女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－01－0002＿改 5
提出年月日	2021 年 5 月 31 日

VI－1－1－2－2 津波への配慮に関する説明書

2021年5月
東北電力株式会社

[^0]VI－1－1－2－2－1 耐津波設計の基本方針

2.2 適用基準

適用する規格，基準，指針等を以下に示す。
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6月 19 日 原規技発第 1306194 号）

- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
- 原子力発電所耐震設計技術指針 JEAG4601－1987（（社）日本電気協会，昭和62年 8月）
－原子力発電所耐震設計技術指針 重要度分類•許容応力度編 JEAG4601•補－1984 （（社）日本電気協会）
- 原子力発電所耐震設計技術指針 JEAG4601－1991追補版（（社）日本電気協会）
- 日本産業規格（JIS）
－Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition（FEDERAL EMERGENCY MANAGEMENT AGENCY ，2012）
1．概要 $\cdot 1$
2．耐津波設計の基本方針 － 2
2.1 基本方針 $\cdot 2$
2．1．1 津波防護対象設備 － 2
2．1．2 入力津波の設定 $\cdot 3$
2．1．3 入力津波による津波防護対象設備への影響評価 － 4
2．1．4 津波防護対策に必要な浸水防護の設計方針 － 8
2.2 適用基準 12

1．概要

本添付書類は，発電用原子炉施設の耐津波設計が「実用発電用原子炉及びその附属施設の技術基準に関する規則」第 6 条及び第 51 条（津波による損傷の防止）並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に適合することを説明 するものである。

2．耐津波設計の基本方針
2.1 基本方針

設計基準対象施設及び重大事故等対処施設が，設置（変更）許可を受けた基準津波 により，その安全性又は重大事故等に対処するために必要な機能が損なわれるおそ れがないよう，遡上への影響要因及び浸水経路等を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとともに，津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。

なお，耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮 した設計とし，地盤沈下量を考慮した敷地高さや施設高さ等を記載する。

基準津波に対しては，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」の「3．1．1 自然現象に対する具体的な設計上の考慮（11）高潮」を踏まえ，津波と同様な潮位の変動事象である高潮の影響に ついて確認する。確認結果については，添付書類「VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価」に示す。

2．1．1 津波防護対象設備

添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷 の防止に関する基本方針」の「2．3 外部からの衝撃より防護すべき施設」に従 い，設計基準対象施設が，基準津波により，その安全性が損なわれるおそれがな いよう，津波から防護を検討する対象となる設備は，クラス 1 ，クラス 2 及びク ラス 3 設備並びに耐震 S クラスに属する設備（津波防護施設，浸水防止設備及び津波監視設備を除く。）とする。このうち，クラス3設備については，安全評価上その機能を期待する設備は，津波に対してその機能を維持できる設計とし，そ の他の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行う設計とする。これより，津波から防護すべき施設は，設計基準対象施設のうち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス 1 及びクラス 2 に該当する構築物，系統及び機器（以下「津波防護対象設備」という。）とする。

津波防護対象設備の防護設計においては，津波により防護対象施設に波及的影響を及ぼすおそれのある防護対象施設以外の施設についても考慮する。また，重大事故等対処施設及び可搬型重大事故等対処設備についても，設計基準対象施設と同時に必要な機能が損なわれるおそれがないよう，津波防護対象設備に含める。

さらに，津波が地震の随伴事象であることを踏まえ，耐震Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）を含めて津波防護対象設

備とする。

2．1．2 入力津波の設定

各施設•設備の設計又は評価に用いる入力津波として，敷地への遡上に伴ら津波（以下「遡上波」といら。）による入力津波と取水路，放水路等の経路からの流入に伴ら津波（以下「経路からの津波」という。）による入力津波を設定する。
入力津波の設定の諸条件の変更により，評価結果が影響を受けないことを確認 するために，評価条件変更の都度，津波評価を実施する運用とする。

以下に，各入力津波の設定方針を示す。
基準津波については，添付書類「VI－1－1－2－2－2 基準津波の概要」に示す。入力津波の設定方法及び結果に関しては，添付書類「VI－1－1－2－2－3 入力津波の設定」に示す。
（1）遡上波による入力津波
遡上波による入力津波については，遡上への影響要因として，敷地及び敷地周辺の地形及びその標高，河川等の存在，設備等の設置状況並びに地震による広域的な隆起•沈降を考慮して，遡上波の回り込みを含め敷地への遡上の可能性を評価する。

遡上する場合は，基準津波の波源から各施設•設備の設置位置において算出 される津波高さとして設定する。また，地震による変状又は繰返し襲来する津波による洗掘•堆積により地形又は河川流路の変化等が考えられる場合は，敷地への遡上経路に及ぼす影響を評価する。
（2）経路からの津波による入力津波
経路からの津波による入力津波については，浸水経路を特定し，基準津波の波源から各施設•設備の設置位置において算定される時刻歴波形及び津波高さ として設定する。
（3）水位変動
上記（1）及び（2）においては，水位変動として，朔望平均満潮位 $0 . P .+1.43 \mathrm{~m}$ ，朔望平均干潮位 0．P．-0.14 m を考慮する。

上昇側の水位変動に対しては，潮位のばらつきとして 0.16 m を考慮して設定 する。

下降側の水位変動に対しては，潮位のばらつきとして 0.10 m を考慮して設定 する。

地震による地殻変動については，安全側の評価を実施するために，基準津波 の波源である東北地方太平洋沖型の地震による広域的な地殻変動及び平成 23

年（2011 年）東北地方太平洋沖地震による広域的な地殻変動に余効変動を含め て考慮する。

東北地方太平洋沖型の地震による広域的な地殻変動については，基準津波の波源モデルを踏まえて，Mansinha and Smylie（1971）の方法により算定し，水位上昇側で考慮する波源で 0.72 m の沈降，水位下降側で考慮する波源で 0.77 m の沈降である。また，平成 23 年（2011年）東北地方太平洋沖地震による広域的 な地殻変動については，地震前（平成 23 年 2 月）と地震後（平成 23 年 11 月） の発電所構内の水準点（3 点）を用いた水準測量結果の比較から，地震に伴い約 1 m 沈降したことを確認した。なお，地震後の余効変動量を把握するため平成 29 年 4 月に同様の測量を実施し，地震後（平成 23 年 11 月）から約 0.3 m 隆起していることを確認した。

上昇側及び下降側の水位変動に対する安全性評価を実施する際には，平成 23年（2011 年）東北地方太平洋沖地震による 1 m の沈下を考慮した敷地高さや施設高さ等とする。

以上のことから，上昇側の水位変動に対して安全機能への影響を安全側に評価する際には，地殻変動量について，東北地方太平洋沖型の地震の水位上昇側 で考慮する波源による 0.72 m の沈降をさらに考慮する。

一方，下降側の水位変動に対して安全機能への影響を安全側に評価する際に は，地殻変動量について，東北地方太平洋沖型の地震の水位下降側で考慮する波源による 0.77 m の沈降は考慮しない。ただし，下降側の水位変動に対する安全性評価を実施する際には，平成 29 年 4 月までに確認された余効変動による約 0.3 m の隆起の影響を考慮するとともに，今後も余効変動が継続することを想定し，平成 23 年（2011年）東北地方太平洋沖地震による広域的な地殻変動 の解消により約 1 m 隆起した場合の影響も考慮する。

また，入力津波が有する数値計算上の不確かさを考慮することを基本とする。 なお，防潮壁の詳細設計に伴う平面配置等の変更及び 2011 年東北地方太平洋沖地震に伴い被災した地域における復旧•改修工事に伴う地形改変による影響も考慮し，変更前後のそれぞれについて算定された数値を安全側に評価する。

2．1．3 入力津波による津波防護対象設備への影響評価

「2．1．2 入力津波の設定」で設定した入力津波による津波防護対象設備への影響を，津波の敷地への流入の可能性の有無，漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無，津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無並びに水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無の観点から評価することにより，

津波防護対策が必要となる箇所を特定して必要な津波防護対策を実施する設計と する。

具体的な影響評価の内容及び結果については，添付書類「VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価」に示す。

入力津波の変更が津波防護対策に影響を与えないことを確認することとし，定期的な評価及び改善に関する手順を定める。
（1）敷地への浸水防止（外郭防護 1）
a．遡上波の地上部からの到達，流入の防止
遡上波による敷地周辺の遡上の状況を加味した浸水高さの分布を基に，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地において，遡上波の地上部からの到達，流入の可能性の有無を評価する。

流入の可能性に対する裕度評価において，高潮ハザードの再現期間100年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏 まえた水位の合計との差を参照する裕度として，設計上の裕度の判断の際に考慮する。

評価の結果，遡上波が地上部から到達し流入するため，基準津波に対する津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第 2保管エリア及び第 4 保管エリア，緊急時対策建屋並びにガスタービン発電設備 タンクピットを除く。）の設置された敷地に，遡上波の流入を防止するための津波防護施設として防潮堤を設置する設計とする。

また，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のらち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガス タービン発電設備タンクピットは，津波による遡上波が地上部から到達，流入 しない十分高い場所に設置する設計とする。
b．取水路，放水路等の経路からの津波の流入防止
津波の流入の可能性のある経路につながる循環水系，海水系及び屋外排水路 の標高に基づき，許容される津波高さと経路からの津波高さを比較することに より，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地への津波の流入の可能性の有無を評価する。流入の可能性に対 する裕度評価において，高潮ハザードの再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計と の差を参照する裕度とし，設計上の裕度の判断の際に考慮する。

評価の結果，流入する可能性のある経路が特定されたことから，基準津波に

対する津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するため，津波防護施設と して，第 2 号機海水ポンプ室スクリーンエリア，第 3 号機海水ポンプ室スクリ ーンエリア，第 2 号機放水立坑，第 3 号機放水立坑及び第 3 号機海水熱交換器建屋取水立坑の開口部に防潮壁を設置，第 1 号機取水路及び第 1 号機放水路に取放水路流路縮小工を設置する設計とする。また，浸水防止設備として，防潮壁及び取放水路流路縮小工を設置する設計とする。また，浸水防止設備として，逆流防止設備，浸水防止蓋及び逆止弁付ファンネルを設置並びに貫通部止水処置を実施する設計とする。

なお，防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉運用とする ことを保安規定に定めて管理する。
上記 a．及び b．において，外郭防護として設置する津波防護施設及び浸水防止設備については，各地点の入力津波に対し，設計上の裕度を考慮する。
（2）漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2 ）
a．漏水対策
経路からの津波が流入する可能性のある取水•放水設備の構造上の特徴を考慮し，取水•放水施設，地下部等において，津波による漏水が継続することによ る浸水範囲を想定（以下「浸水想定範囲」という。）するとともに，当該範囲の境界における浸水の可能性のある経路及び浸水口（扉，開口部，貫通口等）につ いて，浸水防止設備を設置することにより，浸水範囲を限定する設計とする。

さらに，浸水想定範囲及びその周辺にある基準津波に対する津波防護対象設備（非常用取水設備を除く。）に対しては，浸水防止設備として，防水区画化す るための設備を設置するとともに，防水区画内への浸水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無を評価する。

評価の結果，浸水想定範囲における長期間の冠水が想定される場合は，重要な安全機能及び重大事故等に対処するために必要な機能への影響がないよう，排水設備を設置する設計とする。
（3）津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（内郭防護）
a．浸水防護重点化範囲の設定
津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画を浸水防護重点化範囲として設定する。
b．浸水防護重点化範囲の境界における浸水対策

経路からの津波による溢水を考慮した浸水範囲及び浸水量を基に，浸水防護重点化範囲への浸水の可能性の有無を評価する。浸水範囲及び浸水量について は，地震による溢水の影響も含めて確認する。地震による溢水のらち，津波に よる影響を受けない範囲の評価については，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」に示す。

評価の結果，浸水防護重点化範囲への浸水の可能性のある経路，浸水口が特定されたことから，地震による設備の損傷箇所からの津波の流入を防止するた めの津波防護対象設備に対する浸水防止設備として，浸水防止壁，水密扉及び浸水防止蓋の設置並びに貫通部止水処置を実施する設計とする。

浸水防止設備として設置する水密扉及び浸水防止蓋については，津波の流入 を防止するため，扉及び蓋の閉止運用を保安規定に定めて管理する。

内郭防護として設置及び実施する浸水防止設備については，貫通部，開口部等の一部分のみが浸水範囲となる場合においても貫通部，開口部等の全体を浸水防護することにより，浸水評価に対して裕度を確保する設計とする。
（4）水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及 び重大事故等に対処するために必要な機能への影響防止
a．非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプ II）の取水性
原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ（以下「非常用海水ポンプ」という。）については，評価水位としての海水ポンプ室の下降側水位と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。

評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポンプの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰 を設置することで，取水性を確保する設計とする。

なお，大津波警報が発表された場合又は引き波による水位低下が確認された場合に，非常用海水ポンプの取水性を確保するため，循環水ポンプを停止する手順を保安規定に定めて管理する。

非常用海水ポンプについては，津波による上昇側の水位変動に対しても，取水機能が保持できる設計とする。

大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の水中ポ ンプについても，入力津波の水位に対して，取水性を確保できるものを用いる設計とする。
b．津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の機能保持碓認

基準津波による水位変動に伴ら海底の砂移動•堆積に対して，取水口，取水路及び海水ポンプ室が閉塞することなく，取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。

非常用海水ポンプは，取水時に浮遊砂が軸受に混入した場合においても，軸受部の異物逃がし溝から浮遊砂を排出することで，機能を保持できる設計とす る。

大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）は，浮遊砂の混入に対して，取水性能が保持できるものを用いる設計とする。

漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•設備を抽出し，抽出された漂流物となる可能性のある施設•設備が漂流し た場合に，非常用海水ポンプへの衝突並びに取水口，取水路及び海水ポンプ室 の閉塞が生じることがなく，非常用海水ポンプの取水性確保並びに取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。

発電所敷地内及び敷地周辺の人工構造物については，設置状況を定期的に確認し評価する運用を保安規定に定めて管理する。

さらに，従前の評価結果に包絡されない場合は，漂流物となる可能性，非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプ II）の取水性並びに浸水防護施設の健全性への影響評価を行い，影響がある場合は漂流物対策を実施する。
（5）津波監視
津波監視設備として，敷地への津波の繰返しの襲来を察知し津波防護施設及び浸水防止設備の機能を確実に確保するため，津波監視カメラ及び取水ピット水位計 を設置する。

2．1．4 津波防護対策に必要な浸水防護の設計方針

「2．1．3 入力津波による津波防護対象設備への影響評価」にて，津波防護上，津波防護対策が必要な場合は，以下に示す（1）及び（2）に基づき施設の設計を実施 する。設計は，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等 による損傷の防止に関する基本方針」の「4．組合せ」及び「耐津波設計に係る工認審查ガイド」に従い，自然現象のうち，余震，積雪及び風の荷重を考慮する。津波防護施設，浸水防止設備及び津波監視設備については，防潮堤，防潮壁，取放水路流路縮小工，貯留堰，逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，貫通部止水処置，逆止弁付ファンネル，津波監視カメラ，取水ピット水位計の構造形式が あるため，これらの施設•設備の詳細な設計方針については，添付書類「VI－1－1－ 2－2－5 津波防護に関する施設の設計方針」に示す。
（1）設計方針
津波防護施設，浸水防止設備及び津波監視設備については，「2．1．2 入力津波の設定」で設定している繰返しの襲来を想定した入力津波に対して，津波防護対象設備の要求される機能を損ならおそれがないよう以下の機能を満足する設計とす る。なお，津波防護施設，浸水防止設備及び津波監視設備に関する耐震設計の基本方針は，添付書類「VI－2－1 耐震設計の基本方針」に従う。
a．津波防護施設
津波防護施設は，津波の流入による浸水及び漏水を防止する設計とする。
津波防護施設のうち防潮堤及び防潮壁については，入力津波高さを上回る高 さで設置し，止水性を保持する設計とする。

津波防護施設のらち取放水路流路縮小工については，第 1 号機取水路及び第 1 号機放水路からの津波の流入を抑制し，入力津波に対して浸水を防止する設計とする。また，廃止措置段階にある第 1 号機の維持に必要となる取水•放水機能への影響がない設計とする。

津波防護施設のうち貯留堰については，津波による水位低下に対して，非常用海水ポンプの取水可能水位を保持し，かつ，冷却に必要な海水を確保する設計とする。

津波防護施設のうち防潮堤及び防潮壁の主要な構造体の境界部には，想定さ れる荷重の作用及び相対変位を考慮し，試験等にて止水性を確認した止水ジョ イント等を設置し，止水処置を講じる設計とする。
b．浸水防止設備
浸水防止設備は，浸水想定範囲等における浸水時及び冠水後の波圧等に対す る耐性を評価し，津波の流入による浸水及び漏水を防止する設計とする。また，津波防護対象設備を内包する建屋及び区画に浸水時及び冠水後に津波が流入す ることを防止するため，当該区画への流入経路となる開口部に浸水防止設備を設置し，止水性を保持する設計とする。

浸水防止設備として，逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付ファンネルを設置するとともに，貫通部止水処置を実施する。

軽油タンクエリアの浸水に対する浸水防止設備については，内郭防護として流入経路となる開口部に設置する設計とする。

浸水防止設備は，入力津波高さに余裕を考慮した高さの水位又は内部溢水の評価にて保守性を見込んで算出した溢水水位により，静水圧に対する耐性を評価又は試験等による止水性を確認した方法により，止水性を保持する設計とす る。
c．津波監視設備
津波監視設備は，津波の襲来状況を監視可能な設計とする。津波監視カメラは，

波力，漂流物の影響を受けない位置，取水ピット水位計は波力，漂流物の影響を受けにくい位置に設置し，津波監視機能が十分に保持できる設計とする。また，基準地震動S s に対して，機能を喪失しない設計とする。設計に当たっては，自然条件（積雪，風荷重等）との組合せを適切に考慮する。

津波監視設備のらち津波監視カメラは，非常用電源から給電し，赤外線撮像機能を有したカメラにより，昼夜にわたり中央制御室から監視可能な設計とする。

津波監視設備のらち取水ピット水位計は，非常用電源から給電し，O．P．－ $11.25 \mathrm{~m} \sim 0$. P．+19.00 m を計測範囲として，非常用海水ポンプが設置された取水ピ ットの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。
（2）荷重の組合せ及び許容限界
津波防護施設，浸水防止設備及び津波監視設備の耐津波設計における構造強度 による機能維持は，以下に示す入力津波による荷重と津波以外の荷重の組合せを適切に考慮して構造強度評価を行い，その結果がそれぞれ定める許容限界内にあ ることを確認すること（解析による設計）により行う。

なお，組み合わせる自然現象とその荷重の設定については，添付書類「VI－1－1－ 2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」 に，地震荷重との組合せとその荷重の設定については，添付書類「VI－2－1 耐震設計の基本方針」に従う。
a．荷重の種類
（a）常時荷重
常時作用する荷重は持続的に生じる荷重であり，自重又は固定荷重，積載荷重，土圧及び海中施設に対する静水圧を考慮する。
（b）地震荷重
基準地震動 S s による地震力（動水圧を含む）とする。
（c）津波荷重
各設備の設置位置における津波の形態から波圧及び静水圧を津波荷重とし て設定する。津波による荷重の設定に当たつては，各施設•設備の機能損傷 モードに対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度 を検討した上で安全側の設定を行う。
（d）余震荷重
入力津波による津波荷重と組み合わせる余震荷重は，弾性設計用地震動 Sdによる地震力（動水圧を含む）を考慮する。
（e）衝突荷重
津波漂流物の衝突により作用する衝突荷重を考慮する。衝突荷重の算定に当たっては，基準津波の特徴及び発電所のサイト特性に加え，衝突評価対象

物（被衝突体）の設置場所並びに検討対象漂流物（衝突物）の種類及び衝突形態を考慮し，各種論文等にて提案される漂流物の衝突荷重算定式の中から適切なものを選定し算定する。
（f）積雪荷重
添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷 の防止に関する基本方針」に従い，積雪荷重を考慮する。
（g）風荷重
添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷 の防止に関する基本方針」に従い，風荷重を考慮する。
b．荷重の組合せ
（a）津波防護施設，浸水防止設備及び津波監視設備の設計における荷重の組合せ としては，常時作用する荷重，津波荷重，余震荷重，衝突荷重及び自然条件と して積雪荷重及び風荷重を適切に考慮する。
（b）浸水防止設備のうち建屋内に設置するものについては，津波荷重のうち波圧，衝突荷重及び自然条件による荷重を考慮しないこととする。
（c）津波防護施設，浸水防止設備及び津波監視設備のうち，積雪荷重の受圧面積 が小さいもの，配置上又は形状上積雪が生じにくいもの及び海中に設置されて いるものについては積雪荷重を考慮しないこととする。
c．許容限界
津波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後 の再使用性や，津波の繰返し作用を想定し，施設•設備を構成する材料がおおむ ね弾性状態に留まることを基本とする。

VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価
\qquad
1．概要$\cdot 1$

3.1 入力津波による津波防護対象設備への影響評価の基本方針••••••••••••••••5
3.2 敷地への浸水防止（外郭防護1）に係る評価••••••••••••••••••••••••5
3.3 漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響

3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能へ の影響防止（内郭防護）に係る評価•••••••••．． 51
3.5 水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止に係る評価

1．概要

本添付書類は，津波防護対策の方針として，津波防護対象設備に対する入力津波の影響について説明するものである。

津波防護対象設備が，設置（変更）許可を受けた基準津波により，その安全機能又は重大事故等に対処するために必要な機能が損なわれるおそれがないよう，遡上への影響要因，浸水経路等を考慮して，設計時にそれぞれの施設に対して入力津波を設定すると ともに，津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。

評価においては，添付書類「VI－1－1－2－2－3 入力津波の設定」に示す入力津波を用い る。

2．設備及び施設の設置位置
（1）津波防護対象設備
津波防護対象設備については，添付書類「VI－1－1－2－2－1 耐津波設計の基本方針」 の「2．1．1 津波防護対象設備」にて設定している設備を対象としている。ただし，津波防護対象設備のらち非常用取水設備については，津波襲来時において津波の影響か ら防護するために設置する津波防護対策そのもの又は津波の経路を形成する構築物で あることから，これらの設備は津波による津波防護対象設備の影響評価の対象から除 $<。$
（2）津波防護対象設備を内包する建屋及び区画の設定
a．設定の方針
津波防護対象設備を内包する建屋及び区画の単位で防護することで，その中に設置している津波防護対象設備を防護できることから，津波防護対象設備を内包する建屋及び区画を設定する。
b．設定の方法
耐震重要度分類及び安全機能の重要度分類に基づき，津波防護対象設備を選定し，当該設備が設置される建屋及び区画を調査し，抽出された当該建屋及び区画を，「津波防護対象設備を内包する建屋及び区画」として設定する。
c．結果
発電所の主要な敷地高さは，主に 0．P．＋2．5m，0．P．＋13．8m 及び 0. P．+59.0 m 以上に分かれている。

津波防護対象設備については，津波防護対象設備を内包する建屋及び区画として，以下のとおり設定する。

敷地高さ 0. P．+13.8 m には，津波防護対象設備を内包する建屋及び区画として原子炉建屋，タービン建屋及び制御建屋がある。また，屋外の 0. P．+13.8 m の敷地に排気筒並びに原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ （以下「非常用海水ポンプ」という。）を設置している海水ポンプ室補機ポンプエリ ア，軽油タンクエリア（軽油タンク，燃料移送ポンプ）及び復水貯蔵タンクを設置 し，敷地高さ 0．P．+59.0 m 以上に緊急時対策建屋を設置している。

なお，原子炉建屋と接続する海水ポンプ室補機ポンプエリア，軽油タンクエリア及び復水貯蔵タンクからの配管を敷設する地下構造物（以下「トレンチ」という。） や排気筒連絡ダクトは 0. P．+13.8 m の敷地の地下部に設置している。これらの建屋及び区画を設計基準対象施設の津波防護対象設備を内容する建屋及び区画として設定する。

また，設計基準対象施設の津波防護対象設備を内包する建屋及び区画（タービン建屋を除く。）に加え敷地高さ 0. P．+13.8 m には，可搬型重大事故等対処設備保管場

所である第3保管エリア，敷地高さ 0. P．+59.0 m 以上に緊急用電気品建屋，屋外設備 として，ガスタービン発電設備タンクピット，可搬型重大事故等対処設備の保管場所として，第1保管エリア，第2保管エリア及び第4保管エリアがある。これらの建屋及び区画を重大事故等対処施設の津波防護対象設備を内包する建屋及び区画と して設定する。

設計基準対象施設の津波防護対象設備を内包する建屋及び区画，重大事故等対処施設の津波防護対象設備を内包する建屋及び区画（以下「津波防護対象設備を内包 する建屋及び区画」という。）の配置を図2－1に示す。また，設計基準対象施設の津波防護対象設備を内包する建屋及び区画，重大事故等対処施設の津波防護対象設備を内包する建屋及び区画の一覧を表2－1に示す。

図 2－1 津波防護対象設備を内包する建屋及び区画の配置

表2－1 津波防護対象設備を内包する建屋及び区画の一覧

津波防護対象設備を内包する建屋及び区画	基準津波	
	設計基準	重大事故等
	対象施設	対処施設
原子炉建屋	\bigcirc	\bigcirc
制御建屋	\bigcirc	\bigcirc
タービン建屋	\bigcirc	－
軽油タンクエリア	\bigcirc	\bigcirc
海水ポンプ室補機ポンプエリア	\bigcirc	\bigcirc
復水貯蔵タンク	\bigcirc	\bigcirc
トレンチ	\bigcirc	\bigcirc
排気筒	\bigcirc	\bigcirc
排気筒連絡ダクト	\bigcirc	\bigcirc
第1保管エリア	－	\bigcirc
第2保管エリア	－	\bigcirc
第3保管エリア	－	\bigcirc
第4保管エリア	－	\bigcirc
緊急用電気品建屋	－	\bigcirc
緊急時対策建屋	\bigcirc	\bigcirc
ガスタービン発電設備タンクピット	－	\bigcirc

3．入力津波による津波防護対象設備への影響評価
3.1 入力津波による津波防護対象設備への影響評価の基本方針

敷地の特性（敷地の地形，敷地及び敷地周辺の津波の遡上，浸水状況等）に応じた津波防護を達成するため，敷地への浸水防止（外郭防護 1 ），漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2 ），津波によ る溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響防止
（内郭防護）並びに水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止の観点から，入力津波による津波防護対象設備への影響の有無の評価を実施することにより，津波防護対策が必要となる箇所を特定し，津波防護対策を実施する設計とする。また，上記の津波防護対策の他に，津波監視設備として津波監視カメラ及び取水ピット水位計を設置する設計とする。

津波監視設備である津波監視カメラ及び取水ピット水位計の詳細な設計方針につい ては，添付書類「VI－1－1－2－2－5 津波防護に関する施設の設計方針」に示す。
3.2 敷地への浸水防止（外郭防護1）に係る評価

津波防護対象設備への影響評価のらち，敷地への浸水防止（外郭防護1）に係る評価に当たつては，津波による敷地への浸水を防止するための評価を行うため，「（1）評価方針」にて評価を行う方針を定め，「（2）評価方法」に定める評価方法を用いて評価を実施し，評価の結果を「（3）評価結果」に示す。

評価において，「2．設備及び施設の設置位置」にて設定している津波防護対象設備 を内包する建屋及び区画が，津波により浸水する可能性があり，津波防護対策が必要 と確認された箇所については，「（4）津波防護対策」に示す対策を講じることにより，津波による津波防護対象設備を内包する建屋及び区画の浸水を防止できることとし， この場合の「（3）評価結果」は，津波防護対策を踏まえて示すこととする。
（1）評価方針
津波が敷地に襲来した場合，津波高さによって，敷地を遡上し地上部から津波防護対象設備を内包する建屋及び区画に到達，流入する可能性が考えられる。また，海域と連接する取水路，放水路等の経路からの津波防護対象設備を内包する建屋及 び区画に津波が流入する可能性が考えられる。

このため，敷地への浸水防止（外郭防護1）に係る評価では，敷地への遡上に伴 ら津波（以下「遡上波」という。）による入力津波の地上部からの到達，流入並びに取水路，放水路等の経路からの流入に伴う津波（以下「経路からの津波」という。） による入力津波の流入に分け，各々において津波防護対象設備を内包する建屋及び区画に津波が流入し，津波防護対象設備へ影響を与えることがないことを評価する。具体的には以下のとおり。
a．遡上波の地上部からの到達，流入の防止
津波防護対象設備を内包する建屋及び区画が，基準津波による遡上波が到達し ない十分高い位置に設置してあることを確認する。また，基準津波による遡上波 が到達する高さにある場合には，津波防護施設及び浸水防止設備の設置により遡上波が到達しないことを確認する。
b．取水路，放水路等の経路からの津波の流入防止
取水路，放水路等の経路から津波が流入する可能性について検討した上で，流入の可能性のある経路（扉，開口部，貫通口等）を特定する。

特定した経路に対して，津波防護施設及び浸水防止設備の設置により，津波の流入を防止可能であることを確認する。
（2）評価方法
a．遡上波の地上部からの到達，流入防止
遡上波による敷地周辺の遡上の状況を加味した浸水高さの分布と，設計基準対象施設の津波防護対象設備を内包する建屋及び区画並びに重大事故等対処施設の津波防護対象設備を内包する建屋及び区画の設置された敷地の標高に基づく許容津波高さ又は津波防護対策を実施する場合はそれを踏まえた許容津波高さとの比較を行い，遡上波の地上部からの到達，流入の可能性の有無を評価する。

なお，評価においては，基準津波の策定位置における最高水位の年超過確率は $10^{-4} \sim 10^{-5}$ 程度であり，独立事象として津波と高潮が重畳する可能性は極めて低い と考えられるものの，高潮ハザードについては，プラント運転期間を超える再現期間 100 年に対する期待値 $0 . P .+1.95 \mathrm{~m}$ と，入力津波で考慮した朔望平均満潮位 0．P．+1.43 m と潮位のばらつき 0.16 m の合計との差である 0.36 m を参照する裕度と し，設計上の裕度の判断の際に考慮する。
高潮ハザードの再現期間 100 年に対する期待値については，観測地点「鮎川検潮所（気象庁）」における過去 41 年（1970 年～2010 年）の潮位観測記録に基づき求めた最高潮位の超過発生確率を参照する。図 3－1 に観測地点「鮎川検潮所（気象庁）」における最高潮位の超過発生確率，表 3－1 に観測地点「鮎川検潮所（気象庁）」における過去 41 年（1970 年～2010 年）の年最高潮位を示す。
b．取水路，放水路等の経路からの津波の流入防止
津波が流入する可能性のある経路として，津波襲来時に海域と連接する循環水系，海水系及び屋外排水路の貫通部の経路を特定する。

特定した各々の経路の標高に基づく許容津波高さ又は津波防護対策を実施する場合はそれを踏まえた許容津波高さと，経路からの津波高さを比較することによ り，津波防護対象設備を内包する建屋及び区画への津波の流入の可能性の有無を評価する。なお，流入の可能性に対する設計上の裕度評価の判断の際には，「a．

遡上波の地上部からの到達，流入の防止」と同様に裕度が確保できていることを確認する。

図 3－1 観測地点「鮎川検潮所」における最高潮位の超過確率

表 3－1 観測地点「鮎川検潮所」における年最高潮位＊（1970 年～2010 年）

年	日付	時刻	年最高潮位（O．P．m）	順位	発生要因
1970	1月31日	8時00分	1.448		
1971	12月3日	15時00分	1.478		
1972	8月27日	5 時00分	1.498		
1973	8月30日	4時00分	1.438		
1974	2月8日	16時00分	1.468		
1975	10月8日	17時00分	1.458		
1976	10月24日	16時00分	1.508		
1977	9月19日	19時00分	1.468		
1978	9月17日	3 時00分	1.478		
1979	10月8日	5時00分	1.608	7	低気圧
1980	12月24日	16時00分	1.828	3	低気圧
1981	10月2日	17時00分	1.468		
1982	10月20日	17時00分	1.488		
1983	5月17日	5時00分	1.438		
1984	10月27日	16時00分	1.528		
1985	11月13日	15時00分	1.518		
1986	12月4日	16時00分	1.528		
1987	7月12日	3 時00分	1.468		
1988	10月29日	17時00分	1.498		
1989	12月15日	16時00分	1.538		
1990	11月4日	15時00分	1.598	10	低気圧
1991	10月13日	17時00分	1.578		
1992	9月11日	15時00分	1.458		
1993	8月27日	23時00分	1.468		
1994	10月22日	16時00分	1.496		
1995	12月24日	16時00分	1.516		
1996	6月19日	4 時00分	1.456		
1997	9月19日	17時00分	1.578		
1998	11月17日	14時00分	1.568		
1999	11月25日	16時00分	1.628	6	低気圧
2000	9月2日	18時00分	1.508		
2001	8月22日	5時00分	1.508		
2002	7月11日	3 時00分	1.598	9	台風6号
2003	12月25日	15時00分	1.524		
2004	8月31日	4時00分	1.584		
2005	12月5日	17時00分	1.654	5	低気圧
2006	10月7日	15時00分	1.884	1	低気圧
2007	5月18日	3 時00分	1.604	8	低気圧
2008	11月16日	16時00分	1.594		
2009	10月8日	16時00分	1.834	2	台風18号
2010	12月22日	15時00分	1.727	4	低気圧
最大値			1.884	－	
最小値			1.438		
最大最小差			0.446		
平均			1.549		
標準偏差			0.107		

＊日本海洋データセンターホームページで公開されている
年最高潮位（1970 年～2010 年）を利用
（3）評価結果
a．遡上波の地上部からの到達，流入の防止
遡上波による敷地周辺の遡上の状況，浸水の分布等の敷地への浸水の可能性の ある経路（以下「遡上経路」という。）を踏まえると，設計基準対象施設の津波防護対象設備を内包する建屋及び区画並びに重大事故等対処施設の津波防護対象設備を内包する建屋及び区画が設置される敷地のらち，0．P．+13.8 m の敷地において は，遡上波が地上部から到達，流入することから，津波防護施設を設置すること により，津波防護対象設備へ影響を与えることはない。また，重大事故等対処施設の津波防護対象設備を内包する建屋及び区画が設置される敷地のうち， 0．P．+59.0 m 以上の敷地には，遡上波が到達，流入しないことから，津波防護対象設備へ影響を与えることはない。具体的な評価結果は，以下のとおり。

設計基準対象施設の津波防護対象設備を内包する建屋及び区画並びに重大事故等対処施設の津波防護対象設備を内包する建屋及び区画のうち，原子炉建屋，タ ービン建屋及び制御建屋は 0. P．+13.8 m の敷地に設置している。また，屋外には， 0．P．+13.8 m の敷地面に排気筒，可搬型重大事故等対処設備保管場所である第 3 保管エリア，ピット構造にて，軽油タンクエリア（軽油タンク，燃料移送ポンプ），海水ポンプ室補機ポンプエリア及び復水貯蔵タンクを設置している。

なお，原子炉建屋と接続するトレンチや排気筒連絡ダクトは地下部に設置して いる。

これに対して，基準津波による遡上波が直接敷地に到達，流入することを防止 できるように，敷地高さ 0. P．+13.8 m に，高さ約 $15 \mathrm{~m} ~(0 . P .+29.0 \mathrm{~m}) ~$ の防潮堤を設置する。防潮堤がつながる周囲の地山は 0．P．＋29．0m以上となっている。

一方，防潮堤位置での入力津波高さは $0 . P .+24.4 \mathrm{~m}$ であり，防潮堤の高さには十分な裕度があることから，基準津波による遡上波が津波防護対象設備に到達，流入することはない。

なお，設計基準対象施設の津波防護対象設備を内包する建屋及び区画を設置す る敷地への遡上波の到達•流入の防止は防潮堤により達成しており，既存の地山斜面，盛土斜面等は活用していない。

緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガスタービン発電設備タンクピットは，O．P．＋59．0mよりも高所に設置することから，津波による遡上波は到達しない。

これらの結果は，参照する裕度 0.36 m を考慮した場合においても十分な裕度が ある。

表3－2に遡上波の地上部からの到達，流入評価結果を示す。
表 3－2 遡上波の地上部からの到達，流入評俩結

	評価対象	（1）	（2）		$\begin{aligned} & \text { 裕度*1 } \\ & (\text { (2) - (1) } \end{aligned}$	評価
		入力津波高さ （0．P．）	設置する敷地高さ (0. P.)	防潮堤高さ (0.P.)		
0．P．+13.8 m の敷地に設置される建屋•区画	- 原子炉建屋 - タービン建屋 - 制御建屋 - 軽油タンクエリア - 海水ポンプ室補機ポンプエリア - 復水貯蔵タンク －トレンチ - 排気筒 - 排気筒連絡ダクト	$+24.4 \mathrm{~m}^{* 2}$	＋13．8m	＋29．0m	4． $6 \mathrm{~m} * 3$	\bigcirc 防潮堤高さが入力津波高さ を上回っており，基準津波の遡上波は敷地に地上部から到達，流入しない
	－第 3 保管エリア					
O．P．＋13． 8 m の敷地よ りも高所に設置され る建屋•区画	- 緊急時対策建屋 - 第1，2，4保管エリア	$+24.4 \mathrm{~m}^{* 2}$	＋61．0m	＋29．0m	36． $6 \mathrm{~m}{ }^{* 3}$	\bigcirc 設置する敷地高さが入力津波高さを上回っており，基準津波の遡上波は敷地に地上部から到達，流入しない
	- 緊急用電気品建屋 - ガスタービン発電設備タンクピッ ト		$+61.3 \mathrm{~m}$		$36.9 \mathrm{~m}^{* 3}$	

＊ 1 裕度の計算には「設置する敷地高さ」と「防潮堤高さ」の値のらち，大きい方を使用する
＊2 朔望平均満潮位（ 0. P．+1.43 m ），潮位のばらつき（ 0.16 m$)$ ，地殻変動量（ 0.72 m 沈降）を考慮
＊ 3 参照する裕度（ 0.36 m ）を考慮しても余裕がある
b．取水路，放水路等の経路からの津波の流入防止
津波が流入する可能性がある流入経路を特定し，その経路ごとに津波防護対象設備を内包する建屋及び区画又は津波防護対象設備を内包する建屋及び区画の設置された敷地への流入の有無を評価した結果，津波防護対策として津波防護施設及び浸水防止設備を設置することにより，経路からの津波は流入しないことから津波防護対象設備へ影響を与えることはない。具体的な評価結果は以下のとおり。
（a）津波防護対象設備を内包する建屋及び区画又は津波防護対象設備を内包す る建屋及び区画の設置された敷地への経路からの津波が流入する可能性のあ る経路（流入経路）の特定

基準津波の襲来時に海域と連接し，津波防護対象設備を内包する建屋及び区画又は津波防護対象設備を内包する建屋及び区画の設置された敷地への津波の流入の可能性のある主な経路としては，表 $3-3$ に示すように，循環水系，海水系及び屋外排水路の貫通部がある。

表 3－3（1）流入経路特定結果（1／2）

流入経路		流入箇所

表 3－3（2）流入経路特定結果（2／2）

流入経路			流入箇所
放 水 路	2 号機	循環水系	放水立坑 放水立坑エリアの防潮壁下部トレンチ貫通部 （ボール捕集器ピット連絡トレンチ配管・ケーブル貫通部，復水器連続洗浄装置連絡配管トレンチ配管貫通部， HCW カナル放出トレンチ配管貫通部） 循環水系配管貫通部
		海水系	放水立坑 補機冷却海水系放水路の防潮壁横断部
	1 号機	循環水系	放水立坑 循環水系配管貫通部
		海水系	放水立坑 補機冷却海水系配管貫通部（原子炉補機冷却海水系配管•非常用補機冷却海水系配管•残留熱除去海水系配管， タービン補機冷却海水系配管）
	3 号機	循環水系	放水立坑 放水立坑エリアの防潮壁下部トレンチ貫通部 （ボール捕集器ピット連絡トレンチ配管・ケーブル貫通部，復水器連続洗浄装置連絡配管トレンチ配管貫通部）循環水系配管貫通部
		海水系	放水立坑 補機冷却海水系放水ピット開口部
屋外排水路			北側排水路の防潮堤横断部南側排水路の防潮堤横断部

（b）特定した流入経路ごとの評価
イ。 取水路からの流入経路について
第 2 号機の取水側からの経路は，海域と連接する取水路，海水ポンプ室，循環水系配管を経由レタービン建屋内に至る経路と，海水ポンプ室から原子炉機器冷却海水配管ダクトを経由し原子炉建屋内及びタービン建屋内に至る経路で構成される（図 3－2～図3－5）。

第 1 号機の取水側からの経路は，海域と連接する第 1 号機の取水路，海水 ポンプ室，循環水系配管を経由し第1号機タービン建屋内に至る経路と，循環水系配管から分岐して補機冷却系トレンチを経由し第1号機制御建屋内に至る経路，海水ポンプ室から原子炉機器泠却海水配管ダクトを経由し第 1 号機原子炉建屋に至る経路で構成される（図 3－2，図 3－6，図 3－7）。

第 3 号機の取水側からの経路は，海域と連接する第 3 号機の取水路，海水 ポンプ室，循環水系配管を経由し第 3 号機タービン建屋内に至る経路と，第 3 号機海水ポンプ室から分岐して第 3 号機補機冷却海水系取水路，第 3 号機海水熱交換器建屋取水立坑を経由し海水熱交換器建屋内に至る経路で構成さ れる（図 3－2，図 3－8～図3－11）。

これらの経路から敷地地上部への流入及び第 2 号機の設計基準対象施設の津波防護対象設備を内包する建屋及び区画に津波が流入する可能性について評価を行った。結果を以下に，また結果の一覧を表3－4にまとめて示す。
（イ）敷地地上部への流入の可能性
取水路に繋がり第2号機の設計基準対象施設の津波防護対象設備を設置 する敷地に津波が流入する可能性のある経路としては，第 1 号機海水ポン プ室スクリーンエリア，第2号機海水ポンプ室スクリーンエリア及び第 3号機海水ポンプ室スクリーンエリア並びに第3号機海水熱交換器建屋取水立坑の開口部が挙げられる。第 2 号及び第 3 号機の海水ポンプ室スクリー ンエリアはピット構造であり敷地地上面で開放されているが，第 1 号機に おいては，取水路流路の縮小により，参照する裕度（ 0.36 m ）を考慮しても津波高さが敷地高さに到達しないため，敷地地上部に津波は流入しない。第2号及び第3号機の海水ポンプ室スクリーンエリア並びに第3号機海水熱交換器建屋取水立坑においては，外郭防護の裕度評価の参照とする津波高さが敷地高さに到達するため，開口部の周りに十分な高さの防潮壁を設置し，この経路からの津波の流入を防止する。したがって，これらの経路 から設計基準対象施設の津波防護対象設備を設置する敷地に津波が流入す ることはない（図 3－3～図 3－11，表 3－4）。
なお，第 1 号機取水路の流路縮小工は，津波の引き波時の水位低下に対
して，第 1 号機の補機冷却海水ポンプを運転するために，必要な水路内貯

留量を確保できる位置，廃止措置段階にある第1号機の維持に必要となる取水•放水機能への影響がない位置に設置する。流路縮小工の貫通部径の設定の考え方については，添付書類「VI－1－1－4－8－3－1 外郭浸水防護設備 に係る設定根拠に関する説明書」に示す。

また，第2号及び第3号機のスクリーンエリア周りに設置する防潮壁に は，車両が進入するため，人力で 15 分以内に開閉可能な構造かつ閉止する際に特別な設備（クレーン等）を必要としない鋼製扉を設置するが，原則閉止運用とすることで津波の流入を防止する。
（ロ）建屋及び区画への流入の可能性
取水路に繋がり第2号機の設計基準対象施設の津波防護対象設備を内包 する建屋及び区画に流入する可能性のある経路としては，敷地地上面で開放されたピット構造となっている海水ポンプ室補機ポンプエリア床面の開口部が挙げられる。第2号機においては，管路解析により得られる補機ポ ンプエリアの入力津波高さが敷地高さに到達するため，床面の開口部に逆止弁付ファンネルを設置し，津波の流入を防止する。また，防潮壁の外側 と内側のバイパス経路となる揚水井戸及び原子炉機器冷却海水配管ダクト に浸水防止蓋を設置し，海水ポンプ室スクリーンエリア防潮壁下部の配管及びケーブルの貫通部に止水処置を実施することで津波の流入を防止する。

第1号機においては，海水ポンプ室補機ポンプ・循環水ポンプエリアに直接海域に連接する開口として海水ポンプグランドドレン配管から津波が逆流し入口開口部から流入する可能性があるが，取水路流路の縮小により外郭防護の裕度評価の参照とする津波高さが敷地高さに到達しないため，敷地地上部に津波は流入しない。

第3号機においては，管路解析により得られる海水ポンプ室及び海水熱交換器建屋の入力津波高さが敷地高さに到達するため，海水熱交換器建屋床面の開口部に逆止弁付ファンネル及び浸水防止蓋を設置，海水熱交換器建屋の取水立坑へのアクセス用入口に水密扉を設置することで津波の流入 を防止する。海水ポンプ室エリアの防潮壁の外側と内側のバイパス経路と なる揚水井戸に浸水防止蓋を設置し，海水ポンプ室スクリーンエリア防潮壁下部の配管及びケーブルの貫通部に止水処置を実施する。

第2号及び第3号機において，海水ポンプグランドドレン配管から津波 が逆流し，入口開口部から流入する可能性があるが，排出先を変更（取水 ピット \rightarrow 床側溝）することで，津波の流入を防止する。

同設備の配置を図 3－3，図 3－6，図 3－8，図 3－10 に示す。
なお，平成 23 年（2011 年）東北地方太平洋沖地震に伴ら津波により，第 2 号機海水ポンプ室補機ポンプエリアへの津波の浸水経路となった水位

計貫通部については，安全対策工事完了時までにコンクリートにより閉塞 することで津波の流入を防止する。

図 3－2 取水路配置図

図 3－3 第2号機 海水ポンプ室 浸水対策配置図（平面図）

図 3－4 第2号機 海水ポンプ室 浸水対策配置図（A－A 断面図）

> 枠囲みの内容は防護上の観点から公開できません。

図 3－5 第2号機 海水ポンプ室 浸水対策配置図（B－B 断面図）

図 3－6 第1号機 海水ポンプ室 浸水対策配置図（平面図）

図 3－7 第1号機 海水ポンプ室 浸水対策配置図（A－A 断面図）

枠囲みの内容は防護上の観点から公開できません。

図 3－8 第3号機 海水ポンプ室 浸水対策配置図（平面図）

図 3－9 第3号機 海水ポンプ室 浸水対策配置図（A－A 断面図）

図 3－10 第3号機 海水熱交換器建屋 浸水対策配置図（平面図）

図 3－11 第3号機 海水熱交換器建屋 浸水対策配置図 （左：A－A 断面図 右：B－B 断面図）

枠囲みの内容は防護上の観点から公開できません。

表 3－4 取水路からの津波の流入評価結果

流入経路			（1）入力津波高さ （0．P．）	（2）許容津波高さ （0．P．）	(2)-(1) 裕度	評価
$\begin{aligned} & 2 \\ & \text { 号 } \\ & \text { 機 } \end{aligned}$	循環水系	海水ポンプ室	＋18．1m	＋19．0m＊1	$0.9 \mathrm{~m} * 5$	\bigcirc 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
	海水系	海水ポンプ室	＋18．1m	＋19．0m＊1	$0.9 \mathrm{~m} * 5$	○許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
$\begin{gathered} 1 \\ \text { 号 } \\ \text { 機 } \end{gathered}$	循環水系	海水ポンプ室	$+10.4 \mathrm{~m}$	$+14.0 \mathrm{~m} * 2$	$3.6 \mathrm{~m} * 5$	○ 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
	海水系	海水ポンプ室	$+10.4 \mathrm{~m}$	$+14.0 \mathrm{~m} * 2$	$3.6 \mathrm{~m} * 5$	○ 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
$\begin{aligned} & 3 \\ & \text { 号 } \\ & \text { 機 } \end{aligned}$	循環水系	海水ポンプ室	＋19．0m	$+20.0 \mathrm{~m} * 3$	1． $0 \mathrm{~m} * 5$	\bigcirc 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
	海水系	海水ポンプ室	＋19．0m	$+20.0 \mathrm{~m} * 3$	1． $0 \mathrm{~m} * 5$	○ 許容津波高さが入力津波高さを上回 つており，敷地に津波は流入しない
		海水熱交換器建屋	＋19．0m	$+20.0 \mathrm{~m} * 4$	1． $0 \mathrm{~m} * 5$	○ 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない

＊ $1: 2$ 号機海水ポンプ室防潮壁の高さ
＊2： 1 号機海水ポンプ室の高さ
＊ $3: 3$ 号機海水ポンプ室防潮壁の高さ
＊ $4: 3$ 号機海水熱交換器建屋取水立坑防潮壁の高さ
＊5：参照する裕度（ 0.36 m ）を考慮しても余裕がある

ロ．放水路からの流入経路について

第 2 号機の放水側からの経路は，タービン建屋から循環水系配管，放水立坑，放水路を経由し海域に至る経路と，原子炉建屋及びタービン建屋から補機冷却海水系放水路，放水立坑，放水路を経由し海域に至る経路で構成され る（図3－12～図3－15）。

第1号機の放水側からの経路は，第1号機タービン建屋から循環水系配管，放水立坑，放水路を経由し海域に至る経路と，第1号機原子炉建屋及び第1号機制御建屋から補機冷却海水系放水路，放水立坑，放水路を経由し海域に至る経路で構成される（図 3－12，図 3－16，図 3－17）。

第3号機の放水側からの経路は，第3号機タービン建屋から循環水系配管，放水立坑，放水路を経由し海域に至る経路と，第3号機海水熱交換器建屋か ら補機冷却海水系放水ピット，補機冷却海水系放水路，放水立坑，放水路を経由し海域に至る経路で構成される（図3－12，図 3－18～図3－20）。

これらの経路から敷地地上部への流入及び第 2 号機の設計基準対象施設の津波防護対象設備を内包する建屋及び区画に津波が流入する可能性について評価を行った。結果を以下に，また結果の一覧を表 3－5にまとめて示す。
（イ）敷地地上部への流入の可能性
放水路に繋がり第2号機の設計基準対象施設の津波防護対象設備を設置 する敷地に津波が流入する可能性のある経路としては，第1号機放水路，第 2 号機放水路，第 3 号機放水路の放水立坑及び補機冷却海水系放水ピッ トの開口部が挙げられる。これらは敷地地上面で開口しているが，第1号機放水路においては，放水路の流路の縮小により外郭防護の裕度評価の参照とする津波高さが敷地高さに到達しないため，敷地地上部に津波は流入 しない。また，第2号機放水路及び第3号機放水路においては，外郭防護 の裕度評価の参照とする津波高さが敷地高さに到達するため，放水立坑工 リア周りに十分な高さの防潮壁を設置し，この経路からの津波の流入を防止する。また，第3号機補機冷却海水系放水ピットには浸水防止蓋を設置 するとともに，浸水防止蓋を貫通する屋外に露出する配管は基準地震動S sによる地震力に対してバウンダリ機能を維持し，貫通部には止水処置を実施する。なお，第 2 号機放水立坑壁面及び第 3 号機放水立坑壁面に循環水系配管貫通部があるが，当該貫通部は立坑壁面と循環水系配管が一体構造（配管設置後にコンクリートを打設）となっていることにより密着性を確保していることから津波の流入経路になることはない。したがって，こ れらの経路から設計基準対象施設の津波防護対象設備を設置する敷地に津波が流入することはない（図3－13～図3－21）。

なお，第1号機放水路の流路縮小工は，施工性及び保守管理性の観点か

ら，敷地内の放水立坑付近，廃止措置段階にある第1号機の維持に必要と なる取水•放水機能への影響がない位置に設置する。流路縮小工の貫通部径の設定の考え方については，添付書類「VI－1－1－4－8－3－1 外郭浸水防護設備に係る設定根拠に関する説明書」に示す。

また，第 2 号機放水路及び第 3 号機放水路の放水立坑エリア周りに設置 する防潮壁には，車両が進入するため，人力で 15 分以内に開閉可能な構造 かつ閉止する際に特別な設備（クレーン等）を必要としない鋼製扉を設置 するが，原則閉止運用とすることで津波の流入を防止する。
（ロ）建屋及び区画への流入の可能性
放水路に繋がり第2号機の設計基準対象施設の津波防護対象設備を内包 する建屋及び区画に流入する可能性のある経路としては，防潮壁の外側と内側をバイパスする開口部が考えられる。

第 2 号機においては，放水立坑エリア防潮壁下部の第 2 号機ボール捕集器ピット連絡トレンチ，第 2 号機復水器連続洗浄装置連絡配管トレンチ及 び第2号機 HCW カナル放出トレンチに配管及びケーブルの貫通部があるた め，貫通部に止水処置を実施することで津波の流入を防止する。

第 2 号機補機冷却海水系放水路には防潮壁横断部に開口があるため，逆流防止設備を設置し，津波の流入を防止することから津波の流入経路にな ることはない。

第1号機においては，放水立坑への経路として循環水系配管，原子炉補機冷却海水系配管，非常用補機冷却海水系配管，残留熱除去海水系配管及 びタービン補機冷却海水系配管の貫通部があるが，第1号機においては，放水路の流路の縮小により外郭防護の裕度評価の参照とする津波高さが敷地高さに到達しないため，敷地地上部に津波は流入しない。

第3号機においては，放水立坑エリア防潮壁下部の第3号機ボール捕集器ピット連絡トレンチ及び第3号機復水器連続洗浄装置連絡配管トレンチ に配管及びケーブルの貫通部があるため，貫通部に止水処置を実施するこ とで津波の流入を防止する。

第3号機補機冷却海水系放水ピットには開口部が存在することから浸水防止蓋を設置するとともに，浸水防止蓋貫通部に止水処置を実施すること で津波の流入を防止するため，原子炉補機冷却海水系配管，高圧炉心スプ レイ補機冷却海水系配管，タービン補機冷却海水系配管の貫通部が津波の流入経路になることはない。

同設備の配置を図3－13～図3－21に示す。

図 3－12 放水路配置図

図 3－13 第2号機 放水立坑 浸水対策配置図（平面図）

図 3－14 第2号機 放水立坑 浸水対策配置図（A－A 断面図）

図 3－15 第2号機 放水立坑 浸水対策配置図（B－B 断面図）

図 3－16 第1号機 放水立坑 浸水対策配置図（平面図）

図 3－17 第1号機 放水立坑 浸水対策配置図（A－A 断面図）

図 3－18 第3号機 放水立坑 浸水対策配置図（平面図）

図 3－19 第3号機 放水立坑 浸水対策配置図（A－A 断面図）

図 3－20 第3号機 放水立坑 浸水対策配置図（B－B 断面図）

図 3－21 第3号機 放水立坑 浸水対策配置図（C－C 断面図）

表 3－5 放水路からの津波の流入評価結果

	流入経路			（1）入力津波高さ （0．P．）	（2）許容津波高さ （0．P．）	(2)-(1) 裕度	評価
		循環水系	放水立坑	$+17.4 \mathrm{~m}$	＋19．0m＊1	1． $6 \mathrm{~m} * 4$	\bigcirc許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
	$\begin{aligned} & \text { 号 } \\ & \text { 機 } \end{aligned}$	海水系	放水立坑	＋17． 4 m	$+19.0 \mathrm{~m}^{* 1}$	1． $6 \mathrm{~m} * 4$	○ 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
10 \sim		循環水系	放水立坑	＋11．8m	＋14．0m＊2	$2.2 \mathrm{~m} * 4$	○ 許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない
	$\begin{aligned} & \text { 号 } \\ & \text { 機 } \end{aligned}$	海水系	放水立坑	$+11.8 \mathrm{~m}$	$+14.0 \mathrm{~m} * 2$	$2.2 \mathrm{~m} * 4$	許容津波高さが入力津波高さを上回 つており，敷地に津波は流入しない
$\begin{aligned} & P \\ & \Theta \\ & \sim \\ & 0 \end{aligned}$		循環水系	放水立坑	$+17.5 \mathrm{~m}$	＋19．0m＊3	1． $5 \mathrm{~m} * 4$	○ 許容津波高さが入力津波高さを上回 つており，敷地に津波は流入しない
	$\begin{aligned} & \text { 号 } \\ & \text { 機 } \end{aligned}$	海水系	放水立坑	$+17.5 \mathrm{~m}$	$+19.0 \mathrm{~m}^{* 3}$	1． $5 \mathrm{~m} * 4$	○許容津波高さが入力津波高さを上回 っており，敷地に津波は流入しない

＊ $1: 2$ 号機放水立坑防潮壁の高さ
＊2： 1 号機放水立坑の高さ
＊ $3: 3$ 号機放水立坑防潮壁の高さ
＊4：参照する裕度（0．36m）を考慮しても余裕がある

八。屋外排水路からの流入経路について
屋外排水路は，敷地内の雨水排水を海域まで自然流下させる排水路である が，屋外排水路と設計基準対象施設の津波防護対象設備を内包する建屋は直接接続されていない。

屋外排水路は，原子炉建屋等を設置するエリア（0．P．＋13．8m）で 2 箇所に集水して防潮堤を横断し，海域に排水する構造となっている。屋外排水路の防潮堤横断部（海側法尻部）には逆流防止設備を設置することから，津波が流入することはない。
（c）各経路からの流入評価まとめ
各経路からの流入評価の結果一覧を表 3－6に示す。表3－6に示すとおり，各経路からの流入を防止でき，高潮ハザードを考慮した参照する裕度である 0.36 m と比較しても設計上の裕度がある。

O 2 （1）VI－1－1－2－2－4 R 5

表 3－6（1）各経路からの津波の流入評価結果（1／4）

流入経路			流入箇所	（1）入力津波高さ	（2）許容津波高さ （0．P．）	$\begin{aligned} & \text { (2)-(1) } \\ & \text { 裕度 } \end{aligned}$	評価
$\begin{aligned} & \text { 取 } \\ & \text { 水 } \\ & \text { 路 } \end{aligned}$	2 号機	循環水系	循環水ポンプ据付部 海水ポンプ室スクリーンエリア 海水ポンプ室補機ポンプエリア床開口部 揚水井戸開口部 原子炉機器泠却海水配管ダクトへのアクセス用入口 海水ポンプ室スクリーンエリアの防潮壁下部配管貫通部 海水ポンプグランドドレン配管 補機冷却海水ポンプ据付部 （原子炉補機冷却海水ポンプ・高圧炬心スプレイ補機冷却海水ポンプ・タービン補機泠却海水ポン プ） 取水ピット水位計据付部	＋18．1m	＋19．0m＊1	$0.9 \mathrm{~m} * 9$	許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
		海水系					
	1 号機	循環水系	循環水ポンプ据付部	$+10.4 \mathrm{~m}$	$+14.0 \mathrm{~m}^{* 2}$	$3.6 \mathrm{~m} * 9$	許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
		海水系	海水ポンプ室スクリーンエリア 海水ポンプグランドドレン配管補機冷却海水ポンプ据付部 （原子炉補機冷却海水ポンプ・非常用補機冷却海水ポンプ・残留熱除去海水ポンプ）				

＊1： 2 号機海水ポンプ室防潮壁の高さ
＊2： 1 号機海水ポンプ室の高さ
＊3： 3 号機海水ポンプ室防潮壁の高さ
＊4： 3 号機海水熱交換器建屋防潮壁の高さ
＊5：2号機放水立坑防潮壁の高さ
＊ $6: 1$ 号機放水立坑の高さ
＊7： 3 号機放水立坑防潮壁の高さ
＊8：防潮堤の高さ
＊ 9 ：参照する裕度（ 0.36 m ）を考慮しても余裕がある

O 2 （1）VI－1－1－2－2－4 R 5

表 3－6（2）各経路からの津波の流入評価結果（2／4）

流入経路				流入箇所	（1）入力津波高さ （0．P．）	（2）許容津波高さ （0．P．）	(2)-(1) 裕度	評価
$\begin{aligned} & \text { 取 } \\ & \text { 水 } \\ & \text { 路 } \end{aligned}$	3 号機	循環水系		循環水ポンプ据付部				O
		海水系	$\begin{aligned} & \text { 海水 } \\ & \text { ポンプ } \end{aligned}$ 室	海水ポンプ室スクリーンエリア 揚水井戸開口部 海水ポンプ室スクリーンエリアの防潮壁下部配管・ケーブル貫通部	＋19． 0 m	$+20.0 \mathrm{~m}^{* 3}$	1． $0 \mathrm{~m} * 9$	許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
			$\begin{aligned} & \text { 海水熱啚交換器 } \end{aligned}$ 建屋	海水熱交換器建屋取水立坑 海水熱交換器建屋取水立坑へのアクセス用入口 海水熱交換器建屋補機ポンプエリア床開口部 海水ポンプグランドドレン配管 補機冷却海水ポンプ据付部 （原子炉補機冷却海水ポンプ・高圧炉心スプレイ補機泠却海水ポンプ・タービン補機泠却海水ポン プ）	＋19． 0 m	＋20．0m＊${ }^{\text {a }}$	1． $0 \mathrm{~m} * 9$	\bigcirc 許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない

＊1： 2 号機海水ポンプ室防潮壁の高さ ＊2： 1 号機海水ポンプ室の高さ
＊3： 3 号機海水ポンプ室防潮壁の高さ
＊4： 3 号機海水熱交換器建屋防潮壁の高さ
＊5： 2 号機放水立坑防潮壁の高さ
＊6： 1 号機放水立坑の高さ
＊7： 3 号機放水立坑防潮壁の高さ
＊8：防潮堤の高さ
＊9：参照する裕度（ 0.36 m ）を考慮しても余裕がある

O 2 （1）VI－1－1－2－2－4 R 5

表 3－6（3）各経路からの津波の流入評価結果（3／4）

流入経路			流入箇所	$\begin{gathered} \text { (1)入力 } \\ \text { 津波高さ } \\ \text { (0. P.) } \\ \hline \end{gathered}$	（2）許容津波高さ （0．P．）	$\begin{aligned} & \text { (2)-(1) } \\ & \text { 裕度 } \end{aligned}$	評価
$\begin{aligned} & \text { 放 } \\ & \text { 水 } \\ & \text { 路 } \end{aligned}$	2 号機	循環水系	放水立坑 放水立坑エリアの防潮壁下部トレンチ貫通部 （ボール捕集器ピット連絡トレンチ配管・ケー ブル貫通部，復水器連続洗浄装置連絡配管トレ ンチ配貫通部，HCW カナル放出トレンチ配管貫通部） 循環水系配管貫通部	＋17．4m	＋19． 0 m ${ }^{\text {F }}$	1． $6 \mathrm{~m} * 9$	許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
		海水系	放水立坑 補機冷却海水系放水路の防潮壁横断部				
	1 号機	循環水系	放水立坑 循環水系配管貫通部	＋11．8m	＋14．0m＊6	2． $2 \mathrm{~m} * 9$	\bigcirc 許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
		海水系	放水立坑 補機泠却海水系配管貫通部 （原子炉補機冷却海水系配管•非常用補機冷却海水系配管•残留熱除去海水系配管，タービン補機冷却海水系配管）				
	3 号機	循環水系	放水立坑 放水立坑エリアの防潮壁下部トレンチ貫通部 （ボール捕集器ピット連絡トレンチ配管貫通部，復水器連続洗浄装置連絡配管トレンチ配管貫通部） 循環水系配管貫通部	＋17． 5 m	$+19.0 \mathrm{~m}^{7}$	1． $5 \mathrm{~m} * 9$	\bigcirc 許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
		海水系	放水立坑 補機冷却海水系放水ピット開口部				

[^1]＊6： 1 号機放水立坑の高さ
＊7： 3 号機放水立坑防潮壁の高さ
＊8：防潮堤の高さ
＊9：参照する裕度（ 0.36 m ）を考慮しても余裕がある

O 2 （1）VI－1－1－2－2－4 R 5

表 3－6（4）各経路からの津波の流入評価結果（4／4）

流入経路	流入箇所	（1）入力津波高さ （0．P．）	$\begin{gathered} \hline \text { (2)許容 } \\ \text { 津波高さ } \\ \text { (0. P.) } \\ \hline \end{gathered}$	（2）－（1） 裕度	評価
屋外排水路	北側排水路の防潮堤横断部	＋24．4m	＋29．0m＊8	4． $6 \mathrm{~m} * 9$	\bigcirc 許容津波高さが入力津波高さを上回って おり，敷地に津波は流入しない
	南側排水路の防潮堤横断部	$+24.4 \mathrm{~m}$	＋29．0m＊8	4． $6 \mathrm{~m} * 9$	

＊1： 2 号機海水ポンプ室防潮壁の高さ ＊2： 1 号機海水ポンプ室の高さ
＊ $3: 3$ 号機海水ポンプ室防潮壁の高さ
＊4： 3 号機海水熱交換器建屋防潮壁の高さ
＊5： 2 号機放水立坑防潮壁の高さ
＊6： 1 号機放水立坑の高さ
＊7： 3 号機放水立坑防潮壁の高さ
＊ 8 ：防潮堤の高さ
＊9：参照する裕度（ 0.36 m ）を考慮しても余裕がある
（4）津波防護対策
$「$（3）評価結果」にて示すとおり，敷地への浸水防止（外郭防護 1 ）を実施する ため，津波防護施設として，防潮堤，防潮壁，取放水路流路縮小工及び貯留堰を設置する。浸水防止設備として，逆流防止設備，水密扉，浸水防止蓋，逆止弁付ファ ンネルを設置する。

また，貫通部の止水処置を実施する。外郭防護として津波防護施設及び浸水防止設備を設置する際には，設計上の裕度を考慮することとする。

これらの設備の位置の概要を図 3－22に示す。また，詳細な設計方針については，添付書類「VI－1－1－2－2－5 津波防護に関する施設の設計方針」に示す。

図 3－22 津波防護施設及び浸水防止設備の位置の概要図
3.3 漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2 ）に係る評価

津波防護対象設備への影響評価のうち，漏水による重要な安全機能及び重大事故等 に対処するために必要な機能への影響防止（外郭防護 2 ）に係る評価に当たつては，漏水によって津波防護対象設備が有する重要な安全機能及び重大事故等に対処するた めに必要な機能への影響を防止するための評価を行うため，「（1）評価方針」にて評価を行う方針を定め，「（2）評価方法」に定める評価方法を用いて評価を実施し，評価の結果を「（3）評価結果」に示す。

評価において，漏水する可能性があると確認された箇所については，「（4）津波防護対策」に示す対策を実施することにより，漏水によって津波防護対象設備が有する重要な安全機能及び重大事故等に対処するために必要な機能を損なわないこととし， この場合の「（3）評価結果」は，津波防護対策を踏まえて示すこととする。
（1）評価方針
津波が敷地に襲来した場合，「3．2 敷地への浸水防止（外郭防護1）に係る評価」 の「（4）津波防護対策」に示す津波防護対策を講じた上でもなお漏れる水及び取水•放水設備の構造上，津波による圧力上昇により漏れる水を漏水と位置付け，こ こでは，漏水による浸水範囲を想定（以下「浸水想定範囲」という。）し，浸水対策 として浸水想定範囲の境界の浸水の可能性のある経路，浸水口に対して浸水対策を施すことにより浸水範囲を限定する。

また，浸水想定範囲及びその周辺に津波防護対象設備がある場合は，防水区画化 を行い，漏水によって津波防護対象設備が有する重要な安全機能及び重大事故等に対処するために必要な機能への影響がないことを評価する。 さらに，浸水想定範囲 における長期間の冠水が想定される場合は，排水設備を設置する必要性を評価する。具体的には，以下のとおり。
a．漏水対策（浸水想定範囲の設定）
取水•放水設備の構造上の特徴等を考慮して，取水•放水施設，地下部等にお ける漏水の可能性のある箇所の有無を確認する。

漏水の可能性のある箇所がある場合は，当該箇所からの漏水による浸水想定範囲を確認する。

浸水想定範囲の境界において，浸水の可能性のある経路，浸水口（扉，開口部，貫通口等）を特定し，特定した経路，浸水口に対して浸水対策を施すことにより浸水範囲を限定する。
b．重要な安全機能及び重大事故等に対処するために必要な機能への影響確認
浸水想定範囲及びその周辺に津波防護対象設備がある場合は，浸水防止設備を設置する等により防水区画化することを確認する。必要に応じて防水区画内への

浸水量評価を実施し，重要な安全機能及び重大事故等に対処するために必要な機能への影響がないことを確認する。
（2）評価方法
a．漏水対策（浸水想定範囲の設定）
取水•放水設備の構造上の特徴等を考慮して，取水•放水施設，地下部等にお ける漏水の可能性のある箇所の有無を確認するために，入力津波の流入範囲と津波防護対象設備を内包する建屋及び区画に着目し，当該範囲のらち津波防護対策 を講じた上でもなお漏水の可能性がある箇所並びに構造上，津波による圧力上昇 により漏水の可能性のある箇所の有無について確認する。

漏水の可能性のある箇所がある場合は，当該箇所からの漏水による浸水想定範囲を確認し，同範囲の境界において浸水の可能性のある経路及び浸水口（扉，開口部，貫通口等）について，浸水防止設備として浸水範囲を限定するための設備 を設置する。
b．重要な安全機能及び重大事故等に対処するために必要な機能への影響確認
上記 a．において浸水想定範囲が存在する場合，浸水想定範囲及びその周辺にあ る津波防護対象設備に対しては，浸水防護設備として防水区画化するための設備 を設置するとともに，浸水量評価を行い防水区画内への浸水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無を評価する。

浸水量評価における浸水量の算出については，保守的な評価とするために，津波高さが逆止弁付ファンネルの設置高さを下回る時間帯においても，排水を期待 せずに浸水量を算出し，安全側に設定する。また，漏水量を算出するに当たって は，許容漏えい量と同等の漏水が発生したものと仮定し，安全側に設定する。
c．排水設備の検討
上記 b．の浸水評価の結果，浸水想定範囲における長期間の冠水が想定される場合は，冠水水位と津波防護対象設備の重要な安全機能及び重大事故等に対処する ために必要な機能が喪失する高さを比較し，機能への影響の有無を確認すること により，排水設備の必要性について確認する。

排水設備を設置する場合は，設置する排水設備の仕様が，浸水想定範囲におけ る浸水量を排水するために十分なものであることをあわせて確認する。また，排水設備及びその運転に必要な燃料又は電源とそれを供給する設備については，保管時及び動作時において津波による影響を受け難いものであることを確認する。
（3）評価結果
a．漏水対策（浸水想定範囲の設定）
（a）漏水可能性の検討結果
入力津波高さ 0. P．+24.4 m （防潮堤位置）に対して，敷地高さ 0. P．+13.8 m に高さ約 15 m （ 0 ．P．+29 ． 0 m ）の防潮堤を設置していることから，基準津波による遡上波が直接敷地に到達，流入しないが，第2号機海水ポンプ室の床面高さは 0．P．+2.0 m であり，基準津波が流入する可能性があるため，漏水が継続するこ とによる浸水の範囲（以下「浸水想定範囲」という。）として想定する。

浸水想定範囲への浸水の可能性のある経路として，第 2 号機海水ポンプ室に貫通部が存在することから，浸水防止設備として逆止弁付ファンネルを設置す ることにより，各浸水想定範囲からの浸水を防止するとともに，隣接区画への浸水影響を防止する。

以上より，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画への漏水による浸水の可能性はないが，保守的な想定として，津波高さが逆止弁付ファンネルの設置高さを下回る時間帯においても，排水を期待せずに浸水量を算出し評価するとともに，漏水量を算出するに当たつては，許容漏え い量と同等の漏水が発生したものと仮定し，安全側に設定し評価する。
（b）浸水想定範囲の設定
「（a）漏水可能性の検討結果」を踏まえ，原子炉補機冷却海水ポンプ（A）（C）室，原子炉補機冷却海水ポンプ（B）（D）室，高圧炉心スプレイ補機冷却海水ポン プ室，タービン補機冷却海水ポンプ室，循環水ポンプ室を浸水想定範囲として設定する。浸水想定範囲及び浸水防止設備の概要を図3－23に示す。

図 3－23 浸水想定範囲及び浸水防止設備の概要
b．重要な安全機能及び重大事故等に対処するために必要な機能への影響確認
（a）防水区画の設定
「 a ．漏水対策（浸水想定範囲の設定）（b）浸水想定範囲の設定」を踏まえ，浸水想定範囲である海水ポンプ室補機ポンプエリア，循環水ポンプ室とその周辺の防護すべき重要な安全機能及び重大事故等に対処するために必要な機能を持つ設備を設置する区画を防水区画として設定する。

設計基準対象施設における重要な安全機能を持つ設備として，非常用海水ポ ンプが該当するため，非常用海水ポンプが設置されている海水ポンプ室補機ポ ンプエリアを防水区画として設定する。

重大事故等に対処するために必要な機能を持つ設備として，非常用海水ポン プが該当するため，非常用海水ポンプが設置されている海水ポンプ室補機ポン プエリアを防水区画として設定する。海水ポンプ室補機ポンプエリアの防水区画の概要を図 3－24に示す

図 3－24 海水ポンプ室補機ポンプエリアの防水区画の概要

枠囲みの内容は防護上の観点から公開できません。
（b）安全機能及び重大事故等に対処するために必要な機能への影響
防水区画のらち，海水ポンプ室機ポンプエリアに設置されている非常用海水 ポンプが浸水した場合に，非常用海水ポンプの安全機能への影響を及ぼす可能性のある箇所として，ポンプ（電動機，端子箱），電動弁及び計装品が考えられ る。
ポンプ（電動機，端子箱），電動弁及び計装品の機能喪失高さの設定について は，それぞれ浸水により実際に機能を損ならおそれのある高さがあるが，一番低い設備の設置高さに対して余裕を考慮し，更に低いポンプのコンクリート基礎高さを機能喪失高さに設定する。海水ポンプ関連設備の位置関係を図 3－25に示す。

また，第 2 号機海水ポンプ室補機ポンプエリアの各室毎の海水ポンプの安全機能影響評価結果を表 3－7，表 3－8，表 3－9に示す。

第2号機原子炉補機泠却海水ポンプ，第 3 号機原子炉補機冷却海水ポンプ及 び第3号機タービン補機冷却海水ポンプのグランドドレン配管は，ポンプグラ ンド部の大気開放端から取水ピットへつながっており，取水ピットからの津波 の流入により，海水ポンプ室補機ポンプエリアが浸水する可能性があるため， グランドドレンの排水先を取水ピットから海水ポンプ室床側溝へ変更すること により，津波による浸水経路とはならない設計とする（図 3－26，図 3－27）。 なお，補機冷却海水ポンプのグランドはグランドパッキンが挿入されており， グランドパッキン押さえを設置し，締め付けボルトで圧縮力を与えてシールを するとともに，適宜，日常点検及びパトロールを実施し，必要に応じて増し締 めによる締め付け管理をしていることから，有意な漏水が発生することはない。 また，ケーシングベント配管，ブローオフ配管及びポンプ据付面は，フランジ取り合い部を取付ボルトで密着する構造となっており，それらの接合フランジ部にシール材を施すとともに，適宜，日常点検及びパトロールを実施し，必要 に応じて増し締めによる締め付け管理をしていることから，有意な漏水が発生 することはない。循環水ポンプのグランド部，ケーシングベント配管フランジ部，ブローオフ配管，ポンプ据付面フランジ部及び取水槽排気ラインフランジ部並びに取水ピット水位計据付部も同様の理由から有意な漏水が発生すること はない。

海水ポンプ室床面の開口部に設置する逆止弁付ファンネルは，止水性確認の ため漏えい試験を実施しており，有意な漏えい量は確認されていないが，ここ では保守的に漏えい試験結果によって得られた逆止弁付ファンネルの最大漏え い量にて浸水量を評価する。

図 3－25 第2号機海水ポンプ関連設備の位置関係

表 3－7 原子炉補機冷却海水ポンプ（A）（C）室に設置する海水ポンプの安全機能影響評価結果

機器名称	機能喪失高さの評価部位	機能喪失高さ（m）	浸水量評価 に用いる高さ
原子炉補機泠却海水ポンプ（A） （P45－C001A）	ポンプコンクリー ト基礎高さ	0.275	\bigcirc
原子炉補機泠却海水ポンプ（C） （P45－C001C）	ポンプコンクリー ト基礎高さ	0． 29	－
R S Wポンプ（A）吐出弁 （P45－F002A）	電動弁設置配管中心高さ	1． 025	－
R S Wポンプ（C）吐出弁 （P45－F002C）	電動弁設置配管中心高さ	1． 045	－
R S W ポンプ吐出連絡管（A）止め弁 （P45－F006A）	電動弁設置配管中心高さ	1． 045	－
R S Wポンプ（A）出口圧力伝送器 （P45－PT001A）	計器下端高さ	1． 18	－
R S Wポンプ（A）出口圧力保安器 （P45－I／AR001A－1）	計器下端高さ	1． 225	－
$\begin{aligned} & \text { R S Wポンプ (A) 出口圧力指示計 } \\ & \text { (P45-PI001A) } \end{aligned}$	計器下端高さ	1． 24	－
R S Wポンプ（C）出口圧力伝送器 （P45－PT001C）	計器下端高さ	1． 18	－
$\begin{aligned} & \text { R S Wポンプ (C) 出口圧力保安器 } \\ & (\mathrm{P} 45-\mathrm{I} / \text { AR001C-1) } \end{aligned}$	計器下端高さ	1． 225	－
R S Wポンプ（C）出口圧力指示計 （P45－PI001C）	計器下端高さ	1． 24	－

＊最大水上高さ（ 0.055 m$)$ を差し引いた値

表 3－8 原子炉補機冷却海水ポンプ（B）（D）室に設置する海水ポンプの安全機能影響評価結果

機器名称	機能喪失高さの評価部位	機能霛失高さ（m）＊	浸水量評価 に用いる高 さ
原子炉補機冷却海水ポンプ（B） （P45－C001B）	ポンプコンクリー ト基礎高さ	0.275	\bigcirc
原子炉補機冷却海水ポンプ（D） （P45－C001D）	ポンプコンクリー ト基礎高さ	0.285	－
R S Wポンプ（B）吐出弁 （P45－F002B）	電動弁設置配管中心高さ	1． 045	－
R S W ポンプ（D）吐出弁 （P45－F002D）	電動弁設置配管中心高さ	1． 045	－
R S W ポンプ吐出連絡管（B）止め弁（P45－F006B）	電動弁設置配管中心高さ	1． 045	－
R S Wポンプ（B）出口圧力伝送器 （P45－PT001B）	計器下端高さ	1． 195	－
R S Wポンプ（B）出口圧力保安器 （P45－I／AR001B－1）	計器下端高さ	1． 225	－
R S Wポンプ（B）出口圧力指示計 （P45－PI001B）	計器下端高さ	1． 24	－
R S Wポンプ（D）出口圧力伝送器 （P45－PT001D）	計器下端高さ	1． 195	－
R S W ポンプ（D）出口圧力保安器 （P45－I／AR001D－1）	計器下端高さ	1． 225	－
R S Wポンプ（D）出口圧力指示計 （P45－PI001D）	計器下端高さ	1． 24	－

＊最大水上高さ（ 0.055 m ）を差し引いた値

表 3－9 高圧炉心スプレイ補機冷却海水ポンプ室に設置する海水ポンプの安全機能影響評価結果

機器名称	機能喪失高さの評価部位	機能喪失高さ（m）＊	浸水量評価 に用いる高 さ
高圧炉心スプレイ補機冷却海水ポ ンプ（P48－C001）	ポンプコンクリー ト基礎高さ	0.065	\bigcirc
H P S Wポンプ吐出弁 （P48－F002）	電動弁設置配管中心高さ	0.385	－
H P S Wポンプ出口圧力伝送器 （P48－PT001）	計器下端高さ	1． 185	－
H P S Wポンプ出口圧力保安器 （P48－I／AR001－1）	計器下端高さ	1． 225	－
HP S Wポンプ出口圧力指示計 （P48－PI001）	計器下端高さ	1． 24	－
H P S Wストレーナ差圧指示計 （P48－dPI002）	計器下端高さ	4． 43	－

＊最大水上高さ（ 0.055 m$)$ を差し引いた値

図 3－26 海水ポンプグランドドレン配管接続図（変更前）

図 3－27 海水ポンプグランドドレン配管接続図（変更後）
（c）浸水量評価
第 2 号機海水ポンプ室補機ポンプエリア各室の床面には，浸水防止設備とし て津波が床貫通部から直接浸水することを防止するために逆止弁付ファンネル を設置している。

逆止弁付ファンネルは，止水性確認のため漏えい試験を実施しており，有意 な漏えい量は確認されていないが，ここでは保守的に漏えい試験結果によって得られた逆止弁付ファンネルの漏えい量のらち，水頭圧に関係なく最大漏えい量 $3.4 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{h}$（水頭圧 1.0 m 時）にて浸水量を評価する（表3－10）。

また，津波高さが逆止弁付ファンネルの設置高さ（0．P．＋ 2.0 m ）を下回る時間帯が適宜発生しており，都度，浸水した海水が排水されるものと想定されるが，排水を期待せずに浸水量を積算し評価する（図3－29）。

浸水量評価には，海水ポンプ設置位置で津波高さが最大となる基準津波の時刻歴波形を用いる（図3－28）。

なお，評価に用いる各区画の床面積の算出にあたっては，当該区画に設置さ れている各機器により占有されている領域等を考慮し，保守的な有効面積を算出する（表3－11）。

入力津波が逆止弁付ファンネルの設置位置を超える時間において，最大漏水量が漏れたとしても漏水量は最大でも $0.3 \mathrm{~m}^{3}$ 程度とわずかであり，安全機能を有する第2号機原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水 ポンプへの漏水の影響はない（表3－11）。

表 3－10 逆止弁付ファンネル漏えい試験結果

試験圧力 (MPa)	水頭圧 (m)	漏えい量 $\left(\mathrm{m}^{3} / \mathrm{h}\right)$
0.0006	0.06	0
0.005	0.5	2.4×10^{-4}
0.01	1.0	3.4×10^{-2}
0.02	2.0	2.4×10^{-2}
0.04	4.0	2.4×10^{-2}
0.06	6.0	4.3×10^{-3}
0.12	12.0	1.3×10^{-3}

図 3－28 第2号機 海水ポンプ室水位と逆止弁付ファンネル設置高さ

図 3－29 逆止弁付ファンネルからの浸水量評価適用図 （第2号機 海水ポンプ室補機ポンプエリア）

表 3－11 第2号機 海水ポンプ室の浸水量評価結果

設置区画	逆止弁付 ファン采 ル設置数	浸水量 $\left(\mathrm{m}^{3}\right)$	区画有効 面積 $\left(\mathrm{m}^{2}\right)$	機能媴失 高さ＊1 (m)	浸水 高さ (m)
原子炉補機冷却海水 ポンプ（A）（C）室	3	0.3	63.7	0.275	0.01 m
原子炉補機冷却海水 ポンプ（B）（D）室	3	0.3	128.5	0.275	0.01 m
高圧炉心スプレイ補 機冷却海水ポンプ室	2	0.2	17.2	0.065	0.02 m
タービン補機冷却海 水ポンプ室	3	0.3	120.5	$0.13 * 2$	0.01 m

＊ 1 ：ポンプ（電動機，端子箱），電動弁及び計装品の機能喪失高さの設定につい
ては，それぞれ浸水により実際に機能を損なうおそれのある高さがあるが，一番低い設備の設置高さに対して余裕を考慮し，更に低いポンプのコンクリート基礎高さを機能喪失高さに設定する ＊ 2 ：タービン補機冷却海水ポンプ室の扉開口下端の高さ（防水区画化範囲への流入高さ）より十分低いことから，隣接する防水区画化範囲が浸水することはな い
c．排水設備の検討
浸水想定範囲における浸水量評価を踏まえると，当該範囲に浸水する量は僅か であり，長期間の滞留も考えにくく重要な安全機能及び重大事故等に対処するた めに必要な機能に影響を与えることはないことから，排水設備は不要である。
（4）津波防護対策
防水区画である海水ポンプ室には津波防護対象設備が設置されているが，「（3）評価結果」に示すとおり，漏水による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止（外郭防護2）を実施する
3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能へ の影響防止（内郭防護）に係る評価

津波防護対象設備への影響評価のうち，津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（内郭防護）に係る評価に当たって は，津波による溢水によって津波防護対象設備が有する重要な安全機能及び重大事故等に対処するために必要な機能への影響を防止するための評価を行らため，「（1）評価方針」にて評価を行ら方針を定め，「（2）評価方法」に定める評価方法を用いて評価を実施し，評価の結果を「（3）評価結果」に示す。

評価において，浸水防護重点化範囲が浸水する可能性があることが確認された箇所 については，「（4）津波防護対策」に示す対策を講じることにより，津波による溢水 によって，津波防護対象設備が有する重要な安全機能及び重大事故等に対処するため に必要な機能を損なわないこととし，この場合の「（3）評価結果」は，津波防護対策 を踏まえて示すこととする。
（1）評価方針
津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能へ の影響防止（内郭防護）に係る評価では，津波防護対象設備に対して，内郭防護を実施することにより，地震•津波の相乗的な影響や津波以外の溢水要因も考慮した上で，津波防護対象設備が有する重要な安全機能及び重大事故等に対処するために必要な機能を津波による影響から隔離し，津波に対する浸水防護の多重化が達成さ れることを確認する。具体的な評価方針は以下のとおり。
a．浸水防護重点化範囲の設定
津波防護対象設備を内包する建屋及び区画については，浸水防護重点化範囲と して明確化する。
b．浸水防護重点化範囲の境界における浸水評価
津波による溢水を考慮した浸水範囲，浸水量を安全側に想定する。浸水範囲，浸水量の安全側の想定に基づき，浸水防護重点化範囲への浸水の可能性のある経路，浸水口（扉，開口部，貫通口等）を特定し，それらに対して浸水対策を実施 することにより，浸水を防止可能であることを確認する。
（2）評価方法
a．浸水防護重点化範囲の設定
浸水防護重点化範囲を明確化するために，設計基準対象施設の津波防護対象設備を内包する建屋及び区画並びに重大事故等対処施設の津波防護対象設備を内包 する建屋及び区画について，その配置及び周辺敷地高さを整理し，浸水防護重点化範囲として設定する。
b．浸水防護重点化範囲の境界における浸水対策

津波による溢水を考慮した浸水範囲及び浸水量を算出し，「a．浸水防護重点化 の範囲の設定」にて設定している浸水防護重点化範囲へ浸水する可能性の有無を評価する浸水範囲及び浸水量については，地震•津波の相乗的な影響や津波以外 の溢水要因も含めて確認する。

具体的には，浸水防護重点化範囲に対するタービン建屋内及び浸水防護重点化範囲周辺の溢水の影響について溢水の想定を行い，溢水が発生する可能性がある場合にはその溢水量を評価し，浸水防護重点化範囲への浸水の可能性を評価する。

なお，浸水防護重点化範囲への浸水の可能性のある経路，浸水口（扉，開口部，貫通口等）があり，津波防護対策を実施する場合は，それを踏まえて浸水防護重点化範囲への浸水の可能性を評価する。
（a）タービン建屋内の主復水器を設置するエリアの津波による溢水の影響
タービン建屋内の主復水器を設置するエリアの津波による溢水の影響につい ては，地震に起因するタービン建屋内の循環水系配管の伸縮継手の損傷及び耐震Bクラス及びCクラス機器の損傷により，保有水が溢水するとともに，津波 が循環水系配管に流れ込み，循環水系配管の伸縮継手の損傷箇所を介して，夕 ービン建屋内に流入することが考えられる。

評価に当たっては，以下の条件を考慮する。また，タービン建屋における循環水系配管からの溢水の評価方針の概要を図 3－30に示す。
イ．循環水系配管の伸縮継手の損傷箇所は，全円周状の破損（リング状破損） を想定する。
ロ．循環水系配管の伸縮継手の損傷箇所からの溢水量は，内部溢水の対策設備 である循環水系隔離システム＊によって溢水量低減を図っていることを考慮 して算出する。循環水系隔離システムの概要を図 3－31 に示す。
八。溢水量は，系統保有水量と循環水ポンプ運転による循環水系配管の伸縮継手の損傷個所からの漏えい量を考慮する。循環水ポンプ運転による漏えい量 は，循環水系配管の伸縮継手の損傷から，循環水ポンプの停止までの間に循環水ポンプの定格流量が漏えいするものとする。また，循環水系配管の伸縮継手の損傷箇所からの流出圧力は，保守的に循環水ポンプの吐出圧力とし，配管の圧力損失は考慮しない。
ニ．津波の襲来前に循環水系隔離システムによる循環水ポンプの停止及び復水器水室出入口弁の閉止を行うことから，取水路及び放水路からの津波の流入とサイフォンによる流入は考慮しない。
ホ。 発生した溢水量は，保守的にタービン建屋の最地下階（復水器室•共通工 リア）に貯留するものとして没水水位を算定する。
＊地震後に襲来する津波を考慮し，原子炉スクラム信号や漏えい検知による インターロックを作動させ，循環水ポンプの停止及び復水器水室出入口弁の

閉止を行うことで津波の流入を防止するものであり，基準地震動S s よる地震力に対して機能を保持する設計とする。

図 3－30 タービン建屋における循環水系配管からの溢水の評価方針の概要

＊ 1 バックアップスクラムパイロット弁（A）励磁信号
＊ 2 バックアップスクラムパイロット弁（B）励磁信号
図 3－31 循環水系隔離システムの概要
（b）タービン補機冷却海水系配管を敷設する原子炉機器泠却海水配管ダクト内及 びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内のタービン補機冷却海水系配管を設置するエリアの津波による溢水の影響

タービン補機冷却海水系配管を敷設する原子炉機器冷却海水配管ダクト内の タービン補機泠却海水系配管を設置するエリア及びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内のタービン補機冷却海水系配管を設置する エリアの津波による溢水の影響については，地震に起因するタービン補機冷却海水系配管の破損により，津波がタービン補機冷却海水系配管の損傷箇所を介 して，タービン補機冷却海水系配管を敷設する原子炉機器冷却海水配管ダクト内及びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内に流入す ることが考えられる。

評価に当たっては，以下の条件を考慮する。また，タービン補機冷却海水系配管を敷設する原子炉機器冷却海水配管ダクト内及びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内のタービン補機冷却海水系配管からの溢水の評価方針の概要を図 3－32に示す。
イ．基準地震動 S s が発生し，タービン補機冷却海水系配管を敷設する原子炉機器冷却海水配管ダクト内及びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内のタービン補機冷却海水系配管並びに耐震Bクラス及びC クラス機器の損傷を想定する。
ロ。タービン補機冷却海水系配管の損傷箇所からの溢水量は，内部溢水の対策設備であるタービン補機冷却海水系隔離システム＊により，溢水量低減を図 っていることを考慮して算出する。タービン補機冷却海水系隔離システムの概要を図 3－33に示す。
八。溢水量は，系統保有水量とタービン補機冷却海水ポンプ運転による配管 の損傷個所からの漏えい量を考慮する。タービン補機冷却海水ポンプ運転に よる漏えい量は，配管の損傷から，タービン補機冷却海水ポンプの停止まで の間にタービン補機冷却海水ポンプの定格流量が漏えいするものとする。ま た，配管の損傷箇所からの流出圧力は，保守的にタービン補機冷却海水ポン プの吐出圧力とし，配管の圧力損失は考慮しない。
二。 発生した溢水量は，保守的にタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内に貯留するものとして没水水位を算定する。。
＊地震後に襲来する津波を考慮し，原子炉スクラム信号や漏えい検知による インターロックを作動させ，タービン補機冷却海水ポンプの停止及びタービ補機冷却海水ポンプ吐出弁の閉止を行うことで津波の流入を防止するもの であり，基準地震動 S s よる地震力に対して機能を保持する設計とする。

図 3－33 タービン補機冷却海水系隔離システムの概要
（c）海水ポンプ室循環水ポンプエリアの津波による溢水の影響
海水ポンプ室循環水ポンプエリアの津波による溢水の影響については，地震 に起因する海水ポンプ室循環水ポンプエリアの循環水系配管の伸縮継手の損傷 による，海水ポンプ室循環水ポンプエリアに隣接する浸水防護重点化範囲（海水ポンプ室補機ポンプエリア）への影響を評価する。
（d）海水ポンプ室補機ポンプエリアの津波による溢水の影響
海水ポンプ室補機ポンプエリアの津波による溢水の影響については，地震に起因する海水ポンプ室補機ポンプエリアの低耐震クラスであるタービン補機冷却海水系の機器及び配管の破損による，補機ポンプエリアのタービン補機冷却海水ポンプ室に隣接する浸水防護重点化範囲（補機ポンプエリアの原子炉補機泠却海水ポンプ室及び高圧炉心スプレイ補機冷却海水ポンプ室）への影響を評価する。
（e）地下水による影響
地下水による影響については津波の影響がないことから，VI－1－1－8「発電用原子炉施設の溢水防護に関する説明書」に示す。
（f）屋外タンク等の損傷による溢水の影響
地震に起因する溢水として，敷地内の低耐震クラスである屋外タンクが損傷 し，保有水が敷地内に流出することが考えられる。また，プラント通常運転時，補機冷却海水系ポンプで送水され補機冷却水系熱交換器で熱交換した海水は補機冷却海水系放水路に放出され，補機放水立坑に流れ込むが，津波襲来時は第 2 号機補機冷却海水系放水路に設置される逆流防止設備が閉動作し，補機冷却海水系放水路と補機放水立坑が隔離され，放水できなくなった海水が補機泠却海水系放水路から敷地に溢水することから，浸水防護重点化範囲への影響を評価する。

（3）評価結果

a．浸水防護重点化範囲の設定
（a）設計基準対象施設の津波防護対象設備を内包する建屋及び区画に対する浸水防護重点化範囲の設定

設計基準対象施設の津波防護対象設備を内包する建屋及び区画のうち，原子炉建屋，制御建屋，海水ポンプ室補機ポンプエリア，軽油タンクエリア，復水貯蔵タンク，トレンチ，排気筒及び排気筒連絡ダクトは，重要な安全機能を有 する設備（耐震 S クラスの機器•配管等）を内包するため，浸水防護重点化範囲として設定する。
（b）重大事故等対処施設の津波防護対象設備を内包する建屋及び区画に対する浸水防護重点化範囲の設定

重大事故等対処施設の津波防護対象設備を内包する建屋及び区画のうち，原子炉建屋，制御建屋，海水ポンプ室補機ポンプエリア，軽油タンクエリア，復水貯蔵タンク，トレンチ，排気筒，排気筒連絡ダクト，第1保管エリア，第2保管エリア，第3保管エリア，第 4 保管エリア，緊急用電気品建屋，緊急時対策建屋及びガスタービン発電設備タンクピットは，重大事故等に対処するため に必要な機能を有する設備を内包するため，浸水防護重点化範囲として設定す る。

設計基準対象施設の津波防護対象設備を内包する建屋及び区画に対する浸水防護重点化範囲並びに重大事故等対処施設の津波防護対象設備を内包する建屋及び区画に対する浸水防護重点化範囲の一覧を表 $3-12$ ，浸水防護重点化範囲 を図3－34，建屋断面概略および浸水防護重点化範囲を図3－35，海水ポンプ室補機ポンプエリアおよび原子炉機器冷却海水配管ダクトの浸水防護重点化範囲及 び断面図を図3－36に示す。

表 3－12 浸水防護重点化範囲一覧

内郭防護に係る重要な機能及び重大事故等に対処するために必要な機能を有する設備を内包する建屋及び区画	浸水防護重点化範囲	
	設計基準対象施設	重大事故等対処施設
原子炉建屋	\bigcirc	\bigcirc
制御建屋	\bigcirc	\bigcirc
軽油タンクエリア	\bigcirc	\bigcirc
海水ポンプ室補機ポンプエリア	\bigcirc	\bigcirc
復水貯蔵タンク	\bigcirc	\bigcirc
トレンチ	\bigcirc	\bigcirc
排気筒	\bigcirc	\bigcirc
排気筒連絡ダクト	\bigcirc	\bigcirc
第1保管エリア	－	\bigcirc
第2保管エリア	－	\bigcirc
第3保管エリア	－	\bigcirc
第4保管エリア	－	\bigcirc
緊急用電気品建屋	－	\bigcirc
緊急時対策建屋	－	\bigcirc
ガスタービン発電設備タンクピット	－	\bigcirc

図 3－34 浸水防護重点化範囲

$\mathrm{A}-\mathrm{A}$ 断面

$\mathrm{B}-\mathrm{B}$ 断面

C－C 断面

図 3－35 建屋断面概略および浸水防護重点化範囲

【原子炉機器冷却海水配管ダクト断面図】

```
!=-=\ 海水ポンブ室補機ポンプエリア
==== 浸水防護重点化範囲
\longrightarrow及び•常用系配管
->及び•非常用系配管
```

図 3－36 海水ポンプ室補機ポンプエリアおよび原子炉機器冷却海水配管ダクトの浸水防護重点化範囲及び断面図
b．浸水防護重点化範囲の境界における浸水評価結果
（a）タービン建屋内の主復水器を設置するエリアの津波による溢水の影響
イ．循環水系配管の伸縮継手の損傷箇所からの溢水量
循環水系配管の伸縮継手の損傷箇所からの溢水量は，溢水流量及び溢水時間から算出する。溢水流量は，循環水ポンプの定格流量（1， $662 \mathrm{~m}^{3} / \mathrm{min} \times 2$台）を想定し，溢水時間は地震を起因とした循環水系配管の伸縮継手の損傷 から循環水系隔離システムによる循環水ポンプの停止までの時間 50 秒で算出した結果，2，770 m³ となり，系統保有水量 $1,200 \mathrm{~m}$ の合計を算出すると 3， $970 \mathrm{~m}^{3}$ となる。

ロ．循環水系配管の伸縮継手の損傷箇所からの流入量
循環水系隔離システムによる循環水ポンプの停止及び復水器水室出入口弁 の閉止までの時間は200秒間であり，津波の襲来前に循環水ポンプの停止及 び復水器水室出入口弁の閉止を完了できる。このため，津波の流入はなく，循環水系配管の伸縮継手の損傷箇所からの津波の流入量は $0 \mathrm{~m}^{3}$ となる。 ハ．サイフォン効果による流入量

循環水系隔離システムにより復水器水室出入口弁を閉止することから，サ イフォン効果による流入を防止できるため，サイフォン効果による流入量 は $0 \mathrm{~m}^{3}$ となる。

ニ．耐震 B クラス及びCクラス機器の損傷による溢水量
耐震 B クラス及びCクラス機器（イ．を含む）の損傷による溢水量は $6,843 \mathrm{~m}^{3}$ となる。

溢水量を算出する際の主要な系統は以下のとおりである。
系統：循環水系，復水及び給水系，給水加熱器ドレン系，タービン補機冷

却水系及び消火系等

タービン建屋（管理区域）の耐震Bクラス及びCクラス機器（イ。を含む）の損傷による溢水量の合計は $6,843 \mathrm{~m}^{3}$ となる。復水器廻り掘込部の容積 $840 \mathrm{~m}^{3}$ を考慮す ると $6,003 \mathrm{~m}^{3}$ となり，最地下階の床面積 $2,761.9 \mathrm{~m}^{2}$ から，地震に起因する溢水によ るタービン建屋（管理区域）における没水水位は，最地下階（復水器室•共通エリ ア）で 2.2 m となる。評価結果を表 $3-13$ に示す。

表 3－13 タービン建屋（管理区域）内の溢水量の評価結果

区画		溢水量 $\left(\mathrm{m}^{3}\right)$ （1）	滞留面積（ m^{2} ） （2）	没水水位（m） （1）／（2）
名称	基準床レベル			
復水器室共通エリア	0．P．-0.2 m	$6,003 * 1$	2，761．9	2． $2^{* 2}$

＊1：復水器廻りの堀込部の容積， $840 \mathrm{~m}^{3}$ を考慮した値
＊2：床面のコンクリート増し打ち分の最大値， 55 mm を考慮した値
（b）タービン補機冷却海水系配管を敷設する原子炉機器冷却海水配管ダクト内及びタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）内のタービン補機冷却海水系配管を設置するエリアの津波による溢水の影響

イ．タービン補機冷却海水系配管の損傷箇所からの溢水量
タービン補機冷却海水系配管の損傷箇所からの溢水量は，溢水流量及び溢水時間から算出する。溢水流量は，タービン補機冷却海水ポンプの定格流量 （ $37.5 \mathrm{~m}^{3} / \mathrm{min} \times 2$ 台）を想定し，溢水時間は地震を起因としたタービン補機冷却海水系配管の損傷からタービン補機冷却海水系隔離システムによるター ビン補機冷却海水ポンプの停止までの時間 60 秒で算出した結果， $75 \mathrm{~m}^{3}$ とな る。

ロ．タービン補機冷却海水系配管の損傷箇所からの流入量
タービン補機冷却海水系隔離システムによるタービン補機冷却海水ポンプ の停止及びタービン補機冷却海水ポンプ吐出弁の閉止までの時間は 60 秒間 であり，津波の襲来前にタービン補機冷却海水ポンプの停止及びタービン補機冷却海水ポンプ吐出弁の閉止を完了できる。このため，津波の流入はなく， タービン補機冷却海水系配管の損傷箇所からの津波の流入量は $0 \mathrm{~m}^{3}$ となる。八。耐震Bクラス及びCクラス機器の損傷による溢水量

耐震 B クラス及びCクラス機器（イ．を含む）の損傷による溢水量は $824 \mathrm{~m}^{3}$ となる。

溢水量を算出する際の主要な系統は以下のとおりである。
系統：タービン補機泠却海水系，タービン補機冷却水系，換気空調補機常用泠却水系及び消火系等
タービン建屋（非管理区域）の耐震 B クラス及びCクラス機器（イ。を含む）の損傷による溢水量の合計は $824 \mathrm{~m}^{3}$ となり，最地下階のタービン建屋（タービン補機冷却水系熱交換器・ポンプ室）の床面積 $410.9 \mathrm{~m}^{2}$ から，没水水位は，最地下階である タービン建屋（タービン補機冷却系熱交換器・ポンプ室）で 2.1 m となる。評価結果 を表3－14に示す。

表 3－14 タービン建屋（タービン補機冷却系熱交換器・ポンプ室）内の溢水量 の評価結果

区画		溢水量（ m^{3} ） （1）	滞留面積（m²） （2）	没水水位（m） （1）／（2）
名称	基準床レベル			
タービン補機冷却系熱交換器。 ポンプ室	0．P．-1.2 m	824	410.9	2.1

（c）海水ポンプ室循環水ポンプエリアの津波による溢水の影響
海水ポンプ室循環水ポンプエリアは，海水ポンプ室循環水ポンプエリアの低耐震クラスである循環水系について，内部溢水において基準地震動 S s による地震力に対して機器及び配管の耐震性評価を実施し，バウンダリ機能を維持す る方針のため，影響評価に示すとおり本事象による津波の浸水はない。

海水ポンプ室循環水ポンプエリアの耐震性バウンダリ機能維持範囲を図3－ 37 及び図3－38に示す。

図 3－37 海水ポンプ室循環水ポンプエリアの耐震性バウンダリ機能維持範囲 （平面図）

図 3－38 海水ポンプ室循環水ポンプエリアの耐震性バウンダリ機能維持範囲 （断面図）

枠囲みの内容は防護上の観点から公開できません。
（d）海水ポンプ室補機ポンプエリアの津波による溢水の影響
海水ポンプ室補機ポンプエリアは，海水ポンプ室補機ポンプエリアの低耐震クラスであるタービン補機冷却海水系について，内部溢水において基準地震動S s による地震力に対して機器及び配管の耐震性評価を実施し，バウンダリ機能を維持する方針のため，影響評価に示すとおり本事象による津波の浸水は ない。

海水ポンプ室補機ポンプエリアの耐震性バウンダリ機能維持範囲を図 3－39及図 3－40に示す。

図 3－39 海水ポンプ室補機ポンプエリアの耐震性バウンダリ機能維持範囲 （平面図）

図 3－40 海水ポンプ室補機ポンプエリアの耐震性バウンダリ機能維持範囲 （断面図）

枠囲みの内容は防護上の観点から公開できません。
（e）建屋外周地下部における地下水位の上昇による浸水防護重点化範囲への影響

地下水の影響ついては，建屋周囲の水位が地表面まで上昇することを想定 し，VI－1－1－8「発電用原子炉施設の溢水防護に関する説明書」にて影響評価を実施している。
（f）屋外タンク等の損傷による溢水の影響
地震に起因する溢水として，屋外タンク等の損傷による溢水源としては，基準地震動 S s による地震力に対して耐震性が確保されない屋外タンク等が複数同時破損を想定した場合について，VI－1－1－8「発電用原子炬施設の溢水防護に関する説明書」にて評価を実施している。また，図 3－41に示すように，地震後 の津波襲来時には，第 2 号機放水立坑の水位上昇に伴い，補機冷却海水系放水路逆流防止設備が一時的に閉止することが考えられる。このため，第 2 号機補機冷却海水系が運転していることによる放水路からの補機放水も敷地への溢水源として考慮する。これらの溢水による各建屋，海水ポンプ室，復水貯蔵タン クの浸水水位は表 3－15 に示すとおり，地表面上 0.18 m （敷地浸水深）であり，浸水防護重点化範囲の境界となるカーブ高さ（ $0.2 \mathrm{~m} \sim 0.38 \mathrm{~m}$ ）を超えることはな い。軽油タンクエリアにおける図 3－42に示す浸水防護重点化範囲（浸水を想定 するエリア）は，静的な耐震 S クラス設備（タンク，配管，手動弁）のみが存在するエリアであるため，耐震 S クラス設備（タンク，配管，手動弁）の浸水 による影響を評価し，機能喪失しないことを確認している。排気筒，排気筒連絡ダクト及びトレンチについては，地表面のハッチの隙間は僅かであり，浸水 の可能性は低く，トレンチ内と建屋等との境界には止水処置を行うため浸水の影響がないことを内部溢水にて確認している。

また，地震後の津波襲来による第 2 号機放水立坑の水位上昇に伴い，補機冷却海水系放水路逆流防止設備が一時的に閉止し，第 2 号機補機冷却海水系放水路からの補機放水による溢水の敷地への流入を想定した場合，第 2 号機補機泠却海水系放水路と第 2 号機海水ポンプ室補機ポンプエリアとの距離を考慮する と，局所的に第 2 号機海水ポンプ室補機ポンプエリアのカーブ高さ（ 0.20 m ）を一時的に超える可能性がある。上記の事象は津波が直接流入する事象ではない が，第 2 号機海水ポンプ室補機ポンプエリア周りに敷地高さ（0．P．13．8m）に対 して天端高さが 0. P． 14.4 m （敷地からの高さ 0.6 m ）となる浸水防止壁を設置す る。

重大事故等対処施設の津波防護対象設備（非常用取水設備を除く。）の浸水防護重点化範囲のらち，0．P．＋ 13.8 m の敷地に第 3 保管エリアがあるが，敷地全体 （0．P．＋13．8m）に浸水した場合であっても，第 3 保管エリアに保管する可搬型

重大事故等対処設備の走行可能水位以下であるため，アクセス性に影響はない。 また，緊急時対策建屋，緊急用電気品建屋，ガスタービン発電設備タンクピ ット，可搬型重大事故等対処設備保管場所である第1保管エリア，第2保管エ リア及び第 4 保管エリアは，0．P．+59.0 m 以上の高所であるため，浸水防護重点化範囲の区画に浸水することはない。

表 3－15 屋外タンク及び補機冷却海水系放水路からの溢水影響評価結果

	$\begin{gathered} \text { カーブ } \\ \text { 高さ } \\ (\mathrm{m}) \end{gathered}$	溢水量 （1）＊4 （m）	溢水量 （2）＊5 $\left(\mathrm{m}^{3}\right)$	溢水量 合計 （1）＋（2） （m ${ }^{3}$ ）	敷地面積＊${ }^{*}$ （3） （m²）	敷地浸水深＊7 （1）+ （2）$/$／3 （m）	評価
原子炉建屋	$0.33 * 1$	19，700	652	20，352	115，000	0.18	\bigcirc
制御建屋	0．33＊1						
タービン建屋	$0.38{ }^{11}$						
海水ポンプ室 （補機ポンプエリ ア）	$\begin{gathered} 0.20^{* 2} \\ (0.60 * 3) \end{gathered}$						
復水貯蔵タンク	0.20 ＊1						

注記＊ 1 建屋等の外壁扉の下端レベルから敷地レベル $0 . P .+13.8 \mathrm{~m}$ を引いた値
＊2 海水ポンプ室の躯体の上端から敷地レベル 0. P．＋13．8mを引いた値
＊3 海水ポンプ室浸水防止壁上端から敷地レベル 0. P．+13.8 m を引いた値
＊4 基準地震動 S s による地震力に対して，耐震性が確保されない屋外タンク等につい て，複数同時破損を想定し，全量が敷地に流出するとした溢水量
＊5 2 号機 補機泠却海水系放水路より生じる溢水
＊6 敷地レベル 0．P．+13.8 m の敷地面積
＊7 敷地レベル 0．P．+13.8 m からの浸水深

浸水イメージ（ $\mathrm{A}-\mathrm{A}$ 矢視）
※津波による補機放水の溢水量を考慮した場合の浸水深は 0.18 m だが，補機冷却海水系放水ピットが，海水 ポンプ室補機ポンプエリアに近く，流れの影響を受け ることで，一時的にカーブ高さ（ 0.2 m ）を超える可能性を考慮し，敷地高さ（0．P．13．8m）に対して天端高さ が 0. P． 14.4 m （敷地からの高さ 0.6 m ）となる浸水防止壁を設置。

図 3－41 補機冷却海水系放水路からの溢水概要
（4）津波防護対策
$「$（3）評価結果」に示すとおり，浸水防護重点化範囲への浸水を防止するため，浸水防止設備として浸水防護重点化範囲との境界に水密扉を設置する。また，浸水防護重点化範囲の境界の壁面等に存在する配管等の貫通部に貫通部止水処置を実施 する。海水ポンプ室補機ポンプエリア周りには浸水防止壁を設置する。また，軽油 タンクエリアの開口部については，浸水防止蓋の設置及び貫通部止水処置を実施す る。浸水防止設備を設置する範囲は，浸水防護重点化範囲（浸水を想定するエリア） との境界とし，屋外タンク等の損傷による溢水による浸水深（GL＋0．18m（0．P．13．98m）） を考慮した貫通部止水処置を実施する。表 3－16に内郭防護として考慮する事象と津波防護対策の整理を示し，浸水防護重点化範囲の境界の整理を図3－43に示す。ま た，表 3－17にこれらの内郭防護として浸水対策の一覧を示し，内郭防護として浸水対策を実施する範囲を図 3－45，タービン建屋内における浸水イメージを図 3－44に示す。

上記の内郭防護としての浸水防止設備は，VI－1－1－8「発電用原子炉施設の溢水防護に関する説明書」における溢水の対策範囲も含む形になっているが，これらの範囲に設置する溢水の対策設備についても，耐津波設計と同等の耐震設計を行う。

津波の流入防止を期待する復水器水室出入口弁及びタービン補機泠却海水ポンプ吐出弁については，基準津波到達前に漏えいを検知し自動閉止している弁であるた め，溢水の対策設備としたらえで，津波到達時においても弁の閉止状態の維持が可能な設計とする。なお，当該弁の仕様確認で行った水圧試験圧力が，津波波力の圧力を上回っており，閉止状態が維持されることを確認する。

これらの詳細な設計方針については，添付書類「VI－1－1－2－2－5 津波防護に関す る施設の設計方針」に示す。

図 3－42 浸水防止設備（内郭防護）の位置の概要図（1／2）

海水ポンプ室補機ポンプエリア

注記＊ 1 浸水防護重点化範囲（浸水を想定するエリア）については，静的な耐震 Sクラス設備（タンク，配管，手動弁）のみが存在するエリアであり，耐震Sクラス設備（タンク，配管，手動弁）の浸水に よる影響を評価し，機能喪失しないことを確認している。
軽油タンクエリア

図 3－42 浸水防止設備（内郭防護）の位置の概要図（2／2）

表3－16 内郭防護として考慮する事象と津波防護対策の整理

	内郭防護として考慮する溢水事象	$\begin{aligned} & \text { 想定事象の } \\ & \text { 分類 } \end{aligned}$	津波の流入	溢水事象に対する主な対応 （内部溢水対策）	浸水防護重点化範囲への影響	浸水防護重点化範囲の境界への津波防護対策	津波防護対策 の分類	$\left\lvert\, \begin{gathered} \text { 内部溢水 } \\ \text { との兼用 } \\ \text { 有無 } \end{gathered}\right.$
$\begin{aligned} & \text { 屋 } \\ & \text { (} \end{aligned}$	内部溢水にて考慮する耐震B，Cクラス機器の損傷による溢水	内部溢水	津波の流入なし	- 水密扉 - 貫通部止水処置	浸水防護重点化笓囲への浸水防止のため，浸水防護重点化笵囲の境界における内部溢水対策を内郭防護とする。	－水密扉（原子炉建屋，制御建屋）10個 （内訳）表3－17：設備No．1～7，9～11 －貫通部止水処置（原子炉建屋，制御建屋） （内訳）表3－17：設備No．13， 16	（A）	有
	（a）タービン建屋内の主復水器を設置 するエリアの津波による溢水	内部溢水	津波の流入なし （津波到達前に復水器水室出入口弁が閉止しているため）	- 循睘水系隔㒀システム - 费通部止水処置		－貫通部止水処置（制御建屋） （内訳）表3－17：設備No． 14 －津波到達時の波力に対する復水器水室出入口弁の評価	（B）	有
	（b）タービン補機冷却海水系配管を數設する原子炬機器冷却海水配管ダクト及びタービン建屋タービン袖機冷却水系熱交換器・ポンプ室内のタービン補機冷却海水系配管を設置するエリアの津波による溢水	内部溢水	津波の流入なし （津波到達前にタービ ン補機泠却海水ポン プ吐出弁が閉止して いるため）	$\begin{aligned} & \text { - タービン補機冷却海水采隔離シス } \\ & \text { 「ラム寉 } \\ & \text {-水密扉, 貫通部止水処置 } \end{aligned}$		－水密扉（制御建屋） 1 個 （内訳）表3－17：設備No． 8 －貫通部止水処置（原子炉建屋，制御建屋） （内訳）表3－17：設備№．12，13 －津波到達時の波力に対するタービン補機冷却海水ポンプ吐出弁の評価	（C）	有
$\begin{aligned} & \text { 屋 } \\ & \text { 外 } \end{aligned}$	（c）海水ポンプ室循環水ポンプエリアの津波による溢水	内部溢水	津波の流入なし	循澴水系配等の耐震性確保による ハウンダリ幾能維持	循睘水系配管の耐震性碓保により影響はない。	－	－	－
	（d）海水ポンプ室補機ポンプエリアの津波による溢水	内部溢水	津波の流入なし	タービン補機冷却海水系配管の耐震性碓保によるバウンダリ機能維持	タービン補機冷却海水系配管の耐震性碓保により影響はな い。	－	－	－
	（e）建屋外周地下部における地下水位 の上昇	内部溢水	津波の流入なし	貫通部止水処置	地下水位上昇の影響は内部溢水にて考慮	－	－	－
	（f）屋外タンク等の損傷による溢水	内部溢水	津波の流入なし	- 浸水防止蒠 - 费通部止水処置	浸水防護重点化範囲への浸水防止のため，浸水防護重点化筺囲の境界における内部溢水対策を内郭防護とする。	－浸水防止蓋（軽油タンクエリア） 3 個 （内訳）表3－17：設備No．19，20，21 －貫通部止水処置（軽油タンクエリア） （内訳）表3－17：設備No．17，18	（D）	有
					津波襲来時の補機椧却海水系放水路逆流防止設備の一時的な閉止による補機放水の敷地への溢水を考慮し，浸水防護重点化範囲への浸水防止のため，海水ポンプ室補機ポンプ エリアに浸水防止壁を設置する。	－浸水防止壁（海水ポンプ室補機ポンプエリア）1個 （内訳）表3－17：設備No． 22	（E）	無

$\Leftrightarrow \mathrm{PN}$

【考慮する事象に対する浸水防護重点化範囲境界の整理の色別凡例】

- 内部溢水にて考慮する耐震 B，C クラス機器の損傷による溢水
- ＂．＂（a）タービン建屋内の主復水器を設置するエリアの津波による溢水影響
（b）タービン補機冷却海水系配管を敷設する原子炉機器泠却海水配管ダクト内及びタービン建屋（タービン補機冷却水系熱交換器• ポンプ室）内のタービン補機冷却海水系配管を設置するエリアの津波による溢水の影響
——（f）屋外タンク等の損傷による溢水
［凡例】
浸水防護重点化範囲
－
浸水防護重点化範囲（浸水を想定するエリア）浸水範囲
浸水範囲（タービン非管理区域）

図3－43 浸水防護重点化範囲の境界の整理

ज

表 3－17 内郭防護として浸水対策の一覧（1／2）

設備分類	設備	設備名称	設置場所	設計に用いる 浸水深	考慮する浸水 （浸水発生箇所）	設計に用いる浸水深の考え方	$\left\lvert\, \begin{gathered} \text { 津波防護対策 } \\ \text { の分類 } \end{gathered}\right.$
浸水防止設備 （内郭防護）	1	（1）原子炬建屋浸水防止水密扉（No．1）	原子炬建屋（O．P． 14.0 m ）	$\begin{gathered} \mathrm{FL}+0.4 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .14 .4 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （タービン建屋（O．P．14．0m））	タービン建屋（O．P．14．Om）における耐震B，Cクラス機器の褑数同時破損 による浸水深（ $\mathrm{FL}+0.3 \mathrm{~m}$ ）に，+0.1 m を考慮して設計に用いる浸水深（内部溢水）を適用	（A）
	2	（2）原子炬建屋浸水防止水密扉（No．2）	原子炬建屋（O．P． 14.0 m ）	$\begin{gathered} \mathrm{FL}+0.4 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .14 .4 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （タービン建屋（O．P．14．0m））	タービン建屋（O．P． 14.0 m ）における耐震B，Cクラス機器の褑数同時破損 による浸水深（ $\mathrm{FL}+0.3 \mathrm{~m}$ ）に，+0.1 m を考慮して設計に用いる浸水深（内部溢水）を適用	（A）
	3	（3）制御建屋浸水防止水密扉（No．1）	制御建屋（ ${ }^{\text {a }}$（ P．18．5m）	$\begin{gathered} \mathrm{FL}+4.0 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .22 .5 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （1号機制御建屋（O．P．18．5m））	1 号制御建屋（O．P．18．5m）における耐震B，Cクラス機器の複数同時破損 による浸水深（FL＋4．0m）は保守的に床面から天井までの高さを考慮し て設計に用いる浸水深（内部溢水）を適用	（A）
	4	（44制御建屋浸水防止水密舮（No．2）	制御建屋（O．P．14．0m）	$\begin{gathered} \mathrm{FL}+4.0 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .18 .0 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （1号制御建屋（O．P．14．0m））	1 号制御建屋（O．P．14．0m）における耐震B，Cクラス機器の複数同時破損 による浸水深（FL＋4．0m）は保守的に床面から天井までの高さを考慮し て設計に用いる浸水深（内部溢水）を適用	（A）
	5	（5）制御建屋浸水防止水密啟（No．3）	制御建屋（ ${ }^{\text {a }}$（ P．14．0m）	$\begin{gathered} \mathrm{FL}+4.0 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .18 .0 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （1号制御建屋（O．P．14．0m））	1 号制御建屋（O．P． 14.0 m ）における耐震B，Cクラス機器の複数同時破損 による浸水深（ $\mathrm{FL}+4.0 \mathrm{~m}$ ）は保守的に床面から天井までの高さを考慮し て設計に用いる浸水深（内部溢水）を適用	（A）
	6	（6）計測制御電源室（B）浸水防止水密扉（No．3）	制御建屋（O．P．7．0m）	$\begin{gathered} \mathrm{FL}+0.4 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .7 .4 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 $($ タービン建屋 $(O . P .7 .0 \mathrm{~m})$ ）	夕ービン建屋（O．P．7．0m）における耐震B，Cクラス機器の複数同時破損 による浸水深（ $\mathrm{FL}+0.3 \mathrm{~m}$ ）に，+0.1 m を考慮して設計に用いる浸水深（内部溢水）を適用	（A）
	7	（7）制御建屋空調機械室（ A ）浸水防止水密扉	制御建屋（O．P．0．5m）	$\begin{gathered} \text { FL+17.5m } \\ (\mathrm{O} . \mathrm{P} .18 .0 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （1号機制御建屋（O．P．0．5m））	1号制御建屋（O．P．0．5m）における耐震B，Cクラス機器の複数同時破損 による浸水深（FL＋17．5m）は保守的に床面から天井までの高さを考慮し て設計に用いる浸水深（内部溢水）を適用	（A）
	8	（8）制御建屋空調機械室（B）浸水防止水密扉	制御建屋（O．P．0．5m）	$\begin{gathered} \mathrm{FL}+0.5 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .1 .0 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損鷦による溢水〔タービン補機冷却海水系配管の損鹪笝所か らの溢水量を含む］ （タービン建屋（O．P．－1．2m））	タービン建屋（非管理区域，O．P．－1．2m）における耐震B，Cクラス機器の複数同時破損（タービン補機冷却海水系配管の損傷籄所からの溢水量 を含む）考慮した浸水深（FL＋2．1m）に，+0.1 m 考慮して設計に用いる浸水深（FL＋2．2m（O．P．1．0m））（内部溢水）を適用する。その場合，当該扉の設置位置が，O．P．0．5mため，制御建屋のFL＋0．5mに相当する。	（C）
	9	（9）第2号機MCR 浸水防止水密扉	制御建屋（ ${ }^{\text {a }}$（ P．22．5m）	$\begin{gathered} \mathrm{FL}+4.0 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .26 .5 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （1号制御建屋（O．P．22．5m））	1 号制御建屋（O．P． 22.5 m ）における耐震B，Cクラス機器の複数同時破損 による浸水深（FL＋4．0m）は保守的に床面から天井までの高さを考慮し て設計に用いる浸水深（内部溢水）を適用	（A）
	10	（10）制御建屋浸水防止水密扉（No．4）	制御建屋（ ${ }^{\text {a }}$（ P．14．0m）	$\begin{gathered} \mathrm{FL}+0.4 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .14 .4 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （補助ボイラー建屋（O．P．14．0m））	補助ボイラー建屋（O．P．14．0m）における耐震B，Cクラス機器の複数同時破損による浸水深（FL +0.3 m ）に，+0.1 m を考慮して設計に用いる浸水深 （内部溢水）を適用	（A）
	11	（11）制御建屋浸水防止水密扉（No．5）	制御建屋（ ${ }^{\text {a }}$（ P． 14.0 m ）	$\begin{gathered} \mathrm{FL}+0.4 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .14 .4 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損傷による溢水 （タービン建屋（O．P．14．0m））	タービン建屋（O．P．14．Om）における耐震B，Cクラス機器の複数同時破損 による浸水深（ $\mathrm{FL}+0.3 \mathrm{~m}$ ）に，+0.1 m を考慮して設計に用いる浸水深（内部溢水をを適用	（A）

表3－17 内郭防護として浸水対策の一覧（2／2）

設備分類	No．	設備名称	設置場所	設計に用いる浸水深	考慮する浸水 （浸水発生箇所）	設計に用いる浸水深の考え方	津波防詨対策 の分類
浸水防止設備 （内郭防護	12	貫通部止水処置（第2号機原子炉建屋）	原子炉建屋外壁 （タービン建屋と隣接）	$\begin{gathered} \mathrm{FL}+2.2 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .1 .0 \mathrm{~m}) \end{gathered}$	耐霣B，Cクラス機器の損鹪による溢水 ［タービン補機洽却海水系配管の損㑺箇所か らの溢水量を含む］ （タービン建屋（O．P．－1．2m））	タービン建屋（非管理区域，O．P．－1．2m）における耐震B，Cクラス機器の複数同時破損（タービン補機冷却海水系配管の損傷箇所からの溢水量 を含む）考慮した浸水深（FL＋2．1m）に，+0.1 m 考慮して設計に用いる浸水深（FL＋2．2m（O．P．1．0m））（内部溢水）を適用する。	（C）
	13		$\begin{aligned} & \text { 原子炬建屋外壁 } \\ & \text { (タービン建屋と隣接) } \end{aligned}$	内部溢水にて設定	タービン建屋における耐震B，Cクラス機器の損售による溢水	耐震B，Cクラス機器を有するタービン建屋と隣接する浸水防護重点化䈁囲（原子炉建屋）の境界については，内郭防護として扱い，内部溢水に て保守的に設定した浸水深を適用する。	（A）
	14	貫通部止水处置（ 第2号制御建屋）	制御建屋外壁 （タービン建屋と隣接）	$\begin{gathered} \mathrm{FL}+2.3 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .2 .1 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損倠による溢水 を循環水系配管の伸縮䋛手の損㑺個所からの溢水量含む门 （タービン建屋（O．P．－0．2m））	タービン建屋（管理区域，O．P．－0．2m）における耐震B，Cクラス機器の複数同時破損（循環水系配管の伸縮継手の損傷個所からの溢水量含む） を考慮した浸水深（FL＋2．2m）に，+0.1 m 考慮して設計に用いる浸水深 （FL＋2．3m（O．P．2．1m））（内部溢水）を適用する。	（B）
	15		制御建屋外壁 （タービン建屋と隣接）	$\begin{gathered} \mathrm{FL}+2.2 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .1 .0 \mathrm{~m}) \end{gathered}$	耐震B，Cクラス機器の損隹による溢水〔タービン補機洽却海水系配管の損㿥箇所か らの溢水量を含を］ （タービン建屋（O．P．－1．2m））	タービン建屋（非管理区域，O．P．－1．2m）における耐震B，Cクラス機器の複数同時破損（タービン補機冷却海水系配管の損傷箇所からの溢水量 を含む）考慮した浸水深（FL＋2．1m）に，+0.1 m 考慮して設計に用いる浸水深（FL＋2．2m（O．P．1．0m））（内部溢水）を適用する。	（C）
	16		制御建屋外壁 （タービン建屋，1号制御建屋，補助ボイラー建屋と隣接）	内部溢水にて設定	タービン建屋，1号制御建屋，補助ボイラー建屋における耐震B，Cクラス機器の損賃による溢水	耐震B，Cクラス機器を有するタービン建屋，1号制御建屋，補助ボイラー建屋と隣接する浸水防護重点化範囲（制御建屋）の境界については，内郭防護として扱い，内部溢水にて保守的に設定した浸水深を適用す る。	（A）
	17	貫通部止水処置（第2号機㹩油タンクエリア）	$\begin{gathered} \mathrm{GL} \\ \text { (O.P.13.8m) } \end{gathered}$	$\begin{gathered} \mathrm{GL}+0.18 \mathrm{~m} \\ \text { (O.P.13.98m) } \end{gathered}$	地震時の屋外タンク等の損傷による溢水	屋外タンク等の複数同時破損，補機放水路からの溢水を考慮した溢水評価にて保守的に設定した浸水深を適用	（D）
	18		浸水防護重点化範囲（浸水を想定するエリア）との境界	$\begin{gathered} \text { 軽油タンク(A), (B) 室 } \\ \text { との境界 } \\ \mathrm{FL}+5.48 \mathrm{~m}(\mathrm{O} . \mathrm{P} .13 .98 \mathrm{~m}) \\ \text { 軽油タンク } \mathrm{H} \text {) 室との境界 } \\ \mathrm{FL}+8.58 \mathrm{~m}(\mathrm{O} . \mathrm{P} .13 .98 \mathrm{~m}) \end{gathered}$	浸水防護重点化節囲（浸水を想定するエリア） において，GL＋0．18m（O．P．13．98m）まで浸水 すると想定	地震時の屋外タンク等の損傷による溢水が発生し，GL＋0．18mまで，浸水防護重点化範囲（浸水を想定するエリア）である軽油タンク（A）， （B），（H）室が没水した場合を想定した浸水深を適用	（D）
	19	地下軽油タンク燃料移送ポンプポンプ室アクセ又用浸水防止蓋（No．1）	$\begin{gathered} \mathrm{GL} \\ \text { (O.P.13.8m) } \end{gathered}$	$\underset{(\mathrm{GL}+0.18 \mathrm{~m}}{(\mathrm{OL} .13 .98 \mathrm{~m})}$	地震時の屋外タンク等の椇傷による溢水	屋外タンク等の複数同時破損，補機放水路からの溢水を考慮した溢水評価にて保守的に設定した浸水深を適用	（D）
	20	地下軽油タンク燃料移送ポンプポンプ室アクセ ス用浸水防止蓋（No．2）	$\begin{gathered} \mathrm{GL} \\ \text { (O.P.13.8m) } \end{gathered}$	$\begin{gathered} \mathrm{GL}+0.18 \mathrm{~m} \\ (\mathrm{O} P .13 .98 \mathrm{~m}) \end{gathered}$	地震時の屋外タンク等の損罋による溢水	屋外タンク等の複数同時破損，補機放水路からの溢水を考慮した溢水評価にて保守的に設定した浸水深を適用	（D）
	21	地下軽油タンク機器般出入口浸水防止蓋	$\begin{gathered} \text { GL } \\ \text { (O.P.13.8m) } \end{gathered}$	$\begin{gathered} G L+0.18 \mathrm{~m} \\ (\mathrm{O} . \mathrm{P} .13 .98 \mathrm{~m}) \end{gathered}$	地震時の屋外タンク等の損傷による溢水	屋外タンク等の複数同時破損，補機放水路からの溢水を考慮した溢水評価にて保守的に設定した浸水深を適用	（D）
	22	第2号機海水ポンプ室浸水防止壁	$\begin{gathered} \text { 海水ポンプ室カーブ } \\ (\mathrm{O} . \mathrm{P} .14 .0 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{GL}+0.18 \mathrm{~m} \\ \text { (O.P.13.98m) } \end{gathered}$	地震時の屋外タンク等の椇傷による溢水	屋外タンク等の複数同時破損，補機放水路からの溢水を考慮した溢水評価にて保守的に設定した浸水深を適用設計で用いる浸水深は海水ポンブ室カーブ高さを越えないが，敷地高さ から0．6mの浸水防止壁（天端高さ（O．P．14．4m））を設置	（E）

【 凡例】

3.5 水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止に係る評価

津波防護対象設備への影響のうち，水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止 に係る評価に当たっては，津波による水位低下や水位上昇といった水位変動に伴う取水性の低下並びに砂移動や漂流物等の津波の二次的な影響による津波防護対象設備が有する重要な安全機能及び重大事故等に対処するために必要な機能への影響を防止す るための評価を行うため，「（1）評価方針」にて評価を行う方針を定め，「（2）評価方法」に定める評価方法を用いて評価を実施し，評価の結果を「（3）評価結果」に示 す。

評価において，水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響を与える可能性がある場合は，「（4）津波防護対策」に示す対策を講じることにより，水位変動に伴う取水性低下及び津波の二次的な影響によって，津波防護対象設備が有する重要な安全機能及 び重大事故等に対処するために必要な機能を損なわないこととし，この場合の「（3）評価結果」は，津波防護対策を踏まえて示すこととする。
（1）評価方針
水位変動に伴う取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止に係る評価では，海水を使用し プラントの泠却を行うために海域と連接する系統を持ち，津波による水位変動が取水性に影響を与える可能性があると考えられる非常用海水ポンプ，大容量送水ポン プ（タイプI）及び大容量送水ポンプ（タイプII）を対象に，水位変動に対して非常用海水ポンプ等の取水性が確保できることの確認を行う。
a．非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプ II）の取水性

津波による水位の低下及び波力に対して，非常用海水ポンプ，大容量送水ポン プ（タイプ I ）及び大容量送水ポンプ（タイプ II）が機能保持できる設計である ことを確認する。また，津波による水位の低下に対して，プラントの冷却に必要 な海水が確保できることを確認する。
b．津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の機能保持確認

津波による水位変動に伴ら海底の砂移動•堆積及び漂流物に対して取水口等の通水性が確保できることを確認し，浮遊砂等の混入に対して非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）が機能保持で きる設計であることを確認する。
（2）評価方法
a．非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプ II）の取水性

非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプII）については，海水ポンプ室の下降側の評価水位と非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水可能水位 を比較し，津波の評価水位が非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水可能水位を下回る可能性の有無を評価 する。

また，非常用海水ポンプは揚水管が水中にあるため，津波による波力の影響の有無を評価する。
b．津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の機能確保
（a）砂移動による取水口から海水ポンプ室までの通水性の影響確認
取水口から取水路を経て非常用海水ポンプが設置される海水ポンプ室までの経路について，砂移動による通水性への影響を確認する。取水口の吞口部に設置される貯留堰の底面の高さは 0．P．－7．1m（基準津波による地盤沈下量 0.72 m を考慮した値）であり，取水口の吞口は 7 m を超える高さを有している。また，海水ポンプ室の底面の高さは O．P．-12.4 m であり，原子炉補機冷却海水ポンプ の吸込み下端から 1.15 m ，高圧炉心スプレイ補機冷却海水ポンプの吸込み下端 から 2.45 m の距離がある。これらの構造を踏まえ，砂移動に関する数値シミュ レーションを実施し，基準津波の水位変動に伴う砂の移動•堆積に対して，取水口が閉塞することなく，取水口，取水路及び海水ポンプ室の通水性が確保可能であるか否かを評価する。
（b）砂混入時の非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水機能維持の確認

発電所周辺の砂の粒径分布の調査結果及び砂移動に関する数値シミュレーシ ョン結果から求められる基準津波の水位変動に伴う浮遊砂の濃度を基に浮遊砂 の平均粒径及び平均濃度を算出し，浮遊砂の混入に対して非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水性が保持可能か否かを評価する。
（c）漂流物による取水性への影響評価
イ．取水口の閉塞の評価
発電所敷地内及び敷地周辺で漂流物となる可能性のある施設•設備を抽出 し，抽出された漂流物となる可能性のある施設•設備が漂流した場合に，取水口の閉塞が生じる可能性の有無を図 3－45の評価フローに基づき評価する。

ロ．除塵装置の漂流の可能性の評価
海水中の塵芥物を除去するために設置されている除塵装置（固定式バース クリーン及びトラベリングスクリーン）が，基準津波の流速に対して漂流物 となる可能性の有無について評価する。評価においては，基準津波の流速に より生じる除塵装置前後の水位差が設計水位差以下であることを確認する。基準津波の流速により生じる除塵装置前後の水位差が設計水位差を超える場合には，構造部材の強度評価を実施する。また，除塵装置は低耐震クラス設備であることから，津波の要因となる地震による破損の可能性，津波に伴う漂流物の衝突による破損の可能性について評価する。

ハ．衝突荷重として用いる漂流物の選定
イ．，ロ．の結果を踏まえ，発電所に対する漂流物となる可能性が否定でき ない施設•設備のらち津波防護に関する施設の設計に衝突荷重として用いる漂流物の選定を行う。

基準津波は，第一波の水位が高く，流速も大きいことから，第一波により漂流したものが津波防護施設及び浸水防止設備に与える影響が大きくなる。 このことに加え，衝突荷重を考慮する施設の設置標高等を踏まえて，図3－ 46 に示す影響評価フローに基づき，衝突荷重として用いる漂流物を選定する。衝突荷重の算定に当たつては，選定された漂流物の種類，位置，津波の流況等に応じて，「道路橋示方書（I 共通編•IV下部構造編）•同解説（（社）日本道路協会，平成 14 年 3 月）」，「FEMA（2012）＊」等による式から適用可能なも のを選定して算出し，最も大きくなった衝突荷重を設定する。 ＊：Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition，FEMA P－646，Federal Emergency Management Agency， 2012

検討対象施設•設備の抽出			
調査分類A （敷地内の人工構造物）	調查分類B （漁港•集落•海岸線の人工構造物）	調査分類C （海上設置物）	$\begin{gathered} \text { 調査分類D } \\ \text { (船舶) } \end{gathered}$

東北地方太平洋沖地震に伴う津波の漂流物実綪			
発電所数地内	女川町•女川湾	気仙沼市，南三淕旷	

\qquad
定•

O 2 （1）VI－1－1－2－2－4 R 5

取水口に到達する可能性のある漂流物

図 3－46 津波防護施設の機能に対する影響評価フロー

（3）評価結果

a．非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプ II）の取水性
（a）非常用海水ポンプ
引き波による水位低下時においても，原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの継続運転が十分可能となるように，取水口底盤に海水を貯水する天端高さ 0．P．－6．3m の貯留堰を設置する。貯留堰により津波による水位低下に対して原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの取水可能水位 O．P．－8．95m 以上の水位を確保するため，原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプは機能を保持できる。取水設備の構造概要を図 3－47に示す。

入力津波による取水口前面における水位時刻歴波形を図 3－48 に示す。貯留堰天端高さ 0．P．－6．3mを下回る時間は，最大で約 4 分（191秒）である。また， 3.11 地震の余効変動による約 0.3 m の隆起を考慮した場合の貯留堰高さを下回 る時間は199秒，今後も余効変動が継続することを想定し3．11地震の広域的 な地殻変動の解消により約 1 m 隆起したとしても貯留堰高さを下回る時間は 221 秒である。

以上の結果を踏まえ，保守的に 10 分間にわたり原子炉補機冷却海水ポンプ
（定格流量 $1,900 \mathrm{~m}^{3} / \mathrm{h}$ ） 4 台及び高圧炉心スプレイ補機冷却海水ポンプ（定格流量 $250 \mathrm{~m}^{3} / \mathrm{h}$ ）1台が全数運転を継続した場合に加え，常用海水ポンプである循環水ポンプ（定格流量 $99,720 \mathrm{~m}^{3} / \mathrm{h}$ ）2台のトリップからポンプ停止までの時間（遊転時間分 30 秒）に取水する水量も考慮した水量は $2,971 \mathrm{~m}^{3}$ である。この時，引 き波時に使用可能な貯留堰の有効貯留水量は $4,300 \mathrm{~m}^{3}$ であるため，原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプは十分に機能を確保 できる設計となっている。非常用取水設備である貯留堰，取水口，取水路及び海水ポンプ室の容量の考え方については，添付書類「VI－1－1－4－8－5－1 取水設備に係る設定根拠に関する説明書」に示す。

なお，取水路及び海水ポンプ室が循環水系と非常用海水冷却系で併用されて いるため，発電所を含む地域に大津波警報が発表された際には，海水ポンプ室水位を中央制御室にて監視し，引き波による水位低下を確認した場合，非常用海水冷却系の取水量を確保するため，常用系海水ポンプ（循環水ポンプ）を停止する運用とする。

図 3－47 取水設備構造概要

図 3－48 取水口前面における入力津波による水位時刻歴波形 （水位下降側）

非常用海水ポンプは揚水管が水中にあるため，津波による波力の影響の有無 を評価する。海水ポンプ室の流速の状況から，非常用海水ポンプの揚水管に $1.10 \mathrm{~m} / \mathrm{s}$ の流速が作用すると想定し，流体によって生じた抗力が揚水管に作用 した場合の各部位の評価を実施する。評価結果を表3－17及び表3－18 に示す。波力により非常用海水ポンプの各部位に発生する応力は，許容応力よりも小さ いため，非常用海水ポンプの取水性に影響はない。

表 3－17 評価結果一覧（原子炉補機冷却海水ポンプ）

評価部位	材料	項目	発生応力 (MPa)	許容応力 (MPa)
基礎ボルト	SCM435	せん断	1	366
中間支持台 基礎ボルト	SUS316	せ張	1	475
コラムパイプ （揚水管）	SUS316	一次一般膜	118	

表3－18 評価結果一覧（高圧炉心スプレイ補機冷却海水ポンプ）

評価部位	材料	項目	発生応力 (MPa)	許容応力 (MPa)
基礎ボルト	SUS304	せん断	1	118
第一中間支持台 基礎ボルト＊	SUS316	せん張	8	153
第二中間支持台 基礎ボルト＊	SUS316	せん断	2	118
コラムパイプ （揚水管）	SUS316	一次一般膜	40	118

＊：中間支持台のせん断応力は，それぞれ評価点の中間支持台のみで押し津波 の全荷重を集中荷重として受けるモデルにて計算しており，発生応力は各中間支持台で同一となる
（b）大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）
大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）は，津波 が収束した後に使用することから，水位低下はポンプの取水性に影響しない。
b．津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の機能確認
（a）砂移動による取水口から海水ポンプ室までの通水性への影響確認
津波襲来後における第2号機取水口前の海底面は 0．P．－8．3m（0．P．－7．5m に基準津波による地盤沈下量 0.72 m を考慮した値）で，貯留堰高さは 0. P．-7.1 m （0．P．-6.3 m に基準津波による地盤沈下量 0.72 m を考慮した値）であり，平均潮位（ 0. P．+0.77 m ）において，取水路の取水可能部は 7 m を超える高さを有す る。これに対し，数値シミュレーションにより得られた砂移動に伴う取水口前面の砂の堆積量は，取水路横断方向の平均で，約 0.3 m であることから，取水口 を閉塞することはない。

また，海水ポンプ室底面は 0. P．-12.4 m であり，非常用海水ポンプの下端は，原子炉補機冷却海水ポンプは O．P．－11． 25 m ，高圧炉心スプレイ補機冷却海水ポ ンプは O．P．-9.95 m であることから，海水ポンプ室底面から $1.15 \sim 2.45 \mathrm{~m}$ 高い位置に海水ポンプが設置されている。海水ポンプ室への砂堆積による非常用海水ポンプの取水性への影響について評価した結果，数値シミュレーションによ り得られた砂移動に伴ら海水ポンプ室における砂の堆積厚さは，水位上昇側で最大 0.05 m ，水位下降側で最大 0.10 m であることから，非常用海水ポンプへの影響はなく機能は保持できる。非常用海水ポンプ吸込み下端の位置の関係を図 3－49に示す。

大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプ II）の取水は，大容量送水ポンプ吸込用のホースの先端に取り付けた付属水中ポンプを海水ポ ンプ室又は取水口に設置して吸い込む構造となっている。付属水中ポンプには フロートが設けられており，水面付近の海水を取水する。そのため，海水ポン プ室及び取水口の砂の堆積量は大容量送水ポンプ（タイプI）及び大容量送水 ポンプ（タイプII）の取水性に影響を与えない。大容量送水ポンプの吸込みイ メージを図 3－50に示す。

図 3－49 非常用海水ポンプ吸込み下端の位置の関係
（フロート付）

図 3－50 大容量送水ポンプ吸込みイメージ
（b）砂混入時の非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水機能維持の確認

イ．非常用海水ポンプ
浮遊砂の評価を実施した結果，発電所周辺の砂の平均粒径は約 0.2 mm で，粒径数ミリメートル以上の砂はごくわずかであることを確認した。また，粒径数ミリメートル以上の砂は浮遊し難いものであることを踏まえると，非常用海水ポンプに，取水時の浮遊砂の一部が軸受潤滑水としてポンプ軸受に混入したとしても非常用海水ポンプの軸受に設けられた 4.5 mm （原子炉補機冷却海水ポンプ）及び 2.5 mm （高圧炉心スプレイ補機泠却海水ポンプ）の異物逃し溝から排出されるため，非常用海水ポンプの機能は保持できる。非常用海水ポンプの軸受の構造を図 $3-51$ に示す。

※ 1：ポンプ起動時に水没状態である箇所に適用
※ 2 ：ポンプ起動時に水没状態ではない箇所に適用（焼き付き防止）
図 3－51 非常用海水ポンプの軸受構造図

ロ．大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）
大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）は，津波収束した後に使用する設備であり，海水ポンプ室の浮遊砂濃度は，図 3－52 に示すとおり，津波襲来後約 2 時間で津波襲来前と同程度まで低下すること から取水機能に影響はない。

また，同設備は，一般的に災害時に海水を取水するために用いられる設備 であり，取水への砂混入に対しても耐性を有している。浮遊砂の評価結果よ り発電所周辺の砂の平均粒径は約 0.2 mm で，粒径数ミリメートル以上の砂は ごくわずかであること，また，粒径数ミリメートル以上の砂は浮遊し難いも のであることを踏まえると，仮に浮遊砂が混入した場合においても，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水機能は保持できる。

図 3－52 海水ポンプ室の浮遊砂濃度時刻歴波形
（c）漂流物による取水性への影響評価

イ。 取水口の閉塞の評価

図 3－45 のフロー図に従い実施した各項目の評価結果を以下に示し，漂流物となる可能性のある施設•設備による取水口への影響評価を行った結果を表3－19～表3－24に示す。
（イ）発電所周辺地形及び基準津波の流況の把握
発電所は，東北地方太平洋側のリアス海岸の南端部に位置する牡鹿半島 の女川湾南側の湾口部に位置し，発電所よりも西側の湾の奥側には複数の漁港や女川町等の市街地が形成されている。

上昇側の基準津波は，発電所の東方より襲来し，地震発生約 42 分後に水位がおおむね最大となり， $5 \mathrm{~m} / \mathrm{s}$ 以上の流速が確認される。下降側の基準津波は，発電所の東方より襲来し，地震発生約 36 分後に敷地前面に到達し， $5 \mathrm{~m} / \mathrm{s}$ 以上の流速が確認される。発電所港湾内の主たる流れは，上昇側と下降側のいずれの基準津波においても，港湾口からの寄せ波時の海水の流入，引き波時の流出によるものである。
（ロ）漂流物の抽出範囲の設定
発電所周辺地形及び基準津波の流況から，時間をかけて遠方から発電所 に漂流する可能性も考慮し，漂流物を抽出する範囲は女川湾全体とした。抽出範囲を図3－53に示す。
（ハ）漂流物として検討する施設•設備の抽出
漂流物の抽出範囲における平成 23 年（2011 年）東北地方太平洋沖地震 に伴ら津波の漂流物の特徴及びその実績を把握するとともに，発電所周辺 と類似した地形（気仙沼市及び南三陸町）での漂流物の特徴も把握し，検討対象施設•設備の抽出を行った。

抽出にあたつては，施設•設備の配置特性を踏まえ，抽出範囲を敷地内 と敷地外に分類した上で，敷地外については，漁港•集落•海岸線の人工構造物，海上設置物，船舶に分類して調査を行った。
（二）取水性への影響評価
発電所敷地内で漂流し，取水口に到達する可能性があるものとして，鉄骨造建物の壁材，屋外中継盤等の内部構成部材，車両等が挙げられるが，取水口は十分な通水面積を有していることから，取水性への影響はない。 また，発電所の物揚岸壁又は港湾内に停泊する燃料等輸送船，作業船，貨物船等の船舶があるが，津波警報等発令時には，緊急退避するため，漂流 することはなく，取水性への影響はない。なお，2•3号機カーテンウォ ール内で用いるゴムボートについては取水口に到達する可能性があるが，取水口は十分な通水面積を有していることから，取水性への影響はない。

発電所の防波堤については，地震及び津波により損傷する可能性がある が，ケーソン堤は $3,000 \mathrm{t}$ 級の重量構造物であり，取水口まで 200 m 程度の距離があることから取水口に到達することはない。上部コンクリートにつ いても重量物であり，取水口に到達することはない。消波ブロック，被覆石及び捨石については，滑動する可能性があるが，取水口は港湾内よりも約 4 m 高い位置にあることから，滑動して取水口に到達することはない。発電所敷地外で漂流し，取水口に到達する可能性があるものとしては，車両，コンテナ・ユニットハウス，小型船舶，油槽所のタンク及びがれき （壁材，木片，廃プラスチック類等）が挙げられるが，取水口は十分な通水面積を有していることから，取水性への影響はない。このほか，発電所近傍で操業する漁船が航行不能になった場合においても，取水口は十分な通水面積を有していることから，取水性への影響はない。

検討対象施設•設備の抽出範囲

図 3－53 漂流物として検討する施設•設備の抽出範囲

No．	名 称	主材料	重量	Step1（漂流する可能性）				
				漂流		滑動		評価＊${ }^{\text {1 }}$
				検討結果＊${ }^{\text {P }}$	比重＊2	設置場所	検討結果＊1	
1	北防波堤導標敷地側導標	鋼材	$\begin{aligned} & \text { 約 } 0.5 \mathrm{t} \\ & \text { 約 } 0.2 \mathrm{t} \end{aligned}$	【判断基準：b】 当該設備の比重と海水の比重を比較した 結果，漂流物とはならない。＊3	$\begin{gathered} \text { 鋼材比重 } \\ \text { 【7.85】 } \end{gathered}$	発電所敷地内	【判断基準：e】 細長い円筒形の構造であり，津波波力を受けにくいため，滑動しない。	II
2	東防波堤灯台	R C	約 30 t	【判断基準：b】 No． $3 \sim 5$ の施設を代表に評価を行った。扉や窓等の開口部が地震又は津波波力に より破損して気密性が喪失し，施設内部 に津波が流入する。ただし，3．11地震 に伴ら津波の実績を踏まえ，開口部上端 から天井までの空間を含めた施設体積を算出し，当該設備の比重と海水の比重を比較した結果，漂流物とはならない。	（3．11地震に伴う津波の実績を踏ま え，開口部上端か ら天井までの空間 を含めた施設体積 と重量から算出） ［1．16～1．34】	発電所敷地内	これらの施設は直接基礎又は杭基礎構造であることから，滑動しにくいと考えられる が， 3.11 地震に伴ら津波の事例では，4階建てのRC 造 の建物が約 70 m 移動したとの報告があることから，滑動す ることを考慮する。	Step2 （滑動）
3	3 号機放水路サンプリング建屋	R C（ R C 造）	約 185 t					
4	2 号機放水口モニ夕建屋	R C（ RC 造）	約 224 t					
5	2 号機放流管真空ポンプ室	R C（ R C 造）	約 136 t					
6	1 号機放水路サンプリング室 （排水路試料採取室）	R C（ R C 造）	－					
7	1 号機放水口モニ夕建屋	R C（ RC 造）	－					
8	港湾作業管理詰所	鋼材（鉄骨造）石膏ボード	－	【判断基準：b，c】 扉や窓等の開口部及び壁材が地震又は津波波力により破損して気密性が喪失し，施設内部に津波が流入する。このことを踏まえ，施設本体については主材料であ る鋼材の比重から漂流物とはならない。一方，地震又は津波波力により施設本体 から分離した壁材等についてはがれき化 して漂流物となる。	《施設本体》 鋼材比重 【7．85】	発電所敷地内	【判断基準：e， g 】施設本体（鉄骨のみ）は，津波波力を受けにくい構造であ るとともに， 3.11 地震に伴 ら津波の実績から滑動しな\qquad	II
9	オイルフェンス格納倉庫	鋼材（鉄骨造）石膏ボード	－					
					《施設本体以外》石膏ボード比重【0．65】	発電所敷地内	－	$\begin{aligned} & \text { Step2 } \\ & \text { (漂流) } \end{aligned}$
10	屋外電動機等点検建屋	鋼材（鉄骨造）石膏ボード	－					

注記＊1：判断基準（Noの場合）及び評価については図3－45を参照
＊2：鋼材及びコンクリートの比重は道路橋示方書•同解説より設定，石膏ボードの比重はJIS A6901より設定
＊3：内空を有する構造であるため，津波波力によって破損して地面又は本体設備から離れた後，浮遊する可能性があるが，破損した部分からすぐに海水が流入し，
浮遊できる時間はごくわずかであることから，海水の比重と比較し，漂流物とはならないと評価している。

表3－19（2）発電所構内における人工構造物（調查分類A）の評価結果（Step1）

No．	名 称			主材料	重量	Step1（漂流する可能性）					
				漂流		滑動		評価＊${ }^{1}$			
				検討結果＊${ }^{\text {1 }}$		比重＊2	設置場所		検討結果＊${ }^{\text {\％}}$		
11	配電柱				コンクリート	390 kg ／本	【判断基準：b】 当該設備の比重と海水の比重を比較 した結果，漂流物とはならない。＊4	$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \end{gathered}$	発電所敷地内	細長い円筒形の構造であ り，津波波力を受けにくい ため，滑動しない。	II
12	車両		検用車両		鋼材	約 $0.7 \sim 2.15 \mathrm{t}$	地震又は津波波力を受けた後も内空 は保持されるため，内空を含めた当該設備の比重を算出し，海水の比重 と比較した結果，漂流物となる。	（軽•普通乗用車，ワンボッ クスを想定し，重量と体積か ら算出） $【 0.2 \sim 0.57 】$	発電所敷地内	－	Step2 （漂流）
			重機	約 $2.7 \sim 41.2 \mathrm{t}$		【判断基準：b】地震又は津波波力を受けた後も内空 は保持されるため，内空を含めた当該設備の比重を算出し，海水の比重	（ダンプトラック，バックホ ウ，ラフタークレーン等を想定し，重量と体積から算出）【 $1.11^{* 3} \sim 3.36$ 】	発電所敷地内	当該設備の最大形状の車両 として使用済燃料輸送車両 を代表とする。 車両は地盤等に固定されて	Step2 （滑動）	
			輸送車両	約 9．7～34t		と比較した結果，漂流物とはならな い。	（使用済燃料•LLW 輸送車両） $【 1.25 \sim 1.36 】$	発電所敷地内	いないことから，滑動を考慮する。	Step2 （滑動）	
13	2 号機カーテンウォール （PC 板）			PC	約 6 t	【判断基準：a】安全対策工事完了時までに撤去する予定であることから，漂流物とはな らない。	$\begin{aligned} & \text { PC 比重 } \\ & \text { 【2. } 49 \text { 】 } \end{aligned}$	発電所敷地内	【判断基準：a】 安全対策工事完了時までに撤去する予定であることか ら，滑動しない（漂流物と はならない）。	II	
14	$\begin{aligned} & 2 \text { 号機カーテンウォール } \\ & \text { (H 型鋼) } \end{aligned}$			鋼材	約 2.5 t		鋼材比重【7．85】	発電所敷地内		II	
15	$\begin{gathered} 2 \text { 号機カーテンウォール } \\ \text { (上部コンクリート) } \end{gathered}$			コンクリート	約 $9 \mathrm{t} / \mathrm{m}$		$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \end{gathered}$	発電所敷地内		II	

注記＊1：判断基準（Noの場合）及び評価については図 3－45を参照
＊2：鋼材，コンクリート及びPCの比重は道路橋示方書•同解説より設定
＊3：漂流物評価において，基準津波時における上限浮遊砂体積濃度（ 1% ）を考慮した海水比重 1.05 を適用した場合においても，「漂流物とはならない」と評価し たもののうち最小の比重は1．11（車両系重機）であることから，評価結果には影響しない
＊4：内空を有する構造であるため，津波波力によって破損して地面又は本体設備から離れた後，浮遊する可能性があるが，破損した部分からすぐに海水が流入し，浮遊できる時間はごくわずかであることから，海水の比重と比較し，漂流物とはならないと評価している。

表3－19（3）発電所構内における人工構造物（調查分類A）の評価結果（Step1）

90

注記＊1：判断基準（No の場合）及び評価については図 3－45を参照
＊2：鋼材，コンクリート及びPCの比重は道路橋示方書•同解説より設定

表3－19（4）発電所構内における人工構造物（調查分類A）の評価結果（Step1）
$\stackrel{\ominus}{\bullet}$

No．	名 称	主材料	重量	Step1（漂流する可能性）				
				漂流		滑動		評価＊${ }^{1}$
				検討結果＊${ }^{\text {1 }}$	比重＊${ }^{\text {2 }}$	設置場所	検討結果＊${ }^{\text {P }}$	
24	角落し	P C	－	【判断基準：b】当該設備の比重と海水の比重を比較 した結果，漂流物とはならない。＊3	$\begin{aligned} & \text { PC 比重 } \\ & \text { 【2. } 49 \text { 】 } \end{aligned}$	発電所敷地内	同種設備であるカーテンウォール の PC 板で代表させ，滑動すること を考慮する。	Step2 （滑動）
25	3 号機放水口モニタリング架台	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	主材料が同じ（鋼材）である車両 （車両系重機及び（燃料等輸送車両）で代表させ，滑動することを考慮する。	Step2 （滑動）
26	海上レーダー支柱	コンクリート	－		$\begin{gathered} \text { コンクリート } \\ \text { 比重 } \\ \text { 【2.34】 } \end{gathered}$	発電所敷地内	【判断基準：e】 細長い円筒形の構造であり，津波波力を受けにくいため，滑動しな い。	II
27	鋼製ゲート	鋼材	－		鋼材比重 【7.85】	発電所敷地内	【判断基準：e】 格子状の構造であり，津波波力を受けにくいため，滑動しない。	II
28	警備用カメラ支柱	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 細長い円筒形の構造であり，津波波力を受けにくいため，滑動しな い。	II
29	排水路フラップゲート巡視路	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】細長い円筒形で格子状に設置され ており，津波波力を受けにくいた め，滑動しない。	II

注記＊1：判断基準（Noの場合）及び評価については図 3－45を参照
＊2：鋼材，コンクリート及びPCの比重は道路橋示方書•同解説より設定
＊3：海上レーダー支柱，警備用カメラ支柱及び排水路フラップゲート巡視路は，内空を有する構造であるため，津波波力によって破損して地面又は本体設備から離 れた後，浮遊する可能性があるが，破損した部分からすぐに海水が流入し，浮遊できる時間はごくわずかであることから，海水の比重と比較し，漂流物とは ならないと評価している。

表3－19（5）発電所構内における人工構造物（調查分類A）の評価結果（Step1）
$\stackrel{\leftrightarrow}{*}$

No．	名 称	主材料	重量	Step1（漂流する可能性）				
				漂流		滑動		評価＊${ }^{1}$
				検討結果＊1	比重＊2	設置場所	検討結果＊${ }^{\text {1 }}$	
30	ページング支柱	鋼材	－	【判断基準：b】 当該設備の比重と海水の比重を比較 した結果，漂流物とはならない。＊3	鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 細長い円筒形の構造であり，津波波力を受 けにくいため，滑動しない。	II
31	照明支柱	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 細長い円筒形の構造であり，津波波力を受 けにくいため，滑動しない。	II
32	立入制限区域柵	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 格子状の構造であり，津波波力を受けにく いため，滑動しない。	II
33	マンホール	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 地面に設置されており，津波波力を受けに くいことから，滑動しない。	II
34	グレーチング	鋼材	－		鋼材比重 $\text { 【 } 7.85 】$	発電所敷地内	【判断基準：e】 格子状の構造であり，津波波力を受けにく いため，滑動しない。	II
35	$\begin{aligned} & \text { バッチャープラント } \\ & \text { (コンクリート製造設備) } \end{aligned}$	鋼材	－	【判断基準：a】 バッチャープラント，工事用仮設物及び建物は，仮設備であり，安全対策工事完了時までに撤去する予定で あることから，漂流物とはならな い。	鋼材比重 $\text { 【 } 7.85 \text { 】 }$	発電所敷地内	【判断基準：a】 バッチャープラント，工事用仮設物及び建物は，仮設備であり，安全対策工事完了時 までに撤去する予定であることから，滑動 しない（漂流物とはならない）。	II
36	工事用仮設物及び建物	－	－		－	発電所敷地内		II

注記＊1：判断基準（Noの場合）及び評価については図 3－45を参照
＊2：鋼材の比重は道路橋示方書•同解説より設定
＊3：ページング支柱及び照明支柱は，内空を有する構造であるため，津波波力によって破損して地面又は本体設備から離れた後，浮遊する可能性があるが，破損し た部分からすぐに海水が流入し，浮遊できる時間はごくわずかであることから，海水の比重と比較し，漂流物とはならないと評価している。

表3－19（6）発電所構内における人工構造物（調查分類A）の評価結果（Step1）

No．	名 称	主材料	重量	Step1（漂流する可能性）				
				漂流		滑動		評価＊${ }^{1}$
				検討結果＊1	比重＊2	設置場所	検討結果＊1	
37	防波堤（ケーソン）	コンクリート	約 3，000t	【判断基準：b】当該設備の比重と海水の比重を比較した結果，漂流物 とはならない。	コンクリート比重 【2．34】	発電所敷地内	【判断基準： f 】発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ に対して，当該設備の安定流速は $15.7 \mathrm{~m} / \mathrm{s}$ であることから，滑動しな い。	II
38	防波堤（上部コンクリート）	コンクリート	約 $100 \mathrm{t} / \mathrm{m}$		$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \end{gathered}$	発電所 敷地内	【判断基準：f】発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ に対して，当該設備の安定流速は $13.1 \mathrm{~m} / \mathrm{s}$ であることから，滑動しな い。	II
39	防波堤（消波ブロック）	コンクリート	30 t		$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \end{gathered}$	発電所敷地内	発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ に対して，当該設備の安定流速は $5.2 \sim 7.3 \mathrm{~m} / \mathrm{s}$ であることから，滑動 する。	Step2 （滑動）
40	防波堤（被覆石）	石	500 kg ／個以上		石材比重【2．29】	発電所 敷地内	発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ に対して，当該設備の安定流速は $3.6 \mathrm{~m} / \mathrm{s}$ であることから，滑動す る。	Step2 （滑動）
41	防波堤（捨石）	石	$5 \sim 100 \mathrm{~kg} /$ 個		石材比重 【2.29】	発電所敷地内	発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ に対して，当該設備の安定流速は $1.6 \sim 2.7 \mathrm{~m} / \mathrm{s}$ であることから，滑動 する。	Step2 （滑動）

注記＊1：判断基準（Noの場合）及び評価については図 3－45を参照
＊2：コンクリートの比重は道路橋示方書•同解説より設定，石材の比重は「港湾の施設の技術上の基準•同解説（2007）」より設定

表 3－19（7）発電所構内における人工構造物（調査分類A）の評価結果（Step2～3）

No．		名称	主材料	重量	Step1 の結果	Step2（到達する可能性）＊	Step3（閉塞する可能性）＊	評価＊
2	東防波堤灯台		R C	約 30 t	3.11 地震に伴う津波の事例で は，4階建ての RC 造の建物が約 70 m 移動したとの報告があるこ とから，滑動することを考慮す る。	【判断基準：i】 開口部上端から天井までに空気の層を考慮しているが，地面の段差等によって滑動中に傾いたり，港湾内に沈む過程でこの空気の層は失われ，主材料であるコンクリー トの比重になると考えられる。 主材料であるコンクリートの比重 を用いた安定流速（ $9.4 \sim 10.2 \mathrm{~m} / \mathrm{s}$ ） は港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ より も大きくなるため，港湾内に沈ん だ後には滑動しないことから， 2号機取水口前面には到達しない。		
3	3 号機放水路サンプリング建屋		R C（ RCC 造）	－				
4	2 号機放水口モニタ建屋		R C（ R C 造）	－				
5	2 号機放流管真空ポンプ室		R C（ RC C 造）	－				
6	1 号機放水路サンプリング室 （排水路試料採取室）		R C（ RCC 造）	－				
7	1号機放水口モニタ建屋		R C（ RCC 造）	－				
8	港湾作業管理詰所		鋼材（鉄骨造）石膏ボード	－	壁材等（石膏ボード）等ががれ き化して漂流する。	到達を考慮する。	【判断基準： j 】 想定しているがれき（壁材等）は軽量物であり，水面に浮遊することか ら取水口を閉塞することはない。	
9	オイルフェンス格納倉庫		鋼材（鉄骨造）石膏ボード	－				IV
10	屋外電動機等点検建屋		鋼材（鉄骨造）石膏ボード	－				
12	車両	巡視点検用車両	鋼材	$\begin{gathered} \text { 約 } 0.7 \sim \\ 2.15 \mathrm{t} \end{gathered}$	内空を含めた当該設備の比重と海水の比重の関係から，漂流す る。	到達を考慮する。	【判断基準： j 】 車両の中で最も形状の大きい使用済燃料輸送車両（全長：約 15.2 m ，全幅：約 3 m ）が第 2 号機取水口前面に到達 したとしても，取水口の取水面積の方 が十分大きいことから，取水口を閉塞 することはない。	IV
		車両系重機		$\begin{gathered} \hline \text { 約 } 2.7 \sim \\ 41.2 \mathrm{t} \end{gathered}$	最大形状の使用済燃料輸送車両 を代表に評価した。 上記車両の安定流速は $4.1 \mathrm{~m} / \mathrm{s}$ であり，車両は地盤等に固定さ れていないため，滑動する。	当該設備は，防潮堤の海側エリア全域で停車又は移動していること から，保守的に取水口前面上部で滑動することを想定するため，到達を考慮する。		
		燃料等輸送車両		$\begin{gathered} \text { 約 } 9.7 \sim \\ 34 \mathrm{t} \end{gathered}$				

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－19（8）発電所構内における人工構造物（調査分類A）の評価結果（Step2～3）
\leftrightarrow

No．	名称	主材料	重量	Step1 の結果	Step2（到達する可能性）＊	Step3（閉塞する可能性）＊	評価＊
16	1 号機及び 2 • 3 号機 カーテンウォール（PC 板）	PC	約 8 t	当該設備の安定流速 $6.2 \mathrm{~m} / \mathrm{s}$ と発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ を比較した結果，滑動する。	当該設備と第 2 号機取水口前面の離隔は約 40 m であるのに対して，安定流速が港湾内の最大流速を超 える時間から算出される滑動距離 は約 450 m であることから，到達 を考慮する。	【判断基準： j 】 PC板の形状に対して，取水口の取水面積の方が十分大きいことか ら，取水口を閉塞することはな い。	IV
19	屋外キュービクル	鋼材	－	《施設本体》 主材料が同じ（鋼材）である車両（車両系重機及び（燃料等輸送車両）で代表させ，滑動することを考慮す る。 《施設本体以外》 内部を構成する部材が設備本体か ら分離して漂流物となる。	《施設本体》 車両（車両系重機及び（燃料等輸送車両）と同様に到達を考慮する。 《施設本体以外》到達を考慮する。	《施設本体》 【判断基準： j 】当該設備本体の形状 $(2.3 \mathrm{~m} \times 4.7 \mathrm{~m} \times$ $1.3 \mathrm{~m})$ に対して，取水口の取水面積 の方が十分大きいことから，取水口を閉塞することはない。 《施設本体以外》 【判断基準：j】 想定しているがれき（内部を構成 する部材）は，軽量物であり，水面 に浮遊することから，取水口を閉塞することはない。	IV
20	屋外中継盤	鋼材	－				
21	海上レーダー中継盤	鋼材	－				
22	海側設備分電盤	鋼材	－				
23	電気中継盤	鋼材	－				
24	角落し	P C	－	同種設備であるカーテンウォール の PC 板で代表させ，滑動すること を考慮する。	カーテンウォールの PC 板と同様 に到達を考慮する。	【判断基準：j】角落しの形状（ $15 \mathrm{~m} \times 4.94 \mathrm{~m} \times$ $0.3 \mathrm{~m})$ に対して，取水口の取水面積の方が十分大きいことから，取水口を閉塞することはない。	IV

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－19（9）発電所構内における人工構造物（調査分類A）の評価結果（Step2～3）

No．	名称	主材料	重量	Step1 の結果	Step2（到達する可能性）＊	Step3（閉塞する可能性）＊	評価＊
25	3 号機放水口モニタリング架台	鋼材	－	主材料が同じ（鋼材）である車両（車両系重機及び（燃料等輸送車両）で代表させ，滑動する ことを考慮する。	車両（車両系重機及び（燃料等輸送車両）と同様に到達を考慮す る。	【判断基準： j 】 3 号機放水口モニタリング架台の形状 $(2.5 \mathrm{~m} \times 1.2 \mathrm{~m} \times 2.5 \mathrm{~m})$ に対して，取水口の取水面積 の方が十分大きいことから，取水口を閉塞することはな	IV
39	防波堤（消波ブロック）	コンクリート	30 t	各設備の安定流速と発電所の港湾内の最大流速 $9.3 \mathrm{~m} / \mathrm{s}$ を比較した結果，滑動する。	【判断基準：i】 各設備は滑動するものの，第2号機取水口は発電所港湾内に比へ，約 4 m 高い位置にあることから，到達しない。	－	III
40	防波堤（被覆石）	石材	$500 \mathrm{~kg} /$ 個以上				
41	防波堤（捨石）	石材	5～100kg／個				

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－20（1）漁港•集落•海岸線における人工構造物（調査分類B）の評価結果

No．	名 称	主材料	重量	Step1（漂流する可能性）		（到達する可能性）＊	（閉塞する可能性）＊	評価＊
				検討結果＊	比重			
1	車両	鋼材	－	地震又は津波波力を受けた後も内空は保持されるため，漂流物とな ることを想定する。	－	到達を考慮する。	【判断基準：j】調査分類 A の車両で最も形状の大き い使用済燃料輸送車両（全長：約 15.2 m ，全幅：約 3 m ）と同等を想定 したとしても，取水口の取水面積の方が十分大きいことから，取水口を閉塞することはない。	IV
2	$\begin{aligned} & \text { コンテナ・ } \\ & \text { コニットハウス } \end{aligned}$	鋼材等	約 $30 t$		－		【判断基準：j】想定するコンテナの形状（ $12.2 \mathrm{~m} \times$ $2.5 \mathrm{~m} \times 2.9 \mathrm{~m})$ に対して，取水口の取水面積の方が十分大きいことから，取水口を閉塞することはない。	IV
3	油槽所 （軽油•重油タンク）	鋼材	$\begin{gathered} \text { 容量 } \\ \text { 約 } 200 \mathrm{k} 1 \end{gathered}$	内地震又は津波波力を受けた後も内空は保持されるため，漂流物と なることを想定する。 なお，類似地形からの検討結果か ら最大規模を考慮する。	－		【判断基準： j 】 タンク形状は円形であるのに対し て，取水口は平面状となっているこ とから，タンクが取水口を完全に閉塞することはない。	IV
4	漁具	－	－	【判断基準：b】地震又は津波波力によって，当該設備は損傷すると考えられ，損傷 で生じた木片，廃プラスチック類等のがれきが漂流物となる。 一方，コンクリート及び鋼材を主材料とするものについては，それ ぞれの比重と海水の比重を比較し た結果，漂流物とはならない。	コンクリ ート比重 【2．34】 鋼材比重 [7.85]	木片，廃プラスチック類等のがれきについて，到達を考慮する。	【判断基準： j 】 想定しているがれき（木片，廃プラ スチック類等）は，軽量物であり，水面に浮遊することから取水口を閉塞することはない。	IV
5	工事用資機材	R C	－					

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表3－20（2）漁港•集落•海岸線における人工構造物（調査分類B）の評価結果

No．	名 称	主材料	重量	Step1（漂流する可能性）		$\begin{gathered} \text { Step2 } \\ \text { (到達する可能性) * } \end{gathered}$	Step3（閉塞する可能性）＊	評価＊
				検討結果＊	比重			
				【判断基準：b，c】 扉や窓等の開口部が地震又は津波波力により破損して気密性が震失	$\begin{gathered} \text { 《施設本体》 } \\ \text { コンクリート比重 } \\ \text { 【2.34】 } \end{gathered}$	－	－	I
6	排水処理施設	$\begin{gathered} \text { R C } \\ (\mathrm{RC} \text { 造) } \end{gathered}$	延床面積約 $550 \mathrm{~m}^{2}$	このことを踏まえ，施設本体につ いては主材料の比重から漂流物と はならない。 一方，地震又は津波波力により施設本体から分離したものががれき化して漂流物となる。	《施設本体以外》漂流することを考慮	到達を考慮する。	【判断基準： j 】想定しているがれきは，軽量物で あり，水面に浮遊することから取水口を閉塞することはない。	IV
7	家屋	－	－	【判断基準：b】 地震又は津波波力によって，当該設備は損傷すると考えられるた め，建物の形状を維持したまま漂流物となることはない。 ただし，損傷で生じたコンクリー ト及び鋼材を主材料とするものに ついては，それぞれの比重と海水 の比重を比較した結果，漂流物と はならないが，木片，壁材等につ いてはがれき化して漂流物とな る。		木片，壁材等のが れきについて，到達を考慮する。	【判断基準： j 】 想定しているがれき（木片，壁材等）は，軽量物であり，水面に浮遊することから取水口を閉塞する ことはない。	IV

注記＊：判断基準（No の場合）及び評価については図 3－45を参照

表3－20（3）漁港•集落•海岸線における人工構造物（調査分類B）の評価結果

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表3－20（4）漁港•集落•海岸線における人工構造物（調査分類B）の評価結果

No．	名 称	主材料	重量	Step1（漂流する可能性）		$\begin{gathered} \text { Step2 } \\ \text { (到達する可能性) * } \end{gathered}$	Step3（閉塞する可能性）＊	評価
				検討結果＊	比重			
17	けい留施設•防波堤•護岸	$\begin{aligned} & \text { בンクリート } \\ & \text { 鋼材 } \end{aligned}$	－	【判断基準：b】 当該施設の比重と海水の比重を比較した結果，漂流物 とはならない。	$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \\ \text { 鋼材比重 } \\ \text { [7.85 } \end{gathered}$	－	－	I
18	物揚クレーン	鋼材	－		鋼材比重【7．85】			
19	配電柱•街灯•信号機	$\begin{aligned} & \text { 鋼材 } \\ & \text { בンクリート } \end{aligned}$	約 1．6t／基		$\begin{gathered} \text { コンクリート比重 } \\ \text { 【 } 2.34 】 \\ \text { 鋼材比重 } \\ \text { 【 } 7.85 】 \end{gathered}$			
20	通信用鉄塔	鋼材	－		鋼材比重 $\text { 【 } 7.85 \text { 】 }$			
21	灯台•航路標識	R C，鋼材	約 60t／基		$\begin{gathered} \text { コンクリート比重 } \\ \text { 【2.34】 } \\ \text { 鋼材比重 } \\ \text { 【7.85】 } \end{gathered}$			

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－21（1）海上設置物（調查分類 C）の評価結果

No．	名 称	主材料	重量	Step1（漂流する可能性）		（到達する可能性）＊	Step3 （閉塞する可能性）＊	評価＊
				検討結果＊	比重			
1	漁業権消滅範囲標識 ブィ	F R P	1 t 未满	アンカー等で係留されているが，津波波力によりアンカー等が破断•破損するおそれがあることか ら，漂流物となる。	－	到達を考慮する。	【判断基準： j 】 想定しているがれき（FRP 材）は，軽量物であり，水面に浮遊すること から取水口を閉塞することはない。	IV
2	航路標識ブイ	鋼材	5 t 未满	【判断基準：b】 アンカー等で係留されているが，津波波力によりアンカー等が破断•破損し，浮標部の気密性も喪失する。このことを踏まえ，設備本体については主材料の比重と海水の比重を比較した結果，漂流物 とはならない。一方，上部の軽量物が漂流物となる可能性がある。	《設備本体》鋼材比重【7．85】	－	－	I
3	海水温度観測用浮標	鋼材	5 t 未满		$\begin{gathered} \text { 上部材 } \\ \text { 漂流すること } \\ \text { を考慮 } \end{gathered}$	上部材について，到達 を考慮する。	【判断基準： j 】 想定しているがれきは，軽量物であ り，水面に浮遊することから取水口 を閉塞することはない。	IV
4	海水温度観測鉄塔	鋼材	－	【判断基準：b】 津波波力により部分的に損傷する おそれがあるが，龬材を主材料と した重量物であるため，漂流物と ならない。	$\begin{aligned} & \text { 鋼材比重 } \\ & \text { [7.85】 } \end{aligned}$	－	－	I
7	養殖筏	$\begin{aligned} & \text { フロートロー } \\ & \text { プ・木材 } \end{aligned}$	1 t 未満	アンカー等で係留されているが，津波波力によりアンカー等が破断•破損するおそれがあり，当該設備が損傷して木片等のがれきが漂流物となる。	－	木片等のがれきについ て，到達を考慮する。	【判断基準： j 】 想定しているがれき（木片等）は，軽量物であり，水面に浮遊すること加ら取水口を閉塞することはない。	IV
8	标識ブイ	F R P （想定）	－					

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－21（2）海上設置物（調査分類 C）の評価結果

No．	名 称	主材料	重量	Step1 （漂流する可能性）＊	Step2 （到達する可能性）＊	Step3 （閉塞する可能性）＊	評価＊
5	係留漁船	F R P	発電所敷地前面海域 ：約 5 t （総トン数） 発電所敷地前面海域以外 ：約 19t（総トン数）		到達を考慮する。 （航行中の漁船についても到達を考慮する。）	【判断基準： j 】漁船の最大規模は約 19 t （総トン数）であり，喫水深約 2 m ，船体長さ約 20 m ，幅約 5 m であるのに対して，取水口の取水面積は十分に大きいことから，取水口を閉塞する可能性はない。	IV
6	係留大型漁船	鋼材	約 3，000t （重量トン数） 女川港を船籍港としている最大規模の船舶は約 499t（総ト ン数）の漁船であるが，女川港の岸壁は約 3，000 重量トン級であることから，今後寄港 して係留する可能性のある最大の船舶として，約 3,000 重量トンの大型船舶を想定す	係留索により係留され ているが，津波波力に より係留索が破損する ことで，漂流物となる可能性がある。	【判断基準：h】 3．11地震に伴ら津波の漂流物の特徴から，大型船舶が津波の襲来により被災するパタ ーンとしては，（1）押し波による陸上への乗 り上げ，（2）引き波による水位低下に伴ら転覆•座礁•沈没することが考えられる。 そのため，津波の第一波の寄せ波によって陸上へ乗り上げるおそれがあるが，発電所 には到達しない。また，陸上へ乗り上げな かった場合については，引き波による水位低下に伴い転覆•座礁•沈没するおそれが あるが，発電所には到達しない。仮に女川港湾内に漂流したとしても女川港 には湾口防波堤があり，港外へ漂流しにく い構造となっていること，港外へ漂流した としても，津波の流向の特徴から，女川港 から油側への流れは西から東に向から流れ が卓越していることから，発電所には到達 しない。 以上のことから，係留大型漁船について は，第 2 号機取水口前面には到達しない。	－	III

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表 3－22（1）定期航路船舶等（調査分類 D）の評価結果

注記＊：判断基準（Noの場合）及び評価については図3－45を参照

表 3－22（2）定期航路船舶等（調査分類D）の評価結果

No．	名 称	主材料	重量	Step1 （漂流する可能性）＊	Step2 （到達する可能性）＊	Step3 （閉塞する可能性）＊	評価＊
7	大型漁船 （航行中）	鋼材	約 3，000t （重量トン数） 女川港を船籍港としている最大規模の船舶は約 499t （総トン数）の漁船である が，女川港の岸壁は約 3，000 重量トン級であるこ とから，今後寄港して係留 する可能性のある最大の船舶として，約 3,000 重量ト ンの大型船舶を想定する。	発電所との離隔が最短で約 2 km の沖合 を航行している状況を想定するが，航行中であれば，津波襲来前に沖合への退避が十分可能である。さらに，総卜 ン数 20 トン以上の大型船舶について は，国土交通省による検査（定期検查，中間検查，臨時検査及び臨時航行検査）が義務付けられており，故障等 により操船できなくなるとは考えにく いことから，漂流する可能性は低いと考えられる。 ただし，漂流する可能性を完全に否定 することはできないため，Step2（到達する可能性）の検討も踏まえて評価 する。	【判断基準： h 】通常の退避ルート上からの軌跡解析を行い，発電所に漂流するような特徴的 な流れがないことを確認した。 また，発電所に近いルートを航行する ことを想定し，同様の軌跡解析を行っ たが，発電所に漂流するような特徴的 な流れがないことを確認した。以上から，発電所に到達しない。	－	III

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照

表3－23 燃料等輸送船（調査分類D）の評価結果

表 3－24 作業船，貨物船等（調査分類D）の評価結果

No．	名 称	主材料	重量	$\begin{gathered} \text { Step1 } \\ (\text { 漂流する可能性) * } \end{gathered}$	$\begin{gathered} \text { Step2 } \\ \text { (到達する可能性) * } \end{gathered}$	Step3 （閉塞する可能性）＊	評価＊
1	作業船（ゴムボート以外），貨物船	鋼材	約 3，000t （重量トン数） 発電所港湾の岸壁は約 3,000 重量トン級であるこ とから，入港する可能性の ある最大の船舶として，約 3， 000 重量トンの船舶を想定する。	【判断基準：d】 津波警報等報発令時には，原則とし て緊急退避を行うため漂流物とは ならない。 なお，緊急退避にあたっては，当社 と船会社並びに荷役作業会社との連絡体制を整備するとともに，輸送 ごとに地震•津波発生時の対応を保安規定に定めて管理することとし ている。	－	－	I
2	作業船（ゴムボート）	ゴム	1 t 未満	2 •3号機カーテンウォールが障害物となり，沖合いへの退避が困難で あるため，漂流を考慮する。	到達を考慮する。	【判断基準： j 】調査分類 C の係留小型船舶（約 19t：総トン数）と同等を想定した としても，取水口の取水面積の方が十分大き いことから，取水口を閉塞することはない。	IV

注記＊：判断基準（Noの場合）及び評価については図 3－45を参照
（ロ）除塵装置の漂流の可能性の評価
海水中の塵芥物を除去するために設置されている除塵装置については，海水ポンプ室への異物の混入を防止する効果が期待できるが，津波時には損傷して，除塵装置自体が漂流物となる可能性があることから，基準津波 に対する強度を確認した。

除塵装置は，取水口に固定式バースクリーン，海水ポンプ室にバケット型スクリーンを設置している。固定式バースクリーンは，鋼材を溶接によ り格子状に接合した固定バー枠構造であり，取水口1区画当たり 8 分割さ れた固定バー枠からなる。固定バー枠の上端及び下端は取水口に支持され，中間部分は中間受桁により支持される。バケット型スクリーンは，バケッ ト（網枠）がキャリングチェーンにより接合された構造であり，キャリン グチェーンは上部の駆動機構により回転する。下部スプロケットは海水ポ ンプ室，上部スプロケットは駆動装置に支持される。除塵装置の構造を図 3－54，図3－55に示す。

取水路の管路解析により得られた固定バースクリーン及びバケット型ス クリーン位置での水位差を用いて評価した。
評価の結果，固定バースクリーン及びバケット型スクリーンは，設計水位差内であったことから，漂流物とはならず，取水性に影響を及ぼすもの ではない。評価結果を表3－25に示す。

また，固定式バースクリーンは鋼材を溶接接合した構造となつており，仮に津波により変形するようなことがあっても個々の鋼材が分離し漂流物化する可能性はない。

除塵装置は低耐震クラスであることから，津波要因の地震あるいは漂流物の衝突により破損し，変形あるいは分離•脱落して取水口又は海水ポン プ室で堆積する可能性がある。しかし，主たる構成要素であるバケットが隙間の多い構造であること，取水口吞口の断面寸法と非常用海水ポンプに必要な取水路の通水量を考慮すると，除塵装置の変形や分離による堆積に より非常用海水ポンプに必要な通水性が損なわれることはないと考えられ る。

図 3－55 除塵装置構造図（バケット型スクリーン）

表 3－25 除塵装置の取水性影響評価結果

設備	部材	発生水位差／設計水位差	判定
固定式バースクリーン	バースクリーン	$0.1(\mathrm{~m}) / 1.0(\mathrm{~m})$	\bigcirc
	中間受桁	$0.1(\mathrm{~m}) / 1.0(\mathrm{~m})$	\bigcirc
	バケット	$1.2(\mathrm{~m}) / 1.5(\mathrm{~m})$	\bigcirc
	キャリングチェーン	$1.2(\mathrm{~m}) / 1.5(\mathrm{~m})$	\bigcirc

（ハ）衝突荷重として用いる漂流物の選定
発電所敷地内及び敷地周辺で漂流物となる可能性のある施設•設備の調査結果から，基準津波の特徴である第一波で水位及び流速が高くなること等を踏まえ，衝突荷重として用いる以下の漂流物を選定した。

防潮堤及び屋外排水路逆流防止設備（防潮堤北側）で衝突荷重として用 いる漂流物は，浮遊状態のものとして，敷地内の車両（2．15t）を選定した。

また，貯留堰で衝突荷重として用いる漂流物は，浮遊状態のものとして，敷地内の車両（2．15t）及び総トン数 $19 t$ の漁船（排水トン数 57 t ）を，滑動状態のものとして，敷地内の車両（41．2t）を選定した。

なお，総トン数 19 t の漁船（排水トン数 57 t ）は，取水口に到達する可能性のある漂流物のらち，最も質量が大きい漂流物である。

衝突荷重の算定に当たっては，漂流物の種類，位置，津波の流況等に応 じて，「道路橋示方書（I 共通編•IV下部構造編）•同解説（（社）日本道路協会，平成14年3月）」，「FEMA（2012）＊」等による式から適用可能なもの を選定して算出し，最も大きくなった衝突荷重を設定する。
＊：Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition，FEMA P－646，Federal Emergency Management Agency， 2012
（4）津波防護対策
「（3）評価結果」にて示すとおり，水位変動に伴う取水性低下及び津波の二次的 な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止に係る評価を行った結果，引き波時の津波の水位が非常用海水ポンプの取水可能水位を下回るため，水位変動に伴ら非常用海水ポンプの取水性を保持するため，貯留堰を設置する。

VI－1－1－2－2－5 津波防護に関する施設の設計方針
1．概要 $\cdot 1$
2．設計の基本方針 － 2
3．要求機能及び性能目標 $\cdot 3$
3.1 津波防護施設 － 4
3.2 浸水防止設備 － 9
3.3 津波監視設備 26
4．機能設計 27
4.1 津波防護施設 27
4．2 浸水防止設備 33
4．3 津波監視設備 53

1．概要

本添付書類は，添付書類「VI－1－1－2－2－1 耐津波設計の基本方針」に基づき，津波防護に関する施設の施設分類，要求機能及び性能目標を明確にし，各施設の機能設計及 び構造強度設計に関する設計方針について説明するものである。

2．設計の基本方針
発電所に影響を与える可能性がある基準津波の発生により，添付書類「VI－1－1－2－2－ 1 耐津波設計の基本方針」にて設定している津波防護対象設備がその安全機能又は重大事故等に対処するために必要な機能を損なうおそれがないようにするため，津波防護に関する施設を設置する。津波防護に関する施設は，添付書類「VI－1－1－2－2－3 入力津波の設定」で設定している入力津波に対して，その機能が保持できる設計とする。

津波防護に関する施設の設計に当たつては，添付書類「VI－1－1－2－2－4 入力津波によ る津波防護対象設備への影響評価」にて設定している津波防護対策を実施する目的や施設の分類を踏まえて，施設分類ごとの要求機能を整理するとともに，施設ごとに機能設計上の性能目標及び構造強度設計上の性能目標を定める。

津波防護に関する施設の構造強度設計上の性能目標を達成するため，施設ごとに各機能の設計方針を示す。

津波防護に関する施設が構造強度設計上の性能目標を達成するための構造強度の設計方針等については，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算 の方針」に示す。

津波防護に関する施設の設計フローを図2－1に示す。

添付書類「VI－1－1－2－2－4
入力津波による津波防護対象
設備への影響評価」

3．要求機能及び性能目標

4．機能設計
構造強度設計＊
（注）フロー中の番号は本添付書類での記載箇所の章を示す。
＊：添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」

図 2－1 施設の設計フロー

3．要求機能及び性能目標
津波防護対策を実施する目的として，添付書類「VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価」において，津波の発生に伴い，津波防護対象設備がその安全機能又は重大事故等に対処するために必要な機能が損なわれるおそれがないことと している。また，施設の分類については，添付書類「VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価」において，津波防護施設，浸水防止設備及び津波監視設備に分類している。これらを踏まえ，施設分類ごとの要求機能を整理するとともに，施設分類ごとの要求機能を踏まえた施設ごとの機能設計上の性能目標及び構造強度上の性能目標を設定する。

津波防護に関する施設について，施設分類（津波防護施設，浸水防止設備及び津波監視設備）ごとの配置を図3－1に示す。

図 3－1 津波防護に関する施設の配置

3.1 津波防護施設

（1）施設
a．防潮堤
（a）防潮堤（鋼管式鉛直壁）（外郭防護）
（b）防潮堤（盛土堤防）（外郭防護）
b．防潮壁
（a）防潮壁（第2号機海水ポンプ室）（外郭防護）
（b）防潮壁（第 2 号機放水立坑）（外郭防護）
（c）防潮壁（第3号機海水ポンプ室）（外郭防護）
（d）防潮壁（第3号機放水立坑）（外郭防護）
（e）防潮壁（第3号機海水熱交換器建屋）（外郭防護）
c．取放水路流路縮小工
（a）取放水路流路縮小工（第1号機取水路）（No．1），（No．2）（外郭防護）
（b）取放水路流路縮小工（第1号機放水路）（外郭防護）
d．貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）
（2）要求機能
津波防護施設は，繰返しの襲来を想定した入力津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備が，要求される機能を損 ならおそれがないよう，津波による浸水及び漏水を防止することが要求される。
（3）性能目標
a．防潮堤
（a）防潮堤（鋼管式鉛直壁）
防潮堤（鋼管式鉛直壁）は，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持することを機能設計上の性能目標とする。

防潮堤（鋼管式鉛直壁）は，地震後の繰返しの襲来を想定した遡上波の浸水 に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とする。上部工は鋼管杭，鋼製遮水壁，鉄筋コンクリート（RC）遮水壁及び漂流物防護工で構成し，鋼管杭の周囲にコンクリート製の背面補強工を設置す る。下部工の鋼管杭は岩盤又は改良地盤に支持され，すべり安定性を確保する ために改良地盤の海側に置換コンクリートを設置する。上部工の鋼管杭と下部工の鋼管杭は一体の構造であるため，上部工が下部工からずれる又は浮き上が

るおそれのない設計とするとともに，上部工の境界部及び地震時に異なる挙動 を示す可能性がある構造体の境界部には止水ジョイントを設置し，部材を有意 な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標とする。
（b）防潮堤（盛土堤防）
防潮堤（盛土堤防）は，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高 さに余裕を考慮した高さまでの施工により止水性を保持することを機能設計上 の性能目標とする。

防潮堤（盛土堤防）は，地震後の繰返しの襲来を想定した遡上波の浸水に伴 ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とす る。セメント改良土による盛土構造とし，岩盤又は改良地盤に支持され，すべ り安定性を確保するために，改良地盤の海側に置換コンクリートを設置する。 また，十分に低い透水性の材料とすることにより，有意な漏えいを生じない設計とすることを構造強度設計上の性能目標とする。

b．防潮壁

（a）防潮壁（第2号機海水ポンプ室）
防潮壁（第 2 号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路 からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合において も，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持 することを機能設計上の性能目標とする。

防潮壁（第 2 号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路 からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪によ る荷重に対し，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼析），及び鋼製扉 の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭（一部，場所打ちコンクリート杭）とフーチングで構成し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とし，上部工と下部工を一体とした構造とし，上部工が下部工からずれる又は浮き上がるおそれのない設計とするとともに，地震時に異なる挙動を示す可能性がある構造体の境界部に は止水ジョイントを設置し，部材を有意な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標とする。
（b）防潮壁（第2号機放水立坑）
防潮壁（第 2 号機放水立坑）は，地震後の繰返しの襲来を想定した経路から の津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，

想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持する ことを機能設計上の性能目標とする。

防潮壁（第 2 号機放水立坑）は，地震後の繰返しの襲来を想定した経路から の津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼桁）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭とフーチングで構成 し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とし，上部工と下部工を一体とした構造とし，上部工が下部工からず れる又は浮き上がるおそれのない設計とするとともに，地震時に異なる挙動を示す可能性がある構造体の境界部には止水ジョイントを設置し，部材を有意な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標 とする。
（c）防潮壁（第3号機海水ポンプ室）
防潮壁（第3号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路 からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合において も，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持 することを機能設計上の性能目標とする。

防潮壁（第3号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路 からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪によ る荷重に対し，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼桁）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭とフーチングで構成し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とし，上部工と下部工を一体とした構造とし，上部工が下部工か らずれる又は浮き上がるおそれのない設計とするとともに，地震時に異なる挙動を示す可能性がある構造体の境界部には止水ジョイントを設置し，部材を有意な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標とする。
（d）防潮壁（第3号機放水立坑）
防潮壁（第3号機放水立坑）は，地震後の繰返しの襲来を想定した経路から の津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持する ことを機能設計上の性能目標とする。

防潮壁（第3号機放水立坑）は，地震後の繰返しの襲来を想定した経路から の津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼桁）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭とフーチングで構成

し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とし，上部工と下部工を一体とした構造とし，上部工が下部工からず れる又は浮き上がるおそれのない設計とするとともに，地震時に異なる挙動を示す可能性がある構造体の境界部には止水ジョイントを設置し，部材を有意な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標 とする。
（e）防潮壁（第3号機海水熱交換器建屋）
防潮壁（第3号機海水熱交換器建屋）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合にお いても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持することを機能設計上の性能目標とする。

防潮壁（第3号機海水熱交換器建屋）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪 による荷重に対し，上部工は鋼製遮水壁（鋼板）で構成し，第3号機海水熱交換器建屋取水立坑上に設置し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とし，上部工と下部工を一体とした構造と し，上部工が下部工からずれる又は浮き上がるおそれのない設計とすることを構造強度設計上の性能目標とする。
c．取放水路流路縮小工
（a）取放水路流路縮小工（第1号機取水路）（No．1），（No．2）
取放水路流路縮小工（第1号機取水路）（No．1），（No．2）は，地震後の繰返し の襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，第 1 号機取水路からの津波の流入を抑制し，第 1 号機取水路から敷地への津波の流入を防止することを機能設計上の性能目標とす る。
取放水路流路縮小工（第1号機取水路）（No．1），（No．2）は，第 1 号機取水路内に設置するコンクリートに貫通部を設けた構造であり，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（b）取放水路流路縮小工（第 1 号機放水路）
取放水路流路縮小工（第 1 号機放水路）は，地震後の繰返しの襲来を想定し た経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合に おいても，第 1 号機放水路からの津波の流入を抑制し，第 1 号機放水路から敷地への津波の流入を防止することを機能設計上の性能目標とする。

取放水路流路縮小工（第 1 号機放水路）は，第 1 号機放水路内に設置するコ ンクリートに貫通部を設けた構造であり，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪に よる荷重に対し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
d．貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）
貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，地震後の繰返 しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波による水位低下に対して非常用海水ポンプが取水可能な高 さ以上の施工により，非常用海水ポンプの機能が保持でき，かつ，原子炉冷却に必要な海水を確保できることを機能設計上の性能目標とする。
貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，地震後の繰返 しの襲来を想定した遡上波の浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，取水口底盤に設置する鉄筋コンクリート製の堰で構成し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とし，ずれる又は浮き上がるおそれのない設計とするとともに，部村を有意な漏えいを生じない変形にとどめる設計とすることを構造強度設計上の性能目標とする。

3.2 浸水防止設備

（1）設備
a．逆流防止設備
（a）屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）（外郭防護）
（b）屋外排水路逆流防止設備（防潮堤北側）（外郭防護）
（c）補機冷却海水系放水路逆流防止設備（No．1），（No．2）（外郭防護）
b．水密扉
（a）水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）（外郭防護）
（b）水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）（外郭防護）
（c）原子炉建屋浸水防止水密扉（No．1）（内郭防護）
（d）原子炉建屋浸水防止水密扉（No．2）（内郭防護）
（e）制御建屋浸水防止水密扉（No．1）（内郭防護）
（f）制御建屋浸水防止水密扉（No．2）（内郭防護）
（g）制御建屋浸水防止水密扉（No．3）（内郭防護）
（h）計測制御電源室（B）浸水防止水密扉（No．3）（内郭防護）
（i）制御建屋空調機械（A）室浸水防止水密扉（内郭防護）
（j）制御建屋空調機械（B）室浸水防止水密扉（内郭防護）
（k）第 2 号機 MCR 浸水防止水密扉（内郭防護）
（1）制御建屋浸水防止水密扉（No．4）（内郭防護）
（m）制御建屋浸水防止水密扉（No．5）（内郭防護）
c．浸水防止蓋
（a）浸水防止蓋（原子炉機器冷却海水配管ダクト）（外郭防護）
（b）浸水防止蓋（第3号機補機冷却海水系放水ピット）（外郭防護）
（c）浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）（外郭防護）
（d）浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）（外郭防護）
（e）浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））（外郭防護）
（f）浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））（外郭防護）
（g）地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）（内郭防護）
（h）地下軽油タンク機器搬出入用浸水防止蓋（内郭防護）
d．浸水防止壁
（a）第 2 号機海水ポンプ室浸水防止壁（内郭防護）
e．逆止弁付ファンネル
（a）第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），
（No．2），（No．3）（外郭防護）
（b）第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1）， （No．2），（No．3）（外郭防護）
（c）第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）（外郭防護）
（d）第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）（外郭防護）
（e）第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1）， （No．2）（外郭防護）
（f）第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1）， （No．2）（外郭防護）
（g）第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）（外郭防護）
（h）第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）（外郭防護）
f．貫通部止水処置
（a）貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）（外郭防護）
（b）貫通部止水処置（第 2 号機放水立坑防潮壁横断部）（外郭防護）
（c）貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）（外郭防護）
（d）貫通部止水処置（第 3 号機放水立坑防潮壁横断部）（外郭防護）
（e）貫通部止水処置（第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）（外郭防護）
（f）貫通部止水処置（第2号機原子炉建屋）（内郭防護）
（g）貫通部止水処置（第 2 号機制御建屋）（内郭防護）
（h）貫通部止水処置（第2号機軽油タンクエリア）（内郭防護）
（2）要求機能
浸水防止設備は，繰返しの襲来を想定した入力津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備が，要求される機能を損 なうおそれがないよう，浸水想定範囲等における浸水時及び冠水後の波圧等に対す る耐性を評価し，津波による浸水及び漏水を防止することが要求される。
（3）性能目標
a．逆流防止設備
（a）屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）
屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）は，地震後

の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及 び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画 が設置された敷地に屋外排水路逆流防止設備（防潮堤南側）を介して浸水する ことを防止するため，屋外排水路逆流防止設備（防潮堤南側）に想定される津波高さに余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標とする。

屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）は，地震後 の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の扉体で構成し，十分な支持性能を有する屋外排水路（防潮堤南側）の出口側集水ピットに固定する構造 （地中構造物）とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（b）屋外排水路逆流防止設備（防潮堤北側）
屋外排水路逆流防止設備（防潮堤北側）は，地震後の繰返しの襲来を想定し た経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合に おいても，津波防護対象設備を内包する建屋及び区画が設置された敷地前面に屋外排水路逆流防止設備（防潮堤北側）を介して浸水することを防止するため，屋外排水路逆流防止設備（防潮堤北側）に想定される津波高さに余裕を考慮し た高さに対する止水性を保持することを機能設計上の性能目標とする。

屋外排水路逆流防止設備（防潮堤北側）は，地震後の繰返しの襲来を想定し た経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の漂流物防護工及び扉体で構成し，十分な支持性能 を有する屋外排水路（防潮堤北側）の出口側集水ピットに固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（c）補機泠却海水系放水路逆流防止設備（No．1），（No．2）
補機冷却海水系放水路逆流防止設備（No．1），（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置され た敷地に補機冷却海水系放水路逆流防止設備を介して浸水することを防止する ため，補機冷却海水系放水路逆流防止設備に想定される津波高さに余裕を考慮 した高さに対する止水性を保持することを機能設計上の性能目標とする。

補機冷却海水系放水路逆流防止設備（No．1），（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の扉体で構成し，十分な支持性能を有 する防潮壁（第 2 号機放水立坑）に固定する構造とし，地震後，津波後の再使

用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
b．水密扉
（a）水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）
水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリ ア）（No．1）を介して浸水することを防止するため，水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）に想定される津波高さに余裕を考慮し た高さに対する止水性を保持することを機能設計上の性能目標とする。

水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する第3号機海水熱交換器建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とす ることを構造強度上の性能目標とする。
（b）水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）
水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリ ア）（No．2）を介して浸水することを防止するため，水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）に想定される津波高さに余裕を考慮し た高さに対する止水性を保持することを機能設計上の性能目標とする。

水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する第 3 号機海水熱交換器建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とす ることを構造強度上の性能目標とする。
（c）原子炉建屋浸水防止水密扉（No．1）
原子炉建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に対 し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に原子炉建屋浸水防止水密扉（No．1）を介して浸水することを防止するため，原子炉建屋浸水防止水密扉（No．1）に余裕を考

慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とす る。

原子炉建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に伴 ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する原子炬建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（d）原子炉建屋浸水防止水密扉（No．2）
原子炉建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に対 し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に原子炉建屋浸水防止水密扉（No．2）を介して浸水することを防止するため，原子炉建屋浸水防止水密扉（No．2）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とす る。

原子炉建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に伴 ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する原子炉建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（e）制御建屋浸水防止水密扉（No．1）
制御建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋浸水防止水密扉（No．1）を介して浸水す ることを防止するため，制御建屋浸水防止水密扉（No．1）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（f）制御建屋浸水防止水密扉（No．2）
制御建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋浸水防止水密扉（No．2）を介して浸水す ることを防止するため，制御建屋浸水防止水密扉（No．2）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（g）制御建屋浸水防止水密扉（No．3）
制御建屋浸水防止水密扉（No．3）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋浸水防止水密扉（No．3）を介して浸水す ることを防止するため，制御建屋浸水防止水密扉（No．3）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋浸水防止水密扉（No．3）は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（h）計測制御電源室（B）浸水防止水密扉（No．3）
計測制御電源室（B）浸水防止水密扉（No．3）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に計測制御電源室（B）浸水防止水密扉 （No．3）を介して浸水することを防止するため，計測制御電源室（B）浸水防止水密扉（No．3）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

計測制御電源室（B）浸水防止水密扉（No．3）は，津波による溢水を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造 とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（i）制御建屋空調機械（A）室浸水防止水密扉
制御建屋空調機械（A）室浸水防止水密扉は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋空調機械（A）室浸水防止水密扉 を介して浸水することを防止するため，制御建屋空調機械（A）室浸水防止水密扉に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋空調機械（A）室浸水防止水密扉は，津波による溢水を考慮した浸水

に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造と し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とすることを構造強度上の性能目標とする。
（j）制御建屋空調機械（B）室浸水防止水密扉
制御建屋空調機械（B）室浸水防止水密扉は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋空調機械（B）室浸水防止水密扉 を介して浸水することを防止するため，制御建屋空調機械（B）室浸水防止水密扉に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋空調機械（B）室浸水防止水密扉は，津波による溢水を考慮した浸水 に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造と し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とすることを構造強度上の性能目標とする。
（k）第2号機MCR 浸水防止水密扉
第 2 号機 MCR 浸水防止水密扉は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に第 2 号機 MCR 浸水防止水密扉を介して浸水すること を防止するため，第 2 号機 MCR 浸水防止水密扉に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

第 2 号機 MCR 浸水防止水密扉は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉 で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とす ることを構造強度上の性能目標とする。
（1）制御建屋浸水防止水密扉（No．4）
制御建屋浸水防止水密扉（No．4）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋浸水防止水密扉（No．4）を介して浸水す ることを防止するため，制御建屋浸水防止水密扉（No．4）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋浸水防止水密扉（No．4）は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地

震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（m）制御建屋浸水防止水密扉（No．5）
制御建屋浸水防止水密扉（No．5）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋浸水防止水密扉（No．5）を介して浸水す ることを防止するため，制御建屋浸水防止水密扉（No．5）に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

制御建屋浸水防止水密扉（No．5）は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の水密扉で構成し，十分な支持性能を有する制御建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
c．浸水防止蓋
（a）浸水防止蓋（原子炉機器冷却海水配管ダクト）
浸水防止蓋（原子炉機器冷却海水配管ダクト）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地 に浸水防止蓋（原子炉機器冷却海水配管ダクト）を介して浸水することを防止 するため，原子炉機器泠却海水配管ダクトに想定される津波高さに余裕を考慮 した高さに対する止水性を保持することを機能設計上の性能目標とする。
浸水防止蓋（原子炉機器冷却海水配管ダクト）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分な支持性能を有 する原子炉機器冷却海水配管ダクトに固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（b）浸水防止蓋（第 3 号機補機冷却海水系放水ピット）
浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮 した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に浸水防止蓋（第3号機補機冷却海水系放水ピット）を介して浸水するこ とを防止するため，第 3 号機補機冷却海水系放水ピットに想定される津波高さ に余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標 とする。

浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分な支持性能を有する第3号機海水熱交換器建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（c）浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）を介して浸水することを防止するため，浸水防止蓋（第 3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）に想定される浸水高さ に余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標 とする。

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成 し，十分な支持性能を有する第3号機海水熱交換器建屋躯体に固定する構造と し，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持 する設計とすることを構造強度上の性能目標とする。
（d）浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1）（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）（No．2）を介して浸水す ることを防止するため，浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）（No．2）に想定される浸水高さに余裕を考慮し た高さに対する止水性を保持することを機能設計上の性能目標とする。

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）
（No．1）（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製 の浸水防止蓋で構成し，十分な支持性能を有する第 3 号機海水熱交換器建屋躯体に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材

の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（e）浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））
浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）） を介して浸水することを防止するため，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）に想定される津波高さに余裕を考慮した高さに対する止水性を保持 することを機能設計上の性能目標とする。

浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分 な支持性能を有する揚水井戸（第2号機海水ポンプ室防潮壁区画内）に固定す る構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（f）浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））
浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内）） を介して浸水することを防止するため，揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）に想定される津波高さに余裕を考慮した高さに対する止水性を保持 することを機能設計上の性能目標とする。

浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分 な支持性能を有する揚水井戸（第3号機海水ポンプ室防潮壁区画内）に固定す る構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（g）地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である軽油 タンクエリアに浸水防止蓋を介して浸水することを防止するため，地下軽油タ ンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）に余裕を考慮し た浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。

地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）は，津波による溢水を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分な支持性能を有 する軽油タンクエリアに固定する構造とし，地震後，津波後の再使用性を考慮 し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（h）地下軽油タンク機器搬出入用浸水防止蓋
地下軽油タンク機器搬出入用浸水防止蓋は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である軽油タンクエリアに浸水防止蓋を介 して浸水することを防止するため，地下軽油タンク機器搬出入用浸水防止蓋に余裕を考慮した浸水高さを設定し，止水性を保持することを機能設計上の性能目標とする。
地下軽油タンク機器搬出入用浸水防止蓋は，津波による溢水を考慮した浸水 に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止蓋で構成し，十分な支持性能を有する軽油タンクエリアに固定す る構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
d．浸水防止壁
（a）第 2 号機海水ポンプ室浸水防止壁
第 2 号機海水ポンプ室浸水防止壁は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに浸水するこ とを防止するため，余裕を考慮した浸水高さを設定し，止水性を保持すること を機能設計上の性能目標とする。

第2号機海水ポンプ室浸水防止壁は，津波による溢水を考慮した浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の浸水防止壁で構成し，十分な支持性能を有する海水ポンプ室に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
e．逆止弁付ファンネル
（a）第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1）， （No．2），（No．3）
第2号機原子灲補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），
（No．2）（No．3）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），（No．2），（No．3） を介して浸水することを防止するため，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標と する。

第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1）， （No．2），（No．3）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製 の逆止弁で構成しっ十分な支持性能を有する海水ポンプ室に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（b）第2号機原子炬補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1）， （No．2），（No．3）
第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），
（No．2），（No．3）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），（No．2），（No．3） を介して浸水することを防止するため，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標と する。

第2号機原子炬補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），
（No．2），（No．3）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製 の逆止弁で構成し，十分な支持性能を有する海水ポンプ室に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（c）第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）
第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機高圧炉心 スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）を介して

浸水することを防止するため，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持することを機能設計上の性能目標とする。

第2号機高圧炬心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1）， （No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁で構成し，十分な支持性能を有する海水ポンプ室に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計 とすることを構造強度上の性能目標とする。
（d）第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）

第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包 する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2），（No．3）を介して浸水 することを防止するため，海水ポンプ室に想定される津波高さに余裕を考慮し た高さに対する止水性を保持することを機能設計上の性能目標とする。

第2号機タービン補機冷却海水ポンプ室逆止升付ファンネル（No．1），（No．2）， （No．3）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁 で構成し，十分な支持性能を有する海水ポンプ室に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とす ることを構造強度上の性能目標とする。
（e）第3号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1）， （No．2）
第3号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に第3号機原子炉補機泠却海水ポンプ （A）（C）室逆止弁付ファンネル（No．1），（No．2）を介して浸水することを防止す るため，第 3 号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高 さに対する止水性を保持することを機能設計上の性能目標とする。
第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁で構成し，十分な支持性能を有する第3号機海水熱交換器建屋に固定する構

造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（f）第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1）， （No．2）

第3号機原子炉補機泠却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に第3号機原子炉補機泠却海水ポンプ （B）（D）室逆止弁付ファンネル（No．1），（No．2）を介して浸水することを防止す るため，第 3 号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高 さに対する止水性を保持することを機能設計上の性能目標とする。

第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁で構成し，十分な支持性能を有する第3号機海水熱交換器建屋に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（g）第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）
第3号機高圧炬心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1）， （No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）を介して浸水することを防止 するため第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高 さに対する止水性を保持することを機能設計上の性能目標とする。

第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1），
（No．2）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁で構成し，十分な支持性能を有する第3号機海水熱交換器建屋に固定する構造とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（h）第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）
第3号機タービン補機冷却海水ポンプ室逆止升付ファンネル（No．1），（No．2）， （No．3）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂

流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包 する建屋及び区画が設置された敷地に第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2），（No．3）を介して浸水することを防止する ため，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高さ に対する止水性を保持することを機能設計上の性能目標とする。

第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）は，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，鋼製の逆止弁 で構成し，十分な支持性能を有する第3号機海水熱交換器建屋に固定する構造 とし，地震後，津波後の再使用性を考慮し，主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。

f．貫通部止水処置

（a）貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）
貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）は，地震後の繰返し の襲来を想定した経路からの津波を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮し た高さまでの止水処置により，止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）は，地震後の繰返し の襲来を想定した経路からの津波を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間 をシリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮 して主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（b）貫通部止水処置（第2号機放水立坑防潮壁横断部）
貫通部止水処置（第 2 号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置により，止水性を保持することを機能設計上の性能目標 とする。

貫通部止水処置（第 2 号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間を シリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮し て主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性

能目標とする。
（c）貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）
貫通部止水処置（第 3 号機海水ポンプ室防潮壁横断部）は，地震後の繰返し の襲来を想定した経路からの津波を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮し た高さまでの止水処置により，止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）は，地震後の繰返し の襲来を想定した経路からの津波を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間 をシリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮 して主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（d）貫通部止水処置（第3号機放水立坑防潮壁横断部）
貫通部止水処置（第3号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置により，止水性を保持することを機能設計上の性能目標 とする。

貫通部止水処置（第3号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間を シリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮し て主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（e）貫通部止水処置（第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）
貫通部止水処置（第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高 さに余裕を考慮した高さまでの止水処置により，止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）は，地震後の繰返しの襲来を想定した経路からの津波を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間をシリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮して主要な構造部材の構造健全性を保持する設計とするこ

とを構造強度上の性能目標とする。
（f）貫通部止水処置（第 2 号機原子炉建屋）
貫通部止水処置（第 2 号機原子炉建屋）は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，余裕を考慮した浸水高さを設定した止水処置により止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第 2 号機原子炉建屋）は，津波による溢水を考慮した浸水 に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間をシリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮して主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（g）貫通部止水処置（第 2 号機制御建屋）
貫通部止水処置（第 2 号機制御建屋）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，余裕を考慮した浸水高さを設定した止水処置により止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第 2 号機制御建屋）は，津波による溢水を考慮した浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対し，貫通部の貫通口と貫通物の隙間をシリコンシール又はブーツラバーにより塞ぐ構造とし，止水性の保持を考慮して主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。
（h）貫通部止水処置（第2号機軽油タンクエリア）
貫通部止水処置（第 2 号機軽油タンクエリア）は，津波による溢水を考慮し た浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，余裕を考慮した浸水高さを設定した止水処置により止水性を保持することを機能設計上の性能目標とする。

貫通部止水処置（第 2 号機軽油タンクエリア）は，津波による溢水を考慮し た浸水に伴ら津波荷重並びに余震，漂流物の衝突，風及び積雪による荷重に対 し，貫通部の貫通口と貫通物の隙間をシリコンシール，ブーツラバー又はモル タルにより塞ぐ構造とし，止水性の保持を考慮して主要な構造部材の構造健全性を保持する設計とすることを構造強度上の性能目標とする。

3.3 津波監視設備

（1）設備

a．津波監視カメラ
b．取水ピット水位計
（2）要求機能
津波監視設備は，繰返しの襲来を想定した入力津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護施設及び浸水防止設備が機能を保持できていることを監視するため，津波の襲来状況を監視できることが要求される。
（3）性能目標
a．津波監視カメラ
津波監視カメラは，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，波力及び漂流物の影響を受 けない位置にカメラ本体を設置するとともに，昼夜問わず敷地への津波の襲来状況を監視可能な仕様とし，波力及び漂流物の影響を受けない位置への電路の設置及び非常用電源から給電する構成とすることにより，中央制御室での監視機能を保持することを機能設計上の性能目標とする。

津波監視カメラは，風及び積雪を考慮した荷重に対し，監視機能が保持できる設計とするために，カメラ本体を鋼製の架台上にボルトで固定する設計とし，津波の影響を受けない位置に設置し，主要な構造部材が構造健全性を保持する設計 とすることを構造強度設計上の性能目標とする。
b．取水ピット水位計
取水ピット水位計は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，漂流物の影響を受 けにくい位置に水位計を設置し，海水ポンプ室の上昇側及び下降側の水位変動を測定可能な能力を有するとともに，波力及び漂流物の影響を受けない位置への電路の設置及び非常用電源から給電する構成とすることにより，中央制御室での監視機能を保持することを機能設計上の性能目標とする。

取水ピット水位計は，地震後の繰返しの襲来を想定した経路からの津波の浸水 に伴う津波荷重並びに余震，漂流物の衝突，風及び積雪を考慮した荷重に対し，監視機能が保持できる設計とするために，津波による影響を受けにくい海水ポンプ室に固定する設計とし，主要な構造部材が構造健全性を保持する設計とすること を構造強度設計上の性能目標とする。

4．機能設計

添付書類「VI－1－1－2－2－3 入力津波の設定」で設定している入力津波に対し，「3．要求機能及び性能目標」で設定している津波防護に関する施設の機能設計上の性能目標を達成するために，各施設の機能設計の方針を定める。

4． 1 津波防護施設

（1）防潮堤
防潮堤は，「3．要求機能及び性能目標」の「3．1 津波防護施設（3）性能目標」 で設定している機能設計上の性能目標を達成するために，以下の設計方針としてい る。

防潮堤は，防潮堤（鋼管式鉛直壁）及び防潮堤（盛土堤防）の 2 種類に分けられ る。防潮堤の構造形式及び基礎構造を踏まえ，以下に構造形式ごとの機能設計を示 す。
a．防潮堤（鋼管式鉛直壁）
防潮堤（鋼管式鉛直壁）は，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高 さに余裕を考慮した高さまでの施工により止水性を保持するため，以下の措置を講じる設計とする。

防潮堤（鋼管式鉛直壁）は，入力津波による浸水高さ（防潮堤前面：0．P．+24.4 m ） に対して余裕を考慮した天端高さ 0．P．＋ 29.0 m とし，防潮堤（盛土堤防）と合わせ て敷地を取り囲むように設置する設計とする。

防潮堤（鋼管式鉛直壁）の上部構造は，鋼管杭の前面に設置する鋼製遮水壁，鉄筋コンクリート（ RC ）遮水壁，止水ジョイント及び背面補強工により遮水性を保持する設計とする。また，鋼製遮水壁の前面に設置する漂流物防護工により，漂流物の衝突の影響を抑制する設計とする。

防潮堤（鋼管式鉛直壁）の杭直下，周辺及び背面に，剛性の高い背面補強工（コ ンクリート），改良地盤（高圧噴射撹拌工法），置換コンクリート及びセメント改良土を構築することで，杭の変形を抑制し，鋼製遮水壁，止水ジョイント，背面補強工，改良地盤，置換コンクリート及びセメント改良土による止水性（遮水性•難透水性）を保持する設計とする。

防潮堤（鋼管式鉛直壁）の鋼管杭，鋼製遮水壁，鉄筋コンクリート（RC）遮水壁，漂流物防護工，背面補強工及び置換コンクリートは，十分な支持性能を有す る岩盤及び改良地盤に支持する設計とする。

防潮堤（鋼管式鉛直壁）の鋼製遮水壁間は，波圧による変形に追随する，止水 ジョイント（止水ゴム又はウレタン・シリコーン）を設置することで，遮水性を保持する設計とする。

鋼製遮水壁間に設置する止水ジョイント（止水ゴム又はウレタン・シリコーン） は，以下に示す変形試験及び耐圧試験により止水性を確認したものと同じ材質の止水ジョイントを使用する設計とする。
（a）変形試験
イ．試験条件
変形試験については，試験機を用いて地震時，津波時及び重畳時（津波＋余震時）に想定される変位を作用させた場合に，止水ジョイントに有意な漏 えいを生じない変形に留まることを確認する。

ロ．試験結果
設定した変位を繰返し作用させた結果，止水ジョイントは漏えいを生じな い変形に留まることを確認した。
（b）耐圧試験
イ．試験条件
耐圧試験については，試験機を用いて津波時及び重畳時（津波＋余震時） に想定される変位を作用させた上で，津波時及び重畳時（津波＋余震時）に想定される水圧を作用させた場合に，止水ジョイントに有意な漏えいが生じ ないことを確認する。
ロ。 試験結果
設定した水圧及び変位を作用させた結果，止水ジョイントに漏えいがない ことを確認した。
津波の波力による侵食や洗堀，地盤中からの回り込みによる浸水に対しては，十分に透水係数の低い地盤により難透水性を保持する設計とする。
b．防潮堤（盛土堤防）
防潮堤（盛土堤防）は，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持するため，以下の措置を講じる設計とする。

防潮堤（盛土堤防）は，入力津波による浸水高さ（防潮堤前面：0．P．+24.4 m ） に対して余裕を考慮した天端高さ 0．P．＋ 29.0 m とし，防潮堤（鋼管式鉛直壁）と合 わせて敷地を取り囲むように設置する設計とする。

防潮堤（盛土堤防）は，セメント改良土及び置換コンクリートで構成され，十分な支持性能を有する岩盤及び改良地盤に支持する設計とする。

また，十分に透水係数の低いセメント改良土，置換コンクリート及び改良地盤 による止水性（難透水性）を保持し，津波の波力による侵食や洗堀，地盤中から の回り込みによる浸水を防止する設計とする。

防潮壁は，「3．要求機能及び性能目標」の「3．1 津波防護施設（3）性能目標」 で設定している機能設計上の性能目標を達成するために，以下の設計方針としてい る。
a．防潮壁（第2号機海水ポンプ室）
防潮壁（第 2 号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路か らの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持するた め，以下の措置を講じる設計とする。

防潮壁（第2号機海水ポンプ室）は，防潮壁（第2号機海水ポンプ室）設置箇所の入力津波による浸水高さ 0．P．＋ 18.1 m に対して余裕を考慮した天端高さ 0．P．+19.0 m とし，第 2 号機海水ポンプ室スクリーンエリアを取り囲むように設置 する設計とする。
防潮壁（第 2 号機海水ポンプ室）は，上部工は鋼製遮水壁（鋼板），鋼製遮水壁 （鋼析）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭（一部，場所打ちコンクリート杭）とフーチングで構成し，上部工と下部工 を一体とした構造として施工することにより止水性を保持する設計とする。

防潮壁（第 2 号機海水ポンプ室）は，主要な構造体の境界並びに隣接する防潮堤（鋼管式鉛直壁）及び第 2 号機海水ポンプ室との境界には，試験等により止水性を確認した止水ジョイントを設置し，境界部からの浸水を防止する設計とする。

防潮壁（第 2 号機海水ポンプ室）の主要な構造体の境界並びに隣接する防潮堤 （鋼管式鉛直壁）及び第 2 号機海水ポンプ室との境界に設置する止水ジョイント は，以下に示す変形試験及び耐圧試験により止水性を確認したものと同じ材質の止水ジョイントを使用する設計とする。
（a）変形試験
イ．試験条件
変形試験については，試験機を用いて地震時に想定される変位を作用させ た場合に，止水ジョイントに有意な漏えいを生じない変形に留まることを確認する。
ロ．試験結果
設定した変位を繰返し作用させた結果，止水ジョイントは漏えいを生じな い変形に留まることを確認した。
（b）耐圧試験
イ．試験条件
耐圧試験については，試験機を用いて津波時及び重畳時（津波＋余震時） に想定される変位を作用させた上で，津波時及び重畳時（津波＋余震時）に

想定される水圧を作用させた場合に，止水ジョイントに有意な漏えいが生じ ないことを確認する。
口．試験結果
設定した水圧及び変位を作用させた結果，止水ジョイントに漏えいがない ことを確認した。
防潮壁（第 2 号機海水ポンプ室）は，下部工に鉄筋コンクリート製のフーチン グもしくは鋼製の矢板を設置することから，津波の波力による侵食及び洗掘に対 する耐性を有することで，止水性を保持する設計とする。
b．防潮壁（第 2 号機放水立坑）
防潮壁（第 2 号機放水立坑）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定 される津波高さに余裕を考慮した高さまでの施工により止水性を保持するため，以下の措置を講じる設計とする。

防潮壁（第 2 号機放水立坑）は，防潮壁（第 2 号機放水立坑）設置箇所の入力津波による浸水高さ 0. P．+17.4 m に対して余裕を考慮した天端高さ 0. P．+19.0 m と し，第 2 号機放水立坑を取り囲むように設置する設計とする。
防潮壁（第 2 号機放水立坑）は，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼桁）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭 とフーチングで構成し，上部工と下部工を一体とした構造として施工することに より止水性を保持する設計とする。
防潮壁（第 2 号機放水立坑）は，主要な構造体の境界には，試験等により止水性を確認した止水ジョイントを設置し，境界部からの浸水を防止する設計とする。変形試験及び耐圧試験の内容は「a．防潮壁（第2号機海水ポンプ室）」と同じ。

防潮壁（第 2 号機放水立坑）は，下部工に鉄筋コンクリート製のフーチングも しくは鋼製の矢板を設置することから，津波の波力による侵食及び洗掘に対する耐性を有することで，止水性を保持する設計とする。
c．防潮壁（第 3 号機海水ポンプ室）
防潮壁（第3号機海水ポンプ室）は，地震後の繰返しの襲来を想定した経路か らの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持するた め，以下の措置を講じる設計とする。
防潮壁（第3号機海水ポンプ室）は，防潮壁（第3号機海水ポンプ室）設置箇所の入力津波による浸水高さ 0. P．+19.0 m に対して余裕を考慮した天端高さ 0．P．+20.0 m とし，第 3 号機海水ポンプ室スクリーンエリアを取り囲むように設置

する設計とする。
防潮壁（第3号機海水ポンプ室）は，上部工は鋼製遮水壁（鋼板），鋼製遮水壁 （鋼析）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭とフーチングで構成し，上部工と下部工を一体とした構造として施工するこ とにより止水性を保持する設計とする。
防潮壁（第3号機海水ポンプ室）は，主要な構造体の境界並びに隣接する防潮堤（鋼管式鉛直壁）及び第3号機海水ポンプ室との境界には，試験等により止水性を確認した止水ジョイントを設置し，境界部からの浸水を防止する設計とする。変形試験及び耐圧試験の内容は「a．防潮壁（第 2 号機海水ポンプ室）」と同じ。

防潮壁（第3号機海水ポンプ室）は，下部工に鉄筋コンクリート製のフーチン グもしくは鋼製の矢板を設置することから，津波の波力による侵食及び洗掘に対 する耐性を有することで，止水性を保持する設計とする。
d．防潮壁（第 3 号機放水立坑）
防潮壁（第3号機放水立坑）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定 される津波高さに余裕を考慮した高さまでの施工により止水性を保持するため，以下の措置を講じる設計とする。

防潮壁（第3号機放水立坑）は，防潮壁（第3号機放水立坑）設置箇所の入力津波による浸水高さ 0. P．+17.5 m に対して余裕を考慮した天端高さ 0. P．+19.0 m と し，第 3 号機放水立坑を取り囲むように設置する設計とする。
防潮壁（第 3 号機放水立坑）は，上部工は鋼製遮水壁（鋼板），鋼製遮水壁（鋼桁）及び鋼製扉の 3 種類の構造形式で構成し，下部工は岩盤に支持される鋼管杭 とフーチングで構成し，上部工と下部工を一体とした構造として施工することに より止水性を保持する設計とする。
防潮壁（第3号機放水立坑）は，主要な構造体の境界には，試験等により止水性を確認した止水ジョイントを設置し，境界部からの浸水を防止する設計とする。変形試験及び耐圧試験の内容は「a．防潮壁（第 2 号機海水ポンプ室）」と同じ。

防潮壁（第3号機放水立坑）は，下部工に鉄筋コンクリート製のフーチングも しくは鋼製の矢板を設置することから，津波の波力による侵食及び洗掘に対する耐性を有することで，止水性を保持する設計とする。
e．防潮壁（第 3 号機海水熱交換器建屋）
防潮壁（第3号機海水熱交換器建屋）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合において も，想定される津波高さに余裕を考慮した高さまでの施工により止水性を保持す

るため，以下の措置を講じる設計とする。
防潮壁（第3号機海水熱交換器建屋）は，防潮壁（第3号機海水熱交換器建屋）設置箇所の入力津波による浸水高さ 0. P．+19.0 m に対して余裕を考慮した天端高 さ 0. P．+20.0 m とし，第 3 号機海水熱交換器建屋取水立坑を取り囲むように設置 する設計とする。

防潮壁（第3号機海水熱交換器建屋）は，上部工は鋼製遮水壁（鋼板）で構成 し，岩盤に支持される第 3 号機海水熱交換器建屋取水立坑上に一体とした構造と して施工することにより止水性を保持する設計とする。
防潮壁（第3号機海水熱交換器建屋）は，主要な構造体の境界並びに隣接する第3号機海水熱交換器建屋との境界には塗膜防水を塗布し，境界部からの浸水を防止する設計とする。
（3）取放水路流路縮小工
取放水路流路縮小工は，「3．要求機能及び性能目標」の「3．1 津波防護施設
性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。
a．取放水路流路縮小工（第 1 号機取水路）（No．1），（No．2）
取放水路流路縮小工（第1号機取水路）（No．1），（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮 した場合においても，第 1 号機取水路からの津波の流入を抑制し，第 1 号機取水路から敷地への津波の流入を防止するため，以下の措置を講じる設計とする。

取放水路流路縮小工（第 1 号機取水路）（No．1），（No．2）は，入力津波による浸水高さ $0 . P .+24.4 \mathrm{~m}$ に対して機能を保持する設計とする。

取放水路流路縮小工（第 1 号機取水路）は，コンクリートに貫通部を設けた構造とし，十分な支持性能を有する第1号機取水路内に設置することにより機能を保持する設計とする。
b．取放水路流路縮小工（第1号機放水路）
取放水路流路縮小工（第 1 号機放水路）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合におい ても，第 1 号機放水路からの津波の流入を抑制し，第 1 号機放水路から敷地への津波の流入を防止するため，以下の措置を講じる設計とする。

取放水路流路縮小工（第 1 号機放水路）は，入力津波による浸水高さ 0．P．+24.4 m に対して機能を保持する設計とする。

取放水路流路縮小工（第 1 号機放水路）は，コンクリートに貫通部を設けた構造とし，十分な支持性能を有する第 1 号機放水路内に設置することにより機能を

保持する設計とする。
（4）貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）
貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，「3．要求機能及 び性能目標」の「3．1 津波防護施設（3）性能目標」で設定している機能設計上 の性能目標を達成するために，以下の設計方針としている。

貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，地震後の繰返し の襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合 においても，津波による水位低下に対して非常用海水ポンプが取水可能な高さ以上 の施工により，非常用海水ポンプの機能が保持でき，かつ，原子炉冷却に必要な海水を確保するため，以下の措置を講じる設計とする。

貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，非常用海水ポン プの取水に必要な高さ及び原子炉冷却に必要な貯留量を考慮した天端高さ O．P．－ 6.3 m とし，取水口底盤に設置する設計とする。

貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）は，鉄筋コンクリー ト製の堰であり，取水口，取水路及び海水ポンプ室とあわせて海水を貯留する設計 とする。貯留堰は取水口と一体構造とし，ずれる又は浮き上がるおそれのない設計 とするとともに，部材を有意な漏えいを生じない変形にとどめる設計とする。また，漏水が生じるような顕著なひび割れが発生しない設計とすることにより，止水性を保持する設計とする。

4．2 浸水防止設備

（1）逆流防止設備
逆流防止設備は，「3．要求機能及び性能目標」の「3．2 浸水防止設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針 としている。
a．屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）
屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置 された敷地に屋外排水路逆流防止設備（防潮堤南側）を介して浸水することを防止し，屋外排水路逆流防止設備（防潮堤南側）に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）は，屋外排水路逆流防止設備（防潮堤南側）の入力津波高さ 0. P．+24.4 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）は，鋼製とし，十分な支持性能を有する屋外排水路（防潮堤南側）の出口側集水ピットに設置し，扉体と戸当りの境界には止水ゴムを設置して圧着構造とし，止水性を保持する設計とする。
b．屋外排水路逆流防止設備（防潮堤北側）
屋外排水路逆流防止設備（防潮堤北側）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合におい ても，津波防護対象設備を内包する建屋及び区画が設置された敷地に屋外排水路逆流防止設備（防潮堤北側）を介して浸水することを防止し，屋外排水路逆流防止設備（防潮堤北側）に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

屋外排水路逆流防止設備（防潮堤北側）は，屋外排水路逆流防止設備（防潮堤北側）の入力津波高さ 0．P．＋ 24.4 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

屋外排水路逆流防止設備（防潮堤北側）は，鋼製とし，十分な支持性能を有す る屋外排水路（防潮堤北側）の出口側集水ピットに設置し，扉体と戸当りの境界 には止水ゴムを設置して圧着構造とし，止水性を保持する設計とする。また，鋼製の扉体の前面に設置する漂流物防護工により，漂流物の衝突の影響を抑制する設計とする。
c．補機冷却海水系放水路逆流防止設備（No．1），（No．2）
補機冷却海水系放水路逆流防止設備（No．1），（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮し た場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地 に補機冷却海水系放水路逆流防止設備を介して浸水することを防止し，補機冷却海水系放水路逆流防止設備に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

補機冷却海水系放水路逆流防止設備（No．1），（No．2）は，補機冷却海水系放水路逆流防止設備の入力津波高さ 0．P．＋17．4mに余裕を考慮した津波高さに対して，止水性を保持する設計とする。

補機冷却海水系放水路逆流防止設備（No．1），（No．2）は，鋼製とし，十分な支持性能を有する防潮壁（第 2 号機放水立坑）に設置し，扉体と戸当りの境界には止水ゴムを設置して圧着構造とし，止水性を保持する設計とする。
（2）水密扉
水密扉は，「3．要求機能及び性能目標」の「3．2 浸水防止設備（3）性能目標」 で設定している機能設計上の性能目標を達成するために，以下の設計方針としてい る。
a．水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）
水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）は，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）
（No．1）を介して浸水することを防止し，想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）は，取水立坑の入力津波高さ 0. P．＋ 19.0 m に余裕を考慮した津波高さに対して，第 3 号機海水熱交換器建屋に設置し，止水性を保持する設計とする。

水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）は，鋼製と し，十分な支持性能を有する第3号機海水熱交換器建屋躯体に固定することに より，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
b．水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）
水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）は，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置された敷地に水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア） （No．2）を介して浸水することを防止し，想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）は，取水立坑の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高さに対して，第 3 号機海水熱交換器建屋に設置し，止水性を保持する設計とする。

水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）は，鋼製と し，十分な支持性能を有する第 3 号機海水熱交換器建屋躯体に固定することに より，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
c．原子炬建屋浸水防止水密扉（No．1）
原子炉建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に対し，

余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に原子炉建屋浸水防止水密扉（No．1）を介して浸水する ことを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

原子炉建屋浸水防止水密扉（No．1）は，内部溢水にて考慮する隣接建屋におけ る機器破損等による溢水量から求めた水位であり，水位が高くなるように設定し た浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋0．4m に対して，原子炬建屋に設置し，止水性を保持する設計とする。

原子炉建屋浸水防止水密扉（No．1）は，鋼製とし，十分な支持性能を有する原子炬建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体 と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計と する。
d．原子炉建屋浸水防止水密扉（No．2）
原子炉建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に原子炉建屋浸水防止水密扉（No．2）を介して浸水する ことを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

原子炉建屋浸水防止水密扉（No．2）は，内部溢水にて考慮する隣接建屋におけ る機器破損等による溢水量から求めた水位であり，水位が高くなるように設定し た浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL +0.4 m に対して，原子炉建屋に設置し，止水性を保持する設計とする。

原子炉建屋浸水防止水密扉（No．2）は，鋼製とし，十分な支持性能を有する原子炉建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体 と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計と する。
e．制御建屋浸水防止水密扉（No．1）
制御建屋浸水防止水密扉（No．1）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に制御建屋浸水防止水密扉（No．1）を介して浸水するこ とを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。
制御建屋浸水防止水密扉（No．1）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した

浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋4．0mに対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋浸水防止水密扉（No．1）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
f．制御建屋浸水防止水密扉（No．2）
制御建屋浸水防止水密扉（No．2）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に制御建屋浸水防止水密扉（No．2）を介して浸水するこ とを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋浸水防止水密扉（No．2）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋4．0mに対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋浸水防止水密扉（No．2）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
g．制御建屋浸水防止水密扉（No．3）
制御建屋浸水防止水密扉（No．3）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に制御建屋浸水防止水密扉（No．2）を介して浸水するこ とを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋浸水防止水密扉（No．3）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋4．0mに対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋浸水防止水密扉（No．3）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
h．計測制御電源室（B）浸水防止水密扉（No．3）
計測制御電源室（B）浸水防止水密扉（No．3）は，津波による溢水を考慮した浸

水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に計測制御電源室（B）浸水防止水密扉（No．3） を介して浸水することを防止するため，浸水高さを以下のとおり設定し，止水性 を保持するための措置を講じる設計とする。

計測制御電源室（B）浸水防止水密扉（No．3）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるよう に設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋0． 4 m に対 して，制御建屋に設置し，止水性を保持する設計とする。

計測制御電源室（B）浸水防止水密扉（No．3）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。ま た，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
i．制御建屋空調機械（A）室浸水防止水密扉
制御建屋空調機械（A）室浸水防止水密扉は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋空調機械（A）室浸水防止水密扉を介して浸水することを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋空調機械（A）室浸水防止水密扉は，内部溢水にて考慮する隣接建屋に おける機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋17．5m に対し て，制御建屋に設置し，止水性を保持する設計とする。
制御建屋空調機械（A）室浸水防止水密扉は，鋼製とし，十分な支持性能を有す る制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計 とする。
j．制御建屋空調機械（B）室浸水防止水密扉
制御建屋空調機械（B）室浸水防止水密扉は，津波による溢水を考慮した浸水 に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に制御建屋空調機械（B）室浸水防止水密扉を介して浸水することを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋空調機械（B）室浸水防止水密扉は，内部溢水にて考慮する隣接建屋に おける機器破損等による溢水量から求めた水位であり，水位が高くなるように設

定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋0． 5 m に対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋空調機械（B）室浸水防止水密扉は，鋼製とし，十分な支持性能を有す る制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計 とする。
k．第 2 号機 MCR 浸水防止水密扉
第 2 号機 MCR 浸水防止水密扉は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包 する建屋及び区画に第 2 号機 MCR 浸水防止水密扉を介して浸水することを防止 するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じ る設計とする。
第 2 号機 MCR 浸水防止水密扉は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋4．0mに対して，制御建屋 に設置し，止水性を保持する設計とする。
第 2 号機 MCR 浸水防止水密扉は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。

1．制御建屋浸水防止水密扉（No．4）
制御建屋浸水防止水密扉（No．4）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に制御建屋浸水防止水密扉（No．4）を介して浸水するこ とを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋浸水防止水密扉（No．4）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋0．4mに対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋浸水防止水密扉（No．4）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
m．制御建屋浸水防止水密扉（No．5）

制御建屋浸水防止水密扉（No．5）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画に制御建屋浸水防止水密扉（No．5）を介して浸水するこ とを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

制御建屋浸水防止水密扉（No．5）は，内部溢水にて考慮する隣接建屋における機器破損等による溢水量から求めた水位であり，水位が高くなるように設定した浸水範囲，浸水量を用いて算出した床面からの浸水高さ FL＋0．4mに対して，制御建屋に設置し，止水性を保持する設計とする。

制御建屋浸水防止水密扉（No．5）は，鋼製とし，十分な支持性能を有する制御建屋躯体に固定することにより，止水性を保持する設計とする。また，扉体と扉枠の境界にはパッキンを設置して圧着構造とし，止水性を保持する設計とする。
（3）浸水防止蓋
浸水防止蓋は，「3．要求機能及び性能目標」の「3．2 浸水防止設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針と している。
a．浸水防止蓋（原子炉機器泠却海水配管ダクト）
浸水防止蓋（原子炉機器泠却海水配管ダクト）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合 においても，津波防護対象設備を内包する建屋及び区画で設置された敷地に浸水防止蓋（原子炉機器冷却海水配管ダクト）を介して浸水することを防止し，原子炉機器泠却海水配管ダクトに想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

浸水防止蓋（原子炉機器泠却海水配管ダクト）は，浸水防止蓋（原子炉機器泠却海水配管ダクト）の入力津波高さ 0. P．＋ 18.1 m に余裕を考慮した津波高さに対 して，止水性を保持する設計とする。

浸水防止蓋（原子炉機器冷却海水配管ダクト）は，鋼製とし，十分な支持性能 を有する原子炉機器冷却海水配管ダクトの上部に止水ゴム又はガスケットを挟ん で固定することにより，止水性を保持する設計とする。
b．浸水防止蓋（第 3 号機補機冷却海水系放水ピット）
浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は，地震後の繰返しの襲来 を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画で設置された敷地に浸水防止蓋（第 3 号機補機冷却海水系放水ピット）を介して浸水することを防止

し，第3号機補機冷却海水系放水ピットに想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。
浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は，浸水防止蓋（第 3 号機補機冷却海水系放水ピット）の入力津波高さ 0. P．＋17． 5 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は，鋼製とし，十分な支持性能を有する第3号機海水熱交換器建屋躯体に固定し，第3号機補機冷却海水系放水ピットとの構造境界部に止水ゴム又はガスケットを設置することにより，止水性を保持する設計とする。
c．浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画で設置された敷地に浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エ リア角落し部）を介して浸水することを防止し，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下 の措置を講じる設計とする。
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）は，第3号機海水熱交換器建屋の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高 さに対して，止水性を保持する設計とする。
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）は，鋼製とし，十分な支持性能を有する第3号機海水熱交換器建屋躯体に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。
d．浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画の設置された敷地に浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）を介して浸水すること を防止し，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高 さに対する止水性を保持するため，以下の措置を講じる設計とする。
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）
（No．1），（No．2）は，第3号機海水熱交換器建屋の入力津波高さ 0．P．+19.0 m に

余裕を考慮した津波高さに対して，止水性を保持する設計とする。
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）
（No．1），（No．2）は，鋼製とし，十分な支持性能を有する第3号機海水熱交換器建屋躯体に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。
e．浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））
浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪 を考慮した場合においても，津波防護対象設備を内包する建屋及び区画に設置さ れた敷地に浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））を介し て浸水することを防止し，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））は，浸水防止蓋 （揚水井戸（第2号機海水ポンプ室防潮壁区画内））の入力津波高さ O．P．＋18．1m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。
浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））は，鋼製とし，十分な支持性能を有する揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）の上部 に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計 とする。
f．浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））
浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪 を考慮した場合においても，津波防護対象設備を内包する建屋及び区画で設置さ れた敷地に浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））を介し て浸水することを防止し，揚水井戸（第3号機海水ポンプ室防潮壁区画内）に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））は，浸水防止蓋 （揚水井戸（第3号機海水ポンプ室防潮壁区画内））の入力津波高さ 0．P．＋19．0m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））は，鋼製とし，十分な支持性能を有する揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）の上部 に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計

とする。
g．地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮 した場合においても，津波防護対象設備を内包する建屋及び区画である軽油タン クエリアに浸水することを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）は，鋼製とし，十分な支持性能を有する軽油タンクエリアの上部に止水ゴム又はガス ケットを挟んで固定することにより，止水性を保持する設計とする。
h．地下軽油タンク機器搬出入用浸水防止蓋
地下軽油タンク機器搬出入用浸水防止蓋は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である軽油タンクエリアに浸水することを防止 するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じ る設計とする。
地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。

地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋は，鋼製とし，十分な支持性能を有する軽油タンクエリアの上部に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。
（4）浸水防止壁
浸水防止壁は，「3．要求機能及び性能目標」の「3．2 浸水防止設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針と している。
a．第 2 号機海水ポンプ室浸水防止壁
第 2 号機海水ポンプ室浸水防止壁は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備 を内包する建屋及び区画である第2号機海水ポンプ室に浸水することを防止す るため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。

第 2 号機海水ポンプ室浸水防止壁は，鋼製とし，十分な支持性能を有する海水 ポンプ室に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。
（5）逆止弁付ファンネル
逆止弁付ファンネルは，「3．要求機能及び性能目標」の「3．2浸水防止設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。
a．第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），（No．2）， （No．3）
第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルは，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画で ある海水ポンプ室補機ポンプエリアに第2号機原子炉補機冷却海水ポンプ （A）（C）室逆止弁付ファンネルを介して浸水することを防止し，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルは，海水ポ ンプ室の入力津波高さ 0. P．+18.1 m に余裕を考慮した津波高さに対して，止水性 を保持する設計とする。

第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルは，鋼製と し，十分な支持性能を有する海水ポンプ室に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。

第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置す

る設計とする。
（a）漏えい試験
イ．試験条件
漏えい試験については，第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルを模擬した（同じ形状，寸法）試験体を用いて実施し，想定 される津波高さに余裕を考慮した高さ以上となる水圧を作用させた場合に，弁座部からの漏えい量が許容漏えい量以下であることを確認する。第2号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネルの漏洩試験の概要を図 4－1 に示す。

口．試験結果
試験の結果，弁座部からの漏えい量が許容漏えい量以下であることを確認 した。

図 4－1 逆止弁付ファンネルの漏えい試験概要図
b．第2号機原子炉補機泠却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1）， （No．2），（No．3）
第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネルは，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画で ある海水ポンプ室補機ポンプエリアに第2号機原子炉補機冷却海水ポンプ （B）（D）室逆止弁付ファンネルを介して浸水することを防止し，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第2号機原子炉補機椧却海水ポンプ（B）（D）室逆止弁付ファンネルは，海水ポ ンプ室の入力津波高さ 0. P．+18.1 m に余裕を考慮した津波高さに対して，止水性 を保持する設計とする。

第 2 号機原子炉補機泠却海水ポンプ（B）（D）室逆止弁付ファンネルは，鋼製と し，十分な支持性能を有する海水ポンプ室に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。

第2号機原子炉補機椧却海水ポンプ（B）（D）室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置す る設計とする。
（a）漏えい試験
「第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
c．第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1）， （No．2）
第2号機高圧炉心スプレイ補機泠却海水ポンプ室逆止弁付ファンネルは，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルを介して浸水することを防止し，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルは，海水ポンプ室の入力津波高さ 0. P．+18.1 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルは，鋼製とし，十分な支持性能を有する海水ポンプ室に止水ゴム又はガスケットを挟 んで固定することにより，止水性を保持する設計とする。

第2号機高圧炉心スプレイ補機泠却海水ポンプ室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置する設計とする。
（a）漏えい試験
「第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
d．第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）
第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪 を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である海水ポンプ室補機ポンプエリアに第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネルを介して浸水することを防止し，海水ポンプ室に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講 じる設計とする。
第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，海水ポンプ室の入力津波高さ 0. P．+18.1 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，鋼製とし，十分な支持性能を有する海水ポンプ室に止水ゴム又はガスケットを挟んで固定す ることにより，止水性を保持する設計とする。

第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置する設計とする。
（a）漏えい試験
「第2号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
e．第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），（No．2）
第3号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネルは，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置される敷地に第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファン ネルを介して浸水することを防止し，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第3号機原子炉補機椧却海水ポンプ（A）（C）室逆止弁付ファンネルは，第3号

機海水熱交換器建屋の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高さに対 して，止水性を保持する設計とする。
第3号機原子炬補機椧却海水ポンプ（A）（C）室逆止弁付ファンネルは，鋼製と し，十分な支持性能を有する第3号機海水熱交換器建屋に止水ゴム又はガスケ ットを挟んで固定することにより，止水性を保持する設計とする。

第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置す る設計とする。
（a）漏えい試験
「第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
f．第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），（No．2）
第 3 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネルは，地震後 の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置される敷地に第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファン ネルを介して浸水することを防止し，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第 3 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネルは，第3号機海水熱交換器建屋の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高さに対 して，止水性を保持する設計とする。
第 3 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネルは，鋼製と し，十分な支持性能を有する第 3 号機海水熱交換器建屋に止水ゴム又はガスケ ットを挟んで固定することにより，止水性を保持する設計とする。
第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置す る設計とする。
（a）漏えい試験
「第2号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
g．第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1）， （No．2）
第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルは，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区

画が設置される敷地に第 3 号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルを介して浸水することを防止し，第3号機海水熱交換器建屋に想定される津波高さに余裕を考慮した高さに対する止水性を保持するため，以下 の措置を講じる設計とする。

第3号機高圧炉心スプレイ補機泠却海水ポンプ室逆止弁付ファンネルは，第 3 号機海水熱交換器建屋の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高さ に対して，止水性を保持する設計とする。

第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネルは，鋼製とし，十分な支持性能を有する第3号機海水熱交換器建屋に止水ゴム又はガ スケットを挟んで固定することにより，止水性を保持する設計とする。

第 3 号機高圧炉心スプレイ補機泠却海水ポンプ室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置する設計とする。
（a）漏えい試験
「第2号機原子炉補機泠却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
h．第3号機タービン補機泠却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）， （No．3）
第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪 を考慮した場合においても，津波防護対象設備を内包する建屋及び区画が設置 される敷地に第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネルを介 して浸水することを防止し，第3号機海水熱交換器建屋に想定される津波高さ に余裕を考慮した高さに対する止水性を保持するため，以下の措置を講じる設計とする。

第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，第3号機海水熱交換器建屋の入力津波高さ 0. P．+19.0 m に余裕を考慮した津波高さに対して，止水性を保持する設計とする。

第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，鋼製とし，十分な支持性能を有する第3号機海水熱交換器建屋に止水ゴム又はガスケットを挟んで固定することにより，止水性を保持する設計とする。

第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネルは，以下に示す漏えい試験により止水性を確認したものと同じ形状，寸法の逆止弁を設置する設計とする。
（a）漏えい試験
「第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル」と同じ。
（6）貫通部止水処置
貫通部止水処置は，「3．要求機能及び性能目標」の「3．2 浸水防止設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。
a．貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）
貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮 した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置により，止水性を保持するために以下の設計とする。

貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）は，入力津波による浸水高さ 0. P．+18.1 m （第 2 号機海水ポンプ室）に余裕を考慮した浸水高さに対し て，止水性を保持する設計とする。

貫通部止水処置（第 2 号機海水ポンプ室防潮壁横断部）のうち，シリコンシー ル及びブーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
イ．試験条件
漏えい試験は，実機で使用する形状及び寸法を考慮した試験体を用いて実施し，津波荷重水位以上の水位を想定した水頭圧を作用させた場合にシリコ ンシール及びブーツラバーと貫通部及び貫通部との境界部に漏えいが生じ ないことを確認する。シリコンシールによる貫通部止水処置の漏えい試験の概要を図 $4-2$ ，ブーツラバーによる貫通部止水処置の漏えい試験の概要を図 4－3に示す。
ロ．試験結果
試験の結果，有意な漏えいは認められなかった。

図 4－2 シリコンシールによる貫通部止水処置の漏えい試験概要図

図 4－3 ブーツラバーによる貫通部止水処置の漏えい試験概要図

枠囲みの内容は商業機密の観点から公開できません。
b．貫通部止水処置（第2号機放水立坑防潮壁横断部）
貫通部止水処置（第 2 号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来 を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置に より，止水性を保持するために以下の設計とする。

貫通部止水処置（第 2 号機放水立坑防潮壁横断部）は，入力津波による浸水高 さ 0．P．＋+17.4 m （第 2 号機放水立坑）に余裕を考慮した浸水高さに対して，止水性を保持する設計とする。

貫通部止水処置（第 2 号機放水立坑防潮壁横断部）のうち，シリコンシール及 びブーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
c．貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）
貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮 した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置により，止水性を保持するために以下の設計とする。

貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）は，入力津波による浸水高さ 0. P．+19.0 m （第 3 号機海水ポンプ室）に余裕を考慮した浸水高さに対し て，止水性を保持する設計とする。

貫通部止水処置（第3号機海水ポンプ室防潮壁横断部）のらち，シリコンシー ル及びブーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
d．貫通部止水処置（第 3 号機放水立坑防潮壁横断部）
貫通部止水処置（第 3 号機放水立坑防潮壁横断部）は，地震後の繰返しの襲来 を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置に より，止水性を保持するために以下の設計とする。

貫通部止水処置（第3号機放水立坑防潮壁横断部）は，入力津波による浸水高 さ 0. P．+17.5 m （第 3 号機放水立坑）に余裕を考慮した浸水高さに対して，止水性を保持する設計とする。

貫通部止水処置（第3号機放水立坑防潮壁横断部）のうち，シリコンシール及 びブーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
e．貫通部止水処置（第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）
貫通部止水処置（第 3 号機補機冷却海水系放水ピット浸水防止蓋貫通部）は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，想定される津波高さに余裕を考慮した高さまでの止水処置により，止水性を保持するために以下の設計とする。

貫通部止水処置（第 3 号機補機冷却海水系放水ピット浸水防止蓋貫通部）は，入力津波による浸水高さ 0. P．+17.5 m に余裕を考慮した浸水高さに対して，止水性を保持する設計とする。

貫通部止水処置（第 3 号機補機冷却海水系放水ピット浸水防止蓋貫通部）のう ち，シリコンシール及びブーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
f．貫通部止水処置（第 2 号機原子炉建屋）
貫通部止水処置（第 2 号機原子炉建屋）は，津波による溢水を考慮した浸水に

対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である第 2 号機原子炉建屋に浸水することを防止するため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講 じる設計とする。
地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。

なお，内部溢水の評価にて設定しているタービン建屋内の主復水器を設置す るエリアの浸水高さ（床面から 2.2 m ）に対する止水性については，地表面から の浸水高さ 0.18 m における止水性に包含される。

貫通部止水処置（第 2 号機原子炉建屋）のうち，シリコンシール及びブーツラ バーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
g．貫通部止水処置（第 2 号機制御建屋）
貫通部止水処置（第 2 号機制御建屋）は，津波による溢水を考慮した浸水に対 し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である第2号機制御建屋に浸水することを防止す るため，浸水高さを以下のとおり設定し，止水性を保持するための措置を講じる設計とする。

地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。

なお，内部溢水の評価にて設定しているタービン建屋内のタービン補機冷却水系熱交換器・ポンプ室の浸水高さ（床面から 2.1 m ）に対する止水性について は，地表面からの浸水高さ 0.18 m における止水性に包含される。

貫通部止水処置（第 2 号機制御建屋）のらち，シリコンシール及びブーツラバ ーによる貫通部止水処置については，漏えい試験により止水性を確認した施工方法にて施工する。
（a）漏えい試験

「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。
h．貫通部止水処置（第 2 号機軽油タンクエリア）
貫通部止水処置（第 2 号機軽油タンクエリア）は，津波による溢水を考慮した浸水に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波防護対象設備を内包する建屋及び区画である第2号機軽油タンクエリアに浸水 することを防止するため，浸水高さを以下のとおり設定し，止水性を保持するた めの措置を講じる設計とする。

地震時において女川原子力発電所にある耐震性が確保されない屋外タンク等が すべて破損し，全量流出することを想定するとともに，敷地内に広がった溢水は雨水排水路からの排水や地盤への浸透は考慮しないものとして，水位が高くなる ように設定した地表面からの浸水高さ 0.18 m に対して，止水性を保持する設計と する。

貫通部止水処置（第 2 号機軽油タンクエリア）のうち，シリコンシール及びブ ーツラバーによる貫通部止水処置については，漏えい試験により止水性を確認 した施工方法にて施工する。
（a）漏えい試験
「貫通部止水処置（第2号機海水ポンプ室防潮壁横断部）」と同じ。

4．3 津波監視設備

（1）津波監視カメラ
津波監視カメラは，「3．要求機能及び性能目標」の「3．3 津波監視設備（3）性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

津波監視カメラは，地震後の繰返しの襲来を想定した遡上波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，津波及び漂流物の影響を受けな い場所として，防潮堤内側の原子炉建屋の屋上及び津波高さを上回る防潮堤（盛土堤防）の上部にカメラ本体を設置し，昼夜問わず監視可能な設計とする。また，カ メラ本体からの映像信号を電路により中央制御室に設置する津波監視カメラ制御盤及び監視モニタに伝送し，中央制御室にて監視可能な設計とする。電路については，波力や漂流物の影響を受けない箇所に設置し，電源は津波の影響を受けない建屋 に設置する非常用電源から給電する設計とする。
（2）取水ピット水位計
取水ピット水位計は，「3．要求機能及び性能目標」の「3．3 津波監視設備性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

取水ピット水位計は，地震後の繰返しの襲来を想定した経路からの津波に対し，余震，漂流物の衝突，風及び積雪を考慮した場合においても，海水ポンプ室の想定 される津波高さに余裕を考慮した高さに耐えらる設計とするとともに，漂流物の影響を受けにくい海水ポンプ室補機ポンプエリア床面に設置する。

取水ピット水位計は，朔望平均潮位を考慮した海水ポンプ室の上昇側及び下降側の津波高さを計測できるように 0. P．$-11.25 \mathrm{~m} ~ 0$. P．+19.00 m の水位をバブラ管式 の検出器を用いて正確な測定が可能な設計とする。

また，検出器で測定した海水ポンプ室水位の信号を電路により中央制御室に伝送 し，中央制御室にて監視可能な設計とする。電路については，波力や漂流物の影響 を受けない箇所に設置し，電源は津波の影響を受けない建屋に設置する非常用電源から給電する設計とする。

[^0]: ----

[^1]: ＊1：2号機海水ポンプ室防潮壁の高さ ＊2： 1 号機海水ポンプ室の高さ
 ＊ $3: 3$ 号機海水ポンプ室防潮壁の高さ
 ＊4：3号機海水熱交換器建屋防潮壁の高さ
 ＊5：2号機放水立坑防潮壁の高さ

