評価方針	2.3	評価方針	－	－
2． 4	適用基準	2.4	適用規格•基準等	\bigcirc	女川の設備が屋外であり，風力係数算出のため「建築物荷重指針•同解説」を適用。
2.5	記号の説明	2.5	記号の説明	\bigcirc	設備構造や設置場所により記載の差異はあるが設計方針は同等である。
3.	評価部位	3.	評価対象部位	対象外	設備相違のため。
4.	構造強度評価	4.	構造強度評価		（4．1～4．5 に示す）
4． 1	構造強度評価方法	4． 1	構造強度評価方法	－	－
4． 2	荷重及び荷重の組合せ	4． 2	荷重及び荷重の組合せ	\bigcirc	女川は，荷重を受ける方向の違いのため，突き上げ荷重ではなく静水圧荷重を考慮している。また，屋外設置のため風荷重を考慮している。
4． 3	許容限界	4.3	許容限界	－	－
4． 4	評価方法	4． 4	評価方法	－	女川，柏崎ともに「各種合成構造設計指針•同解説」及び「鋼構造設計
4． 5	評価条件	4.5	評価条件	－	基準」に基づき評価。
5.	評価結果	5.	評価結果	－	－

$$
\square
$$

柏崎刈羽原子力発電所第 7 号機床ドレンライン浸水防止治具		女川原子力発電所第2号機逆止升付ファンネル（耐震）		$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
4.	固有周期		固有値解析	－	（4．1～4．3 に示す）
4． 1	固有周期の計算方法	4． 1	固有振動数の計算方法	－	構造を踏まえたモデル化条件の差異はあるが，評価方法の考え方に差異はない。
4． 2	固有周期の計算条件	4． 2	固有振動数の計算条件	－	
4． 3	固有周期の計算結果	4． 3	固有振動数の計算結果	－	
5.	構造強度評価	5.	構造強度評価	－	（5．1～5．6に示す）
5.1	構造強度評価方法	5.1	構造強度評価方法	－	－
5.2	荷重及び荷重の組合せ	5.2	荷重及び荷重の組合せ	－	構造を踏まえた荷重設定の差異はあるが，荷重の組合せに差異なし。
5.3	許容限界	5.3	許容限界	－	－
5.4	設計用地震力	5.4	設計用地震力	－	設置位置に応じた設計としていることに差異なし。
5.5	計算方法	5.5	計算方法	－	構造を踏まえた差異はあるが，計算方法，計算条件の考え方に差異な し。
5.6	計算条件	5.6	計算条件	－	
6.	機能維持評価	6.	機能維持評価	－	構造を踏まえた差異はあるが，評価の考え方に差異なし。
6.1	機能維持評価方法	6.1	機能維持評価方法	－	
7.	評価結果	7.	評価結果	－	－

柏崎刈羽原子力発電所第 7 号機床ドレンライン浸水防止治具		女川原子力発電所第2号機逆止弁付ファンネル（強度）		$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ) } \end{gathered}$	差異の概要
4.	固有周期	4.	固有値解析	－	（4．1～4．3 に示す）
4． 1	固有周期の計算方法	4． 1	固有振動数の計算方法	－	構造を踏まえたモデル化条件の差異はあるが，評価方法の考え方に差異はない。
4． 2	固有周期の計算条件	4． 2	固有振動数の計算条件	－	
4． 3	固有周期の計算結果	4． 3	固有振動数の計算結果	－	
5.	構造強度評価	5.	構造強度評価		（5．1～5．6に示す）
5.1	構造強度評価方法	5.1	構造強度評価方法	－	－
5.2	荷重及び荷重の組合せ	5.2	荷重及び荷重の組合せ	\bigcirc	設置位置による津波荷重の差異により，女川は突き上げ荷重を考慮し ているが，柏崎は静水圧荷重を考慮している。
5． 3	許容限界	5.3	許容限界	－	－－
5． 4	設計用地震力	5.4	設計用地震力	－	設置位置に応じた設計としていることに差異なし。
5.5	計算方法	5.5	計算方法	\bigcirc	女川は突き上げ荷重を考慮しているが，柏崎は静水圧荷重を考慮して いる。構造を踏まえた差異はあるが，計算方法，計算条件に差異な し。
5.6	計算条件	5.6	計算条件	\bigcirc	
6.	評価結果	6.	評価結果		（6．1～6．2 に示す）
6.1	応力評価	6.1	応力評価	－	－
6.2	構造健全性評価	6.2	構造健全性評価	－	構造を踏まえた差異はあるが，評価方針に差異なし。

先行プラントとの差異に係る概要リスト（浸水防止設備•津波監視設備）
6．貫通部止水処置

柏崎刈羽原子力発電所第 7 号機貫通部止水処置（耐震）		女川原子力発電所第 2 号機貫通部止水処置（耐震）		$\begin{gathered} \hline \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \\ \hline \end{gathered}$	差異の概要
1.	概要	1.	概要	－	－
2.	一般事項	2.	一般事項		（2．1～2．5に示す）
2． 1	配置概要	2.1	配置概要	－	浸水防止範囲により記載が異なる。
2． 2	構造計画	2． 2	構造計画	\bigcirc	女川は柏崎と同様にシール材，モルタル及びブーツを使用している が，柏崎に示す鉄板，フラップゲート及びケーブルトレイ金属ボック スは使用しない。
2.3	評価方針	2.3	評価方針	－	－
2． 4	適用基準	2． 4	適用規格•基準等	\bigcirc	女川は鉄板がないため，「発電用原子力設備規格 設計•建設規格」を適用しない。
2． 5	記号の説明	2.5	記号の説明	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
3.	評価部位	3.	評価対象部位	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
（4．）	固有周期	－	－	－	女川はフラップゲート及びケーブルトレイ金属ボックスは使用しない ため，固有周期の確認は実施しない。
（4．1）	固有周期の確認方法	－	－	－	
（4．2）	固有周期の確認条件	－	－	－	
（4．3）	固有周期の確認結果	－	－－	－	
5.	構造強度評価	4.	構造強度評価	－	（4．1～4．6に示す）
5.1	構造強度評価方法	4． 1	構造強度評価方法	－	－
5． 2	荷重及び荷重の組合せ	4． 2	荷重及び荷重の組合せ	－	構造を踏まえた荷重設定の差異はあるが，荷重の組合せに差異なし。
5． 3	許容限界	4． 3	許容限界	－	－
5． 4	設計用地震力	4． 4	設計用地震力	－	設置位置に応じた設計としていることに差異なし。
5． 5	計算方法	4． 5	計算方法	－	構造を踏まえた差異はあるが，計算方法，計算条件の考え方に差異な し。
5.6	計算条件	4． 6	計算条件	－	
（6．）	機能維持評価	－	－	－	女川はフラップゲートがないため，同様の機能維持評価は実施しない。
（6．1）	機能維持評価方法	－	－	－	
7.	機能維持評価	5.	評価結果	－	－

	羽原子力発電所第 7 号機通部止水処置（強度）	女川原子力発電所第 2 号機貫通部止水処置（強度）		$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
1.	概要	1.	概要	－	－
2.	一般事項	2.	一般事項		（2．1～2．5に示す）
2． 1	配置概要	2.1	配置概要	－	－
2． 2	構造概要	2.2	構造概要	\bigcirc	女川は柏崎と同様にシール材及びモルタルを使用しているが，柏崎に示すブーツ，鉄板，フラップゲート及びケーブルトレイ金属ボックス は使用しない。
2.3	評価方針	2.3	評価方針	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
2． 4	適用規格	2.4	適用規格•基準等	\bigcirc	女川は鉄板がないため，「機械工学便覧」を適用しない。
2.5	記号の説明	2.5	記号の説明	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
3.	評価部位	3.	評価対象部位	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
4.	構造強度評価	4.	構造強度評価	－	（4．1～4．6に示す）
4． 1	構造強度評価方法	4． 1	構造強度評価方法	－	採用する構造により記載の差異はあるが，設計方針に係る差異なし。
4． 2	荷重及び荷重の組合せ	4． 2	荷重及び荷重の組合せ	\bigcirc	設置場所に応じた考慮すべき荷重の組合せを明記している。
4． 3	許容限界	4.3	許容限界	－	－
4． 4	設計用地震力	4． 4	設計用地震力	－	女川はシール材の設計用地震力を明記している。
4.5	計算方法	4.5	計算方法	－	採用する構造により記載の差異はあるが，柏崎と同様のシール材，モル タルの評価方法に差異なし。
4． 6	計算条件	4． 6	計算条件	－	柏崎はモルタルの貫通部にかかる水頭高さを貫通口下端より更に下げ た位置としているが，女川は現実的にモルタルに加わる最大の水頭圧で ある貫通口下端を設定して評価をしている。
5.	評価結果	5.	評価結果	－	－

先行プラントの補足説明資料との差異に係る概要リスト（浸水防止設備•津波監視設備） 7．津波監視設備 7．1 津波監視カメラ

柏崎刈羽原子力発電所第 7 号機津波監視カメラ	女川原子力発電所第 2 号機津波監視カメラ	$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \\ \hline \end{gathered}$	差異の概要
2．10．1 構造	6．6．1．1 構造	\bigcirc	構造及び設置場所が異なる。
2．10．2 基本方針	6．6．1．2 基本方針		
（1）津波監視カメラ			
1．評価方法	6．6．1．3 評価方法		
	（1）津波監視カメラ		（ $\mathrm{a} \sim \mathrm{c}$ に示す。）
1.1 一般事項	a．一般事項	\bigcirc	構造及び設置場所が異なる。
1.2 固有周期	b．固有周期	－	－
1.3 構造強度評価	c．構造強度評価		（ a ）～（i）に示す。）
1．3．1 評価条件	（a）評価条件	\bigcirc	設置場所の相違により設計用地震力が異なる。
1．3．2 応力計算	（b）応力計算	－	－
1．3．3 取付ボルトの計算	（c）基礎ボルトの計算方法	－	－
1．3．4 応力の評価方法	（d）基礎ボルトの応力評価方法	\bigcirc	- ボルトの使用材料が異なる。 - 女川は「設計•建設規格」を適用しているが，柏崎は許容せん断応力 のみ「鋼構造設計基準」を適用している。 －女川は基礎ボルトが後施工アンカのため，許容応力は 20% 低減を考慮 している。
1．3．5 カメラ架台の計算方法	（e）監視カメラ架台の計算方法	\bigcirc	－女川は「設計•建設規格」を適用しているが，柏崎は許容せん断応力 のみ「鋼構造設計基準」を適用している。 －女川は圧縮応力，曲げ応力，せん断応力及び組合せ応力を計算してお り，柏崎は引張応力，曲げ応力，せん断応力及び組合せ応力を計算して いる。女川は圧縮応力の方が厳しい評価となるため柏崎と評価が異な る。 －組合せ応力について，最も厳しい評価として女川は垂直十せん断，柏崎は引張り＋曲げとなるため評価が異なる。

柏崎刈羽原子力発電所第 7 号機津波監視カメラ		女川原子力発電所第 2 号機津波監視カメラ		$\begin{gathered} \hline \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
1．3．6	応力の評価方法	（f）	応力の評価方法	\bigcirc	－使用材料の許容応力評価条件について，女川は「設計•建設規格」を適用しているが，柏崎は許容せん断応力のみ「鋼構造設計基準」を適用 している。
1．3．7	計算条件	（g）	計算条件	－	－
		（h）	部材の機器要目	－	－柏崎では「1．3．7 計算条件」に含めて記載している。
1．3．8	構造強度評価結果	（i）	構造強度評価結果	\bigcirc	－組合せ応力について，最も厳しい評価として女川は垂直＋せん断，柏崎は引張り＋曲げとして評価している。
（2）	津波監視カメラ制御架	（2）	津波監視設備制御盤		（ a ～ c に示す。）
1.	評価方法				
1.1	一般事項	a．	一般事項	\bigcirc	－女川は直立形であり，柏崎は壁刲形となっている。
1． 2	固有周期	b．	固有周期	\bigcirc	－女川は津波監視設備制御盤の固有周期確認のため振動試験装置により測定を実施しているが，柏崎は構造が同等で同様な振動特性を持った盤 の振動試験で確認された固有周期を使用している。
1． 3	構造強度評価	c．	構造強度評価		（3．1～3．4に示す。）
1．3．1	評価条件	（a）	評価条件	\bigcirc	－設計用地震力が異なる。
1．3．2	応力計算	（b）	応力計算	\bigcirc	－女川は盤取付ボルト，ベース取付ボルト及び基礎ボルトを対象として おり，柏崎は基礎ボルトを対象としている。
1．3．3	応力の評価方法	（c）	応力評価方法	－	－
1．3．4	構造強度評価結果	（d）	構造強度評価結果	－	－

先行プラントの補足説明資料との差異に係る概要リスト（浸水防止設備•津波監視設備）

柏崎刈羽原子力発電所第 7 号機取水槽水位計	女川原子力発電所第 2 号機取水ピット水位計	$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \\ \hline \end{gathered}$	差異の概要
（1）検出器			
1．構造計画	1．構造計画	\bigcirc	構造は同等だが，女川は基礎ボルトにケミカルアンカを使用。柏崎はメカニカルアンカを使用。
2．評価部位	2．評価部位	\bigcirc	「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき，女川は基礎ボルトに加え，取付ボルトも評価。
3．固有周期	3．固有周期	－	－
4．構造強度評価	4．構造強度評価		（4．1～4．2 に示す。）
4．1 構造強度評価方法	4．1 構造強度評価方法	\bigcirc	設置場所の相違により設計用地震力が異なる。
4.2 荷重の組合せ及び許容応力	4.2 荷重の組合せ及び許容応力	\bigcirc	基礎ボルトの材質が異なるため，許容応力が異なる。
5．機能維持評価	5．機能維持評価	1	（5．1に示す。）
5.1 電気的機能維持評価方法	5.1 電気的機能維持評価方法	\bigcirc	検出器型式の違いにより，最大加速度が異なる。

注：柏崎は取水槽水位計の補足説明資料を作成していないため，耐震計算書の主要項目を比較した。

柏崎刈羽原子力発電所第 7 号機取水槽水位計		女川原子力発電所第2号機取水ピット水位計	$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
2.2 設計用地震力	4.3	設計用地震力		－
2.3 計算方法	4． 4	計算方法		－
2.4 計算条件	4.5	計算条件		－
	4.6	応力の評価		－

注：柏崎は取水槽水位計の補足説明資料を作成していないため，耐震計算書の主要項目を比較した。

柏崎刈羽原子力発電所第 7 号機取水槽水位計	女川原子力発電所第 2 号機取水ピット水位計	$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ) } \end{gathered}$	差異の概要
4．構造強度評価	4．構造強度評価		（4．1～4．6に示す。）
4．1 構造強度評価方法	4．1 構造強度評価方法	－	－
4.2 荷重の組合せ及び許容応力	4.2 荷重の組合せ及び許容応力	\bigcirc	温度条件が異なることから，許容応力が異なる。
4.3 設計用地震力	4．3 設計用地震力	\bigcirc	設置場所の相違により設計用地震力が異なる。
4.4 計算方法	4．4 計算方法	－	－
4.5 計算条件	4.5 計算条件	－	－
4.6 応力の評価	4.6 応力の評価	－	－

柏崎刈羽原子力発電所第 7 号機取水槽水位計	女川原子力発電所第 2 号機取水ピット水位計	$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ) } \end{gathered}$	差異の概要
（4）アキュムレータ			
1．構造計画	1．構造計画	\bigcirc	女川はスカート支持たて置円筒型容器を床面に据え付けており，据え付 け方法が異なる。
2．評価部位	2．評価部位	\bigcirc	女川は胴板及びスカートに加え，基礎ボルトも評価している。
3．固有周期	3．固有周期	\bigcirc	据え付け方法が異なるため固有周期の計算方法が異なる。
4．構造強度評価	4．構造強度評価		（4．1～4．6に示す。）
4．1 構造強度評価方法	4.1 構造強度評価方法	－	－
4.2 荷重の組合せ及び許容応力	4.2 荷重の組合せ及び許容応力	\bigcirc	- スカート部分の材料が異なる。 - 女川は基礎ボルトが後施工アンカのため，許容応力は 20% 低減を考慮している。
4.3 設計用地震力	4.3 設計用地震力	\bigcirc	設置場所の相違により設計用地震力が異なる。
4．4 計算方法	4．4 計算方法	\bigcirc	据え付け方法の違いによる構造の違いから応力計算方法が異なる。
4.5 計算条件	4.5 計算条件	－	－
4.6 応力の評価	4.6 応力の評価	－	－

注：柏崎は取水槽水位計の補足説明資料を作成していないため，耐震計算書の主要項目を比較した。

柏崎刈羽原子力発電所第 7 号機取水槽水位計	女川原子力発電所第2号機取水ピット水位計	$\begin{gathered} \text { 差異の有無 } \\ (\bigcirc: \text { 有 }) \\ (-: \text { 無 }) \\ (\triangle: \text { 女川のみ) } \\ \hline \end{gathered}$	差異の概要
（5）ボンベラック			
1．構造計画	1.構造計画	\bigcirc	ボンベラック本体の構造は同等だが，固定方法が異なる。女川は基礎ボ ルトにより固定しており，柏崎は溶接にてフレームを固定している。 \square
2．評価部位	2．評価部位	\bigcirc	女川はボンベラックフレーム及び溶接部に加え，基整ボルトも評価し ている。
3．構造強度評価	3．構造強度評価	，	（3．1～3．8に示す。）
3.1 構造強度評価方法	3.1 構造強度評価方法	－	－
3.2 荷重の組合せ及び許容応力	3.2 荷重の組合せ及び許容応力	\bigcirc	－女川は基礎ボルトが後施工アンカのため，許容応力は 20% 低減を考慮している。
3.3 解析モデル及び諸元	3.3 解析モデル及び諸元	\bigcirc	女川は解析コード「NX NASTRAN」を使用している。おり，柏崎は解析コード「ABAQUS」を使用している。

柏崎刈羽原子力発電所第 7 号機取水槽水位計	女川原子力発電所第 2 号機取水ピット水位計		$\begin{gathered} \text { 差異の有無 } \\ (○: \text { 有) } \\ (-: \text { 無) } \\ (\triangle: \text { 女川のみ }) \end{gathered}$	差異の概要
3.3 固有周期	3.3	固有周期	－	－
3.5 設計用地震力	3.5	設計用地震力	\bigcirc	設置場所の相違により設計用地震力が異なる。
3.6 計算方法	3.6	計算方法	\bigcirc	ボンベラック本体の固定方法が異なることから計算方法が異なる。
3.7 計算条件	3.7	計算条件	－	－
3.8 応力の評価	3.8	応力の評価	－	－

主要項目を比較した。

