女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－19－0121＿改 1
提出年月日	2021年6月2日

VI－2－10－4－4 取水路の耐震性についての計算書

2021年6月
東北電力株式会社

[^0]VI－2－10－4－4－2 取水路（標準部）の耐震性についての計算書
－本日の説明範囲

VI－2－10－4－4－2 取水路（標準部）の耐震性についての計算書

目 次

1．概要 1
2．基本方針 2
2.1 位置 2
2．2 構造概要 3
2.3 評価方針 6
2.4 適用基準 9
3．地震応答解析 10
3.1 地震時荷重算出断面 10
3.2 解析方法 14
3．2．1 構造部材 14
3．2．2 地盤物性及び材料物性のばらつき 16
3．2．3 減衰定数 17
3．2．4 地震応答解析の解析ケースの選定 18
3.3 荷重及び荷重の組合せ 19
3．3．1 耐震評価上考慮する状態 19
3．3．2 荷重 19
3．3．3 荷重の組合せ 20
3.4 入力地震動 21
3.5 解析モデル及び諸元 106
3．5．1 解析モデル 106
3．5．2 使用材料及び材料の物性値 114
3．5．3 地盤の物性値 115
3.6 地震応答解析結果 116
4．三次元構造解析 131
4.1 評価対象部材 131
4．2 解析方法 133
4．3 解析モデルの諸元 133
4．3．1 解析モデル 133
4．3．2 使用材料及び材料の物性値 137
4． 4 照査時刻及び入力荷重 138
4．4．1 照査時刻 138
4．4．2 入力荷重 140
4.5 三次元構造解析結果 141
5．耐震評価 160
5.1 許容限界 160
5．1．1 構造部材の健全性に対する許容限界 160
5．1．2 基礎地盤の支持性能に対する許容限界 161
5.2 評価方法 162
6．耐震評価結果 163
6.1 構造部材の健全性に対する評価結果 163
6.2 各要求機能に対する評価結果 166
6．2．1 通水機能 166
6．2．2 貯水機能 169
6.3 基礎地盤の支持性能に対する評価結果． 173
6．3．1 基礎地盤（狐崎部層） 173
6．3．2 MMR（既設） 174

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，取水路（標準部）が基準地震動 S s に対して十分な構造強度を有してい ることを確認するものである。

取水路（標準部）に要求される機能の維持を確認するにあたつては，地震応答解析に基づく構造部材の健全性評価及び基礎地盤の支持性能評価により行う。

2．基本方針
2.1 位置

取水路（標準部）の位置を図 2－1 に示す。

図 2－1 取水路（標準部）の位置図

2． 2 構造概要

取水路（標準部）の平面図を図 2－2 に，断面図を図 $2-3$ に，概略配筋図を図 $2-4$ に示す。取水路（標準部）は，非常時における海水の通水機能及び貯水機能が要求される。
取水路（標準部）は，取水口と取水路（漸拡部）を結ぶ延長 87.48 m ，内空幅 ，内空高

$\pm \square$の下り勾配の二連ボックスカルバート構造で延長方向に断面が一様な地中構造物で あり，直接又はマンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されている。

取水路（標準部）は，取水口から防潮堤までの直線部と，防潮堤から取水路（漸拡部）まで の曲線部に大別される。

取水路（標準部）は，取水口及び取水路（漸拡部）との接合部及び直線部と曲線部の境界に構造目地が設置されている線状構造物である。

（単位：m）
図 2－2 取水路（標準部）平面図

図 2－3 取水路（標準部）断面図（A－A 断面）

2．3 評価方針

取水路（標準部）は，設計基準対象施設においては，非常用取水設備である屋外重要土木構造物に分類され，重大事故等対処施設においては，常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。
取水路（標準部）の耐震評価フローを図 $2-5$ に示す。
取水路（標準部）の耐震評価は，地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ とを確認する。

構造部材の健全性評価については，取水路（標準部）は線状構造物であるものの，防潮堤を横断し周辺地盤の剛性が急変する箇所が存在すること，防潮堤の西側に曲線箇所を有し躯体の ねじれ等の影響を評価する必要があることから，直線部，曲線部のそれぞれを三次元モデルを用いて耐震評価を行う。また，地震応答解析より得られた水平方向及び鉛直方向の荷重を用 い，非線形ソリッド要素による三次元静的材料非線形解析（以下「三次元構造解析」とい
う。）により応答値を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照査用ひずみが許容限界を下回ること，せん断破壊に対し ては，照査用せん断力及び照査用面内せん断ひずみが許容限界を下回ることを確認する。

基礎地盤の支持性能評価においては，地震応答解析より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

ここで，取水路（標準部）の運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

図 2－5 取水路（標準部）の耐震評価フロー

表2－1 取水路（標準部）の評価項目

評価方針	評価項目	部位	評価方法		容限界
構造強度 を有する こと	構造部材の健全性	鉄筋コン クリート部材	照査用ひずみ及び照査用せん断力が許容限界を下回る ことを確認	曲げ・軸力	限界ひずみ＊
				せん断力	せん断耐力＊
	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊	
		MMR		MIR の支圧強度＊	

注記＊：妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2012年 コンクリート標準示方書［設計編］
- 土木学会 2017年 コンクリート標準示方書［設計編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編

3．地震応答解析

3.1 地震時荷重算出断面

取水路（標準部）の地震時荷重算出断面位置図を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，断面（2）～断面（7）とする。地震時荷重算出用地質断面図を図 $3-2 ~$ 図 3－7に示す。

なお，取水路は線状構造物であり，横断方向（延長方向に直交する方向）が弱軸方向となる ことから，耐震評価に用いる応答値の抽出は，弱軸方向に対して実施する。

図 3－1 取水路（標準部）の地震時荷重算出断面位置図

図 3－2 取水路（標準部）地震時荷重算出用地質断面図（断面（2））

図 3－3 取水路（標準部）地震時荷重算出用地質断面図（断面（3）

図 3－4 取水路（標準部）地震時荷重算出用地質断面図（断面（4））

図 3－5 取水路（標準部）地震時荷重算出用地質断面図（断面（5））

図 3－6 取水路（標準部）地震時荷重算出用地質断面図（断面（6））

3.2 解析方法

取水路（標準部）の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」のう ち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行う。解析手法については，断面（2）～断面（5）は全応力解析，断面⑥及び断面（7）は有効応力解析とする。

構造部材については，非線形はり要素を用いることし，構造部材の非線形性については，鉄筋コンクリートの $\mathrm{M}-\phi$ 関係を適切にモデル化する。また，地盤については，地盤のひずみ依存性を適切に考慮できるようモデル化する。

地震応答解析については，解析コード「Soi1 Plus Ver． 2015 Build3」及び「FLIP
Ver．7．3．0＿2」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，非線形はり要素でモデル化することとし，図 3－8に示すM— ϕ 関係のトリリニアモデルとする。また，履歴特性は，図 3－9に示すとおり修正武田モデ ルを適用する。また，コンクリートの応力ーひずみ関係及び鉄筋の応力ーひずみ関係には， それぞれ図 3－10 及び図 3－11に示す非線形特性を考慮する。

図 3－8 鉄筋コンクリート部材の $\mathrm{M}-\phi$ 関係
（原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
（土木学会 原子力土木委員会，2005年6月）より引用）

図 3－9 鉄筋コンクリート部材の履歴特性（修正武田モデル）
（道路橋示方書（V耐震設計編）•同解説（平成 14 年 3 月）より引用）

図 3－10 構造部材の非線形特性（コンクリートの応力ーひずみ関係） （コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）

図 3－11 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）
3.2 .2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表3－1 に示す解析ケースを設定する。

取水路（標準部）は，直接又はMMRを介して岩盤上に設置され，側面に改良地盤が分布 し，主たる荷重は改良地盤等の土圧となることから，盛土，旧表土，回級岩盤及び改良地盤の初期せん断弾性係数のばらつきを考慮する。
初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び（3）を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ (\text { (コンクリート } \\ \text { (E0: ヤング係数) } \end{gathered}$	地盤物性	
		盛土，旧表土， D級岩盤，改良地盤 （ G o ：初期せん断弾性係数）	Cll 級岩盤，CM1級岩盤， C C 級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース(1) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②	設計基準強度	平均値 $+1 \sigma$	平均値
ケース（3）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数

構造部材の減衰定数は，断面（2）～断面（5）については，粘性減衰及び履歴減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した α, β を表 $3-2$ に示す。

また，断面（6）及び断面（7）については，Ray1eigh 減衰を考慮することとし，剛性比例型減衰（ $\alpha=0, \beta=0.002$ ）とする。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表3－2 Rayleigh 減衰における係数 α, β の設定結果

地震時荷重算出断面	α	β
断面（2）	5.32×10^{-1}	5.64×10^{-4}
断面（3）	4.37×10^{-1}	6.87×10^{-4}
断面（4）	1.37	2.19×10^{-4}
断面（5）	9.76×10^{-1}	3.07×10^{-4}
断面（6）	0.00	2.00×10^{-3}
断面（7）	0.00	2.00×10^{-3}

3．2．4 地震応答解析の解析ケースの選定

耐震評価においては，すべての基準地震動 S s に対し，解析ケース（1）（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となる照査項目に対して，最も厳しい地震動を用い て，表 3－1 に示す解析ケース（2）～④を実施する。耐震評価における解析ケースを表3－3 に示す。

表 3－3 耐震評価における解析ケース

注記＊1：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」とい う。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

取水路（標準部）の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

取水路（標準部）の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P_{S} を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動S s による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表3－4に示す。

表 3－4 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重
P：積載荷重（積雪荷重 P s を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s：地震荷重（基準地震動 S s ）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。
入力地震動算定の概念図を図 3－12に，入力地震動の加速度時刻歴波形及び加速度応答スペ クトルを図 3－13～図3－96に示す。入力地震動の算定には，解析コード「Ark Quake Ver3．10」 を使用する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 3－12 入力地震動算定の概念図

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（2）
（水平成分 ：S s－D 1）

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（2）
（鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－D 2）

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（2）
（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－D 3 ）

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－F 3）

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（2）
（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－D 1）

（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（3）
（鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鋁直成分：S s－D 2）

（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－D 3）

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－F 3 ）

（b）加速度応答スペクトル

図3－38 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－39 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（水平成分：S s－N 1）

（b）加速度応答スペクトル

図3－40 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（3）
（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－41 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分 ：S s－D 1）

（b）加速度応答スペクトル

図3－42 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－43 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分： $\mathrm{S} s-\mathrm{D} 2$ ）

（b）加速度応答スペクトル

図3－44 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－45 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分：S s－D 3）

（b）加速度応答スペクトル

図3－46 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－47 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－48 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－49 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－50 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－51 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－52 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－53 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－54 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（4）
（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－55 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－56 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鋁直成分：S s－D 1）

（b）加速度応答スペクトル

図3－57 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－D 2）

（b）加速度応答スペクトル

図3－58 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－59 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－D 3 ）

（b）加速度応答スペクトル

図3－60 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－61 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－62 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－63 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－64 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－65 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－F 3）

（b）加速度応答スペクトル

図3－66 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－67 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－68 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（5）
（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－69 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分 ：S s－D 1）

（b）加速度応答スペクトル

図3－70 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－71 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－D 2）

（b）加速度応答スペクトル

図3－72 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－73 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－D 3）

図3－74 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－D 3）

（b）加速度応答スペクトル

図3－75 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－76 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（6）
（鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－77 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－78 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－79 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－80 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－81 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－82 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（6）
（鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－83 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（水平成分：S s－D1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－84 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－85 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面 ${ }^{(7)}$
（水平成分：S s－D 2）

（b）加速度応答スペクトル

図3－86 入力地震動の加速度時刻歴波形及び加速度応答スペクトル断面（7）
（鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－87 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（水平成分：S s－D 3 ）

（b）加速度応答スペクトル

図3－88 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－89 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（水平成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－90 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－91 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面 ${ }^{(7)}$
（水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－92 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－F 2）

（b）加速度応答スペクトル

図3－93 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－94 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－F 3）

（b）加速度応答スペクトル

図3－95 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－96 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
断面（7）
（鉛直成分：S s－N 1）

3.5 解析モデル及び諸元

3．5．1 解析モデル

取水路（標準部）の地震応答解析モデルを図 3－97～図3－102に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
鉄筋コンクリート部材は，非線形はり要素によりモデル化する。
（4）地盤のモデル化
D級を除く岩盤は線形の平面ひずみ要素でモデル化する。また，盛土•旧表土，D級岩盤及び改良地盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素で モデル化する。
（5）隣接構造物のモデル化
断面（7）において隣接構造物となる防潮堤（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－
1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，鋼管杭は，線形はり要素（ビ ーム要素）でモデル化する。復水貯蔵タンクの基礎と直下のMMR は盛土でモデル化する。
（6）ジョイント要素の設定
地震時の「MMR と構造物」，「盛土及び岩盤とMMR」，「盛土•旧表土及び岩盤と改良地盤」及び「盛土と構造物」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョイント要素を設定する。なお，防潮堤（鋼管式鉛直壁）は，添付書類「VI－ 2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，ジョイント要素を設定する。
（7）水位条件
内水位は，朔望平均満潮位（0．P．＋ 2.43 m ）とする。
地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定する。設計用地下水位を表3－5 及び図 3－103～図3－108に示す。

図 3－97 取水路（標準部）の地震応答解析モデル（断面（2））

図 3－98 取水路（標準部）の地震応答解析モデル（断面（3））

図 3－100 取水路（標準部）の地震応答解析モデル（断面（5）

図 3－101 取水路（標準部）の地震応答解析モデル（断面（6））

図 3－102 取水路（標準部）の地震応答解析モデル（断面（7）

表3－5 設計用地下水位

施設名称	対象エリア	設計用地下水位
$\begin{aligned} & \text { 取水路 } \\ & \text { (標準部) } \end{aligned}$	断面（2）	0．P．$+2.43 \mathrm{~m}^{*}$
	断面（3）	0．P．$+2.43 \mathrm{~m}^{*}$
	断面（4）	0．P．$+2.43 \mathrm{~m}^{*}$
	断面（5）	0．P．-1.00 m
	断面（6）	0．P．-1.01 m
	断面（7）	0．P．$-1.03 \mathrm{~m} \sim 0$. P．$+2.43 \mathrm{~m}^{*}$

注記＊：朔望平均満潮位

図 3－103 設計用地下水位（断面（2）

図 3－104 設計用地下水位（断面（3）

図 3－105 設計用地下水位（断面（4）

図 3－106 設計用地下水位（断面（5）

図 3－107 設計用地下水位（断面（6）

図 3－108 設計用地下水位（断面（7）

3．5．2 使用材料及び材料の物性値

構造物の使用材料を表3－6に，材料の物性値を表3－7に示す。

表 3－6 使用材料

材料	仕様
コンクリート	設計基準強度 $\quad 20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－7 材料の物性値（構造部材）

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3.18×10^{4}	解析ケース（4）
		設計基準強度	2.33×10^{4}	解析ケース（1）， （2），（3）
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3.6 地震応答解析結果

構造部材の曲げ・軸力系の破壊及びせん断破壊に対する照査のうち，照査值が最大となるせ ん断力照査の地震動及び解析ケースにおける作用荷重分布図を図 3－109～図3－122 に示す。 なお，断面（5）は曲線部に位置するが，周辺地盤の状況等を考慮し直線部の地震時荷重算出断面として選定しており，直線部と曲線部の両方の三次元モデルに作用させる荷重となる。この ため，断面（5）については，それぞれのモデル（直線部•曲線部）で照査値が最大となる 2 ケー スを示す。

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－109 作用荷重分布図（直応力及びせん断応力）
（断面（2）：直線部，解析ケース（3），S s－N $1(++)$ ）

構造スケール \qquad （m）設計震度スケール \qquad \begin{tabular}{r|l}

- 側 \& + 側

\downarrow 設計震度 \& 設計震度 \uparrow
\end{tabular}

図 3－110 作用荷重分布図（設計震度分布）
（断面（2）：直線部，解析ケース（3），S s－N $1(++)$ ）

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－111 作用荷重分布図（直応力及びせん断応力）
（断面（3）：直線部，解析ケース（3），S s－N $1(++)$ ）

構造スケール \qquad （m）設計震度スケール

0
1
1． 0

－側	+ 側
震度	設計震度 \rightarrow

$7^{\text {南 }}$
北 \sim

構造スケール \qquad （m）設計震度スケール \qquad
1． 0

- 側	+ 側
\downarrow 設計震度	設計震度 \uparrow

図 3－112 作用荷重分布図（設計震度分布）
（断面（3）：直線部，解析ケース（3），S S－N $1(++)$ ）

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－113 作用荷重分布図（直応力及びせん断応力）
（断面（4）：直線部，解析ケース（3），S s－N $1(++)$ ）

構造スケール \qquad （m）設計震度スケール \qquad
1.0
一側
設計震度

+ 側設計震度 \uparrow

図 3－114 作用荷重分布図（設計震度分布）
（断面（4）：直線部，解析ケース（3），S S－N $1(++)$ ）

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－115 作用荷重分布図（直応力及びせん断応力）
（断面（5）：直線部，解析ケース③），S s－N $1(++)$

構造スケール \qquad （m）設計震度スケール \qquad \begin{tabular}{r|l}

- 側 \& + 側

\downarrow 設計震度 \& 設計震度 \uparrow
\end{tabular}

図 3－116 作用荷重分布図（設計震度分布）
（断面（5）：直線部，解析ケース（3），S S－N $1(++)$ ）

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－117 作用荷重分布図（直応力及びせん断応力）
（断面（5）：曲線部，解析ケース③）S s－N $1(-+)$ ）

構造スケール \qquad （m）設計震度スケール
0
1
1． 0

- 側	+ 側
設計震度 \rightarrow	

図 3－118 作用荷重分布図（設計震度分布）
（断面（5）：曲線部，解析ケース（3），S S－N $1(-+)$ ）

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－119 作用荷重分布図（直応力及びせん断応力）
（断面（6）：曲線部，解析ケース③）S s－N $1(-+)$ ）

構造スケール \qquad （m）設計震度スケール \qquad 1.0

一側	+ 側
設計震度 \rightarrow	

構造スケール

（m）設計震度スケール \qquad \begin{tabular}{r|l}

- 側 \& + 側

\downarrow 設計震度 \& 設計震度 \uparrow
\end{tabular}

図 3－120 作用荷重分布図（設計震度分布）
（断面（6）：曲線部，解析ケース③）S s－N $1(-+)$ ）

直応力

せん断応力

図 3－121 作用荷重分布図（直応力及びせん断応力）
（断面（7）：曲線部，解析ケース③）S s－N $1(-+)$ ）

| 一側 | + 側 |
| :--- | :--- | \leftarrow 設計震度 \quad 設計震度 \rightarrow構造スケール \qquad （m）設計震度スケール \qquad 1

構造スケール （m）設計震度スケール | 0 |
| :--- |
| |

1.0 1

- 側	+ 側
\downarrow 設計震度	設計震度 \uparrow

里，

図 3－122 作用荷重分布図（設計震度分布）
（断面（7）：曲線部，解析ケース③）S s－N $1(-+)$ ）

4．三次元構造解析

4.1 評価対象部材

三次元構造解析の評価対象部材は，取水路（標準部）を構成する構造部材である頂版，側壁，隔壁，底版とする。直線部及び曲線部の評価対象部材を図 4－1 及び図4－2 に示す。

（a）鳥瞰図

（b）鳥瞰図（頂版非表示）

図 4－1 三次元構造解析の評価対象部材（直線部）

（a）鳥瞰図

（b）鳥瞰図（頂版非表示）

図 4－2 三次元構造解析の評価対象部材（曲線部）

4．2 解析方法

取水路（標準部）の三次元構造解析は，「3．地震応答解析」より得られた応答値に基づき，水平方向及び鉛直方向の荷重を入力し，各構造部材について，曲げ・軸力系の破壊及びせん断破壊に対する照査を実施する。

三次元構造解析には，解析コード「COM3 Ver．9．15」を用いる。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

4．3 解析モデルの諸元
4．3．1 解析モデル
三次元構造解析モデルの要素座標系を図 4－3及び図 4－4に，ソリッド要素における各要素の断面力の方向を図4－5に示す。
（1）構造物のモデル化
構造物は，コンクリート及び鉄筋の非線形特性を考慮した非線形ソリッド要素でモデ ル化する。構造部材のモデル化にあたつては，鉄筋の付着が有効な領域を鉄筋コンクリ ート要素としてモデル化し，付着の影響が及ばない領域を無筋コンクリート要素として モデル化する。構造部材（鉄筋コンクリート）の非線形特性を図 $4-6$ 及び図 $4-7$ に示 す。
（2）境界条件
三次元構造解析モデルの底面には，地盤ばね要素を配置する。

左側壁

隔壁

右側壁

黒：全体座標系を示す
赤：要素座標系を示す

図 4－3 要素座標系（直線部）

頂版

底版

左側壁

隔壁

右側壁

黒：全体座標系を示す
赤：要素座標系を示す

図 4－4 要素座標系（曲線部）

$\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}$ ：曲げモーメント
$\mathrm{Q}_{\mathrm{x}}, ~ \mathrm{Q}_{\mathrm{y}}$ ：せん断力
N_{x} ， N_{y} ：軸力
$\mathrm{N}_{\mathrm{x} y}$ ：面内せん断力

図 4－5 ソリッド要素における断面力の方向

図 4－6 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2017年制定）より引用）

図 4－7 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2012年制定）より引用）

4．3．2 使用材料及び材料の物性値

取水路（標準部）の使用材料及び材料の物性値は，「3．5．2 使用材料及び材料の物性値」に基づき設定する。

4． 4 照査時刻及び入力荷重

4．4．1 照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表4－1に照査時刻の選定の考え方を示す。また，各断面において算出した地震時荷重の載荷方法は，直線部については，防潮堤横断部における剛性急変部の影響を考慮し，曲線部においては，防潮堤横断部における剛性急変部及び曲線形状による躯体のねじれの影響を考慮した荷重載荷方向を選定する。表4－2及び表4－3に地震時荷重の載荷方向の考え方を示す。

表4－1 照査時刻の考え方

照査時刻	損傷モード	着目部位		荷重抽出時刻		
時刻1	曲げ・軸力 系の破壊	壁 （面外）	頂底版間の層間変位が 最大となる時刻			
時刻 2						せん断破壊 （面外）
:---:						
壁 （面外）						

表4－2 地震時荷重の載荷方向の考え方（直線部）

載荷 ケース	損傷—ド	載荷方向のイメージ図	載荷方向の考え方
ケース1	－曲げ・軸力系 の破壊 －せん断破壊 （面外）		（同変形方向へ載荷） －各断面の荷重を同方向に載荷
ケース 2	－曲げ・軸力系 の破壊		（剛性急変部の影響考慮） －改良地盤部及び置換コンクリー ト部の地震時荷重と盛土部の地震時荷重を逆向きに載荷

表4－3 地震時荷重の載荷方向の考え方（曲線部）

	載荷 ケース	損傷—ド	載荷方向のイメージ図	載荷方向の考え方
	ケース 1	－曲げ・軸力系の破壊 －せん断破壊（面外）		（同変形方向へ載荷 （曲線部が開く変形）） －断面（5）及び断面（6）の地震時荷重は北方向に，断面（7）の地震時荷重は，西方向に載荷
0 \sim ~ 1 1 1 1 1	ケース 2			（同変形方向へ載荷 （曲線部が閉じる変形）） －断面（5）及び断面（6）の地震時荷重は南方向に，断面（7）の地震時荷重は，東方向に載荷
	ケース 3	－曲げ・軸力系の破壊		（逆変形方向へ載荷 （曲線部がねじれる変形）） －断面（5）及び断面（6）の地震時荷重は北（南）方向に，断面 ⑦の地震時荷重は，東（西）方向に載荷
$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	ケース 4			（剛性急変部の影響考慮） －断面（5）と断面（6）の地震時荷重は逆方向に載荷する。断面 ⑦の地震時荷重は，断面（6）と同変形方向に載荷

4． 4.2 入力荷重

三次元構造解析の入力荷重は，地震応答解析に基づく「4．4．1 照査時刻」で選定した照査時刻における応答値を用いて算定する。入力荷重の一覧を表 4－4に示す。

表 4－4 三次元構造解析における入力荷重

区分	種別	考慮する荷重
常時	固定荷重	躯体自重
荷重	常時土圧	躯体に作用する常時土圧
地震時荷重	慣性力	躯体に作用する慣性力
	動水圧（内水）	躯体に作用する動水圧＊
	地震時土圧	躯体に作用する地震時土圧
	地震時水圧	躯体に作用する地震時水圧

注記＊：動水圧は，地震応答解析から抽出した側壁及び隔壁の応答加速度に基づき算定する。

4.5 三次元構造解析結果

三次元構造解析に基づく構造部材の曲げ・軸力系の破壊に対する照査における最大照査値の評価時刻でのひずみ分布を図 4－8～図4－13に，せん断破壊に対する照査における最大照査値 の評価時刻での断面力分布を図 4－14～図4－25に示す。

図 4－8 曲げ・軸力系の破壊に対する照査における
照査値最大時のひずみ分布図（コンクリートの圧縮縁ひずみ）
（直線部，隔壁，解析ケース（3），S s－N $1(++)$ ）

図 4－9 曲げ・軸力系の破壊に対する照査における
照査値最大時のひずみ分布図（コンクリートの圧縮ひずみ）
（直線部，左側壁，解析ケース③）S s－N $1(++)$ ）

底版

隔壁

図 4－10 曲げ・軸力系の破壊に対する照査における照査値最大時のひずみ分布図（鉄筋） （直線部，底版，解析ケース③，S S－N $1(++)$ ）

右側壁

図 4－11 曲げ・軸力系の破壊に対する照査における
照査値最大時のひずみ分布図（コンクリートの圧縮縁ひずみ）
（曲線部，隔壁，解析ケース（3），S s－N $1(-+)$ ）

図 4－12 曲げ・軸力系の破壊に対する照査における
照査値最大時のひずみ分布図（コンクリートの圧縮ひずみ）
（曲線部，右側壁，解析ケース（3），S s－N $1(-+)$ ）

右側壁

図 4－13 曲げ・軸力系の破壊に対する照査における照査値最大時のひずみ分布図（鉄筋） （曲線部，底版，解析ケース（3），S s－N $1(-+)$ ）

図 4－14 せん断破壊に対する照査における照査値最大時の断面力分布図
（曲げモーメント（kN•m／m）：Mx ）
（直線部，底版，解析ケース（3），S s－N $1(++)$ ）

頂版

$-227 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$
$(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$
250.

左側壁

右側壁

図 4－15 せん断破壊に対する照査における照査値最大時の断面力分布図
(曲げモーメント (kN•m/m) : My)
（直線部，底版，解析ケース（3），S s－N $1(++)$ ）

図 4－16 せん断破壊に対する照査における照査値最大時の断面力分布図
（軸力（ kN / m ）：Nx）
（直線部，底版，解析ケース（3），S s－N $1(++)$ ）

図 4－17 せん断破壊に対する照査における照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): N y)$
（直線部，底版，解析ケース③）S s－N $1(++)$ ）

図 4－18 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（ kN / m ）： Qx ）
（直線部，底版，解析ケース（3），S s－N $1(++)$ ）

頂版

底版

左側壁

右側壁

図 4－19 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（kN／m）：Qy）
（直線部，底版，解析ケース（3），S s－N $1(++)$ ）

右側壁

図 4－20 せん断破壊に対する照査における照査値最大時の断面力分布図
（曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): ~ M x)$
（曲線部，隔壁，解析ケース③，S s－N $1(-+)$ ）

頂版

底版

左側壁

$144 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$

右側壁

図 4－21 せん断破壊に対する照査における照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）：My）
（曲線部，隔壁，解析ケース③）S s－N $1(-+)$ ）

頂版

4000 （kN／m）

底版

左側壁

隔壁

右側壁

図 4－22 せん断破壊に対する照査における照査値最大時の断面力分布図
（軸力（ kN / m ）：Nx）
（曲線部，隔壁，解析ケース③）S s－N $1(-+)$ ）

右側壁

図 4－23 せん断破壊に対する照査における照査値最大時の断面力分布図
（軸力（kN／m）：Ny）
（曲線部，隔壁，解析ケース（3），S s－N $1(-+)$ ）

右側壁

図 4－24 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（ kN / m ）：Qx）
（曲線部，隔壁，解析ケース③）S s－N $1(-+)$ ）

右側壁

図 4－25 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（ kN / m ）：Qy）
（曲線部，隔壁，解析ケース③）S s－N $1(-+)$ ）

5．耐震評価

5.1 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

5．1．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に基づき，限界ひずみ（圧縮縁コンクリートひずみ 1.0% ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ 1.0% の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模し たラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたもの である。

各要求機能について，通水機能を有することの確認においては，部材が終局状態に至ら ないことを目標性能とすることから，限界ひずみ（圧縮縁コンクリートひずみ 1.0% ）を許容限界とする。貯水機能を損なわないことの確認においては，コンクリート標準示方書に基づき，主筋ひずみ及びコンクリートの圧縮ひずみについて，部材降伏に相当するひずみ （主筋ひずみ 1725μ ，コンクリート圧縮ひずみ 2000μ ）とする。
鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表5－1 に示す。

表 5－1 取水路（標準部）の曲げ・軸力系の破壊に対する許容限界

確認項目	許容限界	
構造強度を有すること	限界ひずみ	$\begin{aligned} \text { 通水機能 }: & \text { 圧縮縁コンクリート } \\ & \text { ひずみ: } 1.0 \%(10000 \mu) \\ \text { 貯水機能 }: & \text { 主鉄筋 (SD345) : } 1725 \mu \\ & \text { コンクリート }: 2000 \mu \end{aligned}$

（2）せん断破壊に対する許容限界
構造強度を有することの確認におけるせん断破壊に対する許容限界は，土木学会マニュ アルに基づくせん断耐力とする。
各要求機能に対する確認について，通水機能，貯水機能のいずれも，せん断破壊に対し ては，終局状態に至らないことを目標性能とすることから，せん断耐力を許容限界とする。

5．1．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。
基礎地盤（狐崎部層）の許容限界を表5－2 に示す。

表 5－2 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。
MMR（既設）の許容限界を表5－3に示す。

表 5－3 MMR（既設）の支持性能に対する許容限界

評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$

5．2 評価方法

構造部材の健全性評価については，地震応答解析により得られた応答値から三次元構造モデ ルへ入力する荷重を算定し，三次元解析により算定した照査用ひずみ，照査用せん断力，照査用面内せん断ひずみが「5．1 許容限界」に示す許容限界を下回ることを確認する。基礎地盤の支持性能については，地震応答解析から算定した最大接地圧が「5．1 許容限界」に示す許容限界を下回ることを確認する。

6．耐震評価結果

6.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表6－1 及び表6－2 に， せん断破壊に対する各評価位置での最大照査値を表6－3 及び表 6－4 に示す。

取水路（標準部）の照査用ひずみ及び照査用せん断力が許容限界を下回ることを確認した。

表 6－1 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮縁ひずみ）（直線部）

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2 $\varepsilon{ }_{\mathrm{d}}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
頂版	21	（3）	S s－N $1(++)$	411μ	10000μ	0.05
側壁	71	（3）	S s－N $1(++)$	430μ	10000μ	0.05
隔壁	81	（3）	S s－N $1 \quad(++)$	632μ	10000μ	0． 07
底版	12	（3）	S s－N $1 \quad(++)$	254μ	10000μ	0． 03

注記＊1：評価位置は図6－1に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 6－2 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮縁ひずみ）（曲線部）

評価位置＊${ }^{\text {P }}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2 $\varepsilon{ }_{d}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
頂版	22	（3）	S s－N $1(-+)$	448μ	10000μ	0.05
側壁	71	（3）	S s－N $1(-+)$	527μ	10000μ	0.06
隔壁	81	（3）	S s－N $1(-+)$	803μ	10000μ	0.09
底版	12	（3）	S s－N $1 \quad(-+)$	363μ	10000μ	0.04

注記＊1：評価位置は図6－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 6－3 せん断破壊に対する最大照査値（直線部）

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \text { d }} \end{gathered}$
頂版	21	（3）	S s - N $1(++)$	1634	1823	0.90
側壁	71	（3）	S s - N $1(++)$	637	1129	0． 57
隔壁	81	（3）	S s - N $1(++)$	918	1054	0.88
底版	12	（3）	S s - N $1(++)$	1847	2060	0． 90

注記 $* 1$ ：評価位置は図6－1 に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表6－4 せん断破壊に対する最大照査値（曲線部）

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\begin{gathered} \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
頂版	22	（3）	S s - N $1(-+)$	1574	1823	0.87
側壁	61	（3）	S s－N $1(-+)$	897	1145	0． 79
隔壁	81	（3）	S s - N $1(-+)$	927	964	0． 97
底版	12	（3）	S s - N $1(-+)$	2048	2152	0.96

注記＊1：評価位置は図6－1に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

断面図

図 6－1 評価位置図（曲げ・軸力系の破壊及びせん断破壊）

6．2 各要求機能に対する評価結果

6．2．1 通水機能

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 -5 及び表6－6に，せん断破壊に対する各評価位置での最大照査値を表6－7及び表6－8 に示す。
取水路（標準部）の構造部材の照査用ひずみ及び照査用せん断力が通水機能に対する許容限界を下回ることを確認した。

表 6－5 曲げ・軸力系の破壊に対する最大照査値

（コンクリートの圧縮縁ひずみ）（直線部）（再掲）						
評価位	1，2	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	限界 ひずみ	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
頂版	21	（3）	S s－N $1 \quad(++)$	411μ	10000μ	0.05
側壁	71	（3）	S s－N $1(++)$	430μ	10000μ	0.05
隔壁	81	（3）	S s－N $1(++)$	632μ	10000μ	0． 07
底版	12	（3）	S s－N $1(++)$	254μ	10000μ	0． 03

注記＊1：評価位置は図6－1に示す。
＊2：通水機能が要求される部材の範囲は図 6－2 に示す。
＊3：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－6 曲げ・軸力系の破壊に対する最大照査値

（コンクリートの圧縮縁ひずみ）						
評価位	＊1，2	解析 ケース	地震動	照査用 ひずみ*3 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \text { \& R } \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
頂版	22	（3）	S s－N $1(-+)$	448μ	10000μ	0.05
側壁	71	（3）	S s－N $1(-+)$	527μ	10000μ	0.06
隔壁	81	（3）	S s－N $1(-+)$	803μ	10000μ	0.09
底版	12	（3）	S s－N $1(-+)$	363μ	10000μ	0.04

注記＊ 1 ：評価位置は図6－1に示す。
＊2：通水機能が要求される部材の範囲は図 6－2 に示す。
＊3：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 6－7 せん断破壊に対する最大照査値（直線部）（再掲）

評価位置＊${ }^{1,2}$		解析 ケース	地震動	照査用 せん断力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 Vyd （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
頂版	21	（3）	S s－N $1(++)$	1634	1823	0． 90
側壁	71	（3）	S s－N $1(++)$	637	1129	0.57
隔壁	81	（3）	S s－N $1(++)$	918	1054	0． 88
底版	12	（3）	S s－N $1(++)$	1847	2060	0.90

注記＊1：評価位置は図 6－1 に示す。
＊2：通水機能が要求される部材の範囲は図6－2に示す。
＊ 3 ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 6－8 せん断破壊に対する最大照査値（曲線部）（再掲）

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊3 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
頂版	22	（3）	S s－N $1(-+)$	1574	1823	0． 87
側壁	61	（3）	S s－N $1(-+)$	897	1145	0． 79
隔壁	81	（3）	S s－N $1(-+)$	927	964	0． 97
底版	12	（3）	S s－N $1(-+)$	2048	2152	0.96

注記＊1：評価位置は図6－1に示す。
＊2：通水機能が要求される部材の範囲は図 6－2 に示す。
$* 3$ ：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a

（直線部）

（曲線部）

図6－2 通水機能が要求される部材の範囲

6．2．2 貯水機能

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 －9～表6－12に，せん断破壊に対する各評価位置での最大照査値を表6－13 及び表6－14 に示す。

取水路（標準部）の照査用ひずみ及び照査用せん断力が，貯水機能に対する許容限界を下回ることを確認した。

表 6－9 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）（直線部）

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	限界 ひずみ ε_{R}	照査値 $\varepsilon{ }_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
頂版	－	－	－	－	－	－
側壁	61	（3）	S s－N $1(++)$	326μ	2000μ	0． 17
隔壁	－	－	－	－	－	－
底版	12	（3）	S s－N $1 \quad(++)$	237μ	2000 m	0． 12

注記＊1：評価位置は図 6－1に示す。
＊2：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊3：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－10 曲げ・軸力系の破壊に対する最大照査値（主筋ひずみ）（直線部）

評価位置＊${ }^{\text {1，}} 2$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
頂版	－	－	－	－	－	－
側壁	61	（1）	S s－F $2(++)$	69μ	1725μ	0.04
隔壁	－	－	－	－	－	－
底版	12	（3）	S s－N $1 \quad(++)$	297μ	1725μ	0.18

注記＊1：評価位置は図6－1に示す。
＊ 2 ：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊3：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 6－11 曲げ・軸力系の破壊に対する最大照查値（コンクリートの圧縮ひずみ）（曲線部）

$\left.$| 評価位置＊1，2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 解析 |
| :---: |
| ケース |\quad| 地震動 |
| :---: | | 照査用
 ひずみ＊3
 ε_{d} |
| :---: | | 限界 |
| :---: |
| ひずみ |
| ε_{R} |\quad| 照查値 |
| :---: |
| $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ | \right\rvert\,

注記 $* 1$ ：評価位置は図 6－1に示す。
＊2：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊ 3 ：照査用ひずみ $=$ 発生ひずみ \times 構造解析係数 γ_{a}

表 6－12 曲げ・軸力系の破壊に対する最大照査値（主筋ひずみ）（曲線部）

評価位置＊${ }^{\text {1，}} 2$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
頂版	－	－	－	－	－	－
側壁	71	（3）	S s－N $1(-+)$	111μ	1725μ	0.07
隔壁	－	－	－	－	－	－
底版	11	（3）	S s－N $1(-+)$	569μ	1725μ	0.33

注記＊1：評価位置は図6－1に示す。
＊2：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－13 せん断破壊に対する最大照査値（直線部）

評価位置＊${ }^{1,2}$		解析 ケース	地震動	照査用 せん断力＊3 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
頂版	－	－	－	－	－	－
側壁	71	（3）	S s－N $1(++)$	692	1839	0.38
隔壁	－	－	－	－	－	－
底版	12	（3）	S s－N $1(++)$	1847	2060	0.90

注記 $* 1$ ：評価位置は図 6－1に示す。
＊2：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊3：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a

表 6－14 せん断破壊に対する最大照査値（曲線部）

評価位置＊${ }^{* 1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊3 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
頂版	－	－	－	－	－	－
側壁	71	（3）	S s - N $1(-+)$	1149	1823	0.64
隔壁	－	－	－	－	－	－
底版	12	（3）	S s - N $1 \quad(-+)$	2048	2152	0.96

注記 $* 1$ ：評価位置は図 6－1 に示す。
＊2：貯水機能が要求される部材の範囲は図 6－3 に示す。
＊ 3 ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

図6－3 貯水機能が要求される部材の範囲

6． 3 基礎地盤の支持性能に対する評価結果

6．3． 1 基礎地盤（狐崎部層）
基礎地盤の支持性能の照査結果を表 6－15 に示す。また，最大接地圧分布図を図 6－4 に示す。

取水路（標準部）の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認 した。

表 6－15 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
(1)	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$ $(-+)$	3.3	13.7	0.25

図 6－4 基礎地盤の最大接地圧分布図
（解析ケース（1），S s－F $1(-+)$ ，断面（3）

6．3．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表 6－16に示す。また，最大接地圧分布図 を図6－5に示す。

取水路（標準部）のMMR（既設）に発生する最大接地圧が，支圧強度を下回ることを確認した。

表 6－16 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	3.3	15.6	0.22

図 6－5 MMR（既設）の最大接地圧分布図
（解析ケース（3），S s－N $1(++)$ ，断面（5））

[^0]: VI－2－10－4－4－1 取水路（漸拡部）の耐震性についての計算書

