女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-04-0330_改 0
提出年月日	2021年 5月11日

補足-330 工事計画に係る補足説明資料(原子炉冷却系統施設)

2021年5月

東北電力株式会社

工事計画添付書類に係る補足説明資料

添付書類の記載内容を補足するための資料を以下に示す。

工認添付書類	補足説明資料
VI-1-4-2	補足-330-1
流体振動又は温度変動による損傷防止に関す	流体振動又は温度変動による損傷防止に関す
る説明書	る補足説明資料
VI-1-4-3	補足-330-2
非常用炉心冷却設備その他原子炉注水設備の	非常用炉心冷却設備その他原子炉注水設備の
ポンプの有効吸込水頭に関する説明書	ポンプの有効吸込水頭に関する補足説明資料
VI-1-4-1	補足-330-3
原子炉格納容器内の原子炉冷却材の漏えいを	原子炉格納容器内の原子炉冷却材の漏えいを
監視する装置の構成に関する説明書並びに計	監視する装置の構成並びに計測範囲及び警報
測範囲及び警報動作範囲に関する説明書	動作範囲に関する補足説明資料

本資料のうち,枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-04-0330-1_改 0
提出年月日	2021年3月2日

補足-330-1 流体振動又は温度変動による損傷防止に関する

補足説明資料

目 次

1.	概要	1
2.	原子炉冷却材圧力バウンダリ拡大範囲の構成	1
3.	まとめ	6
4.	添付資料	6

1. 概要

本資料は、「VI-1-4-2 流体振動又は温度変動による損傷の防止に関する説明書」(以下「説明書」 という。)の「2.評価範囲」に示す評価範囲において、流力振動評価が必要な配管内円柱状構造物 及び配管の高サイクル熱疲労評価が必要な高低温水合流部及び閉塞分岐管が含まれないことを説 明する。

なお、原子炉冷却材圧力バウンダリ拡大範囲以外の既設設備については、経済産業省原子力安 全・保安院による指示文書の別紙1「新省令第6条及び第8条の2第2項における流体振動によ る損傷の防止に関する当面の措置について」(平成17・12・22原院第6号)に基づき保安院に提 出した「女川原子力発電所における流体振動による配管内円柱状構造物の損傷防止に関する評価 結果と措置計画等の報告について」(平成18年8月10日付け東北電原設第20号)及び「高サイ クル熱疲労に係る評価及び検査に対する要求事項について」(平成19・02・15原院第2号)に基 づき提出した「女川原子力発電所2号機高サイクル熱疲労による損傷の防止に関する評価および 検査結果の報告について」(平成20年3月3日付け東北電原設第53号)(以下「報告書」という。) にて評価している。また、技術基準規則第19条解釈に示された配管内円柱状構造物の流力振動 及び配管の高サイクル熱疲労の評価が必要となる一次冷却材が循環する施設は参考資料に示すと おり、省令62号から変更はない。よって改めて検討する範囲は今回拡大した原子炉冷却材圧力 バウンダリ範囲で十分である。

原子炉冷却材圧力バウンダリ拡大範囲の構成
 原子炉冷却材圧力バウンダリ拡大範囲について、系統概要図を図1~図5に示す。

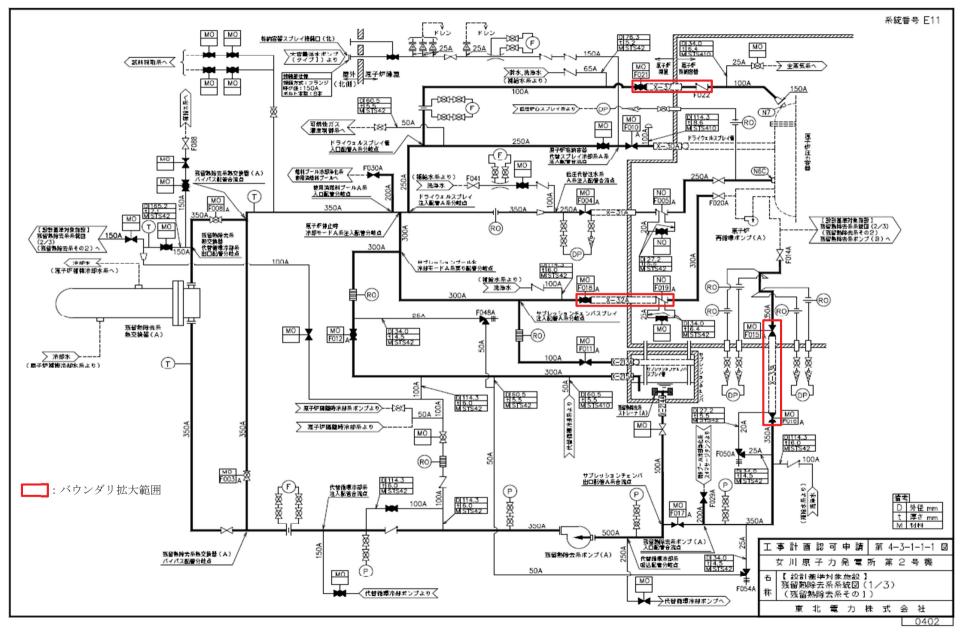


図1 残留熱除去系(A)系統図

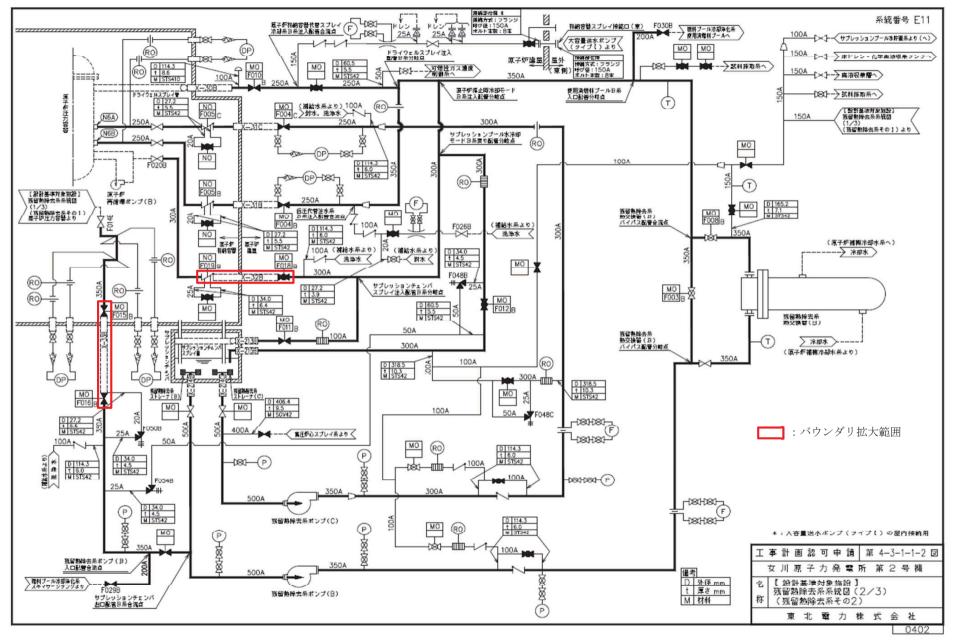


図2 残留熱除去系(B)系統図

①配管

②弁

③配管溶接部

④支持構造物取付溶接継手

図3 残留熱除去系停止時冷却モード吸込ラインの系統概要図

図4 残留熱除去系停止時冷却モード戻りラインの系統概要図

①配管

②弁

③配管溶接部④支持構造物取付溶接継手

図5 残留熱除去系ヘッドスプレイラインの系統概要図

枠囲みの内容は商業機密の観点から公開できません。

3. まとめ

図 1~図 5 より,今回の原子炉冷却材圧力バウンダリ拡大範囲に流力振動評価対象となる配管 内円柱状構造物及び高サイクル熱疲労の評価対象となる高低温水合流部は含まれておらず,流体 振動又は温度変動による損傷が懸念され新たに評価が必要となる部位は無い。また,保安院に提 出した報告書を添付 1,添付 2 に示す。これにより,技術基準第 19 条に示されたとおり,配管 内円柱状構造物の流力振動については「配管内円柱状構造物の流力振動評価指針」(JSME S 0 1 2),高サイクル熱疲労については「配管の高サイクル熱疲労に関する評価指針」(JSME S 0 1 7)に規定された手法により評価しており,問題があると評価された部位については対策を とり,結果を定期事業者検査で確認している。

4. 添付資料

添付1 流体振動による配管内円柱構造物の損傷防止に関する評価結果について 添付2 高サイクル熱疲労による損傷の防止に関する評価結果について

【参考資料】

技術基準規則の新旧比較について

添付1

流体振動による配管内円柱状構造物の損傷防止に関する評価結果について

女川原子力発電所2号機

流体振動による配管内円柱状構造物の損傷防止に関する

評価結果と措置計画等の報告について

平成18年8月

東北電力株式会社

1. 目的

平成17年12月27日付け平成17・12・22 原院第6号「発電用原子力設備に関する技 術基準を定める省令の改正に伴う電気事業法に基づく定期事業者検査の実施について」のう ち「別紙1 新省令第6条及び第8条の2第2項における流体振動による損傷の防止に関す る当面の措置について」の指示に基づき,女川原子力発電所2号機における流体振動による 配管内円柱状構造物の損傷防止に関する評価結果と措置計画等について,報告書を提出した。 (東北電原設第43号 平成18年3月31日付け)その後,偏流発生部等における評価が 完了したことから,改めて報告したところである。(東北電原設第43号 平成18年4月2 8日付け)

今回,本内容のうち措置計画の一部を変更したことや誤記が認められたことから,変更箇所 について修正するとともに,誤記に対する対策について別添資料にてまとめ,再度報告する。

2. 配管内円柱状構造物の損傷評価

配管内円柱状構造物について,発電用原子力設備に関する技術基準を定める省令(以下,「省 令62号」という)第6条第1項および第3項ならびに第8条の2第3項に基づき,評価を 行った。

(1)評価手法

日本機械学会「配管内円柱状構造物の流力振動評価指針」(JSME S012)(以下,「JSME」という)に基づき,評価を行った。(添付資料-1-1参照)

なお,評価にあたっては,下記の作業ステップに従いスクリーニングを行い,評価作業の 効率化を図ることとした。(添付資料-1-2参照)

ステップ①

プラント配管設計上のスペックである設計最大流速に更に余裕を加味した条件(蒸気 配管:80m/s,液体配管:12m/s,但しPLR系については24m/s)にて、 JSME評価式に基づいた換算流速Vrを算出し、Vr<1,すなわち共振が回避できるこ とを確認する。合わせて、定常抗力および流れの乱れを考慮した振動応力を算出し、許 容応力以下であることを確認する。

ステップ②

ステップ①にて損傷の可能性が否定できないと評価されたものについて,系統流速を 条件とした評価を実施する。なお,系統流速については,実機の運転モード(ランアウ ト運転,バイパス運転)を考慮して系統平均流速を2倍した流速にて評価を実施する。 ただし,2倍した数値が,上記ステップ①の流速を超える場合は,そのまま次ステップ に移行する。

ステップ③

ステップ②にて損傷の可能性が否定できないと評価されたものについて,実機の運転 モードを考慮した詳細評価を実施する。評価にあたっては,系統試運転等で実施した系 統流速をオーバーした試験実績,系統のバイパス運転による局部的な流速の増加を考慮 する。また,上流部に偏流発生源がある場合,円柱状構造物までの距離に応じて以下に 示す割増係数を乗じた流速条件にて評価を行う。

偏流発生源から円柱状構造物までの距離(X)	割増係数
X≦3 d	1. 5
$3 d < X \leq 5 d$	1.25

d:配管内径

(2) 対象系統

対象として,省令62号より以下の系統を選定している。

- 一次冷却材の循環系統(主蒸気系,給復水系等を含む)
- · 原子炉冷却材浄化系
- ・ 残留熱除去系(原子炉停止時冷却モード)
- 非常用炉心冷却設備(原子炉隔離時冷却系を含む)

(3) 対象設備

片持梁状の構造物(温度計ウェル,サンプリングノズル,酸素注入ノズル)を対象とする。 なお,容器等流れを有しない管以外の部位に設置される円柱状構造物は対象設備より除く。 対象設備について添付資料-2,3に示す。

3. JSME評価結果

2.の損傷評価を実施し,損傷の可能性が否定できない箇所について抽出を行った。(添 付資料-3参照)

また、温度計ウェルとサンプリングノズルの概略図について添付資料-4に示す。

4. プラント機器への影響評価

サンプリングノズルについては、プラント運転中に損傷した場合に検知が不可能であることから、損傷の可能性が否定できない8箇所について、プラント機器への影響評価を実施し、 問題ないことを確認した。(添付資料-5参照)

5. 措置計画

損傷の可能性が否定できないもののうち、温度計ウェルについては、短尺化による共振の

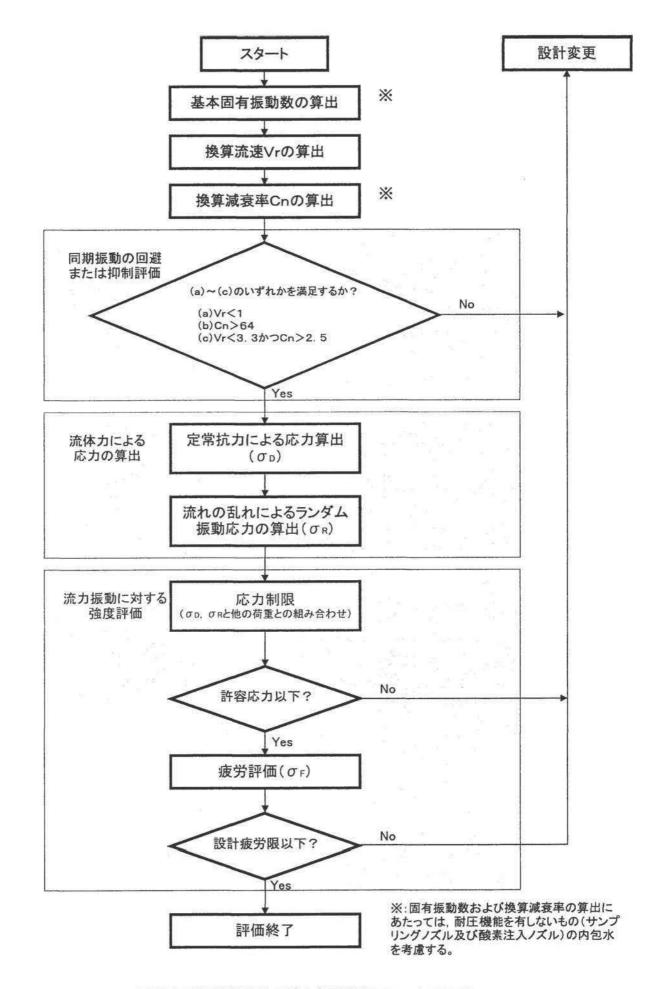
回避を行うこととする。また、サンプリングノズルにおいては、その損傷によりプラント機器に対して影響ないことを確認したものの、損傷の可能性を否定できないことから、短尺化による共振の回避を行うこととする。

以上の措置計画について添付資料-6に示す。

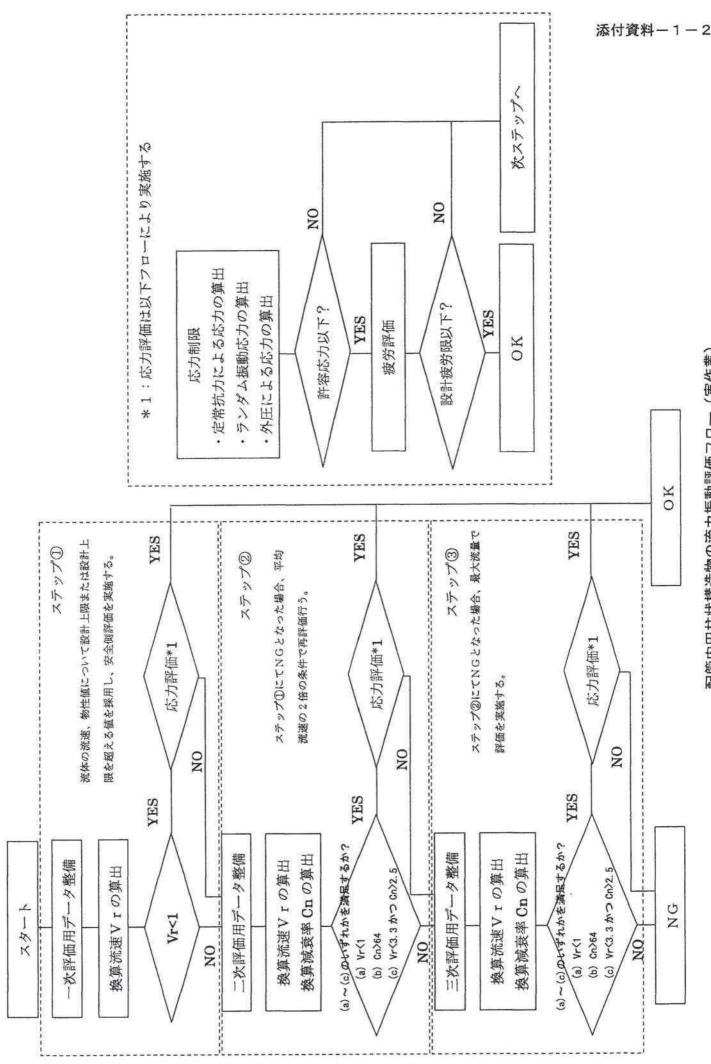
6. 添付資料

添付資料-1-	1	配管内円柱状構造物の流力振動評価フロー	(JSME)
---------	---	---------------------	--------

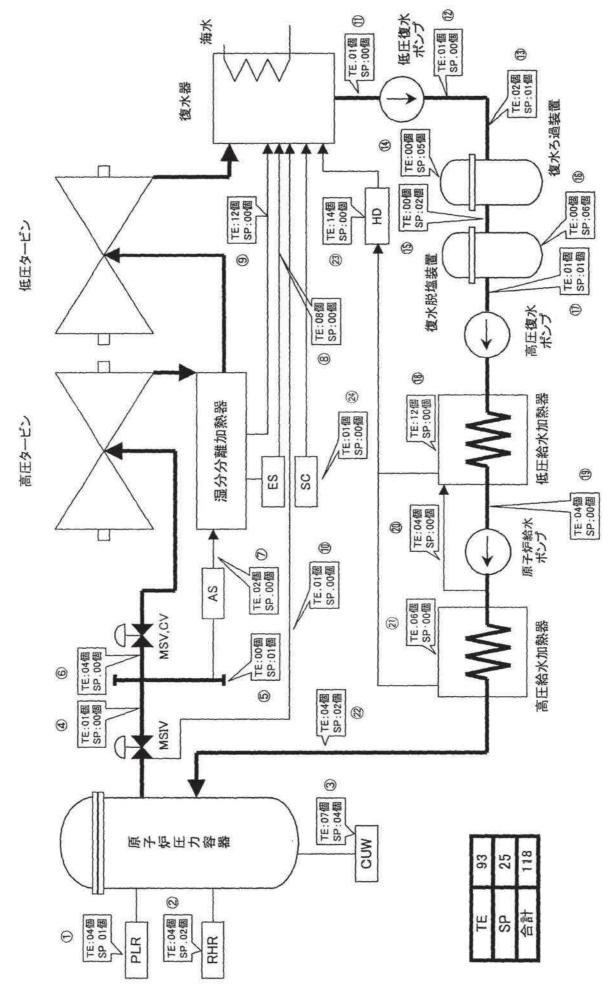
- 添付資料-1-2 配管内円柱状構造物の流力振動評価フロー(実作業)
- 添付資料-2 女川原子力発電所2号機配管内円柱状構造物設置箇所
- 添付資料-3 女川原子力発電所2号機対象設備一覧表および評価結果
- 添付資料-4 対象設備の概略図
- 添付資料-5 プラント機器への影響評価
- 添付資料-6 損傷の可能性が否定できない箇所の措置計画


7. 参考資料

参考資料-1	配管内円柱状構造物の流力振動評価データ
参考資料—2	アイソメ図


8. 別添資料

別添資料 女川原子力発電所2号機 配管内円柱状構造物健全性評価報告書におけ る誤記について


以上

配管内円柱状構造物の流力振動評価フロー(JSME)

配管内円柱状構造物の流力振動評価フロー(実作業)

女川原子力発電所2号機配管内円柱状構造物設置箇所

女川原子力発電所2号機対象設備一覧表および評価結果

`本平		系統	T N	17 Th		設置		
連番	番号	略称	Tag No.	名称 	STEP 1	STEP 2	STEP 3	箇所 ※
1	B21	NB	B21-TE002	原子炉出口主蒸気温度	×	×	×	4
2	B21	NB	B21-TE003	主蒸気ドレンライン温度	×		0	1
3	B32	PLR	B32-TE002A	原子炉再循環ポンプ(A)入口温度	×	×	0	1
4	B32	PLR	B32-TE002B	原子炉再循環ポンプ(B)入口温度	×	×	0	1
5	B32	PLR	B32-TE003A	原子炉再循環ポンプ(A)入口温度	×	×	×	1
6	B32	PLR	B32-TE003B	原子炉再循環ポンプ(B)入口温度	×	×	×	1
7	E11	RHR	E11-TE007A	RHR熱交換器(A)出口温度	×	×	0	2
8	E11	RHR	E11-TE007B	RHR熱交換器(B)出口温度	×	×	0	2
9	E11	RHR	E11-TE010A	RHR熱交換器(A)入口温度	×	×	0	2
10	E11	RHR	E11-TE010B	RHR熱交換器(B)入口温度	×	×	0	2
11	G31	CUW	G31-TE002	CUW再生熱交換器入口温度	×	0	-	3
12	G31	CUW	G31-TE006	CUW再生熱交換器出口温度	×	0	-	3
13	G31	CUW	G31-TE007A	CUW非再生熱交換器(A)出口温度	0	-	-	3
14	G31	CUW	G31-TE007B	CUW非再生熱交換器(B)出口温度	0	=	-	3
15	G31	CUW	G31-TE008	CUWポンプ入口温度	×	0	-	3
16	G31	CUW	G31-TE021	C U W 再生熱交換器冷却側出口温度	×	0	-	3
17	G31	CUW	G31-TE025	原子炉圧力容器ドレン温度	0	100 8	-	3
18	N11	MS	N11-TE006A	高圧タービン第1入口温度	×	×	×	6
19	N11	MS	N11-TE006B	高圧タービン第2入口温度	×	×	×	6
20	N11	MS	N11-TE006C	高圧タービン第3入口温度	×	×	×	6
21	N11	MS	N11-TE006D	高圧タービン第4入口温度	×	×	×	6
22	N21	C, FDW, AO	N21-TE005	復水脱塩装置出口復水温度	×	0	-	
23	N21	C, FDW, AO	N21-TE006	低圧復水ポンプ入口ヘッダ温度	×	0	-	1
24	N21	C, FDW, AO	N21-TE008	蒸気式空気抽出器出口復水温度	×	0	-	13
25	N21	C, FDW, AO	N21-TE009	グランド蒸気復水器出口復水温度	×	0	-	(13)
26	N21	C, FDW, AO	N21-TE014A	低圧第1給水加熱器ドレン冷却器(A)入口復水温度	×	0	-	18

***	系統		T N	夕开		評価結果		設置
連番	番号	略称	Tag No.	名称	STEP 1	STEP 2	STEP 3	圖//
27	N21	C, FDW, AO	N21-TE014B	低圧第1給水加熱器ドレン冷却器(B)入口復水温度	×	0	-	18
28	N21	C, FDW, AO	N21-TE015A	低圧第1給水加熱器(A)入口復水温度	×	0		18
29	N21	C, FDW, AO	N21-TE015B	低圧第1給水加熱器(B)入口復水温度	×	0	-	18
30	N21	C, FDW, AO	N21-TE016A	低圧第2給水加熱器(A)入口復水温度	×	0	-	18
31	N21	C, FDW, AO	N21-TE016B	低圧第2給水加熱器(B)入口復水温度	×	0	-	18
32	N21	C, FDW, AO	N21-TE017A	低圧第3給水加熱器(A)入口復水温度	×	0	-	18
33	N21	C, FDW, AO	N21-TE017B	低圧第3給水加熱器(B)入口復水温度	×	0	-	18
34	N21	C, FDW, AO	N21-TE018A	低圧第4給水加熱器(A)入口復水温度	×	0	-	18
35	N21	C, FDW, AO	N21-TE018B	低圧第4給水加熱器(B)入口復水温度	×	0	-	(18)
36	N21	C, FDW, AO	N21-TE019A	低圧第4給水加熱器(A)出口復水温度	×	0	æ	(18)
37	N21	C, FDW, AO	N21-TE019B	低圧第4給水加熱器(B)出口復水温度	×	0	-	18
38	N21	C, FDW, AO	N21-TE030A	高圧第1給水加熱器(A)入口給水温度	0	-	-	21)
39	N21	C, FDW, AO	N21-TE030B	高圧第1給水加熱器(B)入口給水温度	0	-	-	21)
40	N21	C, FDW, AO	N21-TE031A	高圧第2給水加熱器(A)入口給水温度	0	-	-	21
41	N21	C, FDW, AO	N21-TE031B	高圧第2給水加熱器(B)入口給水温度	0		8 <u></u>	21
42	N21	C, FDW, AO	N21-TE032A	高圧第2給水加熱器(A)出口給水温度	0		.—	21)
43	N21	C, FDW, AO	N21-TE032B	高圧第2給水加熱器(B)出口給水温度	0		-	21)
44	N21	C, FDW, AO	N21-TE034A	原子炉給水温度	0	-	-	22
45	N21	C, FDW, AO	N21-TE034B	原子炉給水温度	0	-	-	22
46	N21	C, FDW, AO	N21-TE035A	原子炉給水温度	0	-	-	22
47	N21	C, FDW, AO	N21-TE035B	原子炉給水温度	0	Η	T	22
48	N21	C, FDW, AO	N21-TE051A	T D - R F P (A)シール水中間抽出温度	×	0	-	20
49	N21	C, FDW, AO	N21-TE051B	TD-RFP(B)シール水中間抽出温度	×	0	-	@
50	N21	C, FDW, AO	N21-TE052A	MD-RFP(A)シール水中間抽出温度	×	0	-	20
51	N21	C, FDW, AO	N21-TE052B	MD-RFP(B)シール水中間抽出温度	×	0	-	20
52	N21	C, FDW, AO	N21-TE055A	TD-RFP(A)入口温度	×	0	-	(19
53	N21	C, FDW, AO	N21-TE055B	TD-RFP(B)入口温度	×	0	-	19

O:OK ×:NG 一:評価不要 ※:添付資料-2参照

		系統		<i>A</i> 16	評価結果		果	設置 箇所
連番	番号	略称	Tag No.	名称	STEP 1	STEP 2	STEP 3	*
54	N21	C, FDW, AO	N21-TE056A	MD-RFP(A)入口温度	×	0	-	19
55	N21	C, FDW, AO	N21-TE056B	MD-RFP(B)入口温度	×	0	-	(19)
56	N21	C, FDW, AO	N21-TE080	低圧復水ポンプ出口ヘッダ温度	×	0	-	12
57	N22	HD	N22-TE005A	高圧第2給水加熱器(A)ドレン温度	0	-	-	23
58	N22	HD	N22-TE005B	高圧第2給水加熱器(B)ドレン温度	0	-	-	23
59	N22	HD	N22-TE010A	高圧第1給水加熱器(A)ドレン温度	×	0	-	23
60	N22	HD	N22-TE010B	高圧第1給水加熱器(B)ドレン温度	×	0	-	23
61	N22	HD	N22-TE015A	低圧第4給水加熱器(A)ドレン温度	×	0	-	23
62	N22	HD	N22-TE015B	低圧第4給水加熱器(B)ドレン温度	×	0	-	23
63	N22	HD	N22-TE020A	低圧第3給水加熱器(A)ドレン温度	×	0	-	23
64	N22	HD	N22-TE020B	低圧第3給水加熱器(B)ドレン温度	×	0	-	23
65	N22	HD	N22-TE025A	低圧第2給水加熱器(A)ドレン温度	×	0	-	23
66	N22	HD	N22-TE025B	低圧第2給水加熱器(B)ドレン温度	×	0	-	23
67	N22	HD	N22-TE029A	低圧第1給水加熱器ドレン冷却器(A)入口ドレン温度	×	0	-	23
68	N22	HD	N22-TE029B	低圧第1給水加熱器ドレン冷却器(B)入口ドレン温 度	×	0	-	23
69	N22	HD	N22-TE030A	低圧第1給水加熱器ドレン冷却器(A)出ロドレン温度	×	0		23
70	N22	HD	N22-TE030B	低圧第1給水加熱器ドレン冷却器(B)出ロドレン温 度	×	0	-	23
71	N22	HD	N22-TE036A1	湿分分離ドレンタンク(A1)ドレン温度	0	-	-	9
72	N22	HD	N22-TE036A2	湿分分離ドレンタンク(A2)ドレン温度	0	-	1	9
73	N22	HD	N22-TE036B1	湿分分離ドレンタンク(B1)ドレン温度	0	-	-	9
74	N22	HD	N22-TE036B2	湿分分離ドレンタンク(B2)ドレン温度	0	-	-	9
75	N22	HD	N22-TE041A1	第1段加熱器ドレンタンク(A1)ドレン温度	0	-		9
76	N22	HD	N22-TE041A2	第1段加熱器ドレンタンク(A2)ドレン温度	0	-	-	9
77	N22	HD	N22-TE041B1	第1段加熱器ドレンタンク(B1)ドレン温度	0	-	Ţ	9
78	N22	HD	N22-TE041B2	第1段加熱器ドレンタンク(B2)ドレン温度	0	-	-	9
79	N22	HD	N22-TE046A1	第2段加熱器ドレンタンク(A1)ドレン温度	0	-	-	9
80	N22	HD	N22-TE046A2	第2段加熱器ドレンタンク(A2)ドレン温度	0	1.75	-	9

		系統	Tog No		評価結果			設置
連番	番号	略称	- Tag No.	名称	STEP 1	STEP 2	STEP 3	箇所 ※
81	N22	HD	N22-TE046B1	第2段加熱器ドレンタンク(B1)ドレン温度	0	-	-	9
82	N22	HD	N22-TE046B2	第2段加熱器ドレンタンク(B2)ドレン温度	0	-	-	9
83	N36	ES	N36-TE007A	湿分分離加熱器(A)出口蒸気温度(低圧タービン (A)入口)	×	0	-	8
84	N36	ES	N36-TE007B	湿分分離加熱器(B)出口蒸気温度(低圧タービン (A)入口)	×	0	-	8
85	N36	ES	N36-TE008A	湿分分離加熱器(A)出口蒸気温度(低圧タービン (B)入口)	×	0		8
86	N36	ES	N36-TE008B	湿分分離加熱器(B)出口蒸気温度(低圧タービン (B)入口)	×	0	-	8
87	N36	ES	N36-TE032A	低圧第4給水加熱器(A)抽気温度	×	0		8
88	N36	ES	N36-TE032B	低圧第4給水加熱器(B)抽気温度	×	0	-	8
89	N36	ES	N36-TE033A	MSH第1段加熱器(A)加熱蒸気温度	×	×	0	8
90	N36	ES	N36-TE033B	MSH第1段加熱器(B)加熱蒸気温度	×	×	×	8
91	N38	AS	N38-TE011A	MSH第2段加熱器(A)加熱蒸気温度	×	0		Ø
92	N38	AS	N38-TE011B	MSH第2段加熱器(B)加熱蒸気温度	×	0	-	Ø
93	P63	SC	P63-TE027	SC中間熱交換器出口ドレン温度	0	-	-	24)
94	B32	PLR	SP-RB01	原子炉再循環系出口配管	×	×	×	1
95	G31	CUW	SP-RB02	原子炉冷却材浄化系ポンプ出口配管	0		-	3
96	G32	CUW	SP-RB03	原子炉冷却材浄化系ポンプ出口配管	×	0	-	3
97	E11	RHR	SP-RB06A	RHR熱交換器(A)出口配管	×	0	6776 - 14 16776 - 14	2
98	E11	RHR	SP-RB06B	RHR熱交換器(B)出口配管	×	0	-	2
99	N11	MS	SP-TB01	主蒸気ヘッダ	0	-	-	5
100	N21	FDW	SP-TB13	高圧第2給水加熱器出口配管	×	×	0	22
101	N21	FDW	SP-TB14	高圧第2給水加熱器出口配管	×	×	0	22
102	N21	С	SP-TB04	復水ろ過装置入口配管	×	×	×	13
103	N21	С	SP-TB07	復水ろ過装置出口配管	×	×	0	15
104	N21	С	SP-TB10	復水脱塩装置出口配管	×	×	0	1
105	G31	CUW	SP-RB04A	CUWろ過脱塩器(A)出口配管	0	+	-	3
106	G31	CUW	SP-RB04B	CUWろ過脱塩器(B)出口配管	0	-	-	3
107	N26	CF	SP-TB06A	復水ろ過装置出口配管(A)	×	×	0	1

	系	系統			Ē	平価結果	果	設置
連番	番号	略称	- Tag No.	名称	STEP 1	STEP 2	STEP 3	箇所 ※
108	N26	CF	SP-TB06B	復水ろ過装置出口配管(B)	×	×	0	1
109	N26	CF	SP-TB06C	復水ろ過装置出口配管(C)	×	×	0	1
110	N26	CF	SP-TB06D	復水ろ過装置出口配管(D)	×	×	0	1
111	N26	CF	SP-TB06E	復水ろ過装置出口配管(E)	×	×	0	1
112	N27	CD	SP-TB09A	復水脱塩装置出口配管(A)	×	×	×	16
113	N27	CD	SP-TB09B	復水脱塩装置出口配管(B)	×	×	×	16
114	N27	CD	SP-TB09C	復水脱塩装置出口配管(C)	×	×	×	16
115	N27	CD	SP-TB09D	復水脱塩装置出口配管(D)	×	×	×	16
116	N27	CD	SP-TB09E	復水脱塩装置出口配管(E)	×	×	×	(16)
117	N27	CD	SP-TB09F	復水脱塩装置出口配管(F)	×	×	×	(16)
118	N27	CD	CDin	復水脱塩装置入口配管(酸素注入ライン)	×	×	0	(15)

対象設備の概略図(温度計ウェル)

枠囲みの内容は商業機密の観点から公開できません。

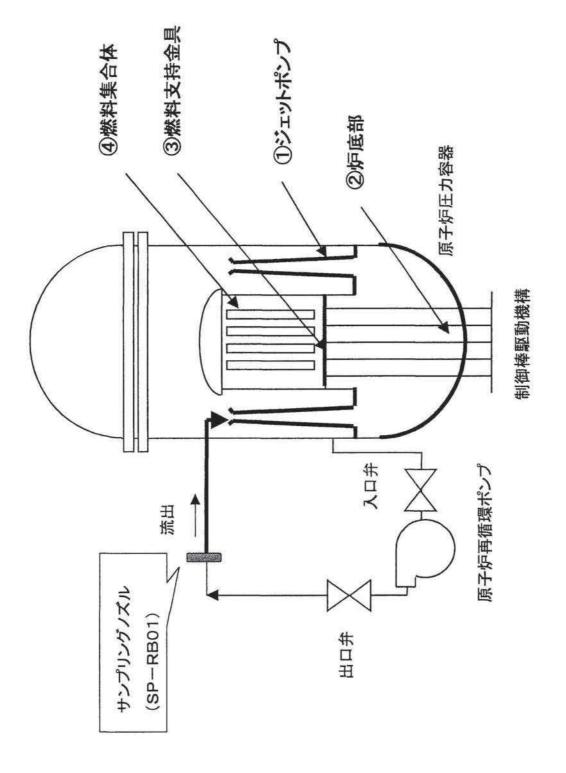
対象設備の概略図(サンプリングノズル)

枠囲みの内容は商業機密の観点から公開できません。

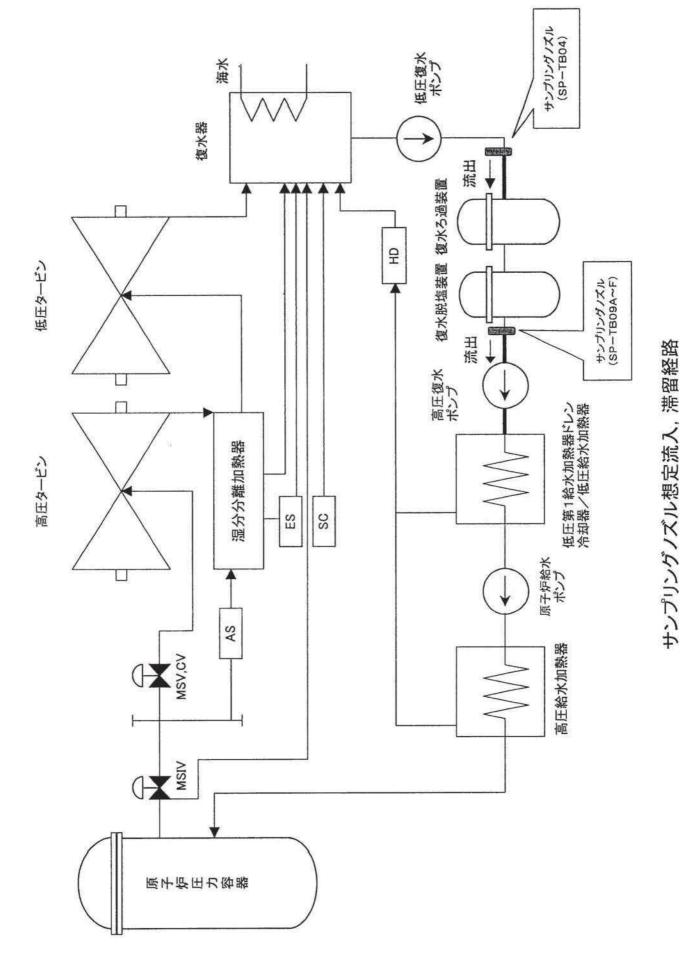
プラント機器への影響評価

1. 想定損傷物について

設置場所および寸法形状については以下の通りとする。


- ① 原子炉再循環系出口配管サンプリングノズル(SP-RB01)
 - ・原子炉再循環ポンプ出口弁下流部(別紙1参照)
 - $\phi = 1.9 \, \text{mm}$, L = 1.35 mm
- ② 復水ろ過装置入口配管サンプリングノズル(SP-TB04)
 - ・低圧復水ポンプ下流部(別紙2参照)
 - $\cdot \phi = 2.7$. 2 mm, L = 2.9 4 mm
- ③ 復水脱塩装置出口配管(A)~(F)サンプリングノズル(SP-TB09A~F)
 - ·復水脱塩装置出口部(別紙2参照)
 - $\phi = 20 \, \text{mm}$, L = 1 4 5 mm
- 2. 評価方法

上記想定損傷物が,別紙1,2に示す位置から一次冷却材に流入し,原子炉内へ流入するか,また流入する可能性がある場合,プラント機器に影響を与えるかについて検討を行った。


- 3. 評価結果
 - ① SP-RB01
 - ・ 別紙1に示す通り、サンプリングノズル設置場所の下流部には弁等の機器がな いため、再循環入口ノズルからジェットポンプに流入する。
 - ジェットポンプの最も狭隘な部位はインレットミキサのノズル部であるが、内
 径が約29mmであり、損傷サンプリングノズルは通過する。(図1参照)
 - ジェットポンプから流出し、炉底部に至り、上部への流れに乗り上昇すると仮定すると、燃料支持金具に到達する。燃料支持金具には、周辺部と中央部の2 種類があり、周辺燃料支持金具のオリフィスの穴径は約32mm であるため、 損傷サンプリングノズルは通過する。また、中央燃料支持金具については、流路で引っかかるが、損傷部の形状によっては長さが短くなることも考えられ、 通過することを否定できない。(図2参照)
 - ・ 燃料支持金具を通過すると燃料の下部タイプレートに到達するが、下部タイプレートの冷却水流路の狭隘部は、ステップⅡ燃料で約16.3mm、ステップ Ⅲ燃料(B型)で約14.3mm、またステップⅢ燃料(A型)の冷却水流路 で約φ7.2mmであり、損傷サンプリングノズルの形状や寸法から、ここに 捕捉されるため、燃料集合体に影響はない。(図3参照)

- ② SP−TB04
 - 別紙2に示す通り、サンプリングノズル設置場所の下流部に設置された復水ろ 過装置の中空糸膜フィルタに捕捉されるため、原子炉に流入することはない。
- ③ SP-TB09A~F
 - 別紙2に示す通り、サンプリングノズル設置場所の下流部に設置された低圧第
 1給水加熱器ドレン冷却器に捕捉されるため(伝熱管外径:19.05mm(t = 1 mm))、原子炉に流入することはない。
 なお、その手前にある高圧復水ポンプは常用系であり、仮に運転に支障をきた

した場合は予備機に切替が可能である。

原子炉再循環系出口配管サンプリングノズル想定流入, 滞留経路

別紙2

図1 ジェットポンプ

枠囲みの内容は商業機密の観点から公開できません。

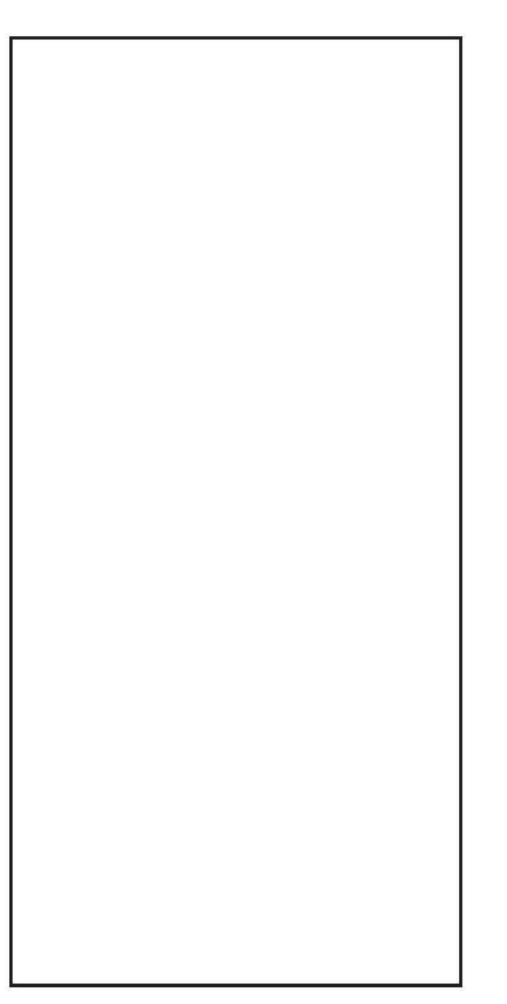


図3 下部タイプレート

枠囲みの内容は商業機密の観点から公開できません。

添付資料-6

NO	プラント	Tag No	名称	措置計画
1	0-2	B21-TE002	原子炉出口主蒸気温度	#8 定検で取替
2	0-2	B32-TE003A	原子炉再循環ポンプ(A)入口温度	#8 定検で取替
3	0-2	B32-TE003B	原子炉再循環ポンプ(B)入口温度	#8 定検で取替
4	0-2	N11-TE006A	高圧タービン第1入口温度	#8 定検で取替
5	0-2	N11-TE006B	高圧タービン第2入口温度	#8 定検で取替
6	0-2	N11-TE006C	高圧タービン第3入口温度	#8 定検で取替
7	0-2	N11-TE006D	高圧タービン第4入口温度	#8 定検で取替
8	0-2	N36-TE033B	MSH 第1段加熱器(B)加熱蒸気温度	#8 定検で取替
9	0-2	SP-RB01	原子炉再循環系出口配管	#8 定検で取替
10	0-2	SP-TB04	復水ろ過装置入口配管	#8 定検で取替
11	0-2	SP-TB09A	復水脱塩装置出口配管 (A)	#8 定検で取替
12	0-2	SP-TB09B	復水脱塩装置出口配管(B)	#8 定検で取替
13	0-2	SP-TB09C	復水脱塩装置出口配管 (C)	#8 定検で取替
14	0-2	SP-TB09D	復水脱塩装置出口配管 (D)	#8 定検で取替
15	0-2	SP-TB09E	復水脱塩装置出口配管 (E)	#8 定検で取替
16	0-2	SP-TB09F	復水脱塩装置出口配管(F)	#8 定検で取替

損傷の可能性が否定できない箇所の措置計画

O-2 温度計ウェル STEP1 *:1次評価では使用しないパラメータである。 0-2 温度計ウェル STEP1 *:1次評価では使用しないパラメータである。

配管内円柱状構造物の流力振動評価データ

O-2 温度計ウェル STEP2
 (注)自由膨張する系統のため、STEP3を行う。

O-2 温度計ウェル STEP3

O−2:サンプリングノズル(STEP1評価) _*:1次評価では使用しないパラメータである。 .

配管内円柱状構造物の流力振動評価データ

0-2: サンプリングノズル(STEP2評価)

O-2:サンプリングノズル (STEP3評価)

参考資料-1

参考資料-2

女川2号機 配管内円柱状構造物健全性評価 ステップ③対象箇所アイソメ図一覧表

NO.	プラント	系統	TAG. NO.	計測点名称	アイソメ図 シートNo.
1	0-2	NB	B21-TE002	原子炉出口主蒸気温度	1
2	0-2	NB	B21-TE003	主蒸気ドレンライン温度	19
3	0-2	PLR	B32-TE002A	原子炉再循環ポンプ(A)入口温度	2
4	0-2	PLR	B32-TE002B	原子炉再循環ポンプ(B)入口温度	3
5	0-2	PLR	B32-TE003A	原子炉再循環ポンプ(A)入口温度	2
6	0-2	PLR	B32-TE003B	原子炉再循環ポンプ(B)入口温度	3
7	0-2	RHR	E11-TE007A	RHR熱交換器 (A) 出口温度	4
8	0-2	RHR	E11-TE0078	RHR熱交換器(B)出口温度	5
9	0-2	RHR	E11-TE010A	RHR熱交換器(A)入口温度	6
10	0-2	RHR	E11-TE010B	RHR熱交換器(B)入口温度	7
11	0-2	MS	N11-TEOO6A	高圧タービン第1入口温度	1
12	0-2	MS	N11-TE006B	高圧タービン第2入口温度	1
13	0-2	MS	N11-TE006C	高圧タービン第3入口温度	1
14	0-2	MS	N11-TE006D	高圧タービン第4入口温度	1
15	0-2	ES	N36-TEO33A	MSH第1段加熱器(A)加熱蒸気温度	8
16	0-2	ES	N36-TEO33B	MSH第1段加熱器(B)加熱蒸気温度	9
17	0-2	PLR	SP-RB01	原子炉再循環系出口配管	10
18	0-2	FDW	SP-TB13	高圧第2給水加熱器出口配管	11
19	0-2	FDW	SP-TB14	高圧第2給水加熱器出口配管	11
20	0-2	C	SP-TB04	復水ろ過装置入口配管	12
21	0-2	C	SP-TB07	復水ろ過装置出口配管	13
22	0-2	C	SP-TB10	復水脱塩装置出口配管	14
23	0-2	CF	SP-TB06A	復水ろ過装置出口配管(A)	15
24	0-2	CF	SP-TB06B	復水ろ過装置出口配管(B)	15
25	0-2	CF	SP-TB06C	復水ろ過装置出口配管(C)	15
26	0-2	CF	SP-TB06D	復水ろ過装置出口配管(D)	16
27	0-2	CF	SP-TB06E	復水ろ過装置出口配管(E)	16
28	0-2	CD	SP-TB09A	復水脱塩装置出口配管(A)	17
29	02	CD	SP-TB09B	復水脱塩装置出口配管(B)	18
30	0-2	CD	SP-TB09C	復水脱塩装置出口配管(C)	17
31	0-2	CD	SP-TB09D	復水脱塩装置出口配管(D)	18
32	0-2	CD	SP-TB09E	復水脱塩装置出口配管(E)	17
33	0-2	CD	SP-TB09F	復水脱塩装置出口配管(F)	18
34	0-2	CD	CDin	復水脱塩装置入口配管(酸素注入ライン)	13

3

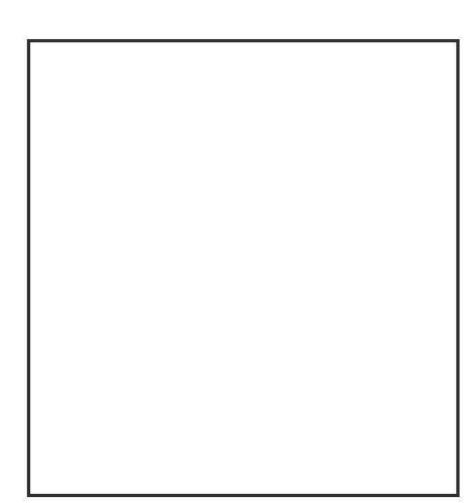
プラント	系統	Tag No.	計測点名称
D-2	NB	B21-TE002	原子炉出口主蒸気温度
<u> </u>	SM	N11-TE006A	高圧タービン第1入口温度
D-2	SM	N11-TE006B	高圧9ービン第2入口温度
0–2	SM	N11-TE006C	高圧タービン第3入口温度
0-2	MS	N11-TE006D	高圧タービン第4入口温度

7 ラント	系統	Tag No.	計測点名称
0-2	PLR .	B32-TE002A	原子炉再循環ポンプ(A)入口温度
0-2	PLR	B32-TE003A	原子炉再循環ポンプ(A)入口温度

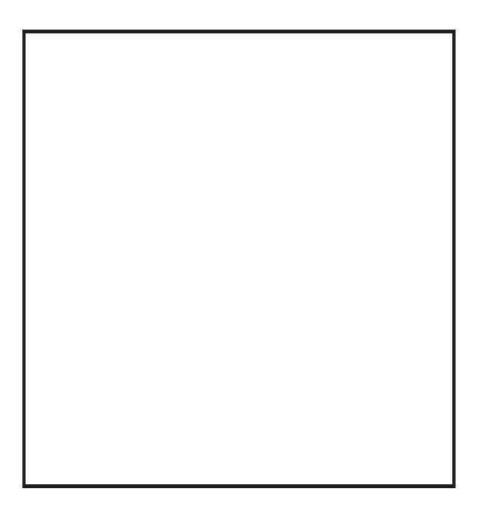
計測点名称	原子炉再循環ポンプ(B)入口温度	原子炉再循環ポンプ(B)入口温度
Tag No.	B32-TE002B 原	B32-決進003B 周
系統	PER	PLŔ
フプラント	0-2	0-2

プラント	系統	Tag No.	計測点名称
	RHR	E11-TE007A	RHR熱交機器(A)出口温度

F


T

プラント	系統	Tag No.	計測点名称
0-2	RHR	E11-TE007B	RHR熟交換器(B) 出口温度


124	茶铳	Tag No.	計測点名称
	RHR	ËI (TE010A	RHR熱交機器(A).入口温度

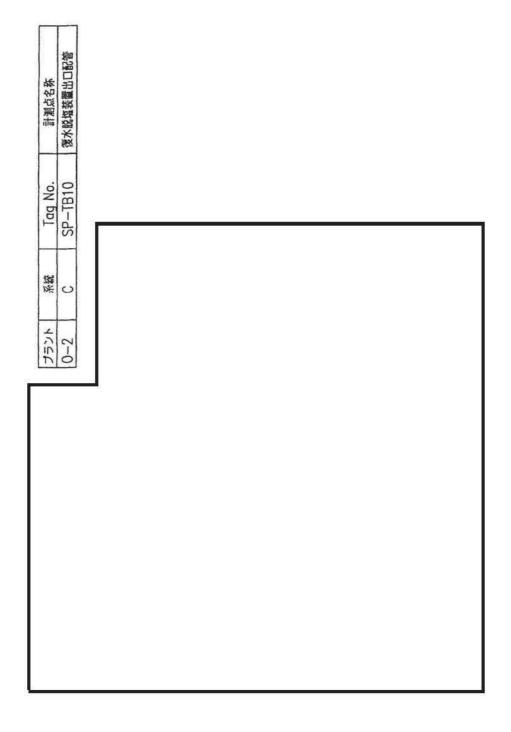
プラント	茶杭	Tag No.	計測点名称
0-2	RHR	E11-TE010B	RHR款线数器(B)入口温度

)加熱蒸気温度
計測点名称	MSH第1段加熱器(A
Tag No.	N36-TE033A
系统	ES
プラント	2-0

プラント	来院	Tag No.	計測点名称
<u>م</u>	ES	N36-TE033B	MSH第1段加熱器(B)加熱蒸気温度

系統	Tag No.	計測点名称
BLR	SP-RB01	原子炉再循環茶出口配管

10			


80

Г

プラント	系統	Tag No.	計測点名称
1-2	ပ ပ	SP-TB04	復水る過装置入口配管

計測点名称	復水ろ過装置出口配管	復水脱塩装置入口配管(酸素注入ライン)
Tag No.	SP-TB07	CDin
系統	U	CD
プラント	2-0	0-2

計測点名称	後水る過装置出口配管(A)	復水ろ過設置出口配管(B)	復水る過装置出口配替(C)
Tag No.	SP-TBOGA	SP-TB06B	SP-TB060
送 第	GР	сF	OF
7721	0-2	0-2	0-2

.

計算点名称 彼水ろ過装置出口配管(D) ペイム道は目にしてたが、「」、	る	
Tag No. SP-TB06D		
ブラント 希 第 0-2 0F		
	a.	

「「「「」」の「「」」の「」」の「「」」の「」」の「」」の「」」の「」」の「」	後水脱氧装置出口配替(A)	後水脱塩装置出口配管(0)	復水脱塩装置出口配给(E)
Tag No.	SP-TB09A	SP-TB09C	SP-TB09E
弦乐	CD	CD	00
1721	0-2	0-2	2-0

計測点名称	3 核水脱塩装置出口配管(日)) 後水脱塩装置出口記售(D)	- 復水脱塩装置出口配管(F)
Tag No.	SP-TB09B	SP-TB09D	SP-TB09F
法联	CD	сD	cD
1774	2-0	0-2	0-2

米抵
NB

別添資料

女川原子力発電所2号機

配管内円柱状構造物健全性評価報告書における誤記等について

平成17年12月27日付け「発電用原子力設備に関する技術基準を定める省令の改正 に伴う電気事業者に基づく定期事業者検査の実施について」のうち「別紙1 新省令第 6条及び第8条の2第2項における流体振動による損傷の防止に関する当面の措置につ いて」(平成17・12・22原院第6号)の指示に基づき,エルボの偏流による影響等を考 慮し配管内円柱状構造物の流体振動による損傷の防止に関する評価結果と措置計画等 について報告書を提出した。

その後,本報告書の措置計画の一部を変更したことや誤記が認められたことから,当該 部分を修正のうえ再提出するとともに,誤記の原因を調査し,その結果に基づき再発防 止対策を行うこととした。

1. 措置計画の変更について

女川原子力発電所2号機において損傷の可能性を否定できない個所のうち,原子炉再循 環系の温度計ウェル2箇所およびサンプリングプローブ1箇所については,納期上の理由 から次回定期検査にて交換することとしていたが,今回の定期検査(第8回)に調達が可 能であることを確認したため,計画を前倒しして対策品に取り換えることとした。

- 2. 誤記について
- (1) 概要
 - ・女川原子力発電所2号機における配管内円柱状構造物の評価報告書について平成18 年3月31日付けで提出した。
 - ・偏流の影響等を考慮した評価について指示を受けたことから、偏流による影響の確認 および再評価の結果について、新たに作成した構造物廻りの配管図(アイソメ図)と ともに、メーカから報告を受けた。(4月21日)
 - ・メーカの評価結果に基づき、損傷の可能性を否定できない箇所について、プラント機器への影響評価や措置計画について社内でも検討を行い、報告書として取りまとめ、 4月28日付けで提出した。
 - ・このアイソメ図について、6月19日にメーカから誤記があるとの連絡を受けたことから、6月21日から7月10日にかけて社内で報告書のダブルチェックを行い、内容の確認を行った。

なお, 誤記の内容は以下の3種類に分類されるが, いずれも評価結果に影響はなかった。

① 偏流部からの距離の誤記

- ② 偏流部からの距離以外の図面記載項目の誤記
- ③

 計測点名称の誤記
- また,計測点名称の整合性の観点から統一すべきと思われる個所についても確認した。 (詳細は添付資料-1参照)

(2)原因

今回確認された誤記については、平成18年3月に提出した報告書からはほとんど確認 されていないため、誤記が発生した主な原因は以下の通りと考えられる。

- ① 作業期間が1ヶ月と限定された中で新たにアイソメ図を作成したため、作成者による寸法などの読み間違いなどが発生したこと、またチェックも十分実施できなかった。(作成者の確認のみで提出された)
- ② メーカから評価結果の提出が遅れたこともあり、当社側の資料作成作業も担当者まかせとなりチェックも十分行わなかった。(ダブルチェックによる確認を行わなかった)
- また,今回の誤記が発生した背景には,時間的要因の他に以下の要因もあると考えられる。

【委託メーカの要因】

- ① 作業に関する指示が徹底されていない。
- ② 作業スケジュールがない。
- ③ 作業内容を把握していない。(特にアイソメ図の作成は大変な労力であった)

【当社の要因】

- ① 作業スケジュールを把握していない。
- ② アイソメ図作成の基本的な内容についてメーカへ指示したものの、指示した内容が 反映されているかの確認をせず、メーカまかせとなった。
- (3) 再発防止対策
- 今回の原因等を踏まえ、報告書に対して以下の対策を実施した。

【委託メーカの対策】

- 報告書の精度を確保するための管理方策としてアイソメ図作成作業者が容易に 作業過程を確認できるように作業内容を記録した。(トレーサビリティーの確 保)
- ② 図面の数値の見えにくい箇所については、必要に応じて別資料による検証等を 実施した。
- ③ 全てのアイソメ図作成作業結果に対して、メーカ社内のダブルチェックを行う ことにより、報告書に正確を期した。

【当社対策】

- ① ·報告書に添付された全てのアイソメ図の記載事項について,出典元のデータ(配 管施工図面等)との照合を実施した。
- ② 報告書に添付された全てのアイソメ図の記載事項について,報告書との照合を 実施した。
- ③ 全ての照合作業についてダブルチェックを行うことにより、報告書に正確を期した。

また,今回の不適合を踏まえ,委託にて作業管理を行う場合は以下の点について社内 関係者へ周知し,今後も誤記を防止する努力を継続していくこととする。

- メーカから評価作業スケジュールを提出させ、進捗管理を確実に行うとともに、メ ーカによるダブルチェックを確実に行うことを調達における標準仕様書(要領)に 反映する。
- ② メーカ内の作業工程を把握し、当社が確認すべき項目について明確にするとともに、 当社がダブルチェックを必ず行うことを調達管理要領に反映する。
- ③ メーカへ指示した事項は確実にフォローするとともに、当社作成の資料についても 確実にダブルチェックを行う。

以上

高サイクル熱疲労による損傷の防止に関する評価結果について

女川原子力発電所2号機

高サイクル熱疲労による損傷の防止に関する

評価および検査結果報告書

平成20年3月

東北電力株式会社

1. はじめに

「高サイクル熱疲労に係る評価及び検査に対する要求事項について」(平成19年 2月16日付け平成19・02・15原院第2号)に基づき、女川原子力発電所2号機にお ける高サイクル熱疲労による損傷の防止に関する評価を行い検査対象部位を特定し、 女川原子力発電所2号機第9回定期事業者検査において検査を実施した。

本報告書は、その結果を報告するものである。

なお、「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法 に基づく定期事業者検査の実施について」(平成17年12月27日付け平成17・12・ 22 原院第6号)のうち、別紙2「新省令第6条における高サイクル熱疲労による損 傷の防止に関する当面の措置について」に基づく女川原子力発電所2号機における高 サイクル熱疲労による損傷の防止に関する評価結果については報告済みである(別添 -1)。

2. 高サイクル熱疲労に係る評価及び検査対象部位の特定

(1) 高サイクル熱疲労割れに係る構造健全性評価

高サイクル熱疲労割れが発生する可能性が高い部位について,発電用原子力設備に 関する技術基準を定める省令第6条および解釈第6条第2項および第3項に基づき, 日本機械学会「配管の高サイクル熱疲労に関する評価指針」(以下「JSME S01 7」という。)に従って評価を行ない,問題ないことを確認しているが(別添-1), 母材部の基本探傷で評価すべきエコーが確認されているため,「高サイクル熱疲労に 係る評価及び検査に対する要求事項について」(平成19年2月16日付け平成 19・ 02・15原院第2号)に基づき,検査対象部位を以下のとおり特定し,女川原子力発電 所2号機第9回定期事業者検査において再度検査を実施した。

なお, JSME S017に従い評価した部位にあっては,過去に評価部位の上流 側又は下流側で評価に影響を及ぼす改造工事は実施していないことを確認した。(添 付資料-1)

(2) 検査対象部位の特定

「高サイクル熱疲労に係る評価及び検査に対する要求事項について」(平成19年2月16日付け平成19·02·15原院第2号)に基づき,第9回定期事業者検査において検査を行う検査対象部位を以下に示すとおり特定した。

a. 高低温水合流型

残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)(B)

3. 検査の方法及び結果

検査対象部位として特定した,残留熱除去系熱交換器出口配管とバイパス配管との 合流部(A)(B)について,「高サイクル熱疲労に係る評価及び検査に対する要求事 項について」(平成19年2月16日付け平成19・02・15原院第2号)に基づく方法で 検査を実施し,問題のないことを確認した。

(添付資料-2)

4. 今後の対応について

残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)(B)については、 「高サイクル熱疲労に係る評価及び検査に対する要求事項について」(平成19年2月 16日付け平成19・02・15原院第2号)に基づき、今後の定期事業者検査においても検 査を実施することとする。

また、詳細評価や構造変更等の必要性についての検討も行っていくこととする。

5. 添付資料

添付資料-1:女川原子力発電所2号機 高サイクル熱疲労割れに関する評価に 係る過去の改造工事の確認について

添付資料-2:女川原子力発電所2号機 高サイクル熱疲労に係る検査の結果について

- 6. 別添
 - 別添-1:女川原子力発電所2号機 高サイクル熱疲労による損傷の防止に関す る評価結果について(平成18年11月)

以 上

女川原子力発電所2号機

高サイクル熱疲労割れに関する評価に係る過去の改造工事の確認について

「高サイクル熱疲労に係る評価及び検査に対する要求事項について」(平成19年2月16日付け平成19・02・15原院第2号)に基づき,評価に影響を及ぼす改造工事の有無について,以下のとおり確認した。

- 1. 対象となる改造
- (1) 高低温水合流型

残留熱除去系熱交換器出口配管とバイパス配管の合流部における

- ・残留熱除去系ポンプ定格流量が変更となるような改造
- ・熱交換器伝熱面積が変更となるような改造
- ・ティーの合流形態が変更になるような改造
- ・合流前後の配管(ポンプ~合流ティー)の材質及び口径が変更になるような 改造
- · 合流前の流れを乱す原因となるエルボ,曲げ管,ディフューザ等の追加設置
- (2) キャビティーフロー型熱成層

原子炉再循環系ドレンラインエルボ部およびタービン駆動原子炉給水ポンプミニ マムフローラインエルボ部を対象とし

- ・原子炉再循環系吸込ノズルの改造
- ・原子炉再循環系ポンプ、原子炉給水ポンプの定格流量が変更になるような工事
- ・主管(ポンプ〜分岐部近傍)、分岐管の口径が変更になるような改造
- ・分岐管の材質、厚さが変更になるような改造
- ・分岐管のルート変更(閉塞弁位置の変更を含む)
- 2. 確認項目および結果

改造工事実績に関する確認結果を表1に示す。

いずれの評価対象部位についても高サイクル熱疲労による損傷の防止に関する評価に影響を及ぼす改造工事の実績はなかった。

以上

	TX		r
上流・下流側配管他	残留熱除去系熱交換器 改造・容量変更工事なし 上流・下流側配管改造工事なし	上流・下流側主管改造工事なし	上流・下流側主管改造工事なし
ポンプ	残留熱除去ポンプ の容量変更なし	原子炉再循環ポンプ の容量変更なし	タービン駆動 原子炉給水ポンプ の容量変更なし
堤鷄貦	当該配管改造工事なし	当該分岐管改造工事なし	当該分岐管政造工事なし
評価対象部位	残留熟除去系熱交換器出口 配管 とバイパス配管合流部	原子炉再循環系	タービン駆動原子炉給水ポンプミニマムフローライン
	高低温水合流型	チャン	ティーフロー型熱成層

女川2号機 高サイクル熱疲労に係る改造工事実績確認結果

表1

女川原子力発電所2号機

高サイクル熱疲労に係る検査の結果について

女川2号機第7回定期検査において、熱疲労割れが発生する可能性がある残留熱除去系熱交換器出 口配管とバイパス配管との合流部(A)(B)について、構造を考慮した超音波探傷検査(UT)を 実施し、異常のないことを確認した。

上記検査において母材部の基本探傷でエコー高さが距離振幅補正曲線の20%(DAC20%^{注1}) を超えるエコーを検出した箇所について第9回定期検査時に定期事業者検査として再度UTを実施 した。

- 注1 DAC20%とは、対比試験片に設けられた横穴から反射された超音波のエコー高さを DAC100%とした 場合に、このエコー高さを 1/5(20%)にしたものであり、横穴からのエコー高さ(DAC100%)よりも弱 いものである。
- 1. 検査の内容
 - a. 検査箇所

女川2号第7回定期検査時の検査結果に基づき,母材部の基本探傷でDAC20%を超えるエコー を検出した13箇所。検査箇所位置詳細は別紙1のとおり。

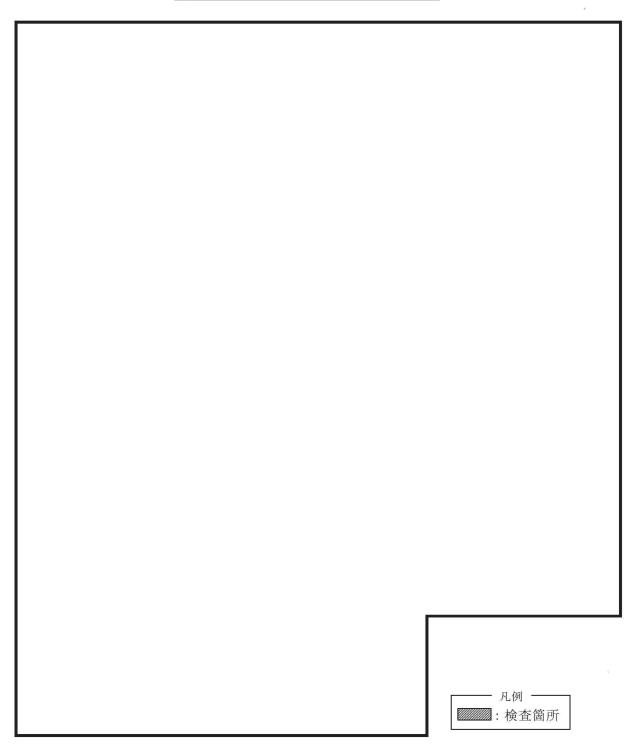
- ・ティ母材部のテーパ部 6箇所
- ・その他母材部のテーパ部 7箇所
- b. 検査時期

第9回定期検査の検査期間において平成19年12月12日から平成20年1月15日に実施した。

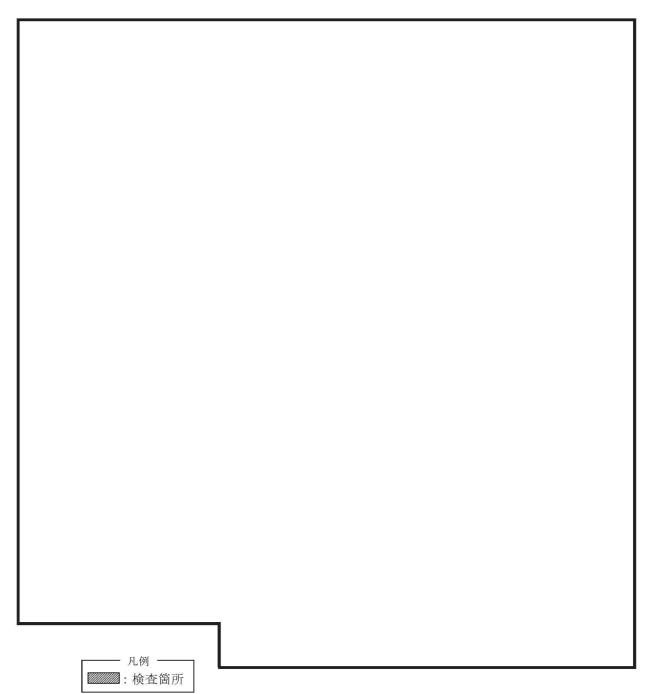
c. 検査方法

検査は、「高サイクル熱疲労に係る評価及び検査に対する要求事項について」(平成19年2 月16日付け平成19・02・15原院第2号)に基づき、「発電用原子力設備における破壊を引き起 こすき裂その他の欠陥の解釈について」(平成18年3月23日付け平成18・03・20原院第2号) の別紙1の方法に従い行うものとし、社団法人日本電気協会電気技術指針「軽水型原子力発電 所用機器の供用期間中検査における超音波探傷試験指針」(JEAG 4207-2004)および社団法人日 本機械学会「発電用原子力設備規格 設計・建設規格(2005年版)」(JSME S NC1-2005)に掲 げる方法に準拠し、360°全方位を網羅するUTを実施した。

2. 検査の結果


第9回定期検査におけるUTの結果,検査を実施した13箇所について異常がないことを確認した。

なお、UTにおいてエコー高さが DAC20%を超えるエコーを検出したが、相対する方向からの 探傷または他の屈折角を用いた探傷では DAC20%を超えるエコーは検出されないことから、当該 エコーは欠陥に基づくものではなく、配管内面テーパ形状によるエコー(テーパ移行部エコー、 テーパ面エコー)であると評価した。 検査結果(13箇所)


以 上

別紙1:検査対象箇所図

検 査 対 象 箇 所 図 (A系)

検 査 対 象 箇 所 図 (B系)

別添-	- 1
別紙一	-2

女川原子力発電所2号機

高サイクル熱疲労による損傷の防止に関する

評価結果について

平成18年11月

東北電力株式会社

1. 目 的

「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定 期事業者検査の実施について」(平成17年12月27日付け平成17·12·22原院第6号) のうち,別紙2「新省令第6条における高サイクル熱疲労による損傷の防止に関する当面 の措置について」に基づき,女川原子力発電所2号機における高サイクル熱疲労による損 傷の防止に関する評価結果について報告する。

2. 高サイクル熱疲労割れに関する評価の実施

高サイクル熱疲労割れが発生する可能性が高い部位について,発電用原子力設備に関す る技術基準を定める省令(以下,「省令62号」という。)第6条および解釈第6条第2項 および第3項に基づき,日本機械学会「配管の高サイクル熱疲労に関する評価指針」(以下 JSME S017という)に従って評価を行ない,部位を以下のとおり特定した。

(1) 対象施設

対象施設は、省令62号第6条および解釈第6条第3項により、以下のとおりである。

- ·一次冷却材系
- ·原子炉冷却材浄化系
- ・残留熱除去系(原子炉停止時冷却モード)
- (2) 高サイクル熱疲労に係る現象

高サイクル熱疲労モードは、以下のとおりである。

- ·高低温水合流型
- ・キャビティフロー型熱成層
- ·運転操作型熱成層
- ・弁グランドリーク型熱成層
- ・弁シートリーク型熱成層
- (3) 高サイクル熱疲労割れの評価対象部位の抽出

高サイクル熱疲労モードのうち,高低温水合流型およびキャビティフロー型熱成層に ついて,評価対象部位を抽出した。

なお,運転操作型熱成層,弁グランドリーク型熱成層および弁シートリーク型熱成層 については,運転管理や弁等の保守管理で対応可能であることから評価対象外^(注1)とした。

注1: JSME S017の評価対象外

a. 高低温水合流型

高低温水合流型は,高温水と低温水が混合する部位において,温度変動による熱応 力の変動が繰り返され熱疲労が生じる現象であり,以下の通り評価対象部位を抽出し ている。

①原子炉圧力容器給水ノズル

②原子炉再循環系/残留熱除去系吐出合流部

③原子炉浄化系の給水系への戻り部

④残留熱除去系熱交換器出口配管とバイパス配管合流部

b. キャビティフロー型熱成層

キャビティフロー型熱成層は、高温流体に接続されている閉塞配管に高温水が流入 すること(キャビティフロー)により閉塞配管に熱成層が発生し、熱成層境界面の変 動で温度変動が繰り返され熱疲労が生じる現象であり、以下の通り評価対象部位を抽 出^(注2)した。

①原子炉再循環系ドレンライン

- 注2: JSME S017においては、評価対象を以下のように定めている。
 - ・主管側から見て下向きから水平に移行する部位を含む配管を対象とする。
 - ・分岐管口径は、50A~300Aを対象とする。
 - ・主管と分岐管の口径比(分岐管内径/主管内径)は、0.5以下までを対象とする。 なお、以下の前提条件を満足するものとする。
 - ・分岐管口径は一様である場合を対象とする。
 - ・分岐管は主管より直角に分岐する場合を対象とする。
 - ・主管および分岐管には、保温を有する場合を対象とする。
 - ・非圧縮性と考えられる水単相を対象とする。
 - ・主管流速は 5m/s~18m/s を対象とする。
 - ・主管内流体温度は、分岐管内流体滞留温度(雰囲気温度)よりも高い場合を対象と する。
 - ・分岐管の材料はオーステナイト系ステンレス鋼および炭素鋼を対象とする。

(添付資料-1)

(4) 高サイクル熱疲労割れに係る構造健全性評価

(3)で抽出した高サイクル熱疲労割れの評価対象部位について、JSME S01 7に基づき評価を行った。 a. 高低温水合流型

抽出された4箇所は、「泊発電所2号機再生熱交換器胴側出口配管の損傷を踏まえた 検査の実施について -高サイクル熱疲労割れに係る検査の実施について 」(平成15 年12月12日付け平成15・12・11原院第1号)に従って評価を行ない、熱疲労割れ が発生する可能性がある残留熱除去系熱交換器出口配管とバイパス配管との合流部 (A)(B)について検査を実施し^(注3)、問題ないことを確認している。 (別添一1)

- 注3 検査範囲は別添1の別紙4に示す探傷範囲の母材および溶接線(ただし構造上検 査できない場合は、検査できる最大限を実施)
- b. キャビティフロー型熱成層
 - (a) 原子炉再循環系ドレンライン(A系, B系)

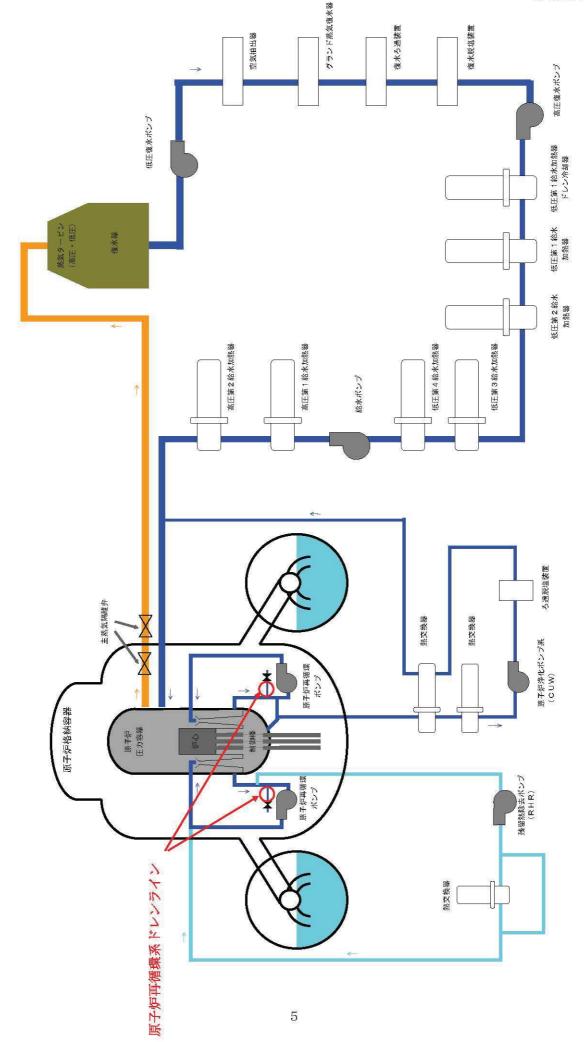
添付資料-2に示すフローによる評価の結果,原子炉再循環系ドレンライン(A 系,B系)について,雰囲気温度と系統運転温度との温度差は,指針の判定温度差 を越えており,分岐管鉛直部長さは分岐管鉛直部への侵入判定長さを満足していな いが,分岐管水平部への侵入判定長さを満足しており,問題のないことを確認した。 (添付資料-3)

3. 高サイクル熱疲労割れが発生する可能性の高い部位の特定の結果

以上の評価結果より,検査が必要とされる高サイクル熱疲労割れが発生する可能性が高 い部位はなかった。

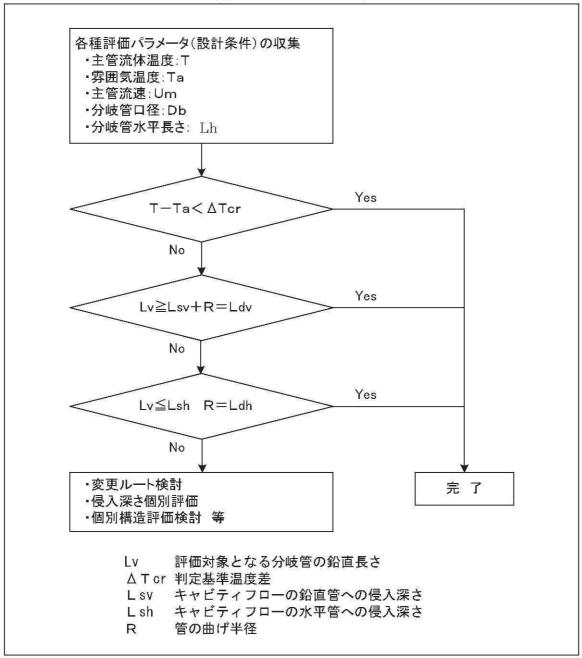
4. 今後の対応について

通常運転時に高サイクル熱疲労割れが発生する可能性のある部位については、「高サイクル熱疲労に係る検査に対する要求事項について」(平成18年6月6日付け平成18・06・02 原院第6号)において、今後の検査プログラムが策定されている。このため、同プログラムに従って詳細評価を行ない構造変更等の必要性について検討を行っていくこととする。

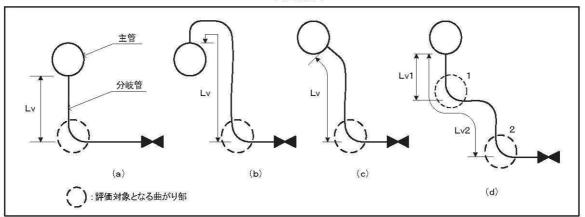

5. 添付資料

- 添付資料-1 女川原子力発電所2号機 キャビティフロー型熱成層による高サイクル 熱疲労評価対象部位
- 添付資料-2 閉塞分岐管滞留部に発生する熱成層現象評価フロー
- 添付資料─3 女川原子力発電所2号機 キャビティフロー型熱成層による高サイクル 熱疲労評価結果

6. 別添

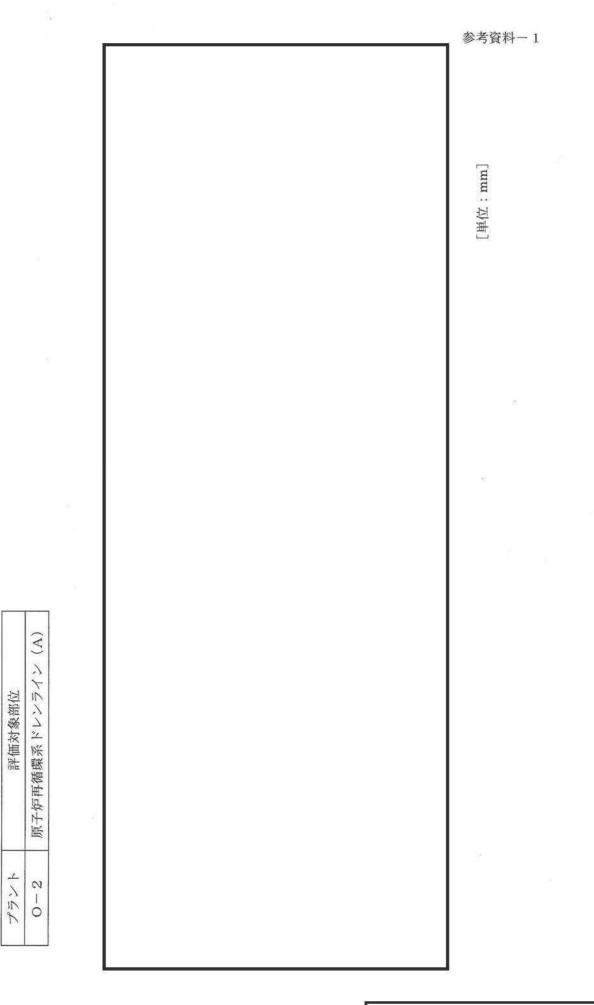

別添一1 女川原子力発電所2号機 泊発電所2号機再生熱交換器胴側出口配管の損傷 を踏まえた検査の結果報告書

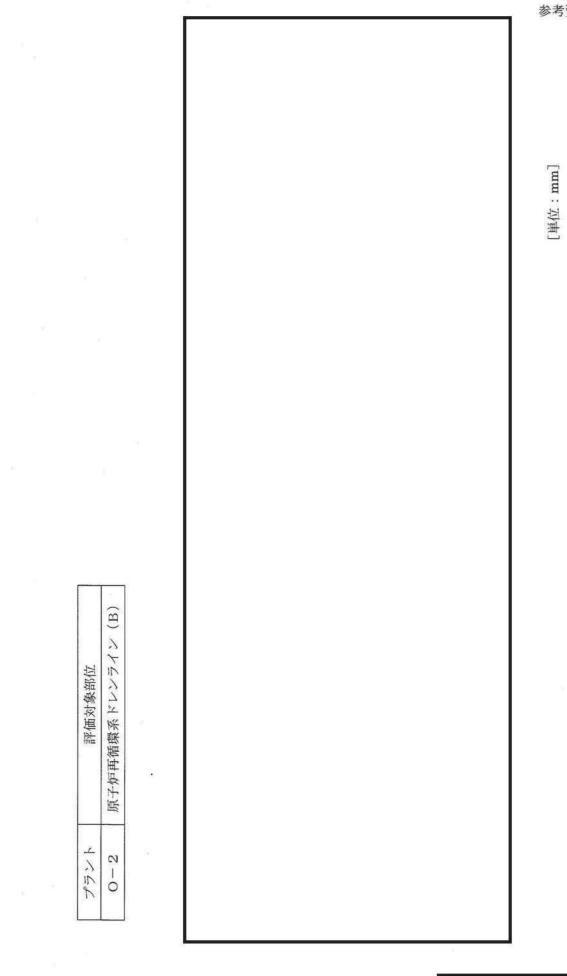
以上



閉塞分岐管滞留部に発生する熱成層現象評価フロー

Lvの定義例


女川原子力発電所2号機 キャビティフロー型熱成層による高サイクル熱疲労評価結果


原子炉再循環系ドレンライン

※1:主管温度は系統の設計温度

※2: 雰囲気温度は空調換気系の設計最低温度

※3:参考資料—1,2参照

参考資料-2

別添一1

添付資料

女川原子力発電所第2号機

泊発電所2号機再生熱交換器胴側出口配管の損傷を踏まえた検査の結果報告書

平成17年8月

東北電力株式会社

1. はじめに

「泊発電所2号機再生熱交換器胴側出口配管の損傷を踏まえた検査の実施につい て」(平成15年12月12日付け平成15・12・11原院第1号)(以下「指示文書」と いう。)に従って、通常運転時に高低温水の内部流体が合流することによる温度ゆら ぎが生じ、かつ応力集中が生じることにより熱疲労割れが発生する可能性が高い部 位(以下「温度ゆらぎによる熱疲労割れ発生の可能性が高い部位」という。)の特定 及び検査を女川原子力発電所第2号機第7回定期事業者検査時において実施した。 本報告書は、その結果を報告するものである。

2. 検査対象部位の特定

温度ゆらぎによる熱疲労割れ発生の可能性が高い部位を以下の様に特定した。

(別紙-1,2)

①高低温水の内部流体が合流する配管の抽出

重要度分類クラス1及び2に属する配管で、高低温水の内部流体が合流する 配管を抽出した。結果を以下に示す。

- a. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)
- b. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(B)
- c. 残留熱除去系配管と原子炉冷却材再循環系配管との合流部(A)
- d. 残留熱除去系配管と原子炉冷却材再循環系配管との合流部(B)
- e. 給水配管と原子炉冷却材浄化系配管との合流部(A)
- f. 給水配管と原子炉冷却材浄化系配管との合流部(B)
- g. RPV給水ノズル(4箇所)

②配管の健全性評価

①で抽出された配管の健全性評価を「配管の高サイクル熱疲労に関する評価 指針」(日本機械学会基準)(以下「評価指針」という。)の「高低温水合流部で の温度揺らぎに対する配管の構造健全性評価フロー(別紙-3)」等に準拠し実 施した。

a. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)

当該合流部の流体温度差は 122℃であり, 評価指針の判定温度差 42.7℃を 超えている。

また,熱応力は109.2MPaと評価され,当該合流部材料の疲労限79.9MPa を超えており,疲れ累積係数も評価上1を超えることから検査対象とした。

b. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(B)

(A) 系と同様であり検査対象とした。

- c.残留熱除去系配管と原子炉冷却材再循環系配管との合流部(A)
 当該合流部の残留熱除去系配管流体温度(166℃)と原子炉冷却材再循環
 系配管流体温度(186℃)との温度差は20℃であり,評価指針の判定温度差
 36.2℃以下であるため検査対象外とした。
- d.残留熱除去系配管と原子炉冷却材再循環系配管との合流部(B)(A)系と同様であり検査対象外とした。
- e.給水配管と原子炉冷却材浄化系配管との合流部(A)
 当該合流部はリコンビネーションティが設置されており、電力共同研究
 「高温・低温流体合流部の構造選定に関する研究」において高サイクル熱
 疲労に対する安全性が確認されているため除外した。
- f.給水配管と原子炉冷却材浄化系配管との合流部(B)(A)系と同様であり検査対象外とした。
- g. 給水ノズル(4箇所)

給水ノズルはサーマルスリーブが設置されており,電力共同研究「給水 ラインサーマルスリーブに関する研究」において高サイクル熱疲労に対す る安全性が確認されているため除外した。

③検査対象部位の特定結果

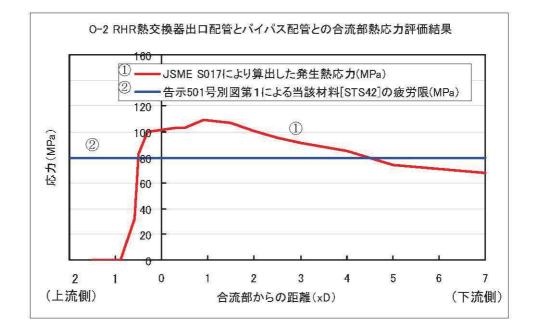
①②による抽出の結果、検査が必要とされる部位は以下のとおりとなった。

a. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)

b. 残留熱除去系熱交換器出口配管とバイパス配管との合流部(B)

3. 検査方法

検査は、女川原子力発電所第2号機第7回定期事業者検査要領書に従って実施した。


定期事業者検査要領書では,指示文書に従い,「発電用原子力設備における破壊を 引き起こすき裂その他の欠陥の解釈について」(平成 16 年 9 月 22 日付け平成 16・09・ 08 原院第 1 号)の別紙1,社団法人日本電気協会電気技術指針 JEAG 4207-2004「軽 水型原子力発電所用機器の供用期間中検査における超音波探傷試験指針」および社 団法人日本機械学会 JSME S NAI-2002「発電用原子力設備規格維持規格(2002 年改訂)」に従い,超音波探傷検査(UT)を実施した。 3.1 検査範囲

検査対象部位である残留熱除去系熱交換器出口配管とバイパス配管との合流部の 熱応力は、下図のとおり、合流部下流側 4.5 D^{*1}の位置において、疲労限である 79.9 MPa 未満となる。

一方,合流部上流側(主管)については,下図のとおり,0.5Dの位置において, 疲労限である 79.9MPa 未満となる。合流部上流側(分岐管)については,評価指針 に評価についての記載はないが,評価指針に付属のCD-ROMの可視化画像(主管 の流体が分岐管の 1Dまで流れ込んでいない。)と女川2号機の当該部の流速比がほ ぼ同じであり,分岐管への流れ込みも同等と考えられ,合流部上流側1Dの位置では 疲労限未満になっていると考えられる。

また,熱応力が疲労限以上となる範囲を検査することにより,プラント運転時間 を考慮せずに保守的な健全性確認が可能なことから,残留熱除去系熱交換器出口配 管とバイパス配管との合流部について,合流部上流側1Dから下流側5Dまでを検査 範囲とした。(別紙-4)

※ 1:Dは配管内径を示す。

3.2 検査の実施

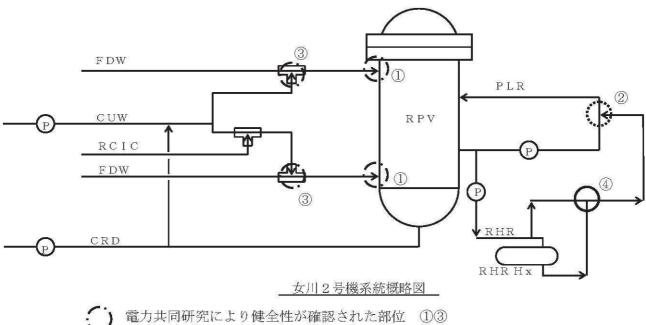
当該箇所は発電用原子力設備に関する構造等の技術基準(昭和55年通商産業省 告示第501号)第2条に規定する第3種管に係るものであるため,指示文書に基 づき第3種機器供用期間中検査特別検査を実施し,また,独立行政法人原子力安全 基盤機構による電気事業法第54条第1項の定期検査を受検した。

4. 定期事業者検査実施時期

平成17年3月11日

5. 検査結果

UTを実施し問題のないことを確認した。(別紙-5)


[別紙]

- 1. 検査対象部位の特定結果
- 2. 高サイクル熱疲労検査対象評価結果
- 3. 高低温水合流部での温度揺らぎに対する配管の構造健全性評価フロー
- 4. 検査対象範囲図
- 5. 女川2号機 第7回定期事業者検査実施結果

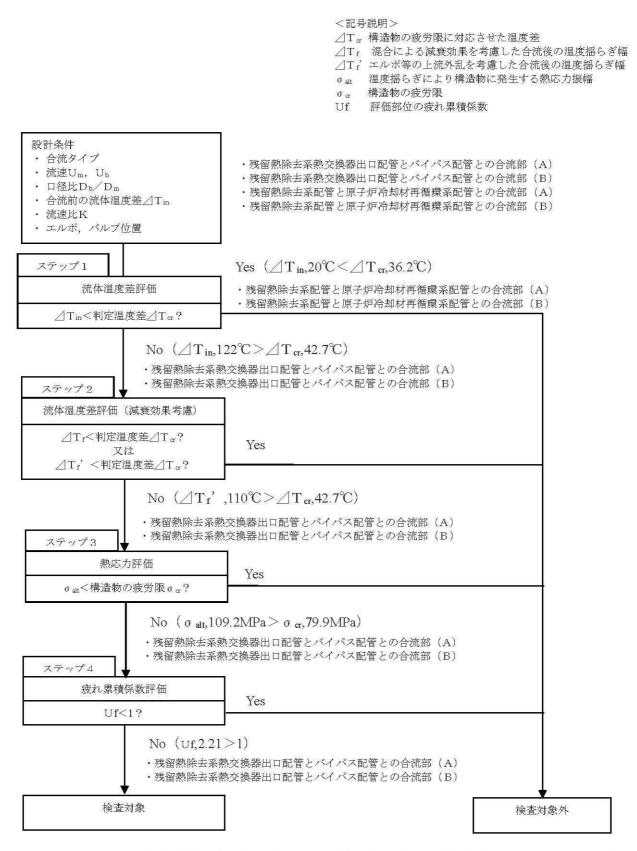
検査対象箇所の特定結果

高温/低温の内部流体が合流する箇所

No.	箇 所 名	備考
	RPV 給水ノズル	サーマルスリーブ
2	RHR/PLR 吐出合流部	
3	原子炉冷却材浄化系の給水系への戻り部	リコンビネーションティ
4	RHR系熱交換器出口配管とバイパス配管合流部	

電力英向研究により健主性が確認された部位 ①③ 日本機械学会基準に準拠した評価により健全性が確認された部位 ② 検査対象部位 ④

検査対象部位の特定結果

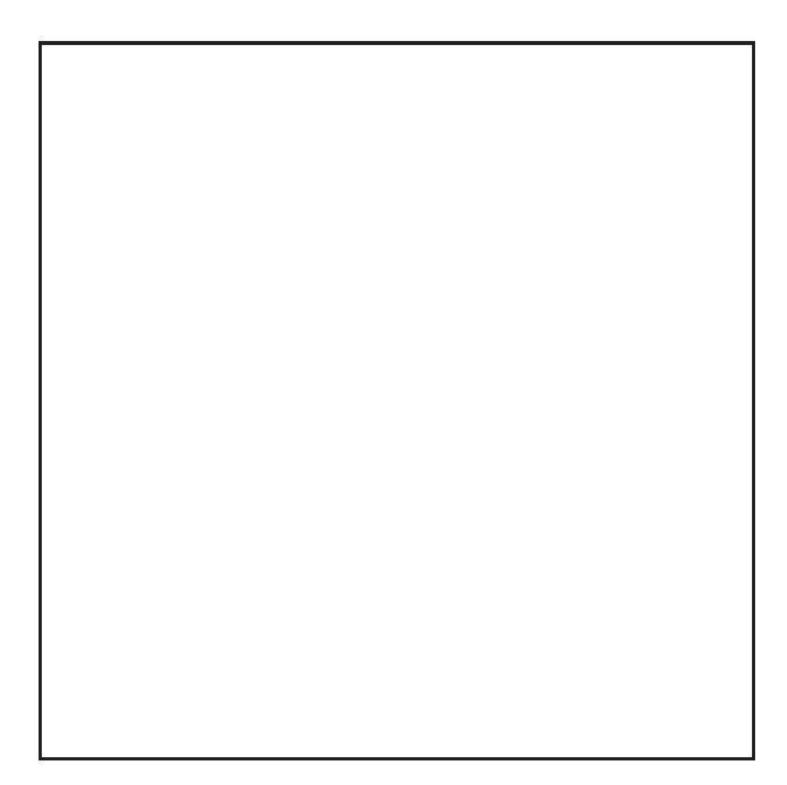

- ・ 残留熱除去系熱交換器出口配管とバイパス配管との合流部(A)
- ・ 残留熱除去系熱交換器出口配管とバイパス配管との合流部(B)

高サイクル熱疲労検査対象評価結果

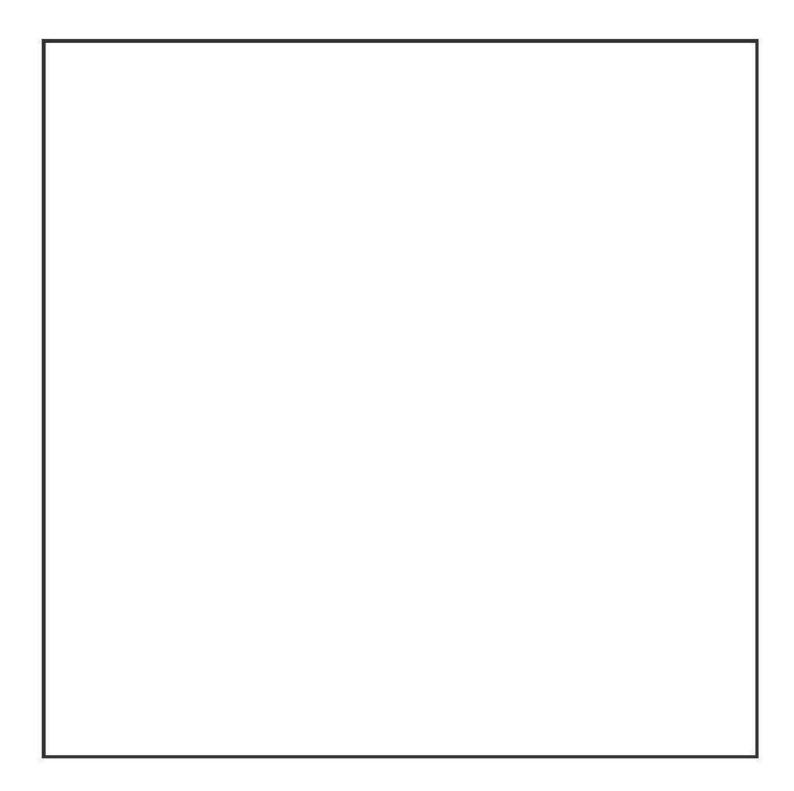
原子炉再循環系/残留熱除去系吐出合流部

別紙2

高低温水合流部での温度揺らぎに対する配管の構造健全性評価フロー



[出典:日本機械学会「配管の高サイクル熱疲労に関する評価指針(JSME S 017-2003)」〕


別紙4

検 査 対 象 範 囲 図 (A系)

38

検 査 対 象 範 囲 図 (B系)

女川2号機 第7回定期事業者検査実施結果

温度ゆらぎによる熱疲労割れ発生の可能性が考えられる部位である残留熱除去系熱交換器出口配管とバ イパス配管との合流部(A)および(B)について、女川原子力発電所第2号機第7回定期事業者検査時 に実施した「第3種機器供用期間中検査特別検査(高サイクル熱疲労)」において表1のとおり、当該部 位の構造を考慮した適切な超音波探傷検査(UT)を実施し、当該部位に異常のないことを確認した。

なお、母材部のUTにおいて検出したエコーの高さが距離振幅補正曲線の20%を超える要記録エコー を検出したが、表2のとおり、「良」と評価した。母材部の欠陥指示評価は、JSME S NA1-2002「維持規 格」のEC「クラス2機器の欠陥評価」に基づき、JSME S NC1-2001「設計・建設規格」を適用した。

検査対象	検査方法	検査 結果	備考 DAC20% ^{**} を超える 有害な欠陥エコー	
残留熱除去系熱交換器出口配管と バイパス配管との合流部(A)	UT (垂直,橫波 45° 軸・周)	良	なし	
残留熱除去系熱交換器出口配管と バイパス配管との合流部(B)	UT (垂直,横波 45° 軸・周)	良	なし (要記録エコー有り)	

表1 超音波探傷検査結果

※DAC20%とは、標準試験片に設けた穴から反射された超音波の信号高さをDAC100%とした場合に、この信号高さを 1/5(20%)にしたものであり、標準穴からの反射波(DAC100%)よりも弱い反射波であることを意味している。

表2 要記録エコーの評価

対象箇所	探傷方向	評価
残留熱除去系熱交換器出口配管と バイパス配管との合流部(B)	垂直	 垂直で検出した要記録エコーは、 ①母材部で検出されている ②45°軸/周方向探傷では検出されていない ③板厚より浅い場所で検出されている ことから、探傷面に平行な反射源であると判断し介在物と評価した。 なお、JSME S NA1-2002「維持規格」にしたがって評価すると、クラス2機器で指示部が母材部であることから、JSME S NC1-2001「設計・建設規格」PVB-2421(1)または同(4)の 判定となる。JSME S NC1-2001「設計・建設規格」PVB-2421(4) によると、底面エコー方式[※]で健全部の底面エコーをブラウン管の全目盛の75%以上90%以下になるように感度調整し、対象部位(欠陥部位)の底面エコーが5%以下になる部分がない場合は合格となる。今回検出した介在物部の底面 エコーは76%であり「良」と評価した。

※試験体の健全部の底面エコーを用いて探傷感度を調整して探傷を行う方法。

技術基準規則の新旧比較について

発電用原子力設備に関する技術基準を定める省令(平成25年6月28日)と実用発電用原子炉及 びその附属施設の技術基準に関する規則(令和2年4月1日)との比較について以下の表に示す。

12 们 盔 毕 况 则 07 利 旧 比 取 衣	
実用発電用原子炉及びその附属施設の	備考
技術基準に関する規則(令和2年4月	
1日)	
(流体振動等による損傷の防止)	
第十九条	
燃料体及び反射材並びに炉心支持構	追加要求なし
造物、熱遮蔽材並びに一次冷却系統に	
係る容器、管、ポンプ及び弁は、一次	
冷却材又は二次冷却材の循環、沸騰そ	
の他一次冷却材又は二次冷却材の挙動	
により生ずる流体振動又は温度差のあ	
る流体の混合その他の一次冷却材又は	
二次冷却材の挙動により生ずる温度変	
動により損傷を受けないように施設し	
なければならない。	
解釈	
1 「流体振動により損傷を受けないよ	追加要求なし
うに施設しなければならない」とは	
54 64 52 18 - 18	
WEDRIGHT TO REPORTED STRATE WAS AND ADDRESS OF AN TELEVIC AN ACCOUNTS IN AD	
措置を <u>講ずる</u> こと。	
共戸が中田に新体社の中心がなっ	
「設計・建設規格」及び「材料規格」	
の適用に当たって(別記-2)の要	
A state the second of state of the second stat	
	 実用発電用原子炉及びその附属施設の 技術基準に関する規則(令和2年4月 1日) (流体振動等による損傷の防止) 第十九条 燃料体及び反射材並びに炉心支持構 造物、熱遮蔽材並びに一次冷却系統に 係る容器、管、ポンプ及び弁は、一次 冷却材<u>又は</u>二次冷却材の循環、沸騰そ の他<u>一次冷却材又は二次冷却材の</u>掌動 により生ずる流体振動又は温度差のあ る流体の混合<u>その他の一次冷却材又は</u> 二次冷却材の挙動により生ずる温度変 動により損傷を受けないように施設し なければならない。 解釈 1 「流体振動により損傷を受けないように施設し なければならない。 解釈 1 「流体振動により損傷を受けないように施設し なければならない」とは 流れの乱れ、渦、気<u>泡</u>等に起因する 高サイクル疲労による損傷の発生 防止を規定するものであり、以下の 措置を<u>講ずる</u>こと。 ・蒸気発生器伝熱管群の曲げ部につ いては、日本機械学会「発電用原子 力設備規格 設計・建設規格(2005 年版)(JSME SNC1-2005)」(以下「「設 計・建設規格 2005」」という。) PVB-3600 又は「設計・建設規格 2012」PVB-3600 に「日本機械学会 「設計・建設規格」及び「材料規格」

表 技術基準規則の新旧比較表

発	電用原子力設備に関する技術基準を	実	用発電用原子炉及びその附属施設の	備考
定	める省令(平成 25 年 6 月 28 日)	技	術基準に関する規則(令和2年4月	
		1	日)	
	・管に設置された円柱状構造物で耐		・管に設置された円柱状構造物で耐	追加要求なし
	圧機能を有するものについては,日		圧機能を有するものについては、日	
	本機械学会「配管内円柱状構造物の		本機械学会「配管内円柱状構造物の	
	流力振動評価指針」(JSME S012)に		流力振動評価指針」(JSME S012)に	
	規定する手法を適用すること。 <u>なお</u>		規定する手法を適用すること。(「日	
	耐圧機能を有しないものについて		本機械学会「発電用原子力設備規格	
	は第8条の2第2項によること。		設計建設規格 (JSME S NC1)」(2005	
	(日本機械学会「発電用原子力設備		年改訂版)並びに流力振動及び高サ	
	規格 設計建設規格 (JSME S NC1)」		イクル熱疲労に関する評価指針の	
	(2005 年改訂版) 並びに流力振動		技術評価書」(平成17年12月原子	
	及び高サイクル熱疲労に関する評		力安全・保安院、原子力安全基盤機	
	価指針の技術評価書)		構取りまとめ)及び「設計・建設規	
			格 2012 技術評価書」)	
2	「温度差のある流体の混合等により	2	「温度差のある流体の混合等により	
	生ずる温度変動により損傷を受け		生ずる温度変動により損傷を受け	
	ないように施設しなければならな		ないように施設しなければならな	
	い」とは、日本機械学会「配管の高		い」とは、日本機械学会「配管の高	
	サイクル熱疲労に関する評価指針」		サイクル熱疲労に関する評価指針」	
	(JSME S017) に規定する手法を適		(JSME S017) に規定する手法を適	
	用し、損傷の発生防止措置を講じる		用し、損傷の発生防止措置を <u>講ずる</u>	
	こと。なお供用開始後における運転		こと。(日本機械学会「発電用原子	
	管理等の運用上の対応を考慮して		力設備規格 設計·建設規格 (JSME	
	施設することができる。(日本機械		S NC1)」(2005 年改訂版)並びに流	
	学会「発電用原子力設備規格 設		力振動及び高サイクル熱疲労に関	
	計・建設規格 (JSME S NC1)」 (2005		する評価指針の技術評価書」(平成	
	年改訂版)並びに流力振動及び高サ		17年12月原子力安全基盤機構取り	
	イクル熱疲労に関する評価指針の		 まとめ))	
	技術評価書)			
3	配管内円柱状構造物の流力振動及	3	配管内円柱状構造物の流力振動及	
	び配管の高サイクル熱疲労につい		び配管の高サイクル熱疲労につい	
	ては、一次冷却材が循環する施設と		ては、一次冷却材が循環する施設と	
	して、原子炉冷却材浄化系、残留熱		して、原子炉冷却材浄化系、残留熱	
	除去系(原子炉停止時冷却モード)		除去系(原子炉停止時冷却モード)	
	(BWR) 及び化学体積制御系、余熱		(BWR) 及び化学体積制御系、余熱	
	除去系 (PWR) を含めて措置を <u>講じ</u>		除去系(PWR)を含めて措置を <u>講ず</u>	
	<u>る</u> こと。		<u>る</u> こと。	

本資料のうち、枠囲	みの内容
は商業機密の観点が	ら公開で
きません。	

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-04-0330-2_改 0
提出年月日	2021年3月2日

補足-330-2 非常用炉心冷却設備その他原子炉注水設備のポンプの 有効吸込水頭に関する補足説明資料

1. 非常用炉心冷却設備その他原子炉注水設備のポンプの有効吸込水頭について・・・ 1-1

1. 非常用炉心冷却設備その他原子炉注水設備のポンプの有効吸込水頭について

(1) 高圧炉心スプレイ系ポンプの有効吸込水頭に関する補足説明

記載内容		高圧炉心スプレイ系ポンプ (評価流量:1074 m³/h)
項目	值(m)	
Ha:吸込み液面に作用する 絶対圧力	10.3	保守的にサプレッションチェンバ圧力を大気圧とし,吸込み液面に作用する絶対圧力は10.3mとしている。
H _s :吸込揚程		 吸込揚程は、以下の差分の ■ mとしている。 ●水源の水位:0.P. ■ m (サプレッションプールの最低水位) 水源の水位としては、プラント運転時のサプレッションプールの最低水位とした。 ●ポンプ設置フロアの床上1mの値:0.P. ■ m
H ₁ :ポンプ吸込配管圧損		サプレッションプールから高圧炉心スプレイ系ポンプまでの配管及び弁類圧損は,高圧炉心スプレイ系ポンプが この場合,サプレッションプールから高圧炉心スプレイ系ポンプまでの配管及び弁類圧損の合計値は,□ m ●高圧炉心スプレイ系ポンプ:1074 m ³ /h×1 個 ポンプ吸込配管圧損は,圧損合計値より□ mに設定する。 注記*:サプレッションプールから高圧炉心スプレイ系ポンプまでの配管は,単独取水する配管構成となってい 転流量を圧損計算上で考慮する必要はない。
H ₂ :異物付着なしの状態に おけるストレーナ圧損		異物付着なしの状態におけるストレーナ圧損を,以下に示す。 ●異物付着なしの状態におけるストレーナ圧損: m
h _s :ポンプ吸込口における 飽和蒸気圧水頭	10.3	高圧炉心スプレイ系ポンプ運転中のサプレッションプール水最高運転温度は 100℃以下であるため, 100℃におい
有効 NPSH $(H_a+H_s-H_1-H_2-h_s)$	2.4	有効 NPSH は,以下の計算式により算出している。 有効 NPSH=H _a +H _s -H ₁ -H ₂ -h _s = 10.3 m+10.3 m = 2.4 m
必要 NPSH		高圧炉心スプレイ系ポンプ運転流量 1074 m ³ /h における必要 NPSH としてポンプ性能より設定している。 以上の計算結果より,有効 NPSH と必要 NPSH との関係は以下のとおりとなり,必要 NPSH が確保されることから 有効 NPSH: 2.4 m > 必要 NPSH: m

が以下の流量*で運転することを想定する。 となる。

るため、他の非常用炉心冷却設備のポンプの運

ける飽和蒸気圧水頭として、10.3mとしている。

っポンプ運転状態として問題ない結果となる。

(2) 高圧代替注水系タービンポンプの有効吸込水頭に関する補足説明

		高圧代替注水系タービンポンプ(評価流量:90.8 m³/h)
記載内容		
項目	值(m)	
H _a :吸込み液面に作用する	10.3	水源である復水貯蔵タンクは大気に開放しているため、吸込み液面に作用する絶対圧力は、大気圧とし 10.3m
絶対圧力	10.5	
		吸込揚程は,以下の差分の m としている。
		●水源の水位: 0. Pm(復水貯蔵タンクの HPCS 水源切替レベル)
H _s :吸込揚程		水源の水位としては、復水貯蔵タンクの HPCS 水源切替レベルとした。
		●ポンプ設置フロアの床上1 mの値:0.P m
		復水貯蔵タンクから高圧代替注水系タービンポンプまでの配管及び弁類圧損は,高圧代替注水系タービンポン
		この場合,復水貯蔵タンクから高圧代替注水系タービンポンプまでの配管及び弁類圧損の合計値は, mとた
		●高圧代替注水系タービンポンプ:90.8 m³/h×1 個
		ポンプ吸込配管圧損は,圧損合計値より mに設定する。
H ₁ :ポンプ吸込配管圧損		
		注記*:復水貯蔵タンクから高圧代替注水系タービンポンプまでの配管は、高圧炉心スプレイ系ポンプ、原子炉
		プ並びに低圧代替注水系,原子炉格納容器下部注水系及び原子炉格納容器代替スプレイ冷却系に用いる
		使用しない運用であるため、高圧代替注水系タービンポンプ以外のポンプの運転流量を圧損計算上で
h _s :ポンプ吸込口における 飽和蒸気圧水頭	2.7	復水貯蔵タンクの最高使用温度 66℃における飽和蒸気圧水頭として,2.7m としている。
		有効 NPSH は、以下の計算式により算出している。
		有効 $NPSH = H_a + H_s - H_1 - h_s$
有効 NPSH	17.9	= 10.3 m + $-2.7 m$
$(H_a + H_s - H_1 - h_s)$		= 17.9 m
		高圧代替注水系タービンポンプ運転流量 90.8 m ³ /h における必要 NPSH としてポンプ性能より設定している。
		以上の計算結果より、有効 NPSH と必要 NPSH との関係は以下のとおりとなり、必要 NPSH が確保されることから
必要 NPSH		有効 NPSH: 17.9 m > 必要 NPSH: m
	-	

としている。

プが以下の流量*で運転することを想定する。 なる。

戸隔離時冷却系ポンプ,直流駆動低圧注水系ポン る復水移送ポンプと共用する部分があるが,同時 考慮する必要はない。

っポンプ運転状態として問題ない結果となる。

(3) 直流駆動低圧注水系ポンプの有効吸込水頭に関する補足説明

		直流駆動低圧注水系ポンプ (評価流量:82 m³/h)
記載内容		
項目	值(m)	
Ha:吸込み液面に作用する 絶対圧力	10.3	水源である復水貯蔵タンクは大気に開放しているため、吸込み液面に作用する絶対圧力は、大気圧とし 10.3m る
H _s :吸込揚程		 吸込揚程は,以下の差分の □ mとしている。 ●水源の水位:0.P. □ m (復水貯蔵タンクの HPCS 水源切替レベル) 水源の水位としては,復水貯蔵タンクの HPCS 水源切替レベルとした。 ●ポンプの吸込み口高さ:0.P. □ m
H ₁ :ポンプ吸込配管圧損		 復水貯蔵タンクから直流駆動低圧注水系ポンプまでの配管及び弁類圧損は、直流駆動低圧注水系ポンプが以下のこの場合、復水貯蔵タンクから直流駆動低圧注水系ポンプまでの配管及び弁類圧損の合計値は、 ■ となる。 ●直流駆動低圧注水系ポンプ:82 m³/h×1 個 ポンプ吸込配管圧損は、圧損合計値より ■ mに設定する。 注記*:復水貯蔵タンクから直流駆動低圧注水系ポンプまでの配管は、高圧炉心スプレイ系ポンプ、高圧代替注 プ並びに低圧代替注水系、原子炉格納容器下部注水系及び原子炉格納容器代替スプレイ冷却系に用いる ち直流駆動低圧注水系ポンプ(ミニマムフロー流量分)と原子炉隔離時冷却系ポンプを短時間同時使用 定格流量での単独運転の方が有効 NPSH が厳しくなるため、本条件にて評価を実施している。
h _s :ポンプ吸込口における 飽和蒸気圧水頭	2.7	復水貯蔵タンクの最高使用温度 66℃における飽和蒸気圧水頭として,2.7m としている。
有効 NPSH (H _a +H _s -H ₁ -h _s)	24.0	有効 NPSH は,以下の計算式により算出している。 有効 NPSH=H _a +H _s -H ₁ -h _s = 10.3 m+2.7 m = 24.0 m
必要 NPSH		直流駆動低圧注水系ポンプ運転流量 82 m ³ /h における必要 NPSH としてポンプ性能より設定している。 以上の計算結果より,有効 NPSH と必要 NPSH との関係は以下のとおりとなり,必要 NPSH が確保されることから 有効 NPSH: 24.0 m > 必要 NPSH:m

としている。

の流量*で運転することを想定する。

注水系タービンポンプ,原子炉隔離時冷却系ポン る復水移送ポンプと共用する部分がある。このう 用するが,直流駆動低圧注水系ポンプとしては,

っポンプ運転状態として問題ない結果となる。

(4) 低圧代替注水系に用いる復水移送ポンプの有効吸込水頭に関する補足説明

		低圧代替注水系に用いる復水移送ポンプ(評価流量: m³/h×2個)
記載内容		
項目	值(m)	
Ha:吸込み液面に作用する 絶対圧力	10.3	水源である復水貯蔵タンクは大気に開放しているため、吸込み液面に作用する絶対圧力は、大気圧とし 10.3m る
H _s :吸込揚程		吸込揚程は,以下の差分の m としている。 ●水源の水位:0.P m (復水貯蔵タンクの HPCS 給水ノズルレベル) 水源の水位としては,復水貯蔵タンクの HPCS 給水ノズルレベルとした。 ●ポンプの吸込み口高さ:0.P m
H ₁ :ポンプ吸込配管圧損		 復水貯蔵タンクから復水移送ポンプまでの配管及び弁類圧損は、復水移送ポンプが以下の流量*で運転することこの場合、復水貯蔵タンクから復水移送ポンプまでの配管及び弁類圧損の合計値は、 ■ mとなる。 ●復水移送ポンプ: ■ m³/h×2 個 ポンプ吸込配管圧損は、圧損合計値より ■ mに設定する。 注記*:復水貯蔵タンクから復水移送ポンプまでの配管は、高圧炉心スプレイ系ポンプ、高圧代替注水系ターヒ 駆動低圧注水系ポンプと共用する部分があるが、同時使用しない運用であるため、復水移送ポンプ以外 要はない。
h _s :ポンプ吸込口における 飽和蒸気圧水頭	2.7	復水貯蔵タンクの最高使用温度 66℃における飽和蒸気圧水頭として,2.7m としている。
有効 NPSH (H _a +H _s -H ₁ -h _s)	14.0	有効 NPSH は,以下の計算式により算出している。 有効 NPSH=H _a +H _s -H ₁ -h _s = 10.3 m+2.7 m = 14.0 m
必要 NPSH		復水移送ポンプ運転流量 m ³ /h における必要 NPSH としてポンプ性能より設定している。 以上の計算結果より,有効 NPSH と必要 NPSH との関係は以下のとおりとなり,必要 NPSH が確保されることから 有効 NPSH: 14.0 m > 必要 NPSH:m

としている。

・を想定する。

ビンポンプ,原子炉隔離時冷却系ポンプ及び直流 トのポンプの運転流量を圧損計算上で考慮する必

っポンプ運転状態として問題ない結果となる。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-04-0330-3_改0
提出年月日	2021年3月30日

補足-330-3 原子炉格納容器内の原子炉冷却材の漏えいを監視する装置 の構成並びに計測範囲及び警報動作範囲に関する補足説明 資料

> 2021年3月 東北電力株式会社

目次

1.	ドライウェル送風機冷却コイルドレン流量測定装置の検出時間について ・・・・・・・・	1
2.	ドライウェル床ドレンサンプ水位測定装置の演算時間について ・・・・・・・・・・・・・	3
3.	ドライウェル送風機冷却コイルドレン流量測定装置による漏えい検出の評価時間の	
	保守性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
4.	凝縮水量が平衡に達する時間に関する妥当性について ・・・・・・・・・・・・・・・・・・・・・	8
5.	ドレン配管移送時間の算出について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
6.	漏えい検出設備の検出時間評価に使用する配管及び床面の粗度係数について ・・・・・・	11
7.	ドライウェル床ドレンサンプ水位測定装置の漏えい検出の評価時間の	
	保守性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
8.	ドライウェル床ドレンサンプ水位測定装置監視不能時の対応について ・・・・・・・・・・	16

1. ドライウェル送風機冷却コイルドレン流量測定装置の検出時間について

ドライウェル送風機冷却コイルドレン流量測定装置は、容積式流量検出器からのパルス信号を、 変換器にて電流信号へ変換し、床漏えい検出表示盤内の演算装置にて流量信号に変換し監視する。 なお、容積式流量検出器においては0.23m³/h(3.80/min)のような低流量域においても計測でき るよう、適切な容量を有するバケット(容量:100m0)を選定している。

警報動作範囲は、0~50/minで設定可能であり、全漏えい量0.23m³/h(3.80/min)の蒸気分(1.50/min)の漏えいに相当する流量になる前(1.350/min)に、流量高の警報を中央制御室に発信する。なお、警報動作流量以上の流量では、警報動作状態を継続する。(図1-1「ドライウェル送風機冷却コイルドレン流量測定装置の概略構成図」参照)

パルス信号積算値出力は1分毎に更新され、変換器の出力は1分間のパルス信号積算値出力を1 分間保持する設計としていることから、ドライウェル送風機冷却コイルドレン流量測定装置の 検出遅れ時間を2分とする。(図1-2「ドライウェル送風機冷却コイルドレン流量測定装置の検出 時間の考え方」参照)

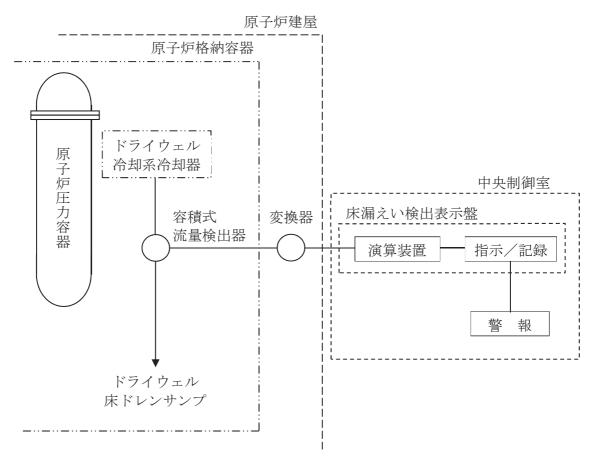


図1-1 ドライウェル送風機冷却コイルドレン流量測定装置の概略構成図

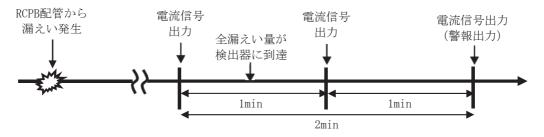


図1-2 ドライウェル送風機冷却コイルドレン流量測定装置の検出時間の考え方

2. ドライウェル床ドレンサンプ水位測定装置の演算時間について

ドライウェル床ドレンサンプ水位測定装置は,超音波式水位検出器からの電流信号を,サン プ制御盤内の指示部及び記録部にて水位信号に変換し監視する。

警報動作範囲は、0~1900mmで設定可能であり、全漏えい量0.23m³/h(3.80/min)の漏えいに相 当する水位変化率(23mm/14min)になると水位変化率高の警報を中央制御室に発信する。なお、 警報動作水位変化率以上の変化率では、警報動作状態を継続する。(図2-1「ドライウェル床ドレ ンサンプ水位測定装置の概略構成図」参照)

水位変化率の設定要求値は、ドライウェル床ドレンサンプに全漏えい量0.23m³/h(3.80/min)が 流入したときの水位変化は1.7mm/minであるが、ドライウェル床ドレンサンプ水位測定装置の計測 精度は±23mmであり、23mmの水位変化に相当する時間は14min(23mm÷1.7mm/min)となる。

この水位変化率を演算処理する際は、床ドレンサンプポンプが停止しており、かつ、床ドレン サンプ水面が安定している状態の水位測定装置による水位信号が必要であるため、水位変化率を 演算処理するプロセス計算機ではこの処理を行う条件として、床ドレンサンプポンプ運転中

(0.23m³/hを排出する時間である1分23秒)及び床ドレンサンプポンプ停止後(3分)の4分23秒は 演算処理を行わない条件とし、水位変化率の演算処理は水位検出信号を1分周期で平均処理したデ ータから、14分前の同データを減算して水位変化率を監視する。

このため、ドレン流入開始のタイミングを考慮した検出時間は18分23秒となるが、保守的に19分後に検出可能な設計としている。(図2-2「ドライウェル床ドレンサンプ水位測定装置の演算時間」参照)

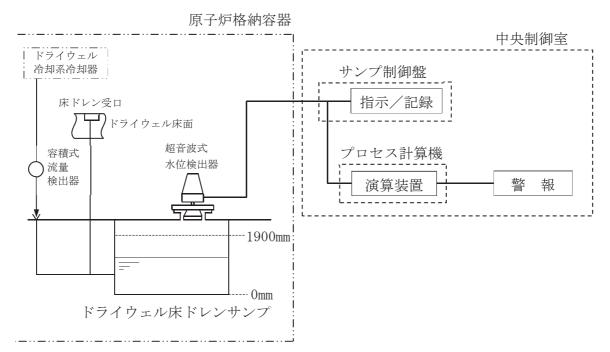


図2-1 ドライウェル床ドレンサンプ水位測定装置の概略構成図

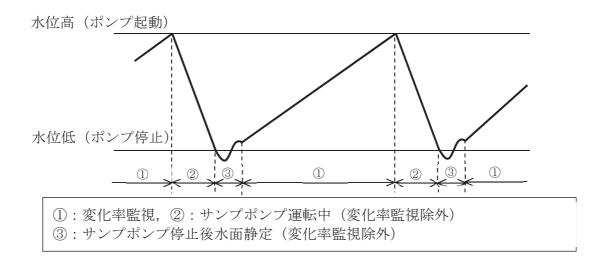


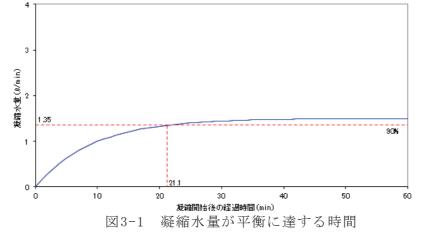
図2-2 ドライウェル床ドレンサンプ水位測定装置の演算時間

 ドライウェル送風機冷却コイルドレン流量測定装置による漏えい検出の評価時間の保 守性について

ドライウェル送風機冷却コイルドレン流量測定装置による漏えい検知時間($T_1 \sim T_3$ の合計30分)には、以下のとおり保守性を見込んでおり、ドライウェル送風機冷却コイルドレン流量測定装置の検出時間(T_4)の2分を加えても60分を超えないため、問題なく1時間以内に0.23m³/h(3.80/min)の蒸気分(1.50/min)の漏えい量を検知可能である。

3.1 ドライウェル冷却系冷却器までの蒸気到達時間:T₁=3分における保守性

漏えいした蒸気がドライウェル冷却系冷却器(以下「冷却器」という。)の冷却コイルに達し、冷却が開始されるまでの時間T₁を評価する際には、冷却器に到達するまでの時間に「3.2 凝縮水量が平衡に到達する時間」で述べる原子炉格納容器内に漏えいした蒸気が徐々に充満し平衡状態となる過程も一部で始まっているが、そのことは考慮せず保守的に評価している。


また,RCPB配管から漏えいした蒸気が冷却器の冷却コイルに達する最長経路は,漏 えい蒸気を含む原子炉格納容器内の空気がドライウェル冷却系送風機(以下「送風機」 という。)により一巡する時間をT₁とすることで保守的に評価している。

3.2 凝縮水量が平衡に到達する時間:T₂=22分における保守性

漏えい蒸気が凝縮に要する時間は、冷却器における凝縮水量が蒸気分の漏えい量と 平衡となる時間として評価している。ここで、本評価に対しては確実に漏えい蒸気分の 検知を可能とするために、ドライウェル送風機冷却コイルドレン流量測定装置の警報 設定値を漏えい蒸気の90%とすることで対応する。

凝縮水量と経過時間の関係は、図3-1に示すとおりであり、凝縮水量が蒸気分の漏 えい量の90%に達する時間は約21.1分である。これを保守的に22分としている。

また,平衡に達する時間の妥当性については,「4. 凝縮水量が平衡に達する時間 に関する妥当性について」にて示す。

5

3.3 ドレン配管移送時間(ドライウェル冷却系冷却器~ドライウェル送風機冷却コイル ドレン流量測定装置):T₃=5分における保守性

冷却器からドライウェル送風機冷却コイルドレン流量測定装置までのドレン配管に は、垂直部、水平部(1/100こう配)があるが、ドレン配管移送時間を評価する際に は、保守的に垂直部を含む全体を水平部と同じ1/100こう配と仮定し、さらに評価用長 さを配管の設計長さに1.1倍を乗じて評価している。

なお、冷却器からドライウェル送風機冷却コイルドレン流量測定装置までのドレン 配管には、25A、50A及び80Aの配管口径があるが、最も保守的となる80Aの配管は全体の 約5%であり、配管長さの余裕10%に含まれるため、すべての配管を50Aと仮定し評価し ている。

垂直配管の流速は水平部より早くなり,さらに小さい配管口径の流速は大きい配管 口径より早くなることから,実際の検出時間は評価時間よりも短くなると考えられる。

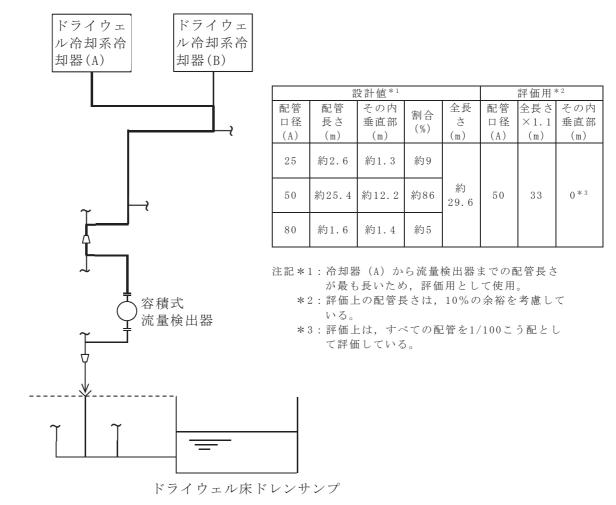


図3-2 ドレン配管移送時間

(ドライウェル冷却系冷却器~ドライウェル送風機冷却コイルドレン流量測定装置)

3.4 ドライウェル送風機冷却コイルドレン流量測定装置の検出遅れ時間:T₄=2分 ドライウェル送風機冷却コイルドレン流量測定装置の検出遅れ時間を「1. ドライ ウェル送風機冷却コイルドレン流量測定装置の検出時間について」に示す。

- 4. 凝縮水量が平衡に達する時間に関する妥当性について
- 4.1 ドライウェル冷却系の設置目的について

ドライウェル冷却系は,通常運転時において,冷却器及び送風機によりドライウェル 内雰囲気を絶えず循環させ,原子炉格納容器内の機器,配管等からの発熱を除去するた めに設置している。

- 4.2 ドライウェル冷却系の構造・機能について
 - 4.2.1 ドライウェル冷却系の構成について

RCPB配管から原子炉格納容器内へ漏えいが生じたときに,蒸気分については原 子炉格納容器に配置されるドライウェル冷却系にて冷却される。原子炉格納容器 内に冷却器及び送風機はそれぞれ上部に3台,下部に3台が設置されており,通常運転 時は上部,下部ともに各2台運転とし,各1台を予備としている。

また,上部冷却器は換気空調補機常用冷却水系より冷水を供給し,冷却と除湿を 行い,下部冷却器は原子炉補機冷却水系より冷水を供給し,冷却を行い,ドライウ ェル雰囲気露点温度を低く保つ設計としている。

冷却器は、冷却コイル、ドレンパン、エアフィルタ、ケーシング等により構成され、冷水を冷却コイルに通水し、送風機を起動することにより、水、空気を熱交換 し空気を冷却するものである。冷却器概略図を下記の図4-1に示す。

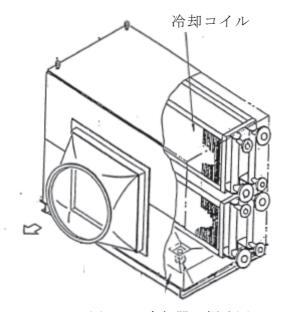


図4-1 冷却器の概略図

4.2.2 ドライウェル冷却系の冷却能力について

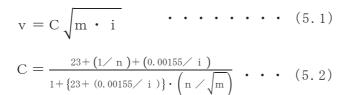
ドライウェル冷却系は,通常運転時において,ドライウェル内の機器,配管等からの発熱を除去するため,また,ドライウェル内配管の大気による腐食防止対策として,ドライウェル雰囲気露点温度を低く保つために設置している。

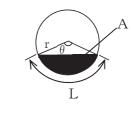
プラント通常運転時,ドライウェル内に設置されている各機器からの放熱及びサプ レッションプール,格納容器床ドレンサンプからの蒸発分の凝縮による熱負荷は 1.140MW程度である。一方,上部冷却器及び下部冷却器の交換熱量(合計)は 1.313MWであることから,ドライウェル内雰囲気を平衡状態に維持することができ る。

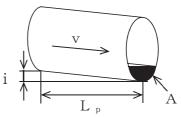
4.2.3 蒸気漏えい時

蒸気漏えいが発生した場合には、ドライウェル冷却系の熱負荷に凝縮潜熱分の除熱 能力が追加される。原子炉冷却材の漏えい量0.23m³/h(3.80/min)に相当する蒸 気1.50/min(=1.5kg/min)を凝縮するために必要な除熱量は0.056MWであり、次 式で求められる。

1.5kg/min \div 60× (2.676×10⁶J/kg-0.419×10⁶J/kg) =0.056MW


- 漏えい量Q ₁	:1.5kg/min (蒸気分)
大気圧での蒸気のエンタルピ	: 2.676 $\times 10^{6} \text{J/kg}$
大気圧での水のエンタルピ	: 0. 419 \times 10 ⁶ J/kg


以上より、0.23m³/h (3.80/min)の漏えいにより蒸気漏えいが発生した際のド ライウェル冷却系の上部冷却器及び下部冷却器は、凝縮潜熱分0.056MWの除熱能力 が追加されるものの、上部冷却器及び下部冷却器の交換熱量(合計)は1.313MWで あることから、十分な除熱能力を有している。したがって、漏えい蒸気は、ドライ ウェル冷却系にて問題なく凝縮するものと考えられる。 5. ドレン配管移送時間の算出について


ドレン配管移送時間(T₃, T₅, T₇, T₈)の算出において, ドレンの流速 v を求 めるときに解が複数存在する場合があるため,このときの算出条件について,以下に示 す。

ガンギェ・クッタの経験式は開きょ(上蓋のされていない水路)に適用される経験式 であるため、水密状態に近い範囲(180 $\leq \theta \leq$ 360)は適用範囲外となる。

(算出式:ガンギェ・クッタの経験式)

記号	記号説明	単位	計算式
n	粗度係数	_	配管材固有の値
i	こう配	_	—
r	配管半径	m	—
Q	流量	m^3/s	$Q = v \cdot A$
θ	弦の角度	rad	仮定値
L	ぬれ縁長さ	m	$L = r \cdot \theta$
А	断面積	m^2	A = 1 / 2 × r ² (θ - sin θ)
m	平均深さ	m	$m = A \nearrow L$
С	流速係数	_	(5.2) 式
L _p	配管長	m	—
v	平均流速	m/s	(5.1) 式
Т	時間遅れ	min	$T = L_{p} / v / 60$

実際の計算においては、平均流速v,断面積A及びぬれ縁長さLを求める必要がある。

ここで, 弦の角度θにより求まる平均深さmをある値と仮定することで断面積A及び ぬれ縁長さLを算出し, 上記(5.1) 式及び(5.2) 式により求めた平均流速 v から算 出した流量Qと漏えい量が同値となるまで収束計算を行うことで算出する。 6. 漏えい検出設備の検出時間評価に使用する配管及び床面の粗度係数について

6.1 ドレン配管の粗度係数

冷却器にて凝縮した凝縮水をドライウェル床ドレンサンプまで移送するドレン配 管及び保温材からの漏えい水をドレン配管入口からドライウェル床ドレンサンプま で移送するドレン配管内を流れる漏えい水の流速は、シェジー形の公式及びガンギェ・ クッタの経験式を基に算出しており、この際に配管の内面粗さを表すパラメータとし て粗度係数を使用している。

本評価で使用する粗度係数は、「機械工学便覧」に記載されている黄銅管の粗度 係数(0.009~0.013)を参考に0.01としている。

なお、粗度係数は以下に示すManning-Stricklerの式を用いて評価することも可能 であり、実機におけるステンレス鋼管の粗度係数は0.01以下となることも考慮し、本 評価で用いる粗度係数は0.01としている。

(算出式:Manning-Stricklerの式)

$$n = \frac{k s^{1/6}}{7.66 \times \sqrt{g}}$$

n:粗度係数

k s:相当粗度(=配管内面粗さ)

g:重力加速度(=9.80665m/s²)

表6-1 ステンレス鋼管の粗度係数

		ステンレス鋼管
相当粗度	κ s	$5 imes 10^{-5}$ m *
粗度係数 1	l	0.008

注記*:メーカ標準値

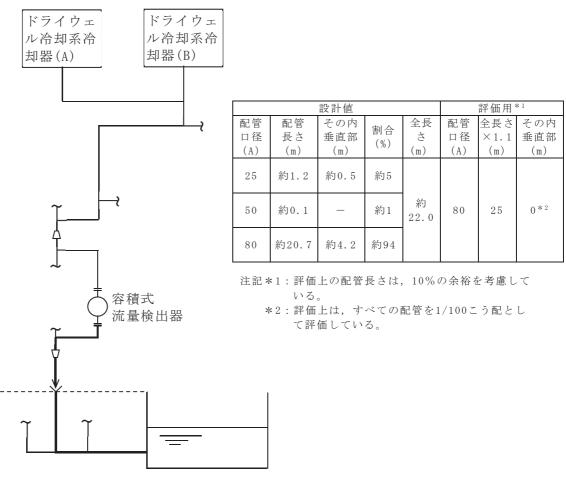
6.2 床面の粗度係数

保温材からの漏えい水がドライウェル床面を通じてドレン配管入口まで移動する 際の流速は、シェジー形の公式及びガンギェ・クッタの経験式を基に算出しており、こ の際に床面の粗さを表すパラメータとして粗度係数を使用している。

本評価で使用する粗度係数は、「機械工学便覧」に記載されている純セメント平滑面の粗度係数(0.009~0.013)を参考にしており、発電所の床面は塗装により滑らかであるが、本評価では0.013とし、保守的な評価としている。

7. ドライウェル床ドレンサンプ水位測定装置の漏えい検出評価時間の保守性について

ドライウェル送風機冷却コイルドレン流量測定装置による漏えい検知時間(T₁~T₃の合計30分)には、「3.ドライウェル送風機冷却コイルドレン流量測定装置による漏えい検出の評価時間の保守性について」のとおり保守性を見込んでおり、以下に示すドライウェル送風機冷却コイルドレン流量測定装置からドライウェル床ドレンサンプまでのドレン配管移送時間(T₅)及びドライウェル床ドレンサンプ水位変化率の演算時間(T₉)の合計22分を加えても60分を超えないため、問題なく1時間以内に0.23m³/hの漏えい量(蒸気分)を検知可能である。


また、ドライウェル床ドレンサンプ水位測定装置による漏えい検知時間($T_6 \sim T_8$ の合計40分)には、以下のとおり保守性を見込んでおり、ドライウェル床ドレンサンプ水位変化率の演算時間(T_9)の19分を加えても60分を超えないため、問題なく1時間以内に 0.23m³/hの漏えい量(液体分)を検知可能である。

7.1 ドレン配管移送時間(ドライウェル送風機冷却コイルドレン流量測定装置~ドライウェル床ドレンサンプ): T₅=3分における保守性

ドライウェル送風機冷却コイルドレン流量測定装置からドライウェル床ドレンサン プまでのドレン配管には,垂直部,水平部(1/100こう配)があるが,ドレン配管移 送時間を評価する際には,保守的に垂直部を含む全体を水平部と同じ1/100こう配と 仮定し,さらに評価用長さを配管の設計長さに1.1倍を乗じて評価している。

また、ドライウェル送風機冷却コイルドレン流量測定装置からドライウェル床ドレン サンプまでのドレン配管には、25A、50A及び80Aの配管口径があるが、最も保守的とな る80Aが全体の約94%であるため、すべての配管を80Aと仮定し評価している。

垂直配管の流速は水平部より早くなり,さらに小さい配管口径の流速は大きい配管口 径より早くなることから,実際の検出時間は評価時間よりも短くなると考えられる。

ドライウェル床ドレンサンプ

(ドライウェル送風機冷却コイルドレン流量測定装置~ドライウェル床ドレンサンプ)

7.2 保温材から漏れ出るまでの時間:T₆=33分の保守性

原子炉冷却材配管は保温材(金属保温)を設置しており,円周方向に一体構造ではな く,独立に2分割された金属保温を止め合せて取り付けている。保温材は水が滞留しな いよう設計されているが,保温材から漏えい水が漏れ出るまでの時間T₆は,保守的に 漏えい水が2分割の一部の保温材及び保温材と原子炉冷却材配管のすき間の2分割部分に 滞留後,接合部から漏れ出ると仮定し算出している。漏えい水が保温材に入り込むとは 考えにくいが,保温材の2分割の下半分に入り込むと仮定することで,漏えい水が保温材 の接合部まで達し流れ出るまでの時間を保守的に評価している。なお,本評価では保守的 に原子炉冷却材を内包する配管の金属保温材のうち,2分割で水平配管に設置される保温 材内容積が最も大きい箇所を評価している。

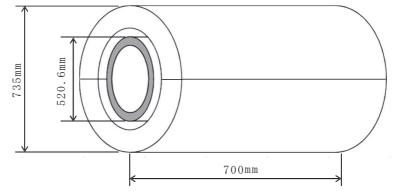


図7-2 金属保温材から漏れ出るまでの時間における概略図

7.3 ドレン配管入口までの到達時間:T₇=3分における保守性

保温材からの漏えい水はドライウェル床面に落下し、床ドレン受口に向かうこう配 (約1/100)にしたがって流れる。本評価における落下位置は、配管の真下ではなく原 子炉格納容器内においてドレン配管入口(床ドレン受口)から最も離れている箇所から 評価することで保守的な評価としている。

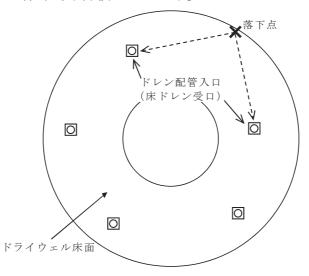


図7-3 落下点からドレン配管入口(床ドレン受口)までの到達時間における概略図

7.4 ドレン配管移送時間(ドレン配管入口~ドライウェル床ドレンサンプ): T₈=4分 における保守性

ドレン配管入口からドライウェル床ドレンサンプまでのドレン配管には,垂直部, 水平部(1/100こう配)があるが,ドライウェル床ドレンサンプから最も離れた位置に ある床ドレン受口を対象とし,ドレン配管移送時間を評価する際には,保守的に垂直 部を含む全体を水平部と同じ1/100こう配と仮定し,さらに評価用長さを配管の設計 長さに1.1倍を乗じて評価している。

垂直配管の流速は水平部より早くなることから実際の検出時間は評価時間よりも短 くなると考えられる。

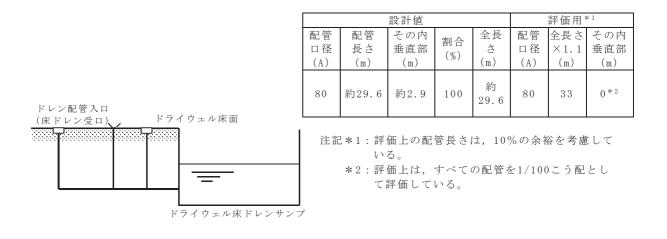


図7-4 ドレン配管移送時間(ドレン配管入口~ドライウェル床ドレンサンプ)

7.5 ドライウェル床ドレンサンプ水位変化率の演算時間:T₉=19分における保守性 ドライウェル床ドレンサンプ水位変化率の演算時間における保守性を「2. ドライ ウェル床ドレンサンプ水位測定装置の演算時間について」に示す。 8. ドライウェル床ドレンサンプ水位測定装置監視不能時の対応について

RCPB配管からの原子炉冷却材の漏えいの検出装置として,漏えい位置を特定できない 原子炉格納容器内への漏えいに対しては,ドライウェル床ドレンサンプ水位測定装置を 使用するが,当該装置が故障した場合は,当該装置の復旧に努めるとともに,ドライウェ ル送風機冷却コイルドレン流量測定装置による確認(原子炉冷却材漏えい時の冷却器の 蒸気凝縮量の増加)及び格納容器内ダスト放射線濃度測定装置による確認(原子炉冷却材 漏えい時の核分裂生成物放出量の増加)を行う。

なお,ドライウェル床ドレンサンプ水位測定装置の故障判断については,通常運転時に おける当該装置の監視及び点検の結果により行う。