女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-07-0360_改 1
提出年月日	2021年 5月11日

補足-360 工事計画に係る補足説明資料(放射線管理施設)

2021年5月

東北電力株式会社

工事計画添付書類に係る補足説明資料

添付書類の記載内容を補足するための資料を以下に示す。

工認添付書類	補足説明資料
VI-1-7-1 放射線管理用計測装置の構成に関する説明書 並びに計測範囲及び警報動作範囲に関する説 明書	補足-360-1 放射線管理用計測装置の構成並びに計測範囲 及び警報動作範囲に関する補足説明資料
VI-1-7-2 管理区域の出入管理設備及び環境試料分析装 置に関する説明書	補足-360-2 管理区域の出入管理設備及び環境試料分析装 置に関する補足説明資料
VI-1-7-3 中央制御室の居住性に関する説明書	補足-360-3 中央制御室の居住性に関する説明書に係る補 足説明資料

本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-07-0360-1_改 0
提出年月日	2021年3月30日

補足-360-1 放射線管理用計測装置の構成並びに計測範囲及び 警報動作範囲に関する補足説明資料

2021年3月

東北電力株式会社

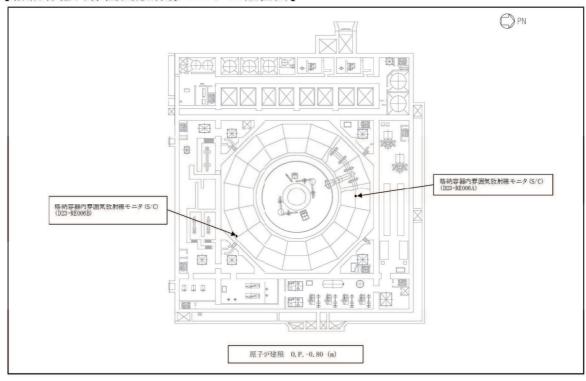
目次

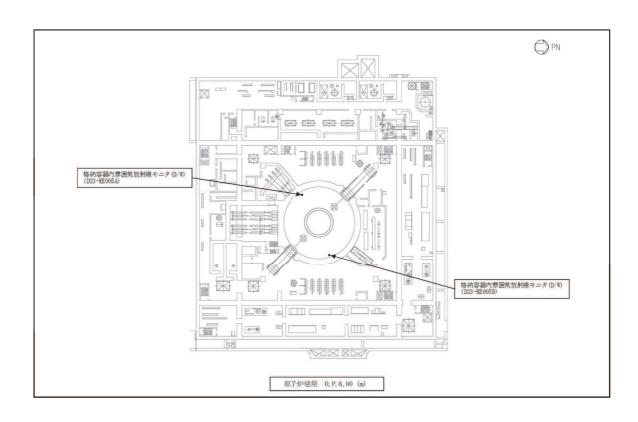
1.		プ	ロセ	ス・	モニ	ニタ	IJ	ン	グ言	没值	帯・・	• 7.•	• 2.	• 7.•		• •					• • 22	• •93	• • • • •	• **	• 7.•	• 7.•	• 7.•	• 2.	• 7.•	.22	-22	• • • • •		1
1	. 1	7	各糾	容	器内	勺雰	囲	気	放身	村糸	泉モ	=	タ	(D	/W),	(S/	C)									* *				6(8 80)		1
1	. 2		フィ	ル	タ当	支置	出	口	放身	村糸	泉モ	-	タ										• • • • •	• 7.0	• . •		•	• 7.•	• 0.•	52.5		E28 E2		4
1	. 3	ĺ	耐圧	強	化~	ベン	1	系	放身	村彩	泉モ	-	タ											80				***		•		60 E		6
2.		工	リア	七、	二	タリ	ン	グ	設(带·		•		•																•				8
2	. 1		緊急	、時	対多		可	搬	型二	r J	リア	七	=	タ											•	• 7.•	•	• 7.•	•	•		60 E		8
	2	. 1.	1	緊	急問	寺対	策	所	加月	王召	产気	供	給	系	に	係	る	判	断	基	準	0	検	討り	2-	01	17	C.				6 × × 6		8
	2	. 1.	2	緊	急、服	寺対	策	所	可排	般型	U T	IJ	ア	七	-	A	0	設	備	0)	概	要		***			•	***		•33				13
2	. 2	,	使用	済	然米	斗プ	·—	ル	上岩	邻名	間当	放	射	線	七	二	タ	(低	線	量)	及	びイ	吏人	用剂	斉州	然米	斗フ	プー	-11	上	部空	3
			間放	(射)	線日	E二	タ	(高組	泉量	量)				٠.		٠.	٠.		٠.														14
	2	. 2.	1	想	定马	事故									٠.																			16
	2	. 2.	2	有	効性	生評	価	に	おり	ナる	5水	位	及	てド	線	量	率	に	つ	VI	T					•		• •	• •					17
	2	. 2.	3	使	用海	斉燃	料	貯	蔵村	曹九	136	0	大	量	0	水	0	漏	え	VI	そ	0)	他	要	因し	2	t !) <u>\</u>	当記	亥付	巨月]済	燃米	ł
				貯	蔵村	曹内	の	水	位7	が星	具常	に	低	下	す	る	事	故	に	お	け	る	線	量	率·									20
3.		固	定式	周	辺日	E二	タ	IJ	ン	グ記	设備	· ·					٠.	٠.																28
3	. 1	5 38	モニ	タ	リン	ノグ	ポ	ス	١.					٠.	٠.	٠.			٠.	٠.				٠.,										28
	3	. 1.	1	七、	二人	タリ	ン	グ	ポン	ス	· 0	配	置	,	計	測	範	井	及	び	警	報	動	作針	節	井·		• •						28
	3	. 1.	2	干,	二人	タリ	ン	グ	ポン	ス	- 0	電	源	٠.	٠.	٠.	٠.	٠.	٠.					٠.,				٠.						31
	3	. 1.	3	七、	二人	タリ	ン	グ	ポン	ス	0	伝	送								1 12							533		523				33
4.		移!	動式	周)	刀子	E=	タ	リ	ン	グ言	殳 備	į	505	101	a 50	. n				a 10	1 10		. 50	101	202	107	101	507	101	101	100.	507.50	1 101	34
4	. 1		可搬	型.	モニ	ニタ	リ	ン	グフ	ポン	スト		٠.	٠.	٠.	٠.	٠.	٠.	٠.						٠.			٠.	٠.					34
	4	. 1.	1	七、	二	タリ	ン	グ	ポン	ス	- 0	代	替	測	定	装	置				1 10		1 52	121				523	5.11	523				34
	4	. 1.	2	放	射自		出	率	の争	算占	Ц.,				٠.	٠.		٠.	٠.	٠.				٠.,				٠.						36
	4	. 1.	3	可	般型	型七	=	タ	リ:	1)	ブオ	ミス	1	0	計	測	範	井																39
4	. 2		可搬	过型	放身	寸線	:計	測	装品	置领	宇											. 123		100		200				200		201 100	202	40
5.		計	則結	果	の言	己録	(0)	保	存·																									43
5	. 1	i	設計	基	準文	计象	施	設				• 2 •	•													•	• .	• •		•		220 123		43
5	2		重大	· 事:	妆生	安分	・夕几	設	備.	94 49		227	100			9 10	9 10	9 P		9 10	¥ 100	. 123		1279	277			1234	279	1000	100	201 RO		43

1. プロセスモニタリング設備

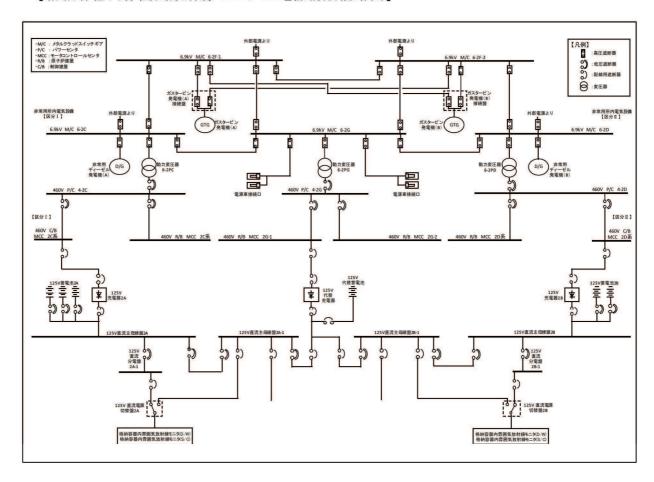
1.1 格納容器内雰囲気放射線モニタ(D/W), (S/C) 《DB/SA 兼用》

格納容器内雰囲気放射線モニタは、(D/W)を2個、(S/C)を2個それぞれ対角に配置することで位置的分散を図るとともに独立した回路で構成している。


格納容器内雰囲気放射線モニタは、外部電源が喪失した場合には、非常用交流電源設備である非常用ディーゼル発電機、所内常設蓄電式直流電源設備である 125V 蓄電池 2A 及び 125 蓄電池 2B、常設代替直流電源設備である 125V 代替蓄電池又は可搬型代替直流電源設備である電源車及び 125V 代替充電器から 125V 直流主母線盤を介して供給できる設計とする。


【放射線管理用計測装置の計測範囲】

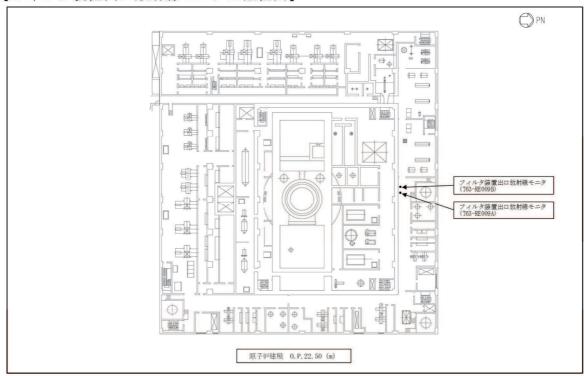
名称	計測範囲	計測範囲の設定に関する考え方
格納容器内雰囲		設計基準事故及び重大事故等時の変動範囲は計測
気放射線モニタ		範囲に包絡されており, 重大事故等時においても監
(D/W)	$10^{-2} \sim 10^{5} \text{Sv/h}$	視可能である。計測上限値は,「事故時放射線計測
		指針(放射能障壁の健全性の把握)*」を満足する
		ように設定する。
格納容器内雰囲		設計基準事故及び重大事故等時の変動範囲は計測
気放射線モニタ		範囲に包絡されており, 重大事故等時においても監
(S/C)	$10^{-2} \sim 10^5 \text{Sv/h}$	視可能である。計測上限値は,「事故時放射線計測
		指針(放射能障壁の健全性の把握)*」を満足する
		ように設定する。


注記*:「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針」別表において、格納容器エリア放射線量率を計測対象とする放射線計測系の測定上限値は10⁵Sv/hと定められている。

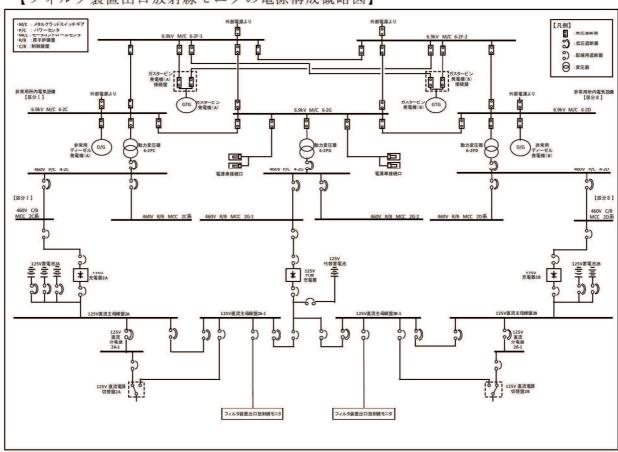
【格納容器内雰囲気放射線モニタの配置図】

【格納容器内雰囲気放射線モニタの電源構成概略図】

1.2 フィルタ装置出口放射線モニタ ≪SA≫


フィルタ装置出口放射線モニタは,所内常設蓄電式直流電源設備である 125V 蓄電池 2A 及び 125 蓄電池 2B,常設代替直流電源設備である 125V 代替蓄電池又は可搬型代替直流電源設備である電源車及び 125V 代替充電器から 125V 直流主母線盤を介して供給できる設計とする。

【放射線管理用計測装置の計測範囲】


名称	計測範囲	計測範囲の設定に関する考え方
		原子炉格納容器ベント実施時(炉心損傷している場
フィルタ装置出	$10^{-2} \sim 10^5$	合) に、想定されるフィルタ装置出口の最大線量当
口放射線モニタ	mSv/h	量率*1(1.9×103mSv/h*2)を計測できる範囲として
		設定する。

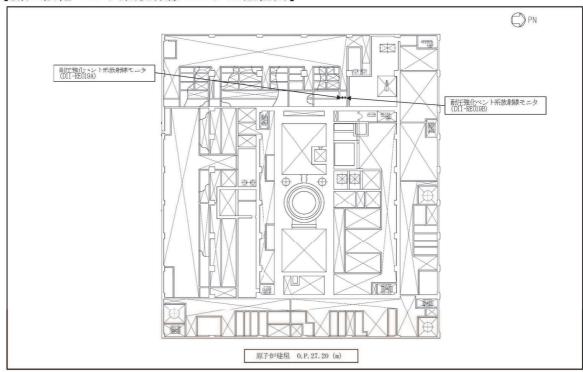
- 注記*1:「線量当量(単位:Sv)」は放射線の生物学的効果を表す量であり、「線量当量率 (単位:Sv/h)」は時間あたりの線量当量の変化量を示す。ここで、放射線量率 を放射線モニタ等で計測した数値または計算プログラムを用いて計測値を模擬 した値に関しては、本文中でそれと分かるように「線量当量率」と記載している。
 - *2: EP まとめ資料【50条】別添資料-1を参照し、想定されるフィルタ装置出口最大線量当量率は、以下の保守的な条件で算出される。
 - ・フィルタ装置出口配管の線量当量率は,フィルタ装置で除去できない放射性希 ガスからのガンマ線が支配的になるため,フィルタ装置出口配管に内包され る放射性物質濃度は放射性希ガスで評価する。
 - ・フィルタ装置出口配管の放射性物質濃度は,原子炉格納容器内の放射性物質濃度と同等とする。
 - ・炉心内の放射性物質の量が最も多く含まれる平衡炉心のサイクル末期に発生 し、原子炉格納容器内の希ガスの濃度は炉心に内蔵する希ガスが全て原子炉 格納容器内に移行し、均一に拡散したものとする。
 - ・ベント開始時間は,原子炉停止から1時間後とする。

【フィルタ装置出口放射線モニタの配置図】

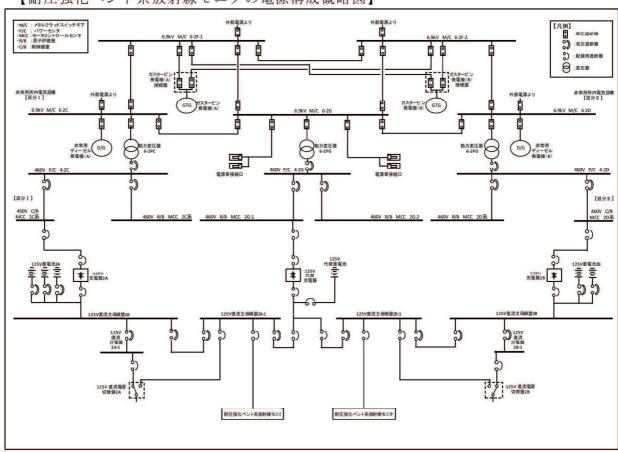
【フィルタ装置出口放射線モニタの電源構成概略図】

1.3 耐圧強化ベント系放射線モニタ ≪SA≫

耐圧強化ベント系放射線モニタは、所内常設蓄電式直流電源設備である125V蓄電池 2A及び125蓄電池2B、常設代替直流電源設備である125V代替蓄電池又は可搬型代替直流電源設備である電源車及び125V代替充電器から125V直流上母線盤を介して供給できる設計とする。


【放射線管理用計測装置の計測範囲】

名称	計測範囲	計測範囲の設定に関する考え方
		耐圧強化ベント実施時(炉心損傷していない場合)
耐圧強化ベント	$10^{-2} \sim 10^{5}$	に、想定される排気ラインの最大線量当量率*1(約
系放射線モニタ	mSv/h	2.0×10 ⁻² mSv/h*2) を計測できる範囲として設定す
		る。


注記*1:「線量当量(単位:Sv)」は放射線の生物学的効果を表す量であり、「線量当量率 (単位:Sv/h)」は時間あたりの線量当量の変化量を示す。ここで、放射線量率 を放射線モニタ等で計測した数値または計算プログラムを用いて計測値を模擬 した値に関しては、本文中でそれと分かるように「線量当量率」と記載している。

- *2:想定される排気ラインの最大線量当量率は,以下の条件で算出される。
 - ・耐圧強化ベント系配管の線量当量率は,原子炉格納容器内の放射性希ガスから のガンマ線が支配的になるため,耐圧強化ベント系配管に内包される放射線 物質濃度は放射線希ガスで評価する。
 - ・耐圧強化ベント系配管の放射性物質濃度は炉心損傷していない原子炉格納容 器内の放射性物質濃度と同等とし、検出器の設置場所での線量当量率を評価 する。
 - ・耐圧強化ベントの開始時間は,事故シーケンスグループ「LOCA時注水機能喪失」 の結果(炉心損傷前の格納容器ベントの操作実施基準に到達するのは,事象発 生の約44時間後)から原子炉停止後44時間とする。

【耐圧強化ベント系放射線モニタの配置図】

【耐圧強化ベント系放射線モニタの電源構成概略図】

2. エリアモニタリング設備

- 2.1 緊急時対策所可搬型エリアモニタ
 - 2.1.1 緊急時対策所加圧空気供給系に係る判断基準の検討について
 - (1) 判断基準に係る検討

放射性雲放出後における緊急時対策所内の加圧設備による室内加圧等の希ガス等の放射性物質侵入防止対応は、緊急時対策所内にとどまる要員の被ばくに大き く影響するため、素早い判断と操作が必要となる。

加圧に係る判断は、様々な指標を確認し、検討するといった時間的猶予がない ことから、計測可能であり、シンプルかつ明確な判断基準とする必要がある。 このような観点から、緊急時対策所加圧空気供給系に係る判断基準を検討す る。

(2) 判断に用いるパラメータ

緊急時対策建屋屋上に設置し,放射線量率の測定
により放射性雲の通過を把握することができる。
緊急時対策所内に設置し,放射線量率の測定によ
り放射性雲の通過を把握することができる。
炉心損傷に伴う格納容器内雰囲気放射線レベルの
上昇等を確認し,原子炉等の状況を把握することが
できる。
緊急時対策所近傍に設置しないため参考扱いとす
るが,空間線量率の測定により放射性雲の通過を把
握することができる。
放射性雲の通過を把握することができないため参
考扱いとするが,放射性雲の進行方向を推定するこ
とができる。

(3) 判断基準の考え方

① 加圧設備等に係る操作等の判断基準

判断	操作等	状況	監視パラメータ	判断基準	備考
				監視バラメータと は別に中央制御室 から格納容器ベン ト実施の連絡があ った場合	
事前淮	パラメ 視強 男 が 要 が 策 所 定 気 が 策 値 に ボ	炉心が損傷 し,放射性物 質が大気に 放出される	格納容器内雰 囲気放射線モニタ(D/W) 格納容器内雰 囲気放射線モニタ(S/W)	格納容器内雰囲気 放射線モニタ(D/W) 又は格納容器内雰 囲気放射線モニタ (S/C)の線量当量率 が設計基準事故の 追加放出量相当の	
準 備 工	で で による 正 圧 化 に 係 る 準備	が 可能性があ る	原子炉圧力容器温度	10 倍以上となった 場合,又は格納容器 内雰囲気放射終熱 内雰囲気放射を 高の のの のの のの のの のの のの のの のの のの のの のの のの	
使	緊急時対策 所を緊急時		_	監視パラメータと は別に中央制御室 から格納容器ベン ト実施の連絡があ った場合	_
開開始	対策所加圧設備(空気ボンベ)にて正	(空気ボ 出・接近 リングボ	可搬型モニタ リングポスト	指示値急上昇 (30mGy/h)	監視パラメ ータのいず れかが判断
24	圧化		緊急時対策所 可搬型エリア モニタ	指示値急上昇 (0.1mSv/h)	基準に到達 した場合に 操作を実施 する。

判断	操作等	状況	監視パラメータ	判断基準	備考
停止	緊所(ベ圧(策送るの知識が、大きなののでは、大きなののでは、大きなののでは、大きなののでは、大きなののでは、大きなのでは、大きなのでは、大きなのでは、大きなのでは、大きなのでは、大きなのでは、大きなのでは、	・放射性雲の放出が収束・可搬型が収まるのでは、カーリンのを対している。というでは、カールがでは、大学のは、大学のでは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の	可搬型モニタリングポスト	0.5mGy/h 未満	監視がとを自場がとを合実をあると、というとをはなった。

②判断基準値の考え方

小服用機		本さ本
11別孫中国		4人人
可搬型モニタリングポスト	指示值急上昇 (30mGy/h)	・緊急時対策所加圧設備(空気ボンベ)による加圧を開始するための指標として設定する。 ・放射性雲通過時の緊急時対策建屋屋上における線量率は100mSv/h以上であり,放射性雲 が放出されたことを確実かつ早期に検知するための値として30mGy/hを設定する。
緊急時対策所可搬型エリアモニタ	指示值急上昇 (0.1mSv/h)	・可搬型モニタリングポストによる検知や判断が遅れた場合等,緊急時対策所加圧設備(空気ボンベ)による加圧を開始するための指標として設定する。 ・緊急時対策所加圧設備(空気ボンベ)による加圧開始が遅延したことを考慮しても,対策要員の被ばく線量が7日間で100mSvを満足する値として0.1mSv/hを設定する。

可搬型モニタリングポスト, 緊急時対策所可搬型エ リアモニタによる傾向監視と緊急時対策所の加圧 (空気ボンベによる加圧) 緊急時対策所非常用送風機へ切替 プラント等パラメータの監視 緊急時対策所可搬型工 緊急時対策所側情報 リアモニタ指示値 0.1mSv/h超過 緊急時対策所可搬型エリアモニタ及び可搬型モニタリングポスト設置落】 [前提条件:事故進展中,緊急時対策所内の体制確立済, 緊急時対策建屋屋上の可搬型モ 緊急時対策建屋屋上の可搬型 モニタリングポスト指示値の ニタリングポスト指示値監視 緊急時対策建屋屋上の可搬型モニタリングポスト指示値30mGy/h 緊急時対策建屋 屋上の可搬型モ ニタリングポス ト指示値 0.5mGy/h未満 敷地內情報 監視 1 発電用原子炉施設側情報 炉心損傷の確認 炉心損傷し ベント基準

12

1

2.1.2 緊急時対策所可搬型エリアモニタの設備の概要

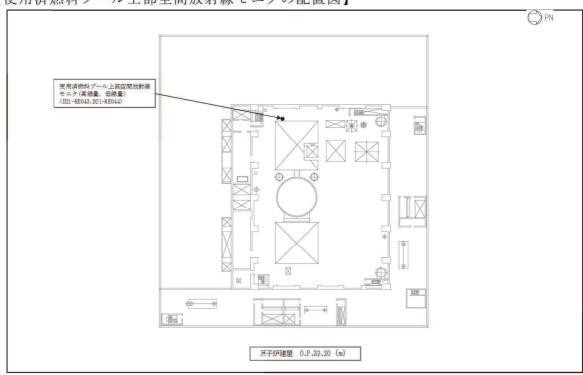
(1) 主な事項

名称	検出器 の種類	計測範囲	警報動 作範囲	保管場所	個数
緊急時対策		$0.01\mu\mathrm{Sv/h}$		緊急時対策所	1 台
所可搬型エ リアモニタ	半導体式	~ 999.9mSv/h	3	(O.P.約 52m)	(予備1台)

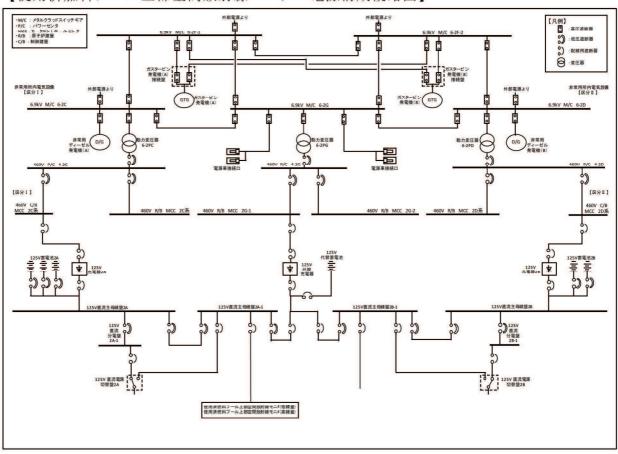
(2) 緊急時対策所可搬型エリアモニタの仕様

項目	内容					
電源	代替交流電源設備により給電可能					
記録	記録装置にて電磁的に記録、保存					
概略寸法	検出部:約66 (W) ×約25 (D) ×約145 (II) mm (コネクタ,スイッチ等の突起物を除く)表示部:約352 (W) ×約90 (D) ×約290 (H) mm					
重量	(取手, ゴムシート, スタンド等の突起物を除く)検出部 (プローブ):約 270g表示部:約 6kg					

2.2 使用済燃料プール上部空間放射線モニタ (低線量)及び使用済燃料プール上部空間 放射線モニタ (高線量) ≪SA≫


使用済燃料プール上部空間放射線モニタ(低線量)(高線量)は,所内常設蓄電式直流電源設備である 125V 蓄電池 2A,常設代替直流電源設備である 125V 代替蓄電池又は可搬型代替直流電源設備である電源車及び 125V 代替充電器から 125V 直流主母線盤を介して供給できる設計とする。

【放射線管理用計測装置の計測範囲】


名称	計測範囲	計測範囲の設定に関する考え方		
使用済燃料プール 上部空間放射線モ ニタ(低線量)	10 ⁻² ∼10 ⁵ mSv/h	重大事故等時における使用済燃料プールの変動範囲について線量当量率*1を監視可能である。*2 計測上限値は,重大事故等時における計測に対して使用済燃料プール上部空間放射線モニタ(高線量)の計測下限値とオーバラップするよう設定する。		
使用済燃料プール 上部空間放射線モ ニタ(高線量)	$10^{1} \sim 10^{8}$ mSv/h	重大事故等時における使用済燃料プールの変動範囲について線量当量率*1を監視可能である。*2 計測下限値は,重大事故等時における計測に対して使用済燃料プール上部空間放射線モニタ(低線量)の計測上限値とオーバラップするよう設定する。		

- 注記*1:「線量当量(単位:Sv)」は放射線の生物学的効果を表す量であり、「線量当量率 (単位:Sv/h)」は時間あたりの線量当量の変化量を示す。ここで、放射線量率 を放射線モニタ等で計測した数値または計算プログラムを用いて計測値を模擬 した値に関しては、本文中でそれと分かるように「線量当量率」と記載している。
 - *2: 重大事故等時における使用済燃料プール水位の変動に伴う放射線量率の算出については、以降の「2.2.1想定事故」、「2.2.2 有効性評価における水位及び線量率について」、「2.2.3 使用済燃料貯蔵槽からの大量の水の漏えいその他要因により当該使用済燃料貯蔵槽内の水位が異常に低下する事故における線量率」に示し、重大事故等時における使用済燃料プールの水位が異常に低下した場合においても、使用済燃料プール上部空間放射線モニタ(低線量)、(高線量)により測定可能であることを確認した。

【使用済燃料プール上部空間放射線モニタの配置図】

【使用済燃料プール上部空間放射線モニタの電源構成概略図】

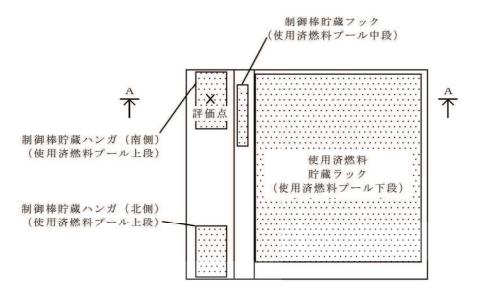
2.2.1 想定事故

燃料貯蔵設備に係る重大事故等は以下のとおり。

- a. 「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する 規則」第37条及びその解釈の3-1(a)及び(b)で定義する想定事故1(使用済 燃料貯蔵増の冷却機能又は注水機能が喪失することにより,使用済燃料貯蔵 槽内の水の温度が上昇し,蒸発により水位が低下する事故)及び想定事故2 (サイフォン現象等により使用済燃料貯蔵槽内の水の小規模な喪失が発生し, 使用済燃料貯蔵槽の水位が低下する事故)において想定する使用済燃料貯蔵 槽の水位の低下
- b. 使用済燃料貯蔵槽からの大量の水の漏えいその他の要因により当該使用済 燃料貯蔵槽の水位が異常に低下した場合。

2.2.2 有効性評価における水位及び線量率について

本有効性評価で用いる放射線の遮蔽が維持できる水位(遮蔽水位)は、原子炉建屋燃料取替床での重大事故等対応要員による使用済燃料プールへの注水準備操作時の基準線量率(10mSv/h)を超えない水位として、通常水位より約1.3m下とする。(図2-1参照)


なお、本有効性評価で用いる線源(制御棒貯蔵ハンガ(北側、南側)、制御棒 貯蔵ラック、使用済燃料貯蔵ラック)からの線量率を求める際に設定する評価点 は、南側の制御棒貯蔵ハンガの真上の原子炉建屋燃料取替床高さ(線源との最短 距離)としている。

線量率計算モデルの評価点は、線源との最短距離に等しい距離で各線源の真上 に置いている。

線源ごとの評価点における,使用済燃料プール水位に応じた線量率算出結果を 合計したものを図 2-2 に示す。

また、線源ごとの線量率計算は QAD-CGGP2R コード (Ver. 1.04) を用いている。

- a. 使用済燃料プール保有水高さ 燃料有効長頂部より上の水の高さ=約7.4m
- b. 必要水遮蔽厚さ グラフから約 6.1m以上
- c. 放射線の遮蔽が維持できる水位(遮蔽水位) 燃料有効長頂部から約 6.1m (通常水位から約 1.3m)

平面図

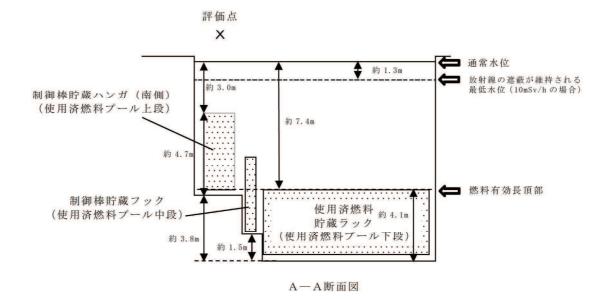


図 2-1 放射線の遮蔽が維持される最低水位

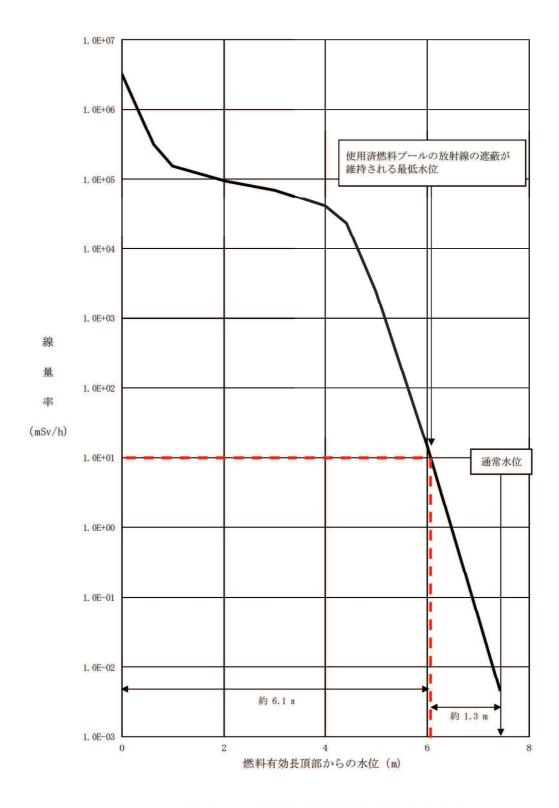
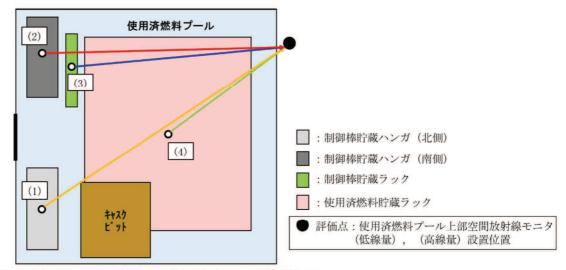


図 2-2 放射線の遮蔽が維持される水位

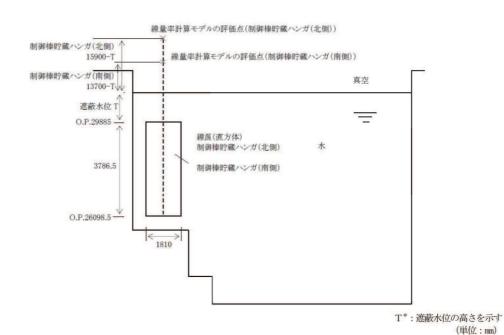
2.2.3 使用済燃料貯蔵槽からの大量の水の漏えいその他要因により当該使用済燃料 貯蔵槽内の水位が異常に低下する事故における線量率

使用済燃料プールの水位が異常に低下した場合には、使用済燃料プール周辺の 線量率が非常に高くなる。従って、使用済燃料プールの線量率の監視設備は重大 事故等が発生した場合に変動する範囲にわたり線量率を測定できる必要があるた め、以下の評価により、使用済燃料プールの水位が異常に低下した場合において も、使用済燃料プール上部空間放射線モニタ (低線量)、(高線量) により測定可 能であることを確認した。


線源(制御棒貯蔵ハンガ(北側, 南側), 制御棒貯蔵ラック, 使用済燃料貯蔵ラック) からの線量率を求める際に設定する評価点は, 使用済燃料プール上部空間放射線モニタ設置位置を設定した。

なお、線源ごとの線量率計算は QAD-CGGP2R コード (Ver. 1.04) を用いている。

(1) 評価点の設定について


使用済燃料プールの水位が異常に低下する事故が発生した場合,使用済燃料プール周辺の線量率が非常に高くなる。このような状況においても使用済燃料プール上部空間放射線モニタ(低線量),(高線量)により,使用済燃料プール周辺の線量率を測定する必要があるため,線量率評価における評価点は使用済燃料プール上部空間放射線モニタ(低線量),(高線量)設置位置とする。各線源と評価点との位置関係を図 2-3 に示す。

線量率計算モデルの評価点は、図 2-4~6 に示すとおり評価点と線源(制御棒 貯蔵ハンガ(北側,南側),制御棒貯蔵ラック,使用済燃料貯蔵ラック)との最 短距離と等しい距離で各線源の真上に置いている。各線源の線量率計算モデル は、線源の真上に評価点を設定することで、使用済燃料プール水により遮蔽され る厚さが短くなるため、保守的な評価結果となる。

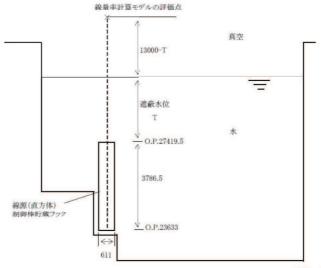
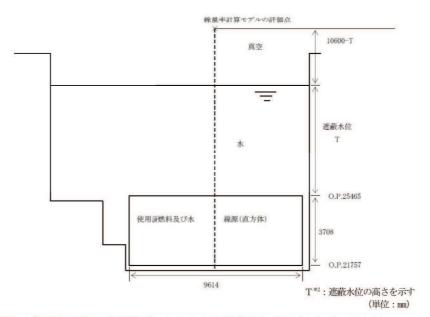

- (1) 制御棒貯蔵ハンガ (北側) から線量評価点までの最短距離は15.9m
- (2) 制御棒貯蔵ハンガ (南側) から線量評価点までの最短距離は13.7m
- (3) 制御棒貯蔵ラックから線量評価点までの最短距離は13m
- (4) 使用済燃料貯蔵ラックから線量評価点までの最短距離は10.6m

図 2-3 各線源と評価点の平面位置関係

注記*:パラメータTは、線源から使用済燃料プール水により遮蔽される長さ (mm) を示す。 水面から評価点までの距離は 15900-T及び 13700-Tmm となり、水位低下時の線量率は、パラメータTを 変数として評価する。


図 2-4 線量率計算モデルの評価点の立面概要図 (制御棒貯蔵ハンガ(北側, 南側))

T*1: 遮蔽水位の高さを示す (単位: mm)

注記*1: パラメータTは、線源から使用済燃料プール水により遮蔽される長さ (mm) を示す。 水面から評価点までの距離は 13000-Tmm となり、水位低下時の線量率は、パラメータTを変数として評価する。

図 2-5 線量率計算モデルの評価点の立面概要図 (制御棒貯蔵ラック)

注記*2:パラメータTは、線源から使用済燃料プール水により遮蔽される長さ (mm) を示す。 水面から評価点までの距離は 10600-Tmm となり、水位低下時の線量率は、パラメータTを変数として評価する。

図 2-6 線量率計算モデルの評価点の立面概要図 (使用済燃料貯蔵ラック)

(2) 評価結果

線源ごとに線量率計算モデルの評価点における,使用済燃料プール水位に応じた線量率算出結果を図 2-7 に示す。また,それらの結果の合計を図 2-8 に示す。両図に示すとおり,使用済燃料プールの水位が異常に低下する事故が発生した場合においても使用済燃料プール上部空間放射線モニタ(低線量),(高線量)にて計測可能である。

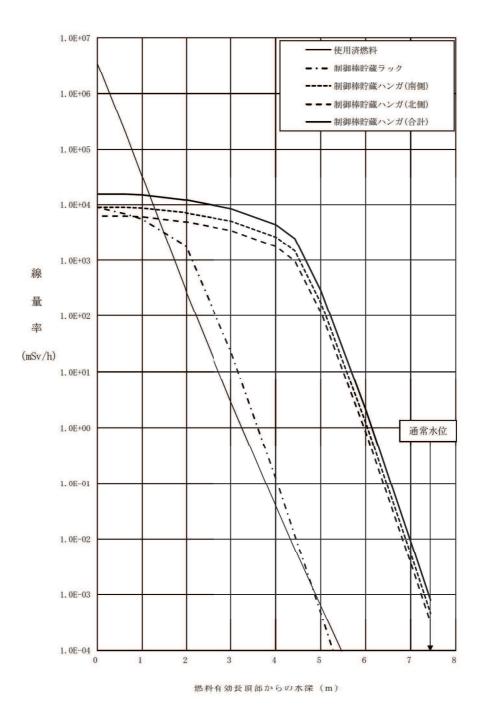


図 2-7 各線源から使用済燃料プール上部空間放射線モニタ 設置位置における線量率推移

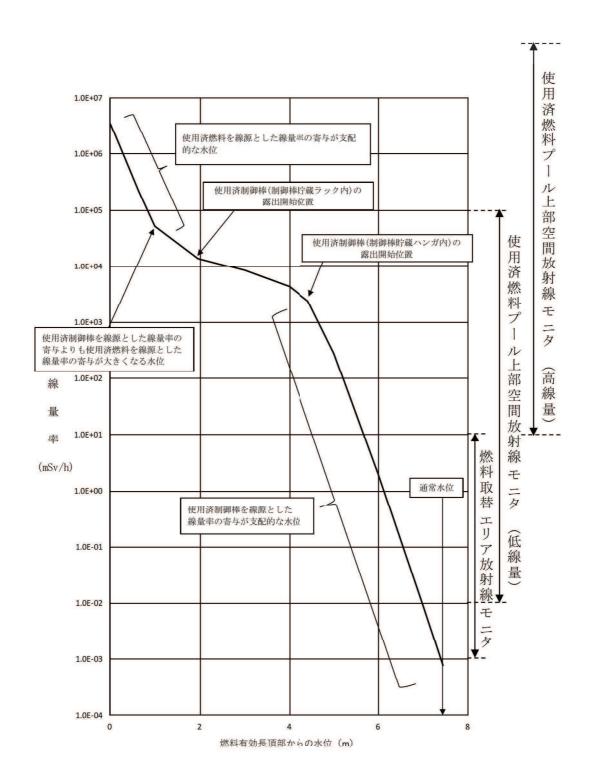


図 2-8 使用済燃料プール上部空間放射線モニタ設置位置における線量率推移

(参考) 使用済燃料プール水深の遮蔽計算に関する計算条件について

1. 評価条件

1.1 使用済燃料の計算条件

- (1) 使用済燃料プールの水面における線量率の計算においては貯蔵容量分(2250 体)の使用済燃料貯蔵を想定する。
- (2) 使用済燃料プールの水温は 100℃とし、水の密度は約 0.958g/cm³*とする。
- (3) 使用済燃料は使用済燃料有効部(約9.6m×約10.9m×約3.7m)を線源とする。 燃料有効部以外の燃料集合体構造部材による遮蔽効果は考慮せず,遮蔽能力が 構造部材より小さい水とみなす。
- (4) 使用済燃料貯蔵ラックによる遮蔽効果は考慮せず,ラック材料よりも遮蔽効果 の小さい水とみなす。

1.2 使用済制御棒の計算条件

- (1) 使用済制御棒からの線量率計算においては制御棒貯蔵ラック又は制御棒貯蔵ハンガすべてに使用済制御棒が貯蔵された状態を想定する。
- (2) 使用済燃料プールの水温は 100℃とし、水の密度は約 0.958g/cm3*とする。
- (3) 使用済制御棒は実際の制御棒貯蔵ラック又は制御棒貯蔵ハンガの配置と面積を 包絡するような直方体線源とする。使用済制御棒は、遮蔽能力が構造部材より 小さい水とみなす。
- (4) 制御棒貯蔵ラック又は制御棒貯蔵ハンガによる遮蔽効果は考慮せず,ラック材料又はハンガ材料よりも遮蔽効果の小さい水とみなす。
- (5) 制御棒貯蔵ラックと制御棒貯蔵ハンガの保管数量は、評価上の保管数量として合計 138 本と想定する。平均的な取替本数 13 本が施設定期検査ごとに取り出される想定とし、14 カ月運転+57 日施設定期検査を繰り返すものとした。また、3 施設定期検査以上前の取替分は、保守的にすべて 3 施設定期検査前取替とした。ただし、Hf 制御棒は、1 施設定期検査に一度取り替えるため、保守的である最も小さい停止期間として 1 施設定期検査を想定した。さらに、既に、7 年以上保管されている使用済制御棒は 7 年間の施設停止期間を設定した。なお、これは保管可能な箇所にすべて保管されることを想定しているため、評価上は保守的な計算条件と言える。

注記*:「1999 日本機械学会蒸気表」

2. 線源

2.1 使用済燃料の線源強度

2.1.1 評価方法

使用済燃料の線源強度は、ORIGEN2コード*を使用する。ORIGEN2では、反応断面積、燃焼照射期間及び冷却期間、比出力並びに燃料の物質組成等を入力することで使用済燃料の線源強度を算出する。なお、評価に用いる計算機コードの検証、妥当性評価については、工事計画認可申請書添付書類「VI-5計算機プログラム(解析コード)の概要」に示す。

注記*: A.G. Croff, "A User's Manual for the ORIGEN2 ComputerCode", ORNL/TM-7175, Oak Ridge National Laboratory, (1980)

2.1.2 評価条件

使用済燃料の線源強度評価条件を表 2.1-1 に示す。

項目 備考 評価条件 燃料 STEPⅢ 9×9A型 濃縮度 (wt%) 燃料集合体1体当たり (kg)ウラン重量 比出力 25.2165 (MW/t)燃焼度 45000MWd/t÷ 燃料照射期間 1784.5 日 比出力 25.2165MW/t 冷却期間 10 日 BWR 用 ²³⁵U-enrichied-UO₂ 反応断面積 BWRU 27,500 MWd/t

表 2.1-1 使用済燃料の線源強度評価条件

2.2 使用済制御棒の線源強度

2.2.1 評価方法

(1) 制御棒の線源強度は、ORIGEN2コードを使用する。

ORIGEN2では、放射化断面積、照射期間及び冷却期間、照射の中性子束 並びに被照射材料(制御棒)の物質組成を入力することで中性子による放射化 放射能を計算する。

枠囲みの内容は商業機密の観点から公開できません。

- (2) 各制御棒 (Hf, B4C) の単位体積当たりの線源強度は,各々制御棒をハンドル 部及び有効部の2領域に分割し算出する。
- (3) 制御棒は、タイプ (Hf, B4C) 別に冷却期間の異なる制御棒が混在するため、 貯蔵制御棒全体の放射能を保存して線源体積で加重平均(均質化)した線源 強度を設定する。

2.2.2 放射化断面積

ORIGEN2で使用する放射化断面積は、BWRUを適用する (²³⁵U-enriched UO₂ 27,500MWd/mt)。

3. 遮蔽計算

3.1 計算方法

使用済燃料プール水深の遮蔽の計算は、評価点を南側の制御棒貯蔵ハンガの真上の原子炉建屋燃料取替床高さ(使用済燃料プール上部空間放射線モニタ(低線量),(高線量)の計測範囲の評価ではモニタ設置位置)とし、線量率計算モデルの評価点としては評価点と線源(制御棒貯蔵ハンガ(北側、南側),制御棒貯蔵ラック,使用済燃料貯蔵ラック)との最短距離に等しい距離で各線源ごとの真上に置き計算する。遮蔽計算には、点減衰核積分法コードである「QAD-CGGP2Rコード

(Ver. 1.04)」を用いて計算する。なお、評価に用いる計算機コードの検証、妥当性評価については、工事計画認可申請書添付書類「VI-5 計算機プログラム (解析コード)の概要」に示す。

計算機コードの主な入力条件は以下の項目である。

- 線源強度
- ・ 遮蔽厚さ (使用済燃料プール水深)
- ・線源からの距離
- ・線源のエネルギ
- ・線源となる使用済燃料,使用済制御棒の形状
- ・遮蔽体の物質の指定

- 3. 固定式周辺モニタリング設備
- 3.1 モニタリングポスト
 - 3.1.1 モニタリングポストの配置,計測範囲及び警報動作範囲

通常運転時,運転時の異常な過渡変化時,設計基準事故時に発電所周辺監視区域境界付近の外部空間線量率を連続的に監視するために,モニタリングポスト6台を設けており,連続測定したデータは,中央制御室で監視し,現場等で記録を行うことができる設計とする。また,緊急時対策所でも監視を行うことができる。

モニタリングポストの空間ガンマ線測定装置は、低レンジ域を測定する NaI(T1)シンチレーション(計測範囲: $0\sim2\times10^4$ nGy/h)及び高レンジ域を測定するイオンチェンバ(計測範囲: $10^4\sim10^8$ nGy/h)の2種類の検出器から構成され、計測範囲 $0\sim10^8$ nGy/h を測定できるよう設計している。モニタリングポストは、その測定値が設定値以上に上昇した場合、直ちに中央制御室に警報を発信できる。警報は、平常値(約 $30\sim40$ nGy/h)からの有意な変動を検知するため、NaI(T1)シンチレーションについては平常値の5倍を目安(190nGy/h)に設定するが、測定範囲内で可変できる設計とする。

モニタリングポストの配置図を図 3-1 に、計測範囲、警報動作範囲等を表 3-1 に示す。

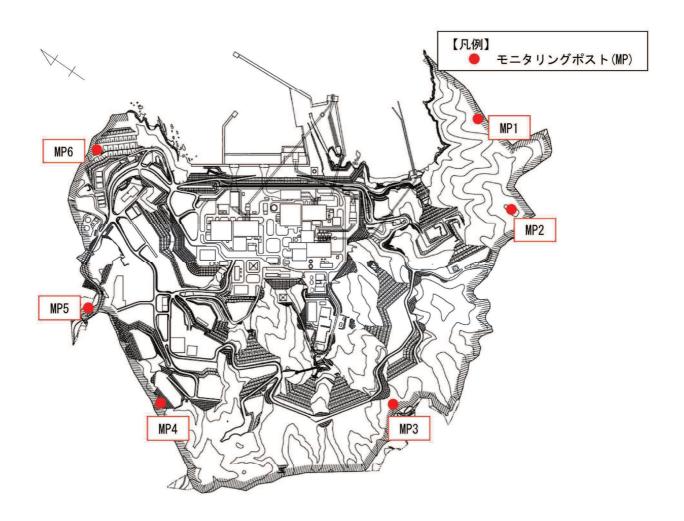


図 3-1 モニタリングポストの配置図

表 3-1 モニタリングポストの計測範囲等

名称	検出器の種類	計測範囲	警報動作範囲	台数	取付箇所
モニタリング	NaI(T1)シンチ レーション	0~2×10 ⁴ nGy/h	計測範囲内 で可変	各1台	周辺監視区域 境界周辺 (6か所設置)
ポスト	イオンチェンバ	$10^4 \sim 10^8$ nGy/h	計測範囲内 で可変	各1台	

(モニタリングポストの写真)

3.1.2 モニタリングポストの電源

モニタリングポストの電源は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」第34条(計測装置)の対応として、非常用交流電源設備に接続し、電源復旧までの期間、電源を供給できる設計とする。さらにモニタリングポスト専用の無停電電源装置を有し、電源の供給源を切替える際に生じる短時間の停電時に電源を供給できる設計とする。

また、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」第60条(監視測定設備)及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」第75条(監視測定設備)の対応として、常設代替交流電源設備からの給電が可能である。

モニタリングポストの電源構成図を図 3-2 に、無停電電源装置の設備仕様を表 3-2 に示す。

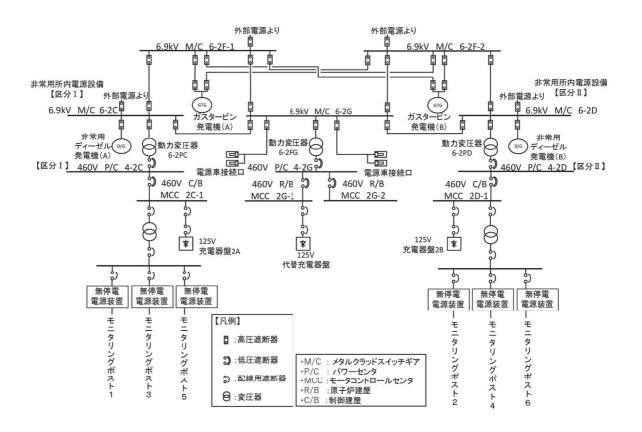
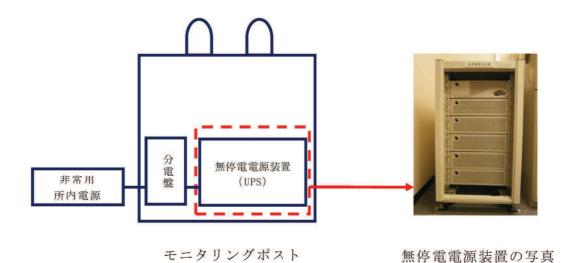



図3-2 モニタリングポストの電源構成図

表 3-2 無停電電源装置の設備仕様

名称	台数	出力	発電方式	バックアップ 時間	備考
無停電電源装置	局舎ごと に1台 計6台	3. OkVA	蓄電池	約8時間	外部電源喪失後,非常用 ディーゼル発電機から給 電されるまでの間及び全 交流動力電源喪失後,常 設代替交流電源設備から 給電されるまでの期間を 担保する。

無停電電源装置の写真

3.1.3 モニタリングポストの伝送

モニタリングポストから中央制御室までのデータ伝送系及び緊急時対策所までのデータ伝送系は、有線及び無線により、多様性を有し、指示値は中央制御室及び緊急時対策所で監視できる設計とする。モニタリングポストは、その測定値が設定値以上に上昇した場合、直ちに中央制御室に警報を発信する設計とする。

モニタリングポストの伝送概略図を図3-3に示す。

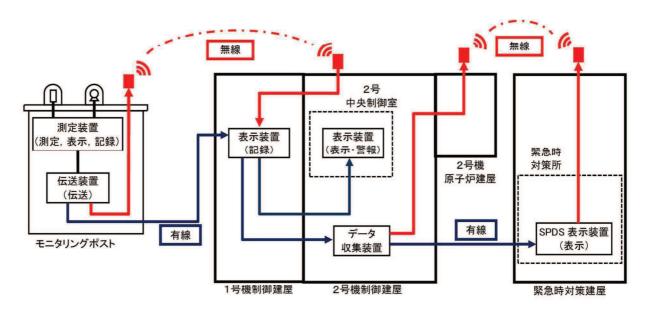


図 3-3 モニタリングポストの伝送概略図

4. 移動式周辺モニタリング設備

4.1 可搬型モニタリングポスト

4.1.1 モニタリングポストの代替測定装置

可搬型モニタリングポストは9台(モニタリングポストが機能喪失した際の代替測定用として6台,重大事故等が発生した場合の発電用原子炉施設周囲(海側を含む。)の空間線量率測定用として2台,緊急時対策建屋屋上にて緊急時対策所の加圧判断用として1台),予備として2台を保管している。

可搬型モニタリングポストの計測範囲等を表 4-1, 仕様を表 4-2, 伝送概略 図を図 4-1, 配置場所及び保管場所を図 4-2 に示す。

可搬型モニタリングポストの電源は、外部バッテリーにより 5 日間以上連続で稼働できる設計としており、外部バッテリーを交換することにより継続して計測できる。また、測定データは、可搬型モニタリングポストの電子メモリに記録するとともに、衛星系回線により緊急時対策所に伝送することができる。

表 4-1 可搬型モニタリングポストの計測範囲等

名称	検出器の種類	計測範囲	警報動作範囲	台数
可搬型モニタリングポスト	NaI(T1) シンチレーション 半導体	0∼10 ⁹ nGy/h		9台(予備2台)

表 4-2 可搬型モニタリングポストの仕様

項目	内容
	外部バッテリー(2個)により5日以上連続で供給可能。
電源	5日後からは、予備の外部バッテリー(2個)と交換することにより継続して計測可能。外部バッテリーは1個当たり約3時間で充電
	可能。
記録	測定値は本体の電子メモリに1週間分程度記録。
伝送	衛星系回線により,緊急時対策所にてデータ監視。なお,本体で指
仏区	示値の確認が可能。
概略寸法	本体:約650(W)×約650(D)×約1050(H)mm
似哈马伝	外部バッテリー:約 420(W)×約 330(D)×約 180(H)mm
	合計:約62kg
重量	本体:約 38kg
	外部バッテリー:約 24kg (約 12kg/個×2 個)

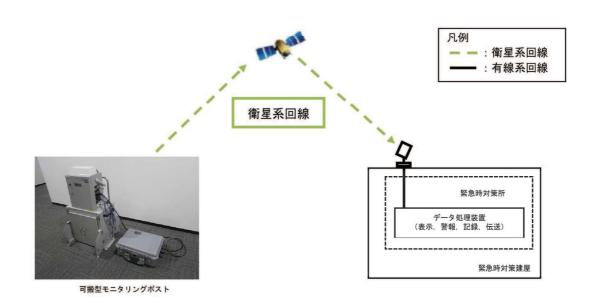


図 4-1 可搬型モニタリングポストの伝送概略図

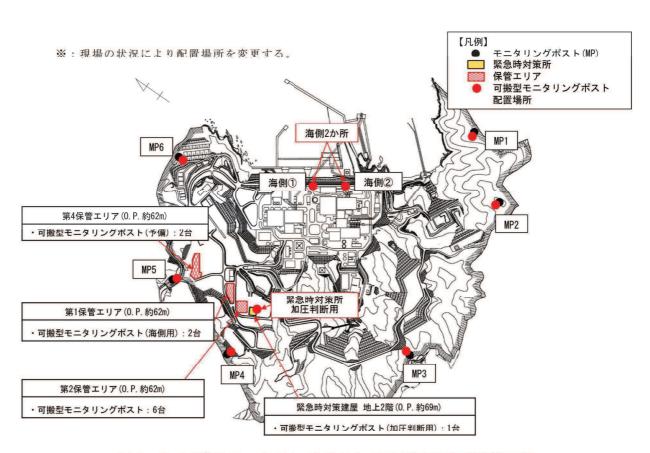


図 4-2 可搬型モニタリングポストの配置場所及び保管場所

- 4.1.2 放射能放出率の算出
 - (1) 環境放射線モニタリング指針に基づく算出
 - a. 地上高さから放出された場合の測定について

重大事故等時において、放射性物質が放出された場合に放射性物質の放射能 放出率を算出するために、可搬型モニタリングポストで得られた放射線量のデ ータより、以下の算出式を用いる。

出典:「環境放射線モニタリング指針(原子力安全委員会 平成22年4月)」より

(a) 放射性希ガス放出率(Q)の算出式Q=4×D×U/D₀/E (GBq/h)

Q : 実際の条件下での放射性希ガス放出率 (GBq/h)

4 : 安全係数

D :風下の地表モニタリング地点で実測された空気カーマ率*1 (μ Gy/h)

U : 平均風速 (m/s)

 D_0 : 空気カーマ率図のうち地上放出高さ及び大気安定度が該当する図から読み取った地表地点における空気カーマ率 *2 (μ Gy/h) (at 放出率: 1GBq/h, 風速: 1m/s, 実効エネルギー: 1MeV/dis)

E:原子炉停止から推定時点までの経過時間によるガンマ線実効エネルギー (MeV/dis)

(b) 放射性よう素放出率(Q)の算出式Q=4×χ×U/χ₀ (GBq/h)

Q : 実際の条件下での放射性よう素放出率 (GBq/h)

4 : 安全係数

χ : 風下の地表モニタリング地点で実測された大気中の放射性よう素濃度*1 (Bq/m³)

U: 平均風速 (m/s)

χ₀: 地上放出高さ及び大気安定度が該当する地表濃度分布図より読み取った 地表面における大気中放射性よう素濃度*² (Bq/m³) (at 放出率: 1GBq/h, 風速: 1m/s)

注記*1:モニタリングで得られたデータを使用

*2:排気筒から放出される放射性雲の等濃度分布図及び放射性雲からの等空気カーマ率分布図(Ⅲ)(日本原子力研究所 2004年6月 JAERI-Date/Code 2004-010)

<放射能放出率の計算例>

以下に,放射性希ガスによる放射能放出率の計算例を示す。

(風速は「1m/s」,大気安定度は「D」とする。)

放射性希ガス放出率 =4×D×U/D₀/E

 $=4 \times 5 \times 10^{4} \times 1.0/3.1 \times 10^{-4}/0.5$

=1. 3×10^9 (GBq/h) (1. 3×10^{18} Bq/h)

4 : 安全係数

D: 地表モニタリング地点で(風下方向)実測された空間放射線量率*

 \Rightarrow 50mGy/h (5×10⁴ μ Gy/h) 1Sv=1Gy とした

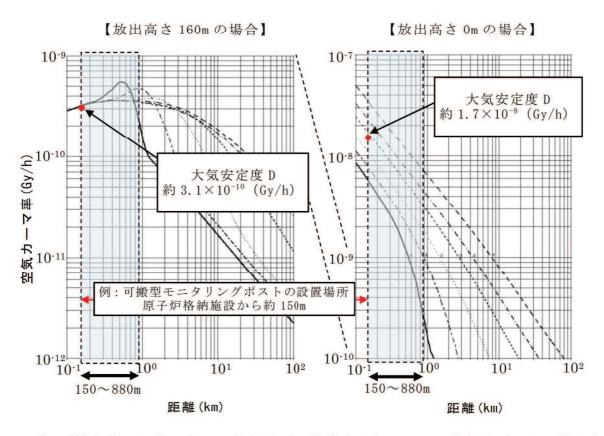
U:放出地上高さにおける平均風速

 $\Rightarrow 1.0 \text{m/s}$

D₀ : 空気カーマ率図のうち地上放出高さ及び大気安定度が該当する図から

読み取った地表地点における空気カーマ率

 \Rightarrow 3. 1 × 10⁻⁴ μ Gy/h


E:原子炉停止から推定時点までの経過時間によるガンマ線実効エネルギー

 \Rightarrow 0.5MeV/dis

注記*:放射性よう素の放出放射能率は、可搬型ダスト・よう素サンプラにより採取、測定したデータから算出する。

b. 高い位置から放出された場合の測定について

可搬型モニタリングポストは、地表位置に配置するため、放射性雲が高い位置から放出された場合、放射性雲高さで測定した場合に比べて放射線量率としては低くなる。しかしながら、放射性雲が通過する上空と地表面の間に放射線を遮蔽するものがないため、地表面に配置する可搬型モニタリングポストで十分に測定が可能である。図 4-3 に各大気安定度における地表面での放射性雲からの γ 線による空気カーマ率分布図を示す。

出典:「排気筒から放出される放射性雲の等濃度分布図および放射性雲からの等空気カーマ率分布図 (Ⅲ)」(日本原子力研究所 2004 年 6 月 JAERI-Date/Code 2004-010) (条件等加筆)

- ・排気筒高さ 0.P.175m*
- ·敷地グランドレベル 0.P.15m*
- ・可搬型モニタリングポスト設置場所(原子炉格納施設から約150~880m)

注記*: 2011 年東北地方太平洋沖地震に伴う地殻変動を考慮すると,表記値より一様に 1m 沈下

図 4-3 各大気安定度における地表面での放射性雲からのγ線による 空気カーマ率分布図

4.1.3 可搬型モニタリングポストの計測範囲

(1) 重大事故等時における線量当量率測定に必要な最大測定レンジ

重大事故等時において、放出放射能を推定するために周辺監視区域内で線量当量率を測定する場合の最大測定レンジは、福島第一原子力発電所の実績を踏まえて約12~20mSv/h程度(炉心との距離が最も短い(2号炉とモニタリングポスト6)約750m程度の場合)が必要と考えられる。また、海側の放出を考慮して配置する可搬型モニタリングポストと炉心との距離は、約150m程度であるため、同様に福島第一原子力発電所の実績を踏まえて約13~160mSv/h程度である。

このため、1000mSv/hの測定レンジがあれば十分測定可能である。

なお、福島第一原子力発電所から放出された Cs-137 の放出量は約 10000TBq であるのに対し、女川原子力発電所の有効性評価における Cs-137 の放出量は約 1.4TBq であるため、測定される放射線量率はさらに低くなると想定される。

仮に、測定レンジを超えたとしても、近隣のモニタリング設備の測定値より推 定することが可能である。また、瓦礫等の影響でバックグラウンドが高くなる場 合は、設置場所を変更する等の対応を実施する。

(2) 最大レンジの考え方

福島第一原子力発電所周辺の最大線量当量率は,原子炉建屋から約900mの距離にある正門付近で約11mSv/hであった(2011年3月15日9:00)。これを基に炉心から約150m及び750mを計算すると,放射線量率は,それぞれ約13~160mSv/h及び約12~20mSv/hとなる。炉心からの距離と線量当量率の関係を表4-3に示す。

表 4-3 炉心からの距離と線量当量率の関係

炉心からの距離	線量当量率
(m)	(mSv/h)
海側 約 150	約 13~160*1
モニタリングポスト 代替 約750	約 12~20*1
約 900	約 11*2

注記*1: 風速 1m/s, 放出高さ 30m, 大気安定度 A~F「排気筒から放出される放射性雲の等濃度分布図および放射性雲からの等空気カーマ率分布図 (Ⅲ)」(日本原子力研究所 2004 年 6 月 JAERI-Data/Code 2004-010) を用いて算出

*2:福島第一原子力発電所の原子炉建屋より約 900m の距離にある正門付近

4.2 可搬型放射線計測装置等

重大事故等が発生した場合に発電所及びその周辺(周辺海域を含む。)において、 可搬型放射線計測装置等により発電用原子炉施設から放出される放射性物質の濃度を 監視し、及び測定し、並びにその結果を記録するために、以下の可搬型放射線計測装 置等を使用する。

可搬型放射線計測装置の計測範囲等を表 4-4 に示し、小型船舶の仕様等を表 4-5 に示す。また、可搬型放射線計測装置の写真を図 4-4、可搬型放射線計測装置の使用場所及び保管場所を図 4-5 に示し、小型船舶の保管場所及び移動ルートを図 4-6 に示す。

表 4-4 可搬型放射線計測装置の計測範囲等

名称	検出器の種類	計測範囲	記録	台数
可搬型ダスト・よう素	12.00			2台*2,*3
サンプラ				(予備1台)
β 線サーベイメータ	GM 管	0∼100k	サンプリング	2台*2,*3
は終り一ペイメータ	GM 'F	\min^{-1*1}	記録	(予備1台)
44. ベノノ・カ	NaI (T1) シン	0∼30k	サンプリング	2台*2,*3
γ 線サーベイメータ	チレーション	s^{-1*1}	記録	(予備1台)
- 約4 - ベノノーカ	ZnS (Ag) シン	0∼100k	サンプリング	1台*4
α 線サーベイメータ	チレーション	\min^{-1*1}	記録	(予備1台)
電離箱サーベイメータ	電離箱	0.001~1000	サンプリング	2台*3
电離相リーベイグーグ	电触相	mSv/h*1	記録	(予備1台)

注記 * 1:「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める測定上限値を満たす設計とする。

*2:「放射能観測車の代替測定装置」と共用。

*3:緊急時対策建屋に2台(予備1台)保管する。 *4:緊急時対策建屋に1台(予備1台)保管する。

表 4-5 小型船舶の仕様等

項目	内容
数量	1艇(予備1艇)
最大積載量	350kg 以上
モニタリング時に持ち込む 重大事故等対処設備等	電離箱サーベイメータ:1台 可搬型ダスト・よう素サンプラ:1台 採取用資機材(容器等):1式
保管場所	第1保管エリア:1艇 (0.P.約 62m) 第4保管エリア:1艇 (0.P.約 62m)
運搬方法	ボートトレーラーを牽引,又は運搬車両にて物揚場まで運搬する。

可搬型ダスト・よう素 サンプラ

γ線サーベイメータ

β線サーベイメータ

α 線サーベイメータ

電離箱サーベイメータ

図 4-4 可搬型放射線計測装置の写真

※:現場の状況により採取場所を変更する。

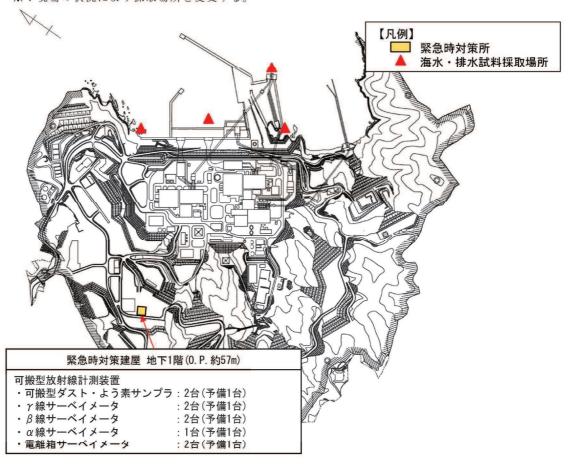


図 4-5 可搬型放射線計測装置の使用場所及び保管場所

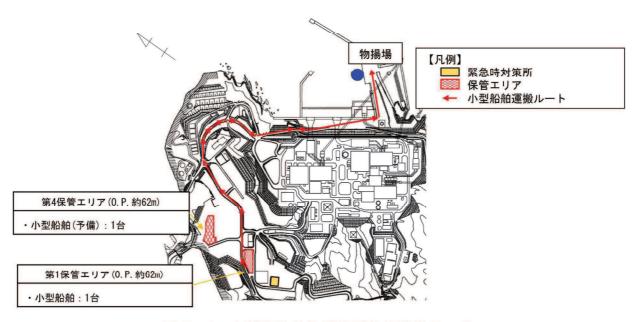


図 4-6 小型船舶の保管場所及び移動ルート

5. 計測結果の記録の保存

5.1 設計基準対象施設

「実用発電用原子炉及びその附属施設の技術基準に関する規則」第34条第4項に係る計測結果は、原則、確実に記録計にて継続的に記録し、記録紙は取り替えて保存できる設計とし、原子炉冷却材の放射性物質の濃度及び周辺監視区域に隣接する地域における放射性物質の濃度の継続的な試料の分析は、従事者が測定結果を記録し保存する。

記録を保存する計測項目と計測装置等を表 5-1 に示す。

5.2 重大事故等対処設備

重大事故等時における各計測装置の計測結果は、計測装置に応じた記録方法により 記録し、保存できる設計とする。

緊急時対策所可搬型エリアモニタの計測結果は、記録装置にて電磁的に記録、保存し、電源喪失により保存した記録が失われない設計とする。

格納容器内雰囲気放射線モニタ(D/W),格納容器内雰囲気放射線モニタ(S/C),フィルタ装置出口放射線モニタ、耐圧強化ベント系放射線モニタ、使用済燃料プール上部空間放射線モニタ(低線量)及び使用済燃料プール上部空間放射線モニタ(高線量)の計測結果は、データ収集装置、SPDS 伝送装置及び SPDS 表示装置で構成する安全パラメータ表示システム(SPDS)に電磁的に記録、保存し、電源喪失により保存した記録が失われない設計とする。また、プラント状態の推移を把握するためにデータ収集周期は1分、記録の保存容量は計測結果を取り出すことで継続的にデータを記録できるよう、14日以上保存できる設計とする。

可搬型モニタリングポストによる計測結果は、プラント状態を適切に把握するためにデータ収集周期を1分とする。記録の保存容量は外部支援を受けるまでの期間、記録できるように7日間以上可搬型モニタリングポストの記録装置に電磁的に記録し、電源喪失により保存した記録が失われない設計とする。また、計測結果は伝送装置(衛星系回線)により、緊急時対策所へ伝送でき、緊急時対策所にて電磁的に記録し、電源喪失により保存した記録が失われない設計とする。

 β 線サーベイメータ、 γ 線サーベイメータ、 α 線サーベイメータ及び電離箱サーベイメータによる計測結果は、従事者が記録し、保存できる設計とする。

表 5-1 記録を保存する計測項目と計測装置等

表 5-1 記録を保存する 計測項目	る計測項目と計測装置等
原子炉冷却材の放射性物質の濃度	試料放射能測定装置
	格納容器内雰囲気放射線モニタ(D/W)
原子炉格納容器内放射性物質の濃度及び線 量当量率	格納容器内雰囲気放射線モニタ(S/C)
	格納容器内ダスト放射線モニタ
主蒸気管中及び空気抽出器その他の蒸気タ ービン又は復水器に接続する設備であって	主蒸気管放射線モニタ
放射性物質を内包する設備の排ガス中の放 射性物質の濃度	空気エゼクタオフガス放射線モニタ
	スタック放射線モニタ
排気筒の出口又はこれに近接する箇所にお ける排気中の放射性物質の濃度	非常用ガス処理系放射線モニタ
	試料放射能測定装置
排水口又はこれに近接する箇所における排	液体廃棄物処理系排水放射線モニタ
水中の放射性物質の濃度	試料放射能測定装置
放射性物質により汚染するおそれがある管理区域(管理区域のうち,その場所における外部放射線に係る線量のみが実用炉規則第二条第二項第四号に規定する線量を超えるおそれがある場所を除いた場所をいう。)内に開口部がある排水路の出口又はこれに近接する箇所における排水中の放射性物質の濃度	該当なし
管理区域内において人が常時立ち入る場所 その他放射線管理を特に必要とする場所(燃	燃料取替エリア放射線モニタ
料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要	原子炉建屋原子炉棟排気放射線モニタ
とする場所をいう。) の線量当量率	燃料交換フロア放射線モニタ
周辺監視区域に隣接する地域における空間 線量率	モニタリングポスト (1・2・3 号機共用)
周辺監視区域に隣接する地域における放射	放射能観測車(1・2・3号機共用)
性物質の濃度	構内ダストモニタ(1・2・3号機共用)
敷地内における風向及び風速	気象観測設備 風向(地上高 10m, 標高 175m) (1・2・3 号機共用) 気象観測設備 風速(地上高 10m, 標高 175m) (1・2・3 号機共用)

本資料のうち、枠囲みの内容は 防護上の観点から公開できませ ん。

女川原子力発電所第2号機 工事計画審査資料		
資料番号	02-補-E-07-0360-2_改 1	
提出年月日	2021年3月30日	

補足-360-2 管理区域の出入管理設備及び環境試料分析装置 に関する補足説明資料

2021年3月

東北電力株式会社

補足説明資料目次

1		出)	\管理設備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.	1	中央制御室チェンジングエリア ・・・・・・・・・・・・・・・・・・・・・・・・	1
	1. 3	2	緊急時対策所チェンジングエリア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
2		環	境放射線計測装置及び環境試料分析装置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
	2.	1	可搬型放射線計測装置及び小型船舶 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
	2.	2	環境試料分析装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35

1. 出入管理設備

1.1 中央制御室チェンジングエリア

1.1.1 チェンジングエリアの基本的な考え方

チェンジングエリアの設営に当たっては、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」第59条第2項(運転員が原子炉制御室にとどまるための設備)並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第74条第2項(運転員が原子炉制御室にとどまるための設備)に基づき、原子炉制御室の外側が放射性物質により汚染したような状況下において、原子炉制御室への汚染の持ち込みを防止するため、モニタリング及び作業服の着替え等を行うための区画を設けることを基本的な考え方とする。

1.1.2 チェンジングエリアの概要

チェンジングエリアは、下足エリア、脱衣エリア、サーベイエリア及び除染エリアからなり、中央制御室バウンダリに隣接するとともに、要員の被ばく低減の観点から制御建屋内に設営する。概要は表 1-1 のとおり。

表 1-1 チェンジングエリアの概要

項目		概要
		中央制御室の外側が放射性物質により汚染
設	#-11./rn.7-2±, E□	したような状況下において,中央制御室へ
設営場所	制御建屋	の汚染の持込みを防止するため、モニタリ
新	中央制御室 北東側通路	ング及び作業服の着替え等を行うための区
		画を設ける。
		中央制御室出入口通路を活用し、通路を区
設		画化する。
設営形式	通路区画化	なお、平常時から養生シートによりあらか
式		じめ養生しておくことにより、速やかな設
		置作業を可能とする。
	原子力災害対策特別措置法第10条	中央制御室の外側が放射性物質により汚染
	特定事象が発生した後、放射線管	するようなおそれが発生した場合、チェン
/al 手	理班長が,事象進展の状況(格納容	ジングエリアの設営を行う。
判断基準手順着手	器内雰囲気放射線モニタ等により	
	炉心損傷を判断した場合等),参集	
+ O	済みの要員数を考慮して、チェン	
	ジングエリア設営を行うと判断し	
	た場合。	
宝		チェンジングエリアを速やかに設営できる
実 施 者	放射線管理班	よう定期的に訓練を行っている放射線管理
有		班が設営を行う。

	トは,図1-10	

1.1.3 チェンジングエリアの設営場所及び屋内のアクセスルート

枠囲みの内容は防護上の観点から公開できません。

1.1.4 チェンジングエリアの設営(考え方,資機材)

a. 考え方

中央制御室への放射性物質の持ち込みを防止するため、図 1-2 の設営フローに従い、図 1-3 のとおりチェンジングエリアを設営する。チェンジングエリアの設営は、放射線管理班員 2 名で約 90 分を想定している。なお、チェンジングエリアが速やかに設営できるよう定期的に訓練を行い、設営時間の短縮及び更なる改善を図ることとしている。

チェンジングエリアの設営は、夜間及び休日(平日の勤務時間帯以外)の場合は、参集要員(12時間後までに参集)のうち、チェンジングエリアの設営に割り当てることができる要員で行う。

設営の着手は、放射線管理班長が、原子力災害対策特別措置法第 10 条特定事象が発生した後、事象進展の状況(格納容器内雰囲気放射線モニタ等により炉心損傷を判断した場合等)、 参集済みの要員数及び放射線管理班が実施する作業の優先順位を考慮して判断し、速やかに 実施する。

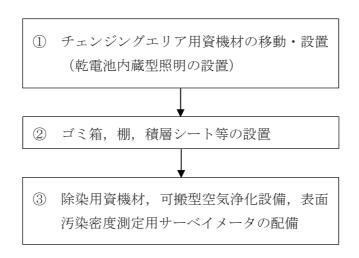


図 1-2 チェンジングエリア設営フロー

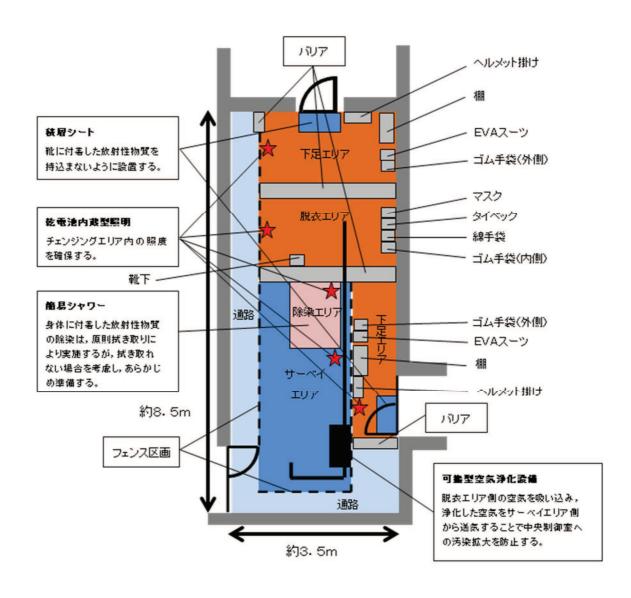


図 1-3 中央制御室チェンジングエリア

b. チェンジングエリア用資機材

チェンジングエリア用資機材については、運用開始後のチェンジングエリアの補修や汚染によるシート張替え等も考慮して、表 1-2、図 1-4 のとおりとする。チェンジングエリア用資機材は、チェンジングエリア付近に保管する。

表 1-2 チェンジングエリア用資機材

名称	数量	根拠
		11X 1XL
養生シート(床用)	2巻*1	
養生シート(壁用)	12 巻*2	
テープ	20 巻	
積層シート	6 枚	
ゴミ箱	7 個	
ポリ袋	100 枚	
ウエス	2 箱	
ウェットティッシュ	50 個	
はさみ	3 丁	
カッター	3 本	
マジック	3 本	7 1 2 1 7 1 7 1 7 1 W
バリア	8個*3	チェンジングエリア設営
フェンス	12 枚*4	及び補修に必要な数量
ヘルメット掛け	2 台	
棚	2 台	
除染エリア用ハウス	1式*5	
簡易シャワー	1台*6	
ポリタンク	1台*7	
トレイ	1 個	
バケツ	2 個	
可搬型空気浄化設備	1台(予備1台)	
可搬型空気浄化設備用ダクト	1式	
乾電池内蔵型照明	5台(予備1台)	

*1: 仕様 1,800mm×50m/巻

*2: 仕様 2, 100mm×25m/巻

*3: 仕様 900mm×240mm×235mm/個 (アルミ製)

*4: 仕様 1,200mm×900mm×25mm/個 (アルミ製)

*5: 仕様 1,100mm×1,100mm×1,950mm/式 (折りたたみ式,ポリエステル製)

*6: 仕様 タンク容量 7.5 リットル (手動ポンプ式)

*7: 仕様 タンク容量 20 リットル

養生シート (床用) <仕様> 1,800mm×50m/巻

養生シート(壁用) <仕様> 2,100mm×25m/巻

バリア <仕様> 900mm×240mm×235mm/個 (アルミ製)

フェンス <仕様> 1,200mm×900mm×25mm/個 (アルミ製)

除染エリア用ハウス <仕様> 1,100mm×1,100mm×1,950mm /式(折りたたみ式,ポリ エステル製)

簡易シャワー <仕様> タンク容量 7.5 リットル (手動ポンプ式)

ポリタンク <仕様> タンク容量 20 リットル

図 1-4 チェンジングエリア用資機材

1.1.5 チェンジングエリアの運用

(出入管理, 脱衣, 汚染検査, 除染, 着衣, 汚染管理, 廃棄物管理, 環境管理)

a. 出入管理

チェンジングエリアは、中央制御室の外側が放射性物質により汚染したような状況下において、中央制御室に待機していた要員が、中央制御室外で作業を行った後、再度、中央制御室に入室する際等に利用する。中央制御室外は、放射性物質により汚染しているおそれがあることから、中央制御室外で活動する要員は防護具類を着用し活動する。

チェンジングエリアのレイアウトは、図 1-3 のとおりであり、チェンジングエリアには下記の①から④のエリアを設けることで中央制御室内への放射性物質の持ち込みを防止する。

①下足エリア

靴及びヘルメット等を着脱するエリア。

②脱衣エリア

防護具類を適切な順番で脱衣するエリア。

③サーベイエリア

防護具類を脱衣した要員の身体や物品のサーベイを行うエリア。 汚染が確認されなければ中央制御室内へ移動する。

④除染エリア

サーベイエリアにて汚染が確認された際に除染を行うエリア。

b. 脱衣

チェンジングエリアにおける防護具類の脱衣手順は以下のとおり。

- ①下足エリアで、靴、ヘルメット、ゴム手袋外側、EVAスーツ等を脱衣する。
- ②脱衣エリアで、タイベック、マスク、ゴム手袋内側、帽子、靴下、綿手袋を脱衣する。 なお、チェンジングエリアでは、放射線管理班員が要員の脱衣状況を適宜確認し、指導、 助言、防護具類の脱衣の補助を行う。

c. 汚染検査

チェンジングエリアにおける汚染検査手順は以下のとおり。

- ①脱衣後, サーベイエリアに移動する。
- ②サーベイエリアにおいて汚染検査を受ける。
- ③汚染基準を満足する場合は、中央制御室へ入室する。汚染基準を超える場合は、除染 エリアに移動する。

なお,放射線管理班員でなくても汚染検査ができるように汚染検査の手順について図示等 を行う。また,放射線管理班員は汚染検査の状況について,適宜確認し,指導,助言をする。

d. 除染

チェンジングエリアにおける除染手順は以下のとおり。

- ①汚染検査にて汚染基準を超える場合は、除染エリアに移動する。
- ②汚染箇所をウェットティッシュで拭き取りする。
- ③再度汚染箇所について汚染検査する。
- ④汚染基準を超える場合は、簡易シャワーで除染する。(簡易シャワーでも汚染基準を超える場合は、汚染箇所を養生し、再度除染ができる施設へ移動する。)

e. 着衣

防護具類の着衣手順は以下のとおり。

- ①中央制御室内で、綿手袋、靴下、帽子、タイベック、マスク、ゴム手袋内側、ゴム手袋外側を着衣する。
- ②下足エリアで、ヘルメット、靴を着用する。

放射線管理班員は、要員の作業に応じて、EVAスーツ等の着用を指示する。

f. 汚染管理

サーベイエリア内で要員の汚染が確認された場合は、サーベイエリアに隣接した除染エリアで要員の除染を行う。

要員の除染については、ウェットティッシュでの拭き取りによる除染を基本とするが、拭き取りにて除染できない場合も想定し、汚染箇所への水洗による除染が行えるよう簡易シャワーを設ける。

簡易シャワーで発生した汚染水は,図 1-5 のとおり排水を受ける資機材及びウエスで受け、 使用したウエスは固体廃棄物として処理する。

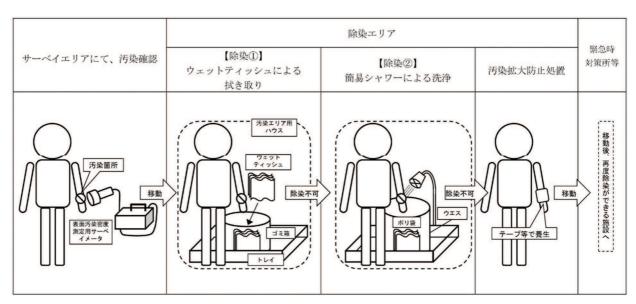


図 1-5 除染及び汚染水処理イメージ図

g. 廃棄物管理

中央制御室外で活動した要員が脱衣した防護具類については、チェンジングエリア内に留め置くとチェンジングエリア内の線量率の上昇及び汚染拡大へつながる要因となることから、 適宜チェンジングエリア外に持ち出しチェンジングエリア内の線量率の上昇及び汚染拡大防 止を図る。

h. 環境管理

放射線管理班員は、チェンジングエリア内の表面汚染密度、線量率及び空気中放射性物質 濃度を定期的(1回/日以上)に測定し、放射性物質の異常な流入や拡大がないことを確認 する。

放射性雲通過後にチェンジングエリアの出入管理を再開する際には、表面汚染密度、線量率及び空気中放射性物質濃度の測定を実施し、必要に応じチェンジングエリアの除染を実施する。なお、測定及び除染を行った要員は、脱衣エリアにて脱衣を行う。

1.1.6 チェンジングエリアの汚染拡大防止について

a. 可搬型空気浄化設備

チェンジングエリアには、更なる被ばく低減のため、可搬型空気浄化設備を1台設置する。 可搬型空気浄化設備は、汚染が拡大するおそれのある脱衣エリアの空気を吸い込み浄化する よう配置し、脱衣エリアを換気することで、中央制御室外で活動した要員の脱衣による汚染 拡大を防止する。中央制御室内への汚染持込防止を目的とした可搬型空気浄化設備による換 気ができていることの確認は、可搬型空気浄化設備の吸込口と吐出口において、吹き流し等 を設置し、吹き流しの動きで空気の流れがあることを目視する等により確認する。可搬型空 気浄化設備は、脱衣エリア等を換気できる風量とし、仕様等を図1-6に示す。

なお、中央制御室は放射性雲通過時には、原則出入りしない運用とすることから、チェンジングエリアについても、放射性雲通過時は、原則利用しないこととする。

したがって、チェンジングエリア用の可搬型空気浄化設備についても放射性雲通過時には 運用しないことから、可搬型空気浄化設備のフィルタが高線量化することでの居住性への影響はない。

ただし、可搬型空気浄化設備は長期的に運用する可能性があることから、フィルタの線量が高くなることも想定し、本体(フィルタ含む)の予備を1台設ける。

なお、交換したフィルタ等は、線源とならないようチェンジングエリアから遠ざけて保管 する。

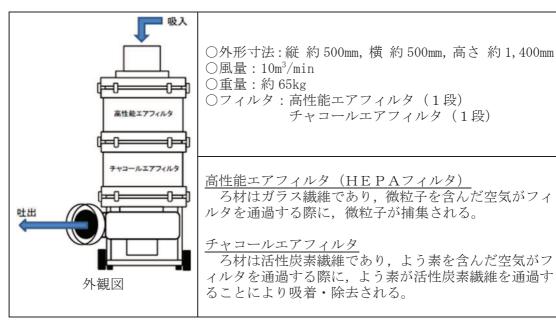


図 1-6 可搬型空気浄化設備の仕様等

b. チェンジングエリアの設営状況

チェンジングエリアは、下足エリア、脱衣エリア及びサーベイエリアの境界をバリア等により区画する。チェンジングエリアの設営状況は図 1-7 のとおりである。チェンジングエリア内は、汚染の除去の容易さの観点から養生シートを貼ることとし、一時閉鎖となる時間を短縮している。

また、養生シート等に損傷が生じた際は、速やかに補修が行えるよう補修用の資機材を準備する。

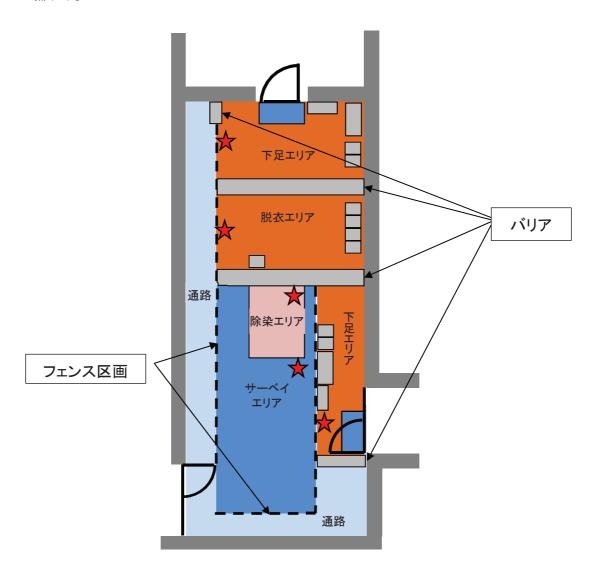


図 1-7 チェンジングエリア設営状況

c. チェンジングエリアへの空気の流れ

チェンジングエリアは、一定の気密性が確保された制御建屋内に設置し、図 1-8 のように、 汚染の区分ごとにエリアを区画し、汚染を管理する。

また、更なる被ばく低減のため、可搬型空気浄化設備を1台設置する。可搬型空気浄化設備は、脱衣を行うホットエリアの空気を吸い込み浄化し、ホットエリアを換気することで脱衣による汚染拡大を防止するとともに、チェンジングエリア内を循環運転することによりチェンジングエリア内の放射性物質を低減する。

図 1-8 のようにチェンジングエリア内に空気の流れをつくることで脱衣による汚染拡大を防止する。

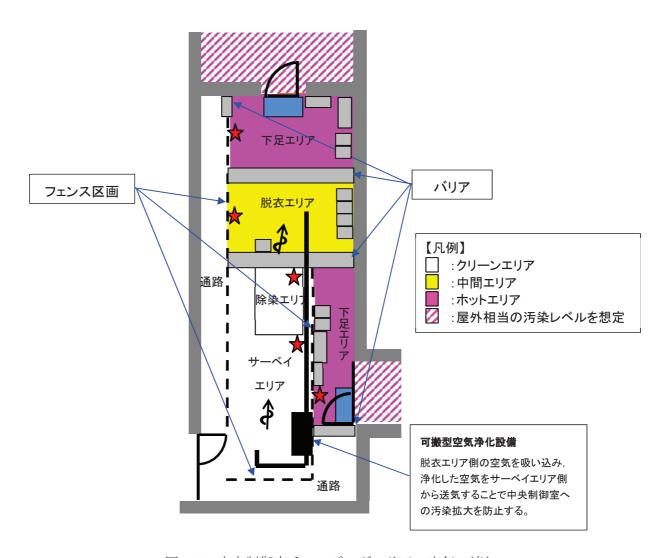


図 1-8 中央制御室チェンジングエリアの空気の流れ

d. チェンジングエリアでのクロスコンタミ防止について

中央制御室に入室しようとする要員に付着した汚染が、ほかの要員に伝播することがないようサーベイエリアにおいて要員の汚染が確認された場合は、汚染箇所を養生するとともに、サーベイエリア内に汚染が移行していないことを確認する。

サーベイエリア内に汚染が確認された場合は、一時的にチェンジングエリアを閉鎖するが、速やかに養生シートを張り替える等により、要員の出入りに大きな影響は与えないようにする。ただし、中央制御室から緊急に現場に行く必要がある場合は、張り替え途中であっても、要員は防護具類を着用していることから、退室することは可能である。

また、中央制御室への入室の動線と退室の動線を分離することで、脱衣時の接触を防止する。なお、中央制御室から退室する要員は、防護具類を着用しているため、中央制御室に入室しようとする要員と接触したとしても、汚染が身体に付着することはない。

1.1.7 汚染の管理基準

表 1-3 のとおり、状況に応じた汚染の管理基準により運用する。

ただし、サーベイエリアのバックグラウンドに応じて、表 1-3 の管理基準での運用が困難となった場合は、バックグラウンドと識別できる値を設定する。

表 1-3 汚染の管理基準

	状況	汚染の管理基準*1	根拠等
状況①	屋外(発電所構内全般)へ少量の放射性物質が漏えい又は放出されるような原子力災害時	1,300cpm* ²	法令に定める表面汚染密度限度(アルファ線を放出しない放射性同位元素の表面汚染密度限度:40Bq/cm²)の1/10
状	大規模放射性雲が放	40,000cpm*3	原子力災害対策指針における OIL4に準拠
2	出されるような原子 力災害時	13,000cpm*4	原子力災害対策指針における OIL4【1ヶ月後の値】に準拠

*1:計測器の仕様や校正により計数率が異なる場合は、計測器ごとの数値を確認しておく。また、測定する場所のバックグラウンドに留意する必要がある。

*2:4Bq/cm²相当。

*3:120Bq/cm²相当。バックグラウンドが高い状況下に適用。バックグラウンドの影響が相対的に小さくなる数値のうち、最低の水準(バックグラウンドのノイズに信号が埋まらないレベルとして3倍程度の余裕を見込む水準)として設定(13,000×3≒40,000cpm)。

*4:40Bq/cm²相当(放射性よう素の吸入により小児の甲状腺等価線量が100mSvに相当する内部被ばくをもたらすと想定される体表面密度)。

1.1.8 乾電池内蔵型照明

チェンジングエリア設置場所付近の全照明が消灯した場合に乾電池内蔵型照明を使用する。 乾電池内蔵型照明は、脱衣、汚染検査、除染時に必要な照度を確保するために表 1-5 に示す 数量及び仕様とする。

 保管場所
 数量
 仕様

 乾電池内蔵型照明
 電源:乾電池(単一×4) 点灯可能時間:約11時間 (消灯した場合,予備を点 灯させ,乾電池交換を実施 する。)

表 1-5 チェンジングエリアの乾電池内蔵型照明

1.1.9 チェンジングエリアのスペースについて

中央制御室における現場作業を行う運転員は、2名1組で2組を想定し、同時に4名の運転員がチェンジングエリア内に収容できる設計とする。チェンジングエリアに同時に4名の要員が来た場合、全ての要員が中央制御室に入りきるまで約15分であり、全ての要員が汚染している場合(局所的に汚染し、拭き取りによる除染を行う者を3名、広範囲に汚染し、簡易シャワーによる除染を行う者を1名と想定)でも約34分であることを確認している。

また、仮に想定人数以上の要員が同時にチェンジングエリアに来た場合でも、チェンジングエリアは建屋内に設置しており、屋外での待機はなく不要な被ばくを防止することができる。

1.1.10 配備する資機材の数量について

中央制御室に配備する放射線管理用資機材の内訳を表 1-6 及び表 1-7 に示す。なお、放射線管理用資機材は、汚染が付着しないようビニール袋等であらかじめ養生し、配備する。

表 1-6 防護具

品名	配備数	根拠
タイベック	147 着	運転員7名×3回/日×7日
下着(上下セット)	147 着	運転員7名×3回/日×7日
帽子	147 個	運転員7名×3回/日×7日
靴下	147 足	運転員7名×3回/日×7日
綿手袋	147 双	運転員7名×3回/日×7日
ゴム手袋	294 双	運転員7名×3回/日×7日×2
全面マスク	42 個	運転員7名×6日
電動ファン付き 全面マスク	7 個	運転員7名×1日
電動ファン付き 全面マスクバッテリー	35 個	運転員7名×5個/日×1日
マスク用チャコールフィルタ (2個/セット)	147 セット	運転員7名×3回/日×7日
EVAスーツ (上下セット)	74 セット	運転員7名×3回/日×7日×50%
汚染区域用靴	8 足	運転員のうち現場要員 2 名×2 班×2
自給式呼吸器	4セット	炉心損傷後における原子炉格納容器フィルタベント系による格納容器除熱 (現場操作)対応者2名+予備2
耐熱服	3セット	インターフェイスシステム LOCA 対応 者 2 名+予備 1
タングステンベスト	4 着	運転員のうち現場要員 2 名×2 班

表 1-7 計測器

F	品名	配備台数	根拠
個人線量計	電子式線量計	14 台	運転員7名×2
	ガラスバッジ	14 台	運転員7名×2
,	密度測定用 イメータ	4 台	チェンジングエリア用 2 台(汚染検査を行う放射線管理班員1名分+余裕) +中央制御室内外用2台(モニタリングを行う放射線管理班員1名分+余裕)
ガンマ線測定用 サーベイメータ		4 台	チェンジングエリア用2台(モニタリングを行う放射線管理班員1名分+余裕)+中央制御室内外用2台(モニタリングを行う放射線管理班員1名分+余裕)
可搬型工	リアモニタ	4台	中央制御室内2台(1台+余裕)+待避所内2台(1台+余裕)

1.2 緊急時対策所チェンジングエリア

1.2.1 チェンジングエリアの基本的な考え方

チェンジングエリアの設営に当たっては、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」第61条第1項(緊急時対策所)並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第76条第1項(緊急時対策所)に基づき、緊急時対策所の外側が放射性物質により汚染したような状況下において、緊急時対策所への汚染の持込みを防止するため、モニタリング及び作業服の着替え等を行うための区画を設けることを基本的な考え方とする。

1.2.2 チェンジングエリアの概要

チェンジングエリアは、下足エリア、脱衣エリア、サーベイエリア、除染エリアからなり、要員の被ばく低減の観点から緊急時対策建屋内に設営する。概要は表 1-8 のとおり。

表 1-8 チェンジングエリアの概要

項目		概要
設営場所	緊急時対策建屋 地下1階 チェンジングエリア	緊急時対策所の外側が放射性物質により汚染したような状況下において,緊急時対策所への汚染の持込みを防止するため,モニタリング及び作業服の着替え等を行うための区画を設ける。
設営形式	エリア区画化	チェンジングエリアスペースを区画化する。 なお、平常時から養生シートによりあらか じめ養生しておくことにより、速やかな設 置作業を可能とする。
判断基準	原子力災害対策特別措置法第 10 条 特定事象が発生した後,放射線管理 班長が,事象進展の状況(格納容器 内雰囲気放射線モニタ等により炉心 損傷を判断した場合等),参集済みの 要員数を考慮して,チェンジングエ リアの設営を行うと判断した場合。	緊急時対策所の外側が放射性物質により汚染するようなおそれが発生した場合,チェンジングエリアの設営を行う。
実施者	放射線管理班	チェンジングエリアを速やかに設営できる よう定期的に訓練を行っている放射線管理 班が設営を行う。

1.2.3 チェンジングエリアの設営場所及び屋内のアクセスルート

チェンジングエリアは、緊急時対策建屋内に設営する。チェンジングエリアの設営場所及 び屋内のアクセスルートは、図 1-9 のとおり。

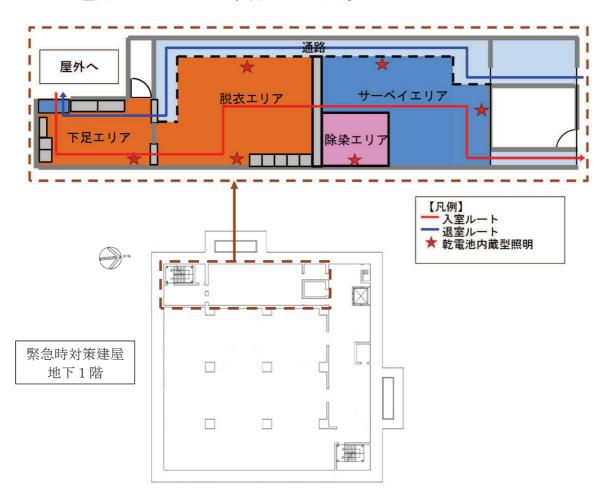


図 1-9 緊急時対策所チェンジングエリアの設営場所及び屋内のアクセスルート