本資料のうち,枠囲みの内容は 防護上の観点から公開できませ ん。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0175_改 0
提出年月日	2021年6月2日

VI-2-11-2-18 第3号機取水路の耐震性についての計算書

2021年6月

東北電力株式会社

1.			
2.	基本方法		2
2.	.1 位置	물 	2
2.	.2 構造	き概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.	.3 評価	町方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.	.4 適用]基準 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3.	耐震評	価 · · · · · · · · · · · · · · · · · · ·	9
3.	.1 評価	町対象断面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.	.2 解材	行方法 ·····	11
	3.2.1	構造部材 ·····	11
	3.2.2	地盤物性及び材料物性のばらつき・・・・・	13
	3.2.3	減衰定数 · · · · · · · · · · · · · · · · · · ·	13
	3.2.4	地震応答解析の解析ケースの選定・・・・・	14
3.	.3 荷重	意及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	3.3.1	耐震評価上考慮する状態・・・・・	15
	3.3.2	荷重	15
	3.3.3	荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
3.	4 入力	7地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3.	.5 解材	〒モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	3.5.1	解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	3.5.2	使用材料及び材料の物性値・・・・・	33
	3.5.3	地盤の物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
	3.5.4	地下水位 ·····	34
3.	.6 許容	释限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
	3.6.1	構造部材の健全性に対する許容限界・・・・・	35
	3.6.2	基礎地盤の支持性能に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
3.	.7 評価	町方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	3.7.1	構造部材の健全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	3.7.2	基礎地盤の支持性能評価・・・・・	39
4.	耐震評	価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
4.	.1 構造	告部材の健全性に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
4.	.2 基礎	巻地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	4.2.1	基礎地盤(牧の浜部層)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	4.2.2	MMR (既設)	42

目次

1. 概要

本資料は、添付書類「VI-2-11-1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき、第3号機取水路が、上位クラス施設である防潮堤(鋼管式鉛直壁)の地中部に位置していることから、上位クラス施設に対して波及的影響を及ぼさないことを説明するものである。

波及的影響の評価は、上位クラス施設の機能が保持されることを確認するために、下位クラス 施設である第3号機取水路を対象に、防潮堤(鋼管式鉛直壁)の設計に適用する基準地震動Ss を用いた地震応答解析を行い、構造部材の健全性評価及び基礎地盤の支持性能評価を実施するこ とで、第3号機取水路が十分な構造強度を有することを確認するものである。

- 2. 基本方針
- 2.1 位置

第3号機取水路の位置を図2-1に示す。

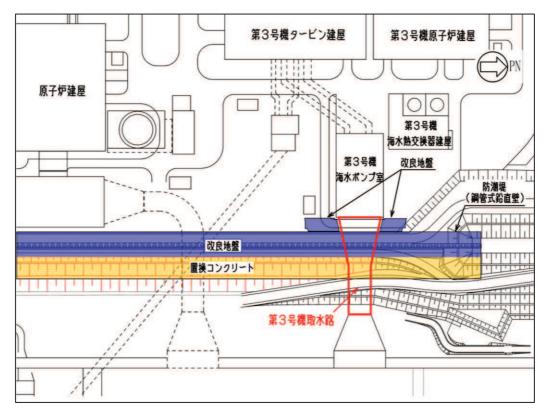


図 2-1 第3号機取水路の位置図

2.2 構造概要

第3号機取水路の平面図を図2-2に、断面図を図2-3及び図2-4に、概略配筋図を図2-5に示す。

第3号機取水路は,第3号機取水口と第3号機海水ポンプ室を結ぶ,鉄筋コンクリート造の 地中構造物であり,延長27.39m,内空幅,内空高さ,の二連ボックスカルバート 構造の標準部と,延長32.42m,内空幅,内空高さ,の四連ボック スカルバート構造の漸拡部より構成され,標準部は延長方向に断面の変化が少なく,漸拡部は 断面が延長方向に異なる線状構造物である。

また,第3号機取水路は、マンメイドロック(以下「MMR」という。)を介して十分な支持 性能を有する岩盤に設置されている。

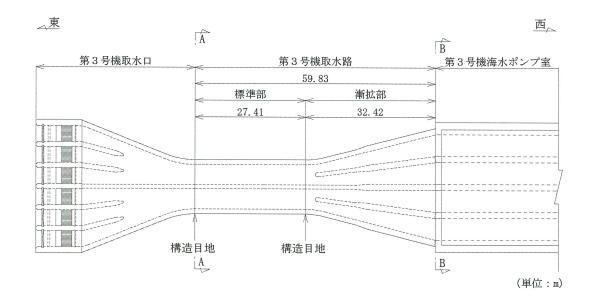


図 2-2 第 3 号機取水路平面図

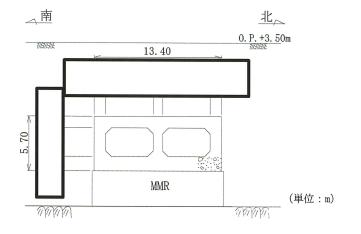


図 2-3 第 3 号機取水路断面図(A-A 断面)

枠囲みの内容は防護上の観点から公開できません。

-

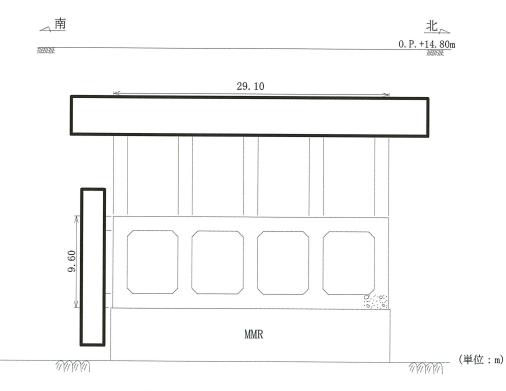
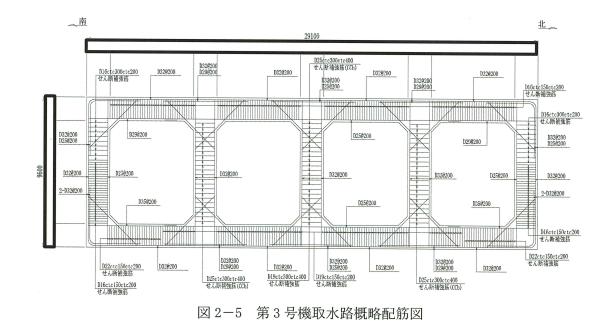
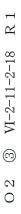




図 2-4 第 3 号機取水路断面図(B-B 断面)

枠囲みの内容は防護上の観点から公開できません。

2.3 評価方針

第3号機取水路は,防潮堤(鋼管式鉛直壁)と同じ運転状態を想定することから,設計基準 対象施設及び重大事故等対処施設に対する波及的影響評価を行う。

第3号機取水路の耐震評価フローを図2-6に示す。

第3号機取水路の波及的影響評価は、地震応答解析により得られた解析結果に基づき、表2 -1の第3号機取水路の評価項目に示すとおり、構造部材の健全性評価及び基礎地盤の支持性 能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで,構造強度を有するこ とを確認する。

構造部材の健全性評価については、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、 曲げ・軸力系の破壊については構造部材の照査用層間変形角が許容限界を下回ることを確認す る。せん断破壊に対しては照査用せん断力が許容限界を下回ることを確認する。

基礎地盤の支持性能評価においては、地震応答解析より得られた基礎地盤の接地圧が、添付 書類「VI-2-1-9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

ここで,第3号機取水路は,運転時,設計基準事故時及び重大事故時の状態における圧力, 温度等について,波及的影響評価における手法及び条件に有意な差異はなく,評価は設計基準 対象施設の評価結果に包括されることから,設計基準対象施設の評価結果を用いた重大事故等 対処施設の評価を行う。

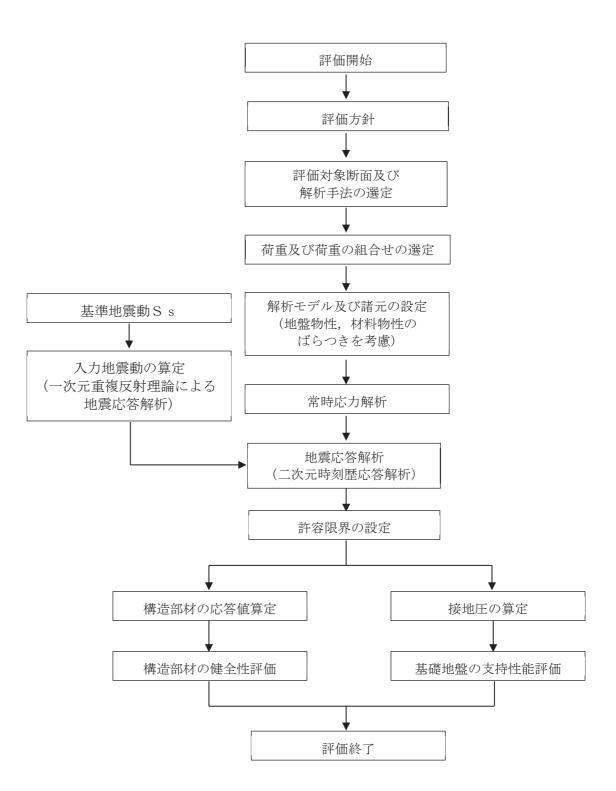


図 2-6 第3号機取水路の耐震評価フロー

評価方針	評価項目	部位	評価方法	嶒	午容限界
	構造部材の	鉄筋コン クリート	照査用層間変形角及 び照査用せん断力が	曲げ・軸力	限界層間変形角*
構造強度 を有する こと	健全性	部材	▶ 許容限界を下回ることを確認	せん断力	せん断耐力*
	基礎地盤の基礎	基礎地盤	発生する接地圧が許 容限界を下回ること	岩盤の極限支	〔持力*
	支持性能	MMR	を確認	MMR の支圧強	度*

表 2-1 第3号機取水路の評価項目

注記*:妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格,基準等を以下に示す。

- ・ コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・ コンクリート標準示方書 [設計編] (土木学会, 2017 年制定)
- ・ 道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成14年 3月)
- · 道路橋示方書(V耐震設計編) · 同解説((社)日本道路協会,平成14年3月)
- ・ 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(土木学会 原 子力土木委員会,2005年6月)
- 原子力発電所耐震設計技術指針 JEAG4601-1987(社団法人 日本電気協会 電 気技術基準調査委員会)

3. 耐震評価

3.1 評価対象断面

第3号機取水路の評価対象断面位置を図3-1に示す。第3号機取水路のうち,防潮堤(鋼管式鉛直壁)を横断する範囲の二連ボックスカルバート構造である標準部及び四連ボックスカ ルバート構造である漸拡部から,評価対象断面を選定する。

このうち,漸拡部と第3号機海水ポンプ室の接続部における断面は,内空幅及び内空高さが 最も大きい断面であること,また,両側面のみ地盤改良がされており,防潮堤直下に比べ土圧 低減効果は小さいことから,耐震評価上最も厳しい断面である。また,当該断面は,防潮堤の 直下を横断する断面ではないものの,漸拡部は,水路途中に構造目地がない一体構造であるこ とを考慮し,保守的な評価として,第3号機海水ポンプ室との接続部(A-A 断面)を評価対象 断面として選定する。

評価対象地質断面図を図 3-2 に示す。

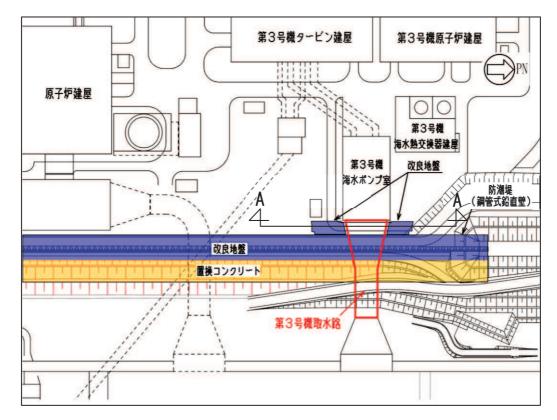


図 3-1 第3号機取水路の評価対象断面位置図

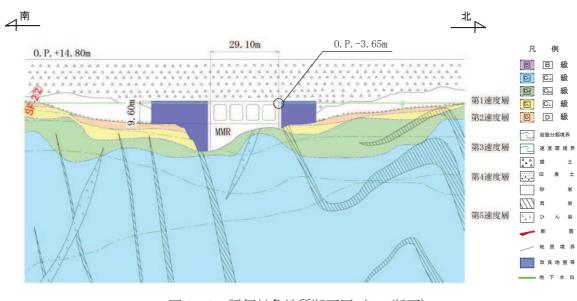


図 3-2 評価対象地質断面図 (A-A 断面)

3.2 解析方法

地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち、「2.3 屋外重 要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は、構造物と地盤の相互作用を考慮できる二次元有限要素法により、基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答 解析(有効応力解析)を行う。

構造部材については、非線形はり要素を用いることとし、構造部材の非線形性については、 鉄筋コンクリートのM- φ関係を適切にモデル化する。

また,地盤については,地盤のひずみ依存性を適切に考慮できるようモデル化する。地震応 答解析には,解析コード「FLIP Ver.7.3.0_2」を使用する。なお,解析コードの検証及び妥当 性確認の概要については,添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.2.1 構造部材

鉄筋コンクリート部材は非線形はり要素でモデル化することとし、図 3-3 に示すM-¢関係のトリリニアモデルとする。また、履歴特性は、図 3-4 に示すとおり修正武田モ デルを適用する。また、コンクリートの応力-ひずみ関係及び鉄筋の応力-ひずみ関係に は、それぞれ図 3-5 及び図 3-6 に示す非線形特性を考慮する。

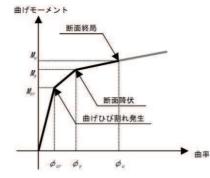


図 3-3 鉄筋コンクリート部材のM-φ関係 (原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル (土木学会 原子力土木委員会, 2005 年 6 月)より引用)

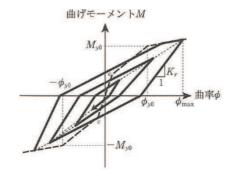


図 3-4 鉄筋コンクリート部材の履歴特性(修正武田モデル) (道路橋示方書(V耐震設計編)・同解説(平成 14 年 3 月)より引用)

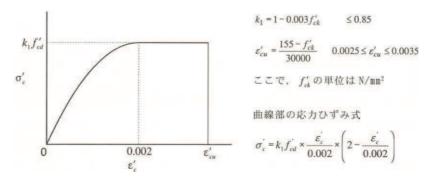


図 3-5 構造部材の非線形特性(コンクリートの応力-ひずみ関係) (コンクリート標準示方書[構造性能照査編](土木学会,2002年制定)より引用)

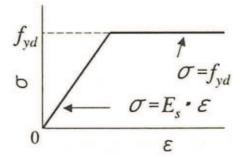


図 3-6 構造部材の非線形特性(鉄筋の応力-ひずみ関係) (コンクリート標準示方書[構造性能照査編](土木学会,2002年制定)より引用) 3.2.2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため,表 3-1 に示す解析ケースを 設定する。

第3号機取水路は,MMR を介して岩盤上に設置され,周囲には,旧表土,盛土, D級岩 盤及び改良地盤といった,動的変形特性にひずみ依存性がある地盤が分布している。これ らの地盤のせん断変形が地震時に第3号機取水路の応答に影響を与えると判断されること から,これらの地盤の初期せん断弾性係数のばらつきを考慮する。

初期せん断弾性係数の標準偏差σを用いて設定した解析ケース②及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また,材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより,材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は、「3.2.4 解析ケース」に示す。

	材料物性	地盤物性			
解析ケース	(コンクリート)(E₀:ヤング係数)	旧表土,盛土, D級岩盤,改良地盤	<u>C</u> L級岩盤, <u>C</u> M級岩盤, CH級岩盤, B級岩盤		
		(G ₀ : 初期せん断弾性係数)	(G _d :動せん断弾性係数)		
ケース① (基本ケース)	設計基準強度	平均值	平均值		
ケース2	設計基準強度	平均值+1σ	平均值		
ケース③	設計基準強度	平均值-1σ	平均值		
ケース④	実強度に基づく 圧縮強度*	平均值	平均值		

表 3-1 解析ケース

注記*:既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.2.3 減衰定数

Rayleigh 減衰を考慮することとし、剛性比例型減衰(α=0, β=0.002)とする。

3.2.4 地震応答解析の解析ケースの選定

耐震評価においては、すべての基準地震動Ssに対し、解析ケース①(基本ケース)を 実施する。解析ケース①において、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照 査の照査項目ごとに照査値が0.5以上となる照査項目に対して、最も厳しい地震動を用い て、表 3-1に示す解析ケース②~④を実施する。耐震評価における解析ケースを表 3-2 に示す。

		ケース(1)		ケース(2)	ケース③	ケース(4)	
解析ケース		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース		地盤物性のば らつき(-1 σ)を考慮し た解析ケース	 材料物性(コンクリート) に実強度を考慮した解析ケース 	
地盤物性		平均值	귀	Σ均值+1σ	平均值-1σ	平均值	
		設計基準強度	設	計基準強度	設計基準強度	実強度に基づ く圧縮強度*	
	$++*^{1}$	\bigcirc		[l	
S s - D 1	$-+*^{1}$	0		 基準地震動Ss(7波)に水平動の位相反 転を考慮した地震動(7波)を加えた全14 波により照査を行ったケース①(基本ケース)の結果から、曲げ・軸力系の破壊、せ 			
S s - D 2	$++*^{1}$	\bigcirc					
	$-+*^{1}$	\bigcirc					
	$++^{*1}$	\bigcirc					
$S_S - D_3$	$-+*^{1}$	\bigcirc		ん断破壊及	び基礎地盤の支持	力照査の照査	
0 5 1	$++*^{1}$	0		項目ごとに	照査値が 0.5 以上	となる照査項	
5 s - F 1	$-+*^{1}$	0		ーー 目に対して,最も厳しい(許容限界に対す		容限界に対す	
			る裕度が最	も小さい)地震動	を用いてケー		
5 s - F 2	$-+*^{1}$	0		ス2~④を	実施する。		
0	$++*^{1}$	0		すべての照	査項目の照査値が	いずれも 0.5	
Ss-F3	$-+*^{1}$	0	未満の場合は,照査値が最も厳しくな		厳しくなる地		
	$++*^{1}$	0		震動を用い	てケース②~④を	実施する。	
S s - N 1 $-+^{*1}$		0					
	地盤物性 材料物性 Ss-D1	地盤物性 材料物性 S s - D 1 + + * 1 - + * 1 - + * 1 S s - D 2 + + * 1 - + * 1 S S - F 2 - + * 1 S S - F 3 - + * 1 - + + + 1 - + + + + + + 1 - + + + + + + + + + + + + + + + + + + +	地盤物性 平均値 材料物性 設計基準強度 Ss-D1 ++*1 $-+*1$ ○ Ss-D2 ++*1 $-+*1$ ○ Ss-D3 ++*1 $-+*1$ ○ Ss-D3 ++*1 $-+*1$ ○ Ss-D3 ++*1 $-+*1$ ○ Ss-F1 -+*1 $Ss-F2$ ++*1 $-+*1$ ○ Ss-F3 ++*1 $-+*1$ ○ Ss-F3 ++*1 $-+*1$ ○ Ss-N1 ++*1	解析ケース 地盤 地盤 地盤 5-7 σ 地盤物性 平均値<	解析ケース 地盤物性のば らつき(+1) 地盤物性のば らつき(+1) の)を考慮し た解析ケース 地盤物性 平均値 平均値+1 σ 材料物性 設計基準強度 設計基準強度 Ss-D1 ++*1 〇 -+*1 〇 基準地震動 転を考慮した Ss-D2 ++*1 〇 -+*1 〇 人断破壊及 ス)の結果 ヘ)の結果 人断破壊及 Ss-D3 ++*1 〇 -+*1 〇 ス)の結果 Ss-F1 ++*1 〇 Ss-F2 ++*1 〇 -+*1 〇 る裕度が最 Ss-F3 ++*1 〇 -+*1 〇 ス2) Ss-N1 ++*1 〇	解析ケース 基本ケース 地盤物性のば らつき(+1) 地盤物性のば らつき(-1) 地盤物性 事物値 平均値 平均値 の)を考慮し た解析ケース 地盤物性 平均値 平均値 平均値 平均値 材料物性 設計基準強度 設計基準強度 設計基準強度 S s - D 1 ++*1 〇 -+*1 〇 S s - D 2 ++*1 〇 S s - D 3 ++*1 〇 S s - D 3 ++*1 〇 S s - D 3 ++*1 〇 S s - F 1 ++*1 〇 S s - F 2 ++*1 〇 S s - F 3 ++*1 〇 S s	解析ケース 地盤物性のば らつき(+1) 地盤物性のば らつき(+1) 地盤物性のば らつき(-1) オ料物性(コ ンクリート) 地盤物性 平均値 平均値 の)を考慮し た解析ケース の)を考慮し た解析ケース この マ均値 地盤物性 平均値 平均値 平均値 平均値 平均値 マ均値 この 地盤物性 設計基準強度 設計基準強度 設計基準強度 設計基準強度 設計基準強度 実強度に基 S s - D 1 ++*1 ○ 実強度に基 S s - D 2 ++*1 ○ S s - D 3 ++*1 ○ S s - D 3 ++*1 ○ S s - F 1 ○ ++*1 ○

表 3-2 耐震評価における解析ケース

注記*1:耐震評価にあたっては、原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル(土木学会 原子力土木委員会,2005 年 6 月) (以下「土木学会マニュアル」とい う。)に従い、水平方向の位相反転を考慮する。地震動の位相について、++の左側は 水平動、右側は鉛直動を表し、「-」は位相を反転させたケースを示す。

*2: 既設構造物のコア採取による圧縮強度試験の結果を使用する。

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、添付書類「VI-2-1-9 機能維持の基本方針」に基づき設定する。
 - 3.3.1 耐震評価上考慮する状態

第3号機取水路の地震応答解析において,地震以外に考慮する状態を以下に示す。

- (1) 運転時の状態
 発電用原子炉が運転状態にあり、通常の条件下におかれている状態。ただし、運転時の
 異常な過渡変化時の影響を受けないことから考慮しない。
- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪の影響を考慮する。埋設構造物であるため、風の影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.3.2 荷重

第3号機取水路の地震応答解析において,考慮する荷重を以下に示す。

- (1) 固定荷重(G)
 固定荷重として, 躯体自重を考慮する。
- (2) 積載荷重(P)
 積載荷重として,積雪荷重Psを含めて地表面に4.9kN/m²を考慮する。
- (3) 積雪荷重(P_s)

積雪荷重として,発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である43cmに平均的な積雪荷重を与えるための係数0.35を考慮し た値を設定する。また,建築基準法施行令第86条第2項により,積雪量1cmごとに20N/m² の積雪荷重が作用することを考慮する。

- (4) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。
- 3.3.3 荷重の組合せ

荷重の組合せを表 3-3 に示す。

表 3-3 荷重の組合せ

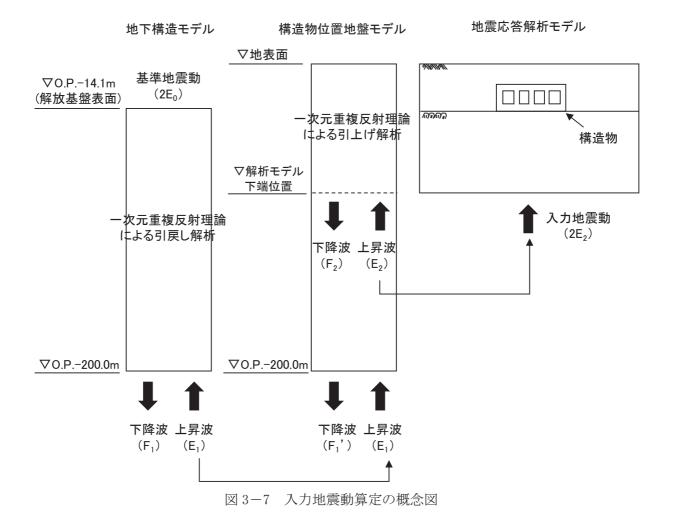
外力の状態	荷重の組合せ
地震時(Ss)	G + P + S s

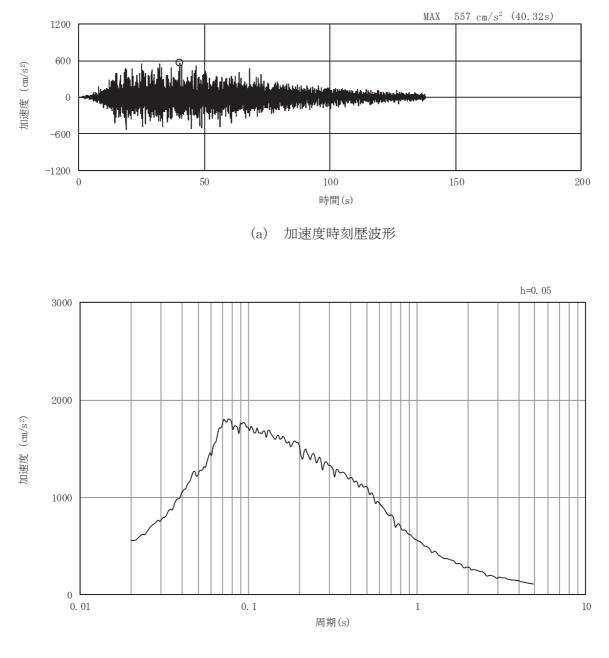
G:固定荷重

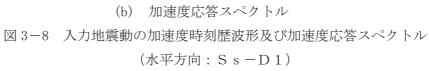
P:積載荷重(積雪荷重P。を含めて4.9kN/m²を地表面に考慮)

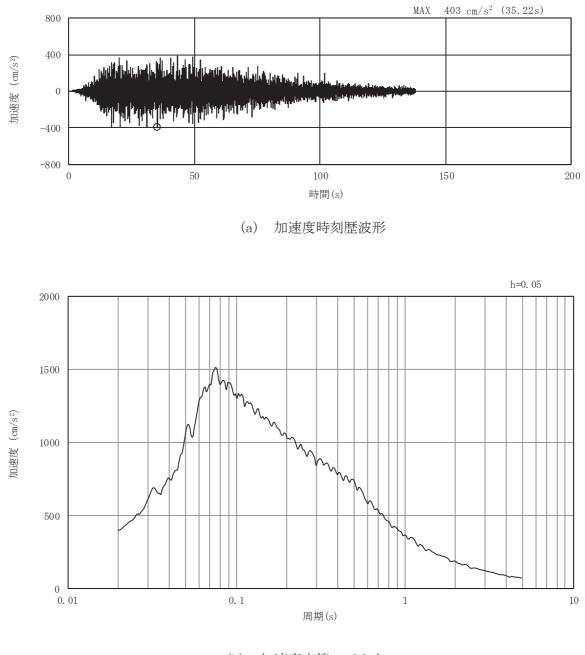
Ss:地震荷重(基準地震動Ss)

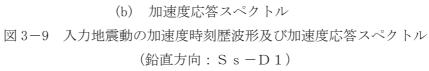
Ц

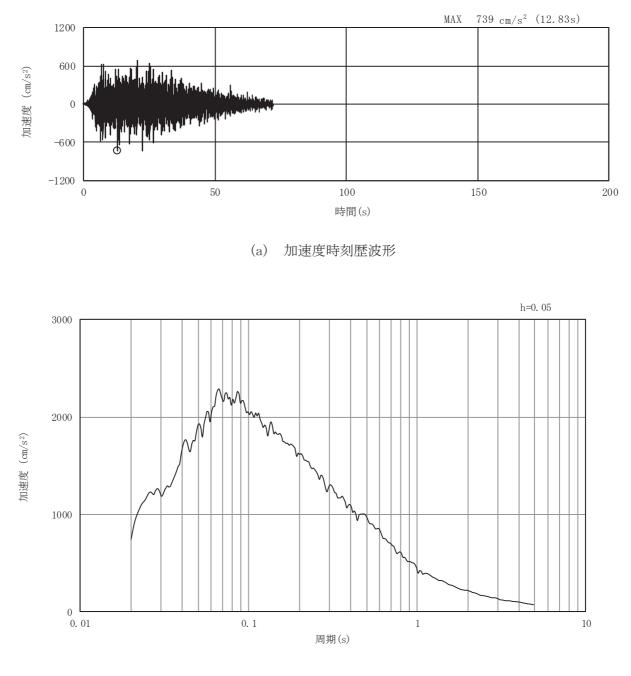

3.4 入力地震動

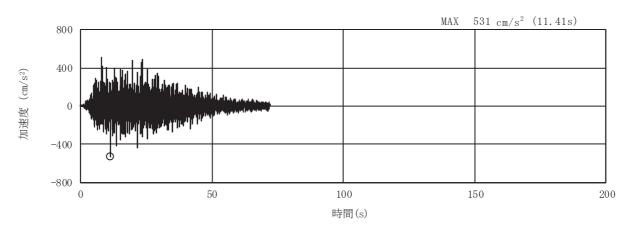

入力地震動は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち「2.3 屋外重要土 木構造物」に示す入力地震動の設定方針を踏まえて設定する。

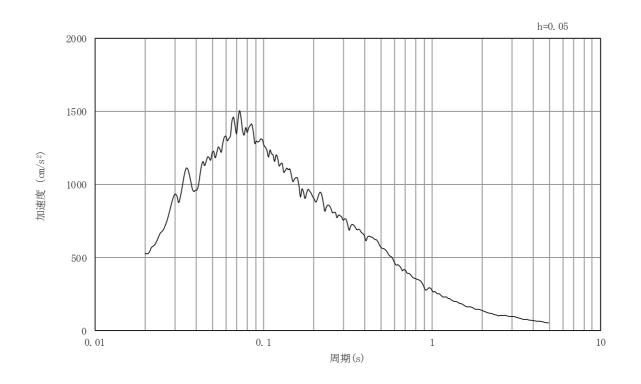

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを一次元重 複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお,入力地震動の 設定に用いる地下構造モデルは,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」のう ち「7.1 入力地震動の設定に用いる地下構造モデル」を用いる。


図 3-7 に入力地震動算定の概念図を,図 3-8~図 3-21 に入力地震動の加速度時刻歴波形 及び加速度応答スペクトルを示す。入力地震動の算定には,解析コード「Ark Quake Ver3.10」 を使用する。

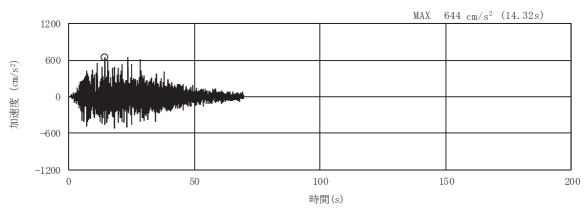

解析コードの検証及び妥当性確認の概要については、添付書類「VI-5 計算機プログラム (解析コード)の概要」に示す。

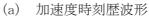


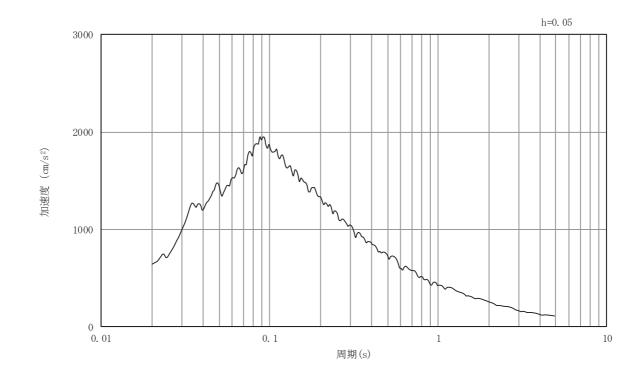


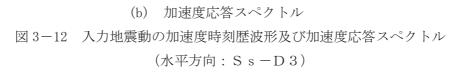


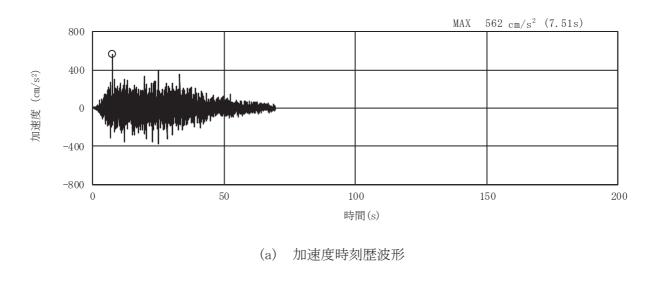


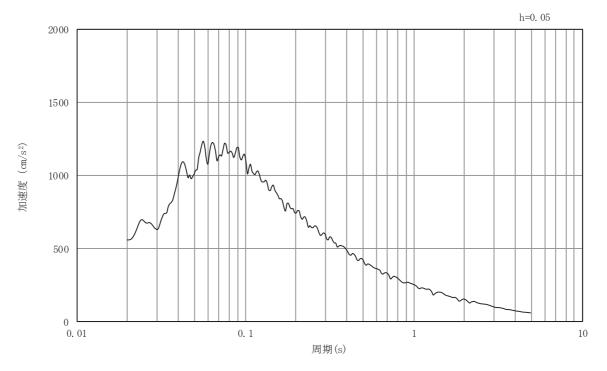

 (b) 加速度応答スペクトル
 図 3-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D2)

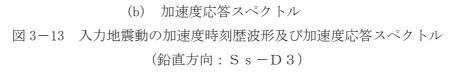


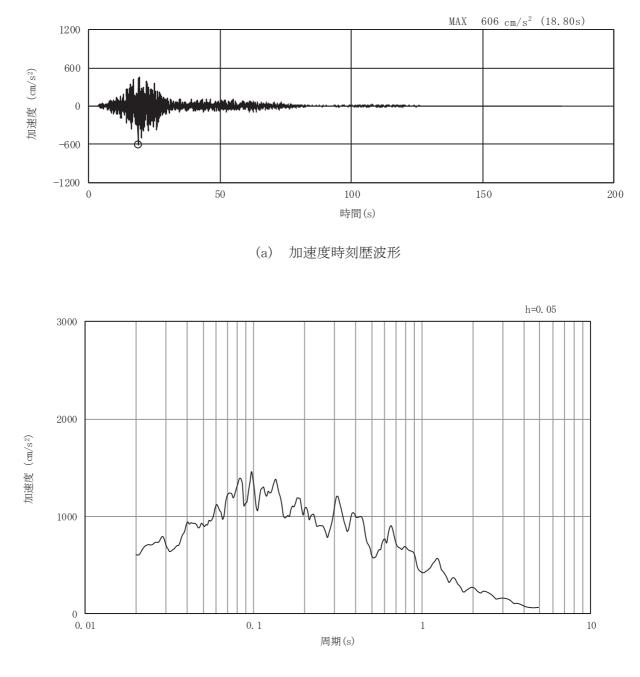


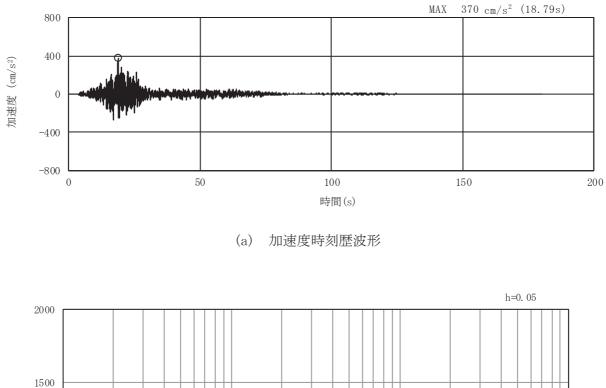


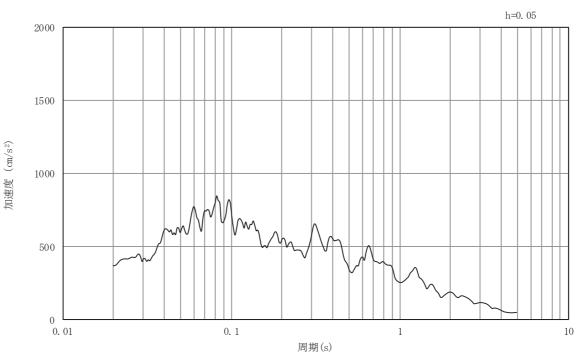


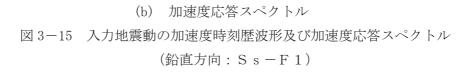


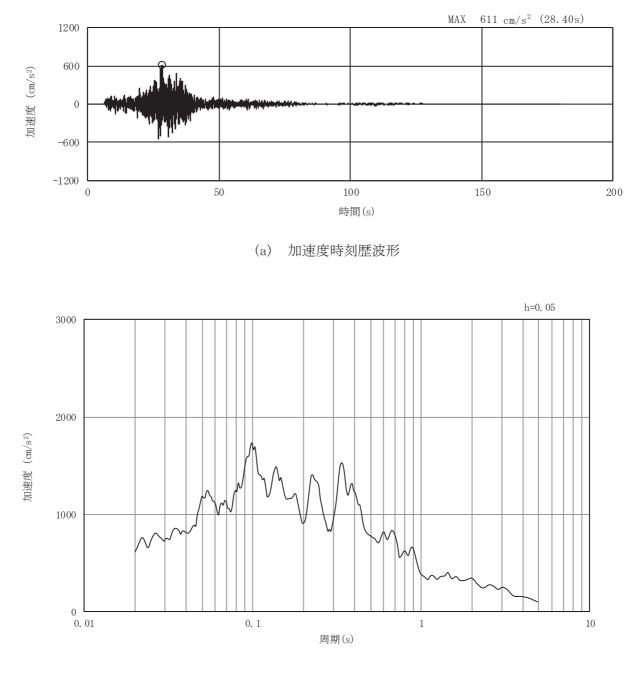


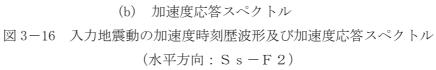


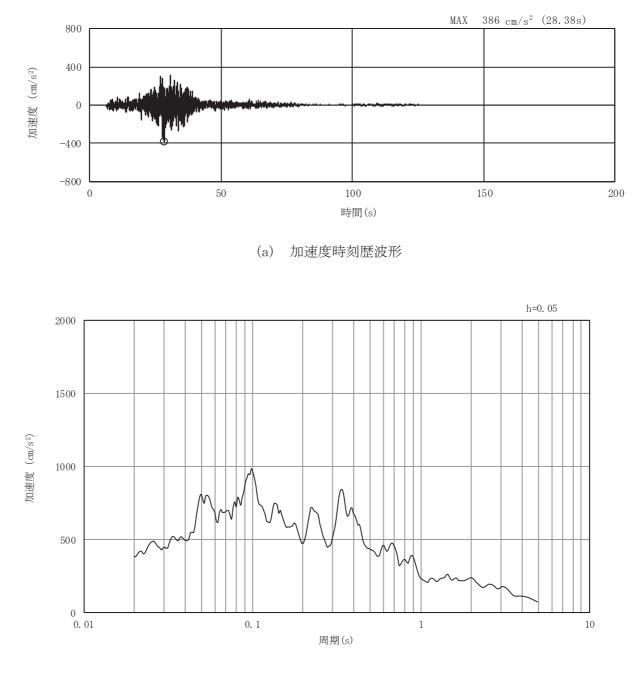


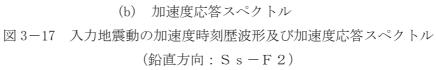


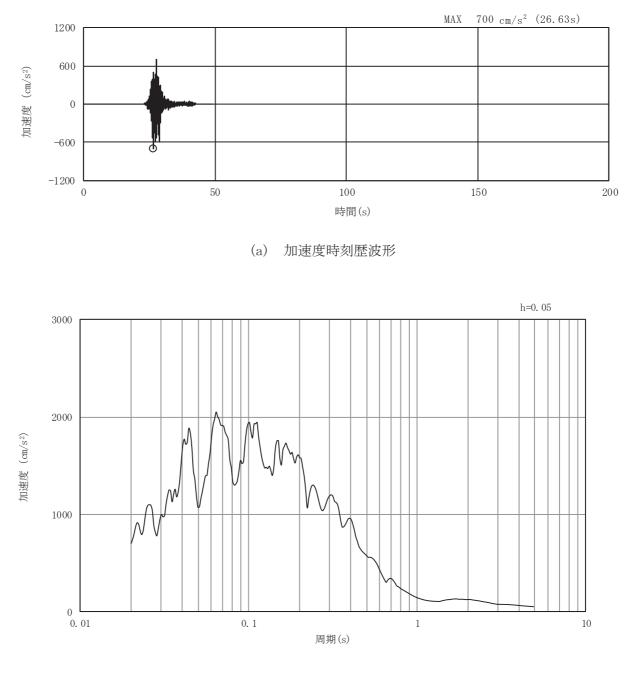


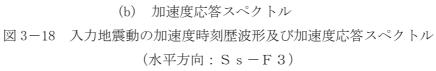

 (b) 加速度応答スペクトル
 図 3-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F1)

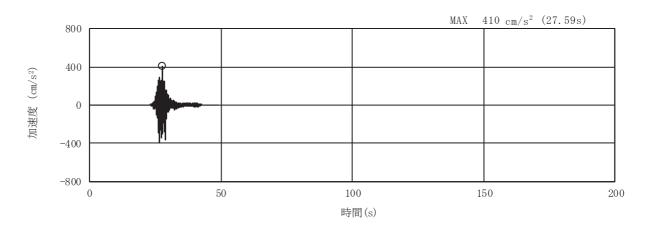


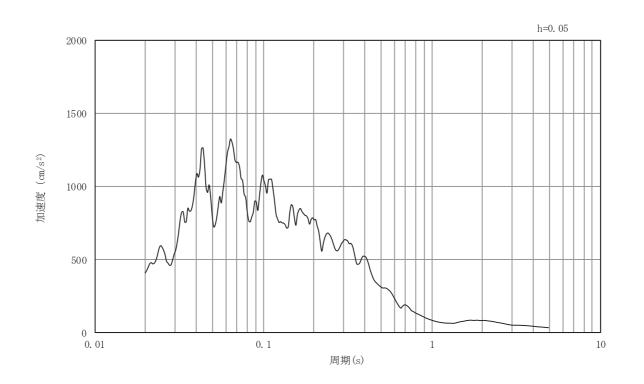


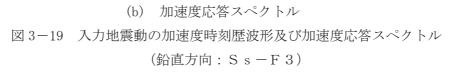


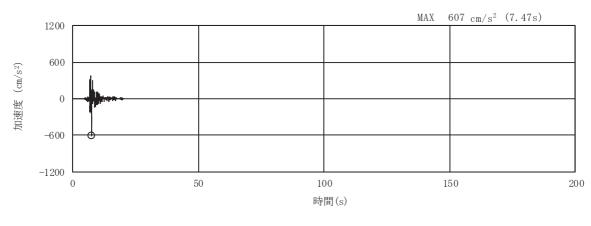




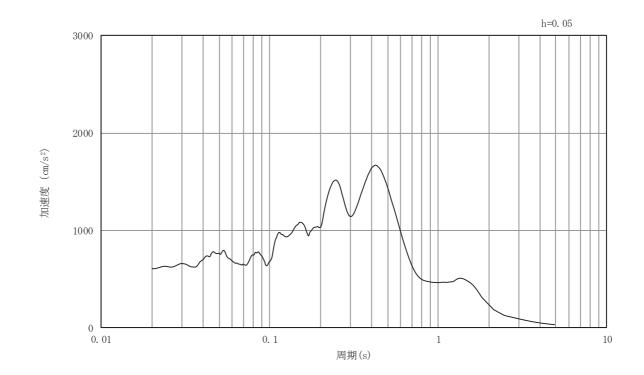


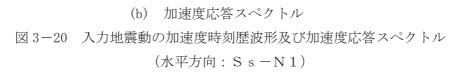


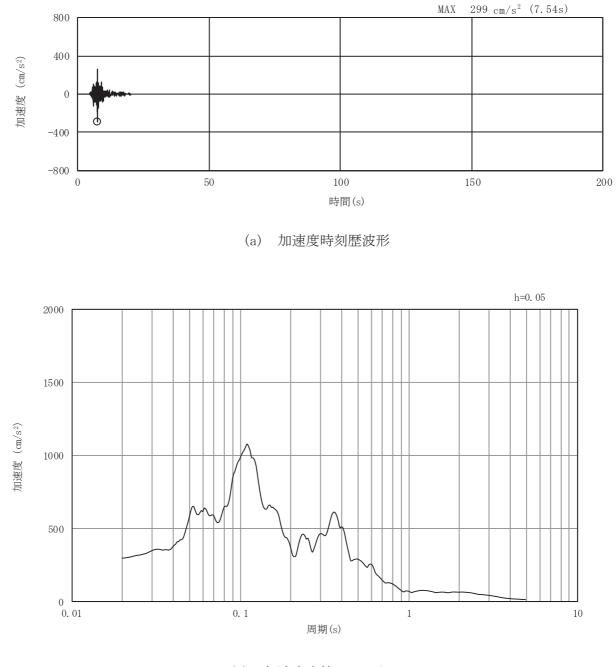


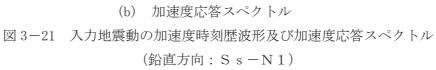












O 2 ③ VI-2-11-2-18 R 1

- 3.5 解析モデル及び諸元
 - 3.5.1 解析モデル

第3号機取水路の地震応答解析モデルを図3-22に示す。

(1) 解析領域

二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は,境界条件の影響が 地盤及び構造物の応力状態に影響を及ぼさないよう,十分に広い領域とする。

(2) 境界条件

二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については,有限要素 解析における半無限地盤を模擬するため,粘性境界を設ける。

- (3) 構造物のモデル化鉄筋コンクリート部材は、非線形はり要素によりモデル化する。
- (4) 地盤のモデル化

▶ 級を除く岩盤は、線形の平面ひずみ要素でモデル化する。また、盛土、旧表土及び ▶ 級岩盤は、地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。また、地下水位以深の盛土・旧表土は、液状化パラメータを設定することで、地震時の有効応力の変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) ジョイントのモデル化

地震時の「MMR と構造物」,「盛土及び岩盤と MMR」,「盛土と構造物」及び「旧表土, 盛土及び岩盤と改良地盤」との接合面における剥離及びすべりを考慮するため,これらの 接合面にジョイント要素を設定する。

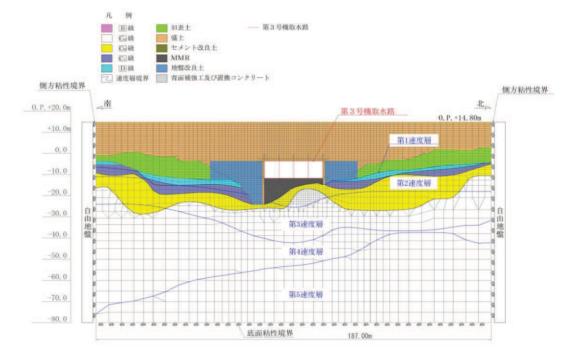


図 3-22 第3号機取水路の地震応答解析モデル図

3.5.2 使用材料及び材料の物性値

使用材料を表 3-4 に、材料の物性値を表 3-5 に示す。

▲ 3 ⁻⁴ 使用的	14
材料	諸元
コンクリート	設計基準強度 23.5N/mm ²
鉄筋	SD345

表 3-4 使用材料

表 3-5 材料の物性値

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 (kN/m ³)		24.0	
		実強度*	3. 16×10^4	解析ケース④
	ヤング係数 (N/mm ²)		2. 48×10^4	解析ケース①,
	(1)	以 可		2, 3
ポアン		ソン比	0.2	

注記*:既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.5.3 地盤の物性値

地盤については,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

なお,有効応力解析に用いる液状化強度特性は,敷地の原地盤における代表性及び網羅 性を踏まえた上で,下限値として設定する。

3.5.4 地下水位

設計用地下水位は、添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位を表 3-6 及び図 3-23 に示す。

 表 3-6
 設計用地下水位

 施設名称
 設計用地下水位

 第 3 号機取水路
 0. P. -3. 65m

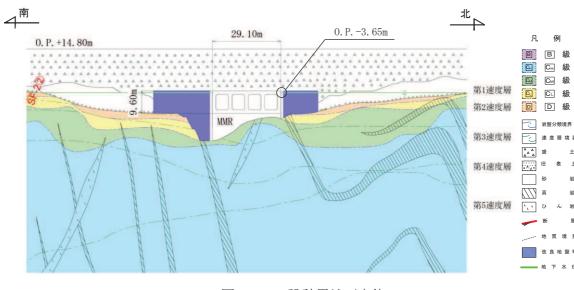


図 3-23 設計用地下水位

3.6 許容限界

許容限界は, 添付書類「VI-2-1-9 機能維持の基本方針」に基づき設定する。

3.6.1 構造部材の健全性に対する許容限界

(1) 曲げ・軸力系の破壊に対する許容限界 構造強度を有することの確認における構造部材(鉄筋コンクリート)の曲げ・軸力系の

破壊に対する許容限界は、土木学会マニュアルに基づき、限界層間変形角(層間変形角 1/100) とする。

曲げ・軸力系の破壊に対する限界状態については、土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており,層間変形角1/100の状態は,かぶり コンクリートが剥落する前の状態であることが、屋外重要土木構造物を模したラーメン構 造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値 とすることで構造全体としての安定性等が確保できるとして設定されたものである。

鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表 3-7 に示す。

_	AC I NO MAKING	相方,不可以致(三八), 3 时 石 [长月	
	確認項目	許容限界	

表 3-7 第3号機取水路の曲げ・軸力系の破壊に対する許容限界

-

(2) せん断破壊に対する許容限界

構造強度を有することの確認における構造部材(鉄筋コンクリート)のせん断破壊に対 する許容限界は、土木学会マニュアルに基づくせん断耐力とする。

- 3.6.2 基礎地盤の支持性能に対する許容限界
 - (1) 基礎地盤(牧の浜部層)

基礎地盤(牧の浜部層)に発生する接地圧に対する許容限界は、添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に基づき、岩盤の極限支持力とする。

基礎地盤(牧の浜部層)の許容限界を表 3-8 に示す。

評価項目	基礎地盤	許容限界 (N/mm ²)
極限支持力	牧の浜部層	11.4

(2) MMR (既設)

MMR(既設)に発生する接地圧に対する許容限界は、コンクリート標準示方書[構造性能 照査編](土木学会、2002年制定)に基づき、コンクリートの支圧強度とする。 MMR(既設)の許容限界を表 3-9 に示す。

表 3-9 MMR (既設) の支持性能に対する許容限界

評価項目	MMR(既設)	許容限界 (N/mm ²)
支圧強度	コンクリート (f' _{ck} =15.6N/mm ²)	f' _a =15.6

Ξ

3.7 評価方法

第3号機取水路の耐震評価は、地震応答解析により算定した照査用応答値が「3.6 許容限界」において設定した許容限界を下回ることを確認する。

3.7.1 構造部材の健全性評価

構造部材の健全性評価については,鉄筋コンクリートの曲げ・軸力系の破壊及びせん断 破壊に対する照査において,地震応答解析により算定した照査用層間変形角及び照査用せ ん断力が許容限界を下回ることを確認する。

構造部材(鉄筋コンクリート)の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震動での層間変形角の時刻歴波形を図 3-24 に、せん断破壊に対する最大照査値の評価時刻での断面力図を図 3-25 に示す。

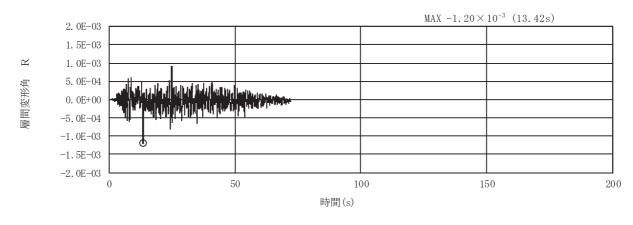
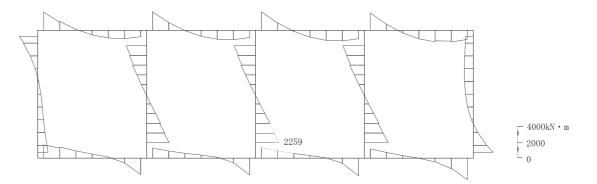
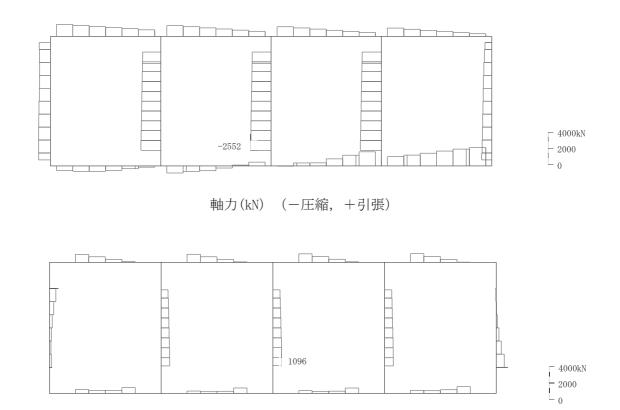
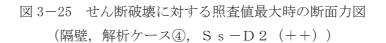




図 3-24 曲げ・軸力系の破壊に対する照査における層間変形角の時刻歴波形 (解析ケース③, Ss-D2(++))


-

曲げモーメント (kN・m)

せん断力 (kN)

3.7.2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては,構造部材を支持する基礎地盤に発生する接地圧が 許容限界を下回ることを確認する。

- 4. 耐震評価結果
- 4.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表 4-1 に, せん断破壊 に対する各評価位置での最大照査値を表 4-2 に示す。

第3号機取水路の照査用層間変形角及び照査用せん断力が,構造部材の健全性に対する許容 限界を下回ることを確認した。

解析
ケース地震動照査用層間変形角*
R d限界層間変形角
R d照査値
R d/R u③S s - D 2
(++)1.45×10⁻³1.0×10⁻²0.15

表 4-1 曲げ・軸力系の破壊に対する最大照査値

注記*:照查用層間変形角R_d=最大層間変形角R×構造解析係数γ_a

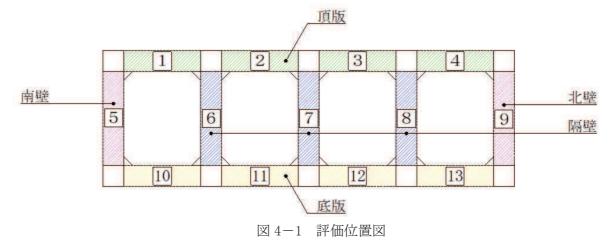

	評価位置*1		解析	地震動	照査用せん断力*2	せん断耐力*3	照查值			
			ケース	地展動	V_{d} (kN)	$V_{y d}$ (kN)	V_{d}/V_{yd}			
	頂版	4	1	S s - D 1 (-+)	1404	<mark>3023</mark>	<mark>0. 47</mark>			
	側壁	9	1	S s -D 1 (++)	1469	1964	0.75			
	隔壁	7	4	S s -D 2 (++)	1151	1351	0.86			
	底版	10	4	S s - D 2 (++)	1004	3758	0.27			

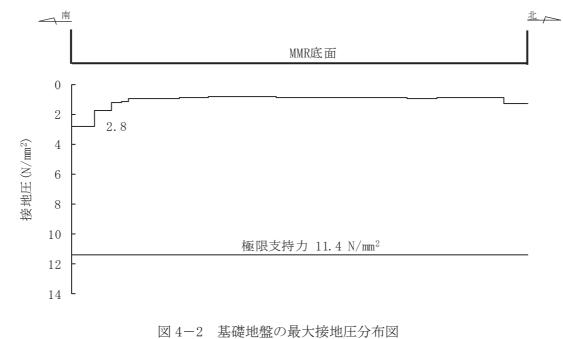
表 4-2 せん断破壊に対する最大照査値

注記*1:評価位置は図4-1に示す。

*2:照査用せん断力=発生せん断力×構造解析係数 y a

*3: せん断耐力式によるせん断耐力

Η


- 4.2 基礎地盤の支持性能に対する評価結果
 - 4.2.1 基礎地盤(牧の浜部層)

基礎地盤の支持性能に対する照査結果を表 4-3 に示す。また,最大接地圧分布図を図 4-2 に示す。

第3号機取水路の基礎地盤に発生する最大接地圧が、極限支持力を下回ることを確認した。

表 4-3 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 R _d (N/mm ²)	極限支持力 R u (N/mm ²)	照査値 R _d /R _u
3	S s - D 2 (++)	2.8	11.4	0.25

(解析ケース③, Ss-D2(++))

4.2.2 MMR (既設)

MMR(既設)の支持性能に対する照査結果を表 4-4 に示す。また,最大接地圧分布図を 図 4-3 に示す。

第3号機取水路のMMR(既設)に発生する最大接地圧が、支圧強度を下回ることを確認した。

表 4-4MMR (既設)の支持性能照査結果解析ケース地震動最大接地圧支圧強度照査値R d (N/mm²)f'a (N/mm²)R d/f'a③S s - D 2
(++)3.115.60.20

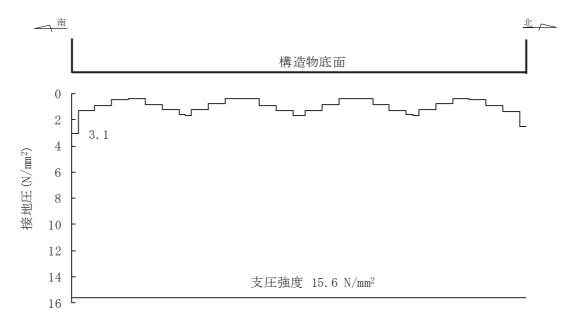


図 4-3 MMR (既設)の最大接地圧分布図 (解析ケース③, S s - D 2 (++))