```
本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。
```

女川原子力発電所第2号機	
工事計画審査資料	
資料番号	02 －工－B－09－0003＿改 2
提出年月日	2021 年 5 月 27 日

VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書

2021 年 5 月
東北電力株式会社

VI 添付書類
VI－1 説明書
VI－1－9 その他発電用原子炉の附属施設の説明書
VI－1－9－1 非常用電源設備の説明書
VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書

VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書
1．概要 1
2．基本方針 1
2.1 常設の非常用発電装置の出力に関する設計方針 1
2．1．1 ガスタービン 3
2．1．2 内燃機関 3
2．1．3 発電機 4
2．1．4 遮断器 5
2．1．5 その他電気設備 7
2.2 可搬型の非常用発電装置の出力に関する設計方針 17
2．2．1 可搬型の非常用発電装置 18
3．施設の詳細設計方針 18
3.1 非常用ディーゼル発電機 18
3．1．1 設計基準対象施設 18
3．1．2 重大事故等対処設備 26
3.2 高圧炉心スプレイ系ディーゼル発電機 29
3．2．1 設計基準対象施設 29
3．2．2 重大事故等対処設備 31
3.3 ガスタービン発電機 32
3．3．1 ガスタービン 32
3．3．2 発電機 32
3．4 可搬型の非常用発電装置 36
3．4．1 電源車 36
3．4．2 電源車（緊急時対策所用） 39
3．4．3 可搬型窒素ガス供給装置発電設備 41

1．概要
本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年 6 月 28 日原子力規制委員会規則第 6 号）」（以下「技術基準規則」という。）第 45 条及び第 72 条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則 の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号）」（以下「解釈」という。）に基づき設置する非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機，技術基準規則第 72 条及びその解釈に基づき設置するガスタービン発電機及び電源車，技術基準規則第 76 条及び第 77 条並びにそれらの解釈に基づき設置する電源車（緊急時対策所用）並びに技術基準規則第 63 条，第 65 条及び第 67 条並びにそれらの解釈に基づき設置す る可搬型窒素ガス供給装置発電設備の出力の決定に関して説明するものである。

また，技術基準規則第 48 条及び第 78 条に基づく「発電用火力設備に関する技術基準 を定める省令（平成 26 年 11 月 5 日経済産業省令第 55 号）」（以下「火力省令」という。）及び「原子力発電工作物に係る電気設備に関する技術基準を定める命令（平成 24 年 9 月 14日経済産業省令第 70号）」（以下「原子力電技命令」という。）の準用について，本資料にて非常用電源設備のガスタービン及び内燃機関に対する火力省令への適合性並びに非常用電源設備の発電機，遮断器及びその他電気設備に対する原子力電技命令への適合性について説明するものである。

さらに，技術基準規則第 45 条第 3 項第 1 号及びその解釈に規定する「高エネルギー のアーク放電による電気盤の損壊の拡大を防止するために必要な措置」として，アーク放電の遮断時間の適切な設計方針について説明するものである。

2．基本方針

2.1 常設の非常用発電装置の出力に関する設計方針

設計基準対象施設のうち常設の非常用発電装置である非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機は，設計基準事故時に発電用原子炉施設の安全性を確保するために必要な装置の機能を維持するため，運転時の異常な過渡変化時又 は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備が その機能を確保するために必要な電力を供給できる出力を有する設計とする。また，工学的安全施設等の設備が必要とする電源が所定の時間内に所定の電圧に到達し，継続的に供給できる設計とする。

重大事故等対処設備のうち常設の非常用発電装置である非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼル発電機及びガスタービン発電機は，重大事故等が発生 した場合において，炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内 の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するため に必要な電力を供給できる出力を有する設計とする。

非常用ディーゼル発電機は，2 系統の母線で構成するメタルクラッドスイッチギア
（非常用）に接続し，高圧補機へ給電する設計とする。また，動力変圧器（非常用） を通して降圧し，2系統の母線で構成するパワーセンタ（非常用）及びモータコント ロールセンタ（非常用）の低圧補機へ給電する設計とする。

高圧炉心スプレイ采ディーゼル発電機は，メタルクラッドスイッチギア（高圧炉心 スプレイ系用）に接続し，高圧補機へ給電する設計とする。また，動力変圧器（高圧炉心スプレイ系用）を通して降圧し，モータコントロールセンタ（高圧灲心スプレイ系用）の低圧補機へ給電する設計とする。

ガスタービン発電機は，外部電源系，非常用ディーゼル発電設備及び高圧炉心スプ レイ系ディーゼル発電設備の機能が喪失（全交流動力電源霛失）した場合に，重大事故等時の対応に必要な設備に電力を供給できる設計とする。

また，ガスタービン発電機は，メタルクラッドスイッチギア（緊急用）を介してメ タルクラッドスイッチギア（緊急時対策所用）へ接続し，緊急時対策所へ電力を供給 できる設計とする。

ガスタービン発電機は，設置（変更）許可申請書の添付書類十における，重大事故等時に想定される事故シーケンスのらち最大負荷となる「雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）（代替循環冷却系を使用する場合）」時に電力を供給できる出力を有する設計とする。

設計基準対象施設及び重大事故等対処施設に施設する非常用発電装置である非常用 ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機並びに重大事故等対処施設に施設する非常用発電装置であるガスタービン発電機（ガスタービン及び内燃機関 については，燃料系を含める。）及び緊急時対策所軽油タンクは，火力省令第19条～第 23 条及び第 25 条～第 29 条のらち関連する事項を準用する設計とする。ガスター ビン及び附属設備は，「ガスタービン等の構造」，「調速装置」，「非常停止装置」及び「計測装置」について各事項を準用し，内燃機関及び附属設備は，「内燃機関等の構造等」，
「調速装置」，「非常停止装置」，「過圧防止装置」及び「計測装置」について各事項を準用する設計とする。

なお，ガスタービン及び内燃機関における火力省令第19条第4項又は第25条第3項に基づく強度評価の基本方針，強度評価方法及び強度評価結果は，添付書類「VI－3強度に関する説明書」の別添にて説明する。

非常用ディーゼル発電機，高圧炉心スプレイ系ディーゼル発電機，ガスタービン発電機，遮断器及びその他電気設備は，原子力電技命令第4条～第16条，第19条～第 28 条及び第 30 条～第 35 条の関連する事項を準用する設計とする。「感電，火災等の防止」として，「電気設備における感電，火災等の防止」，「電路の絶縁」，「電線等の断線の防止」，「電線の接続」，「電気機械器具の熱的強度」，「高圧又は特別高圧の電気機械器具の危険の防止」，「電気設備の接地」，「電気設備の接地の方法」及び「発電所等 への取扱者以外の者の立入の防止」について各事項を準用する設計とする。「異常の予

防及び保護対策」として，「特別高圧電路等と結合する変圧器等の火災等の防止」及び「過電流からの電線及び電気機械器具の保護対策」について各事項を準用する設計と する。「電気的，磁気的障害の防止」として，「電気設備の電気的，磁気的障害の防止」 について各事項を準用する設計とする。また，「供給支障の防止」として，「発変電設備等の損傷による供給支障の防止」，「発電機等の機械的強度」及び「常時監視をしな い発電所等の施設」について各事項を準用する設計とする。

2．1．1 ガスタービン

ガスタービンは，火力省令を準用し，以下の設計とする。
（1）ガスタービン等の構造
ガスタービンは，非常調速装置が作動したときに達する回転速度に対して構造上十分な機械的強度及びガスの温度が著しく上昇した場合に燃料の流入を自動的 に遮断する装置が作動したときに達するタービン入口ガス温度高トリップ作動温度における十分な熱的強度を有する設計とする。軸受は，車軸の両側に設けた転 がり軸受により運転中の荷重を安定に支持できるものであって，かつ，異常な摩耗，変形及び過熱が生じない設計とする。調速装置により調整することができる最低速度から過速度トリップが作動したときに達する最高速度までの間に被動機一体の危険速度がない設計とする。耐圧部分の構造は，最高使用圧力又は最高使用温度において発生する応力に対し十分な強度を有した設計とする。
（2）調速装置
回転速度及び出力が負荷の変動の際にも持続的に動摇することを防止するため， ガスタービンに流入する燃料を自動的に調整する調速装置を設ける設計とする。
（3）非常停止装置
運転中に生じた過回転その他の異常による危害の発生を防止するため，その異常が発生した場合にガスタービンに流入する燃料を自動的かつ速やかに遮断する非常調速装置その他の非常停止装置を設ける設計とする。
（4）計測装置
設備の損傷を防止するため，回転速度，潤滑油圧力，潤滑油温度等の運転状態 を計測する装置を設ける設計とする。

2．1．2 内燃機関

内燃機関は，火力省令を準用し，以下の設計とする。
（1）内燃機関等の構造等
非常調速装置が作動したときに達する回転速度に対して構造上十分な機械的強度を有する設計とする。軸受は，運転中の荷重を安定に支持できるもので，かつ，異常な摩耗，変形及び過熱が生じない設計とする。耐圧部分は，最高使用圧力又

は最高使用温度において発生する応力に対し十分な強度を有した設計とする。ま た，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機は屋内に設置する設計とするため，酸素欠乏の発生のおそれのないように，建屋に吸排気部を設置する設計とする。
（2）調速装置
回転速度及び出力が負荷の変動の際にも持続的に動摇することを防止するため，内燃機関に流入する燃料を自動的に調整する調速装置を設ける設計とする。
（3）非常停止装置
運転中に生じた過回転その他の異常による危害の発生を防止するため，その異常が発生した場合に内燃機関に流入する燃料を自動的かつ速やかに遮断する非常調速装置その他の非常停止装置を設ける設計とする。
（4）過圧防止装置
非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機は，過圧が生じるおそれがあるシリンダ内の圧力を逃すためにシリンダ安全并を設ける設計 とする。
（5）計測装置
設備の損傷を防止するため，回転速度，潤滑油圧力，潤滑油温度等の運転状態 を計測する装置を設ける設計とする。

2．1．3 発電機

発電機は，原子力電技命令を準用し，以下の設計とする。
（1）感電，火災等の防止
感電防止のため接地し，また，充電部分に容易に接触できない設計とする。電路は大地から絶縁する設計とし，絶縁抵抗測定等により異常のないことを確認す る。電線の接続箇所は，端子台等により接続することで電気抵抗を増加させない とともに，絶縁性能の低下及び通常の使用状態において断線のおそれがない設計 とする。電気機械器具は，「日本電気技術規格委員会規格 J E S C E 7 0 0 2－ 2010 電気機械器具の熱的強度の確認方法」（以下「J E S C E 7 0 0 2 」とい う。）に基づき，通常の使用状態において発生する熱に耐える設計とする。火災防止のため，高圧の電気機械器具は金属製の筐体に格納することで可燃性のものと隔離し，外箱等は接地を施す設計とする。電気設備は，適切な接地工事を施す設計とする。取扱者以外の者の立入を防止するため，発電所には人が容易に構内に立ち入るおそれがないようフェンス等を設ける設計とする。
（2）異常の予防及び保護対策
異常の予防及び保護対策のため，過電流を過電流継電器にて検出し，遮断器を開放する設計とする。
（3）電気的，磁気的障害の防止
発電機は，閉鎖構造（金属製の筐体）及び接地の実施により，電気設備その他 の物件の機能に電気的又は磁気的な障害を与えない設計とする。
（4）供給支障の防止
発変電設備等の損傷による供給支障の防止のため，過電流等を生じた場合，保護継電器にて検知し，遮断器を開放して自動的に発電機を電路から遮断する設計 とする。発電機は，短絡電流及び非常調速装置が動作して達する回転速度に対し て，十分な機械的強度を有する設計とし，三相短絡試験等により異常のないこと を確認する。発電所構内には，発電機の運転に必要な知識及び技能を有する者が常時駐在することにより，常時監視しない発電所は施設しない設計とする。

2．1．4 遮断器

遮断器は，原子力電技命令を準用し，以下の設計とする。
（1）感電，火災等の防止
遮断器は，感電防止のため接地し，また，充電部分に容易に接触できない設計 とする。電路は大地から絶縁する設計とし，絶縁抵抗測定等により異常のないこ とを確認する。電線の接続箇所は，端子台等により接続することで電気抵抗を増加させないとともに，絶縁性能の低下及び通常の使用状態において断線のおそれ がない設計とする。遮断器は，J E S C E 7 0 0 2 に基づき，通常の使用状態 において発生する熱に耐える設計とし，火災発生防止のため，閉鎖された金属製 の外箱に収納し，隔離する設計とする。遮断器は適切な接地を施し，鉄台及び金属製の外箱には，A 種接地工事（高圧設備），C 種又は D 種接地工事（低圧設備） を施す設計とする。取扱者以外の者の立入を防止するため，発電所には人が容易 に構内に立ち入るおそれがないようフェンス等を設ける設計とする。
（2）異常の予防及び保護対策
異常の予防及び保護対策のため，過電流遮断器は，施設する箇所を通過する短絡電流を遮断する能力を有し，高圧電路に施設する過電流遮断器はその作動に伴 いその開閉状態を表示する装置を有する設計とする。

重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与えるおそれ のある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）
（以下「HEAF 対策対象盤」という。）については，非常用ディーゼル発電機又は高圧炉心スプレイ系ディーゼル発電機からの給電時以外は，適切な遮断時間にて アーク放電が発生した遮断器の上流の遮断器を開放し，アーク放電の継続を防止 することでアーク火災を防止し，電気盤の損壊の拡大を防止することができる設計とする。

非常用ディーゼル発電機からの給電時におけるメタルクラッドスイッチギア
（非常用）のアーク火災防止対策については，アーク放電時の短絡電流を検出し，非常用ディーゼル発電機受電遮断器の開放又は非常用ディーゼル発電機の停止に よりアーク放電を遮断する設計とし，高圧炻ふプレイ系ディーゼル発電機から の給電時におけるメタルクラッドスイッチギア（高圧炉心スプレイ系用）のアー ク火災防止対策については，アーク放電時の短絡電流を検出し，高圧灲心スプレ イ系ディーゼル発電機受電遮断器の開放又は高圧炉心スプレイ系ディーゼル発電機の停止によりアーク放電を遮断する設計とする。HEAF 対策対象盤を表 2－1 に示 す。

HEAF 対策対象盤の適切な遮断時間の設計にあたっては，HEAF 対策対象盤は，「高エネルギーアーク損傷（HEAF）に係る電気盤の設計に関する審査ガイド（平成 29年7月19日原規技発第1707196号）」（以下「審査ガイド」という。）を踏まえ， アーク放電を発生させる試験，アーク火災発生の評価を実施し，高エネルギーア ーク損傷に係る対策の判断基準としてアーク火災が発生しないアークエネルギー の閾値は，メタルクラッドスイッチギア（非常用）及びメタルクラッドスイッチ ギア（高圧炉心スプレイ系用）は 25MJ（非常用ディーゼル発電機又は高圧炉心ス プレイ系ディーゼル発電機からの給電時は16MJ），パワーセンタ（非常用）は 18MJ並びにモータコントロールセンタ（非常用）及びモータコントロールセンタ（高圧炉心スプレイ系用）は4．4MJを設定する。

発生するアークエネルギーは，次式により求め，非常用ディーゼル発電機又は高圧炉心スプレイ系ディーゼル発電機からの給電時以外のアーク放電の遮断時間 を表2－2に示し，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時のアーク放電の遮断時間を表2－3に示す。

$$
\begin{aligned}
& \mathrm{E}_{3 \Phi}=\mathrm{V}_{\mathrm{arc}} \times \mathrm{I}_{\mathrm{arc}} \times \mathrm{t}_{\mathrm{arc}} \\
& \mathrm{E}_{3 \Phi}: \text { 三相のアークエネルギー } \\
& \mathrm{V}_{\mathrm{arc}}: \mathrm{HEAF} \text { 試験の結果から得られたアーク電圧の平均値 } \\
& \mathrm{I}_{\mathrm{arc}}: \text { 三相短絡電流の平均値 } \\
& \mathrm{t}_{\mathrm{arc}}: \text { アーク発生時のアーク放電の遮断時間 }
\end{aligned}
$$

非常用ディーゼル発電機又は高圧炉心スプレイ系ディーゼル発電機からの給電時以外は，各母線に接続されるすべての遮断器（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機に係る部分を除く。）をアーク放電発生箇所 とし，各アーク放電発生箇所の上流の遮断器を開放することによりアーク放電を遮断する。（図 2－1 参照）
非常用ディーゼル発電機からの給電時は，非常用ディーゼル発電機受電遮断器 の開放又は非常用ディーゼル発電機を停止することによりアーク放電を遮断し，

高圧炉心スプレイ系ディーゼル発電機からの給電時は，高圧炉心スプレイ系ディ一ゼル発電機受電遮断器の開放又は高圧炉心スプレイ系ディーゼル発電機を停止 することによりアーク放電を遮断する。（図 2－2 参照）
（3）電気的，磁気的障害の防止
遮断器は，閉鎖構造（金属製の筐体）及び接地の実施により，電気的又は磁気的な障害を与えない設計とする。
（4）供給支障の防止
発変電設備等の損傷による供給支障の防止のため，過電流等を生じた場合，保護継電器にて検知し，遮断器を開放して自動的に発電機を電路から遮断する設計 とする。発電所構内には，遮断器の運転に必要な知識及び技能を有する者が常時駐在することにより，常時監視しない発電所は施設しない設計とする。

2．1．5 その他電気設備

その他の非常用電源設備は，原子力電技命令を準用し，以下の設計とする。
（1）感電，火災等の防止
電気設備は，感電の防止のため接地し，また，外箱やカバー等により充電部分 に容易に接触できない設計とする。電路は大地から絶縁する設計とし，絶縁抵抗測定等により異常のないことを確認する。電線の接続箇所については，接続板，接続用ボルト・ナット等により接続することで電気抵抗を増加させないとともに，絶縁性能の低下及び通常の使用状態において断線のおそれがない設計とする。電気設備は，熱的強度について期待される使用状態において発生する熱に耐える設計とする。火災防止のため，可燃性の物から離して施設する設計とする。必要箇所には，異常時の電圧上昇等による影響を及ぼさないよう適切な接地を施す設計 とする。取扱者以外の者の立入を防止するため，発電所には人が容易に構内に立 ち入るおそれがないようフェンス等を設ける設計とする。
（2）異常の予防及び保護対策
高圧電路と結合する変圧器は，電気設備の損傷，感電又は火災のおそれがない よう，適切な接地を施す設計とする。過電流からの電線及び電気機械器具の保護対策のため，電気設備には，過電流を検知できるよう保護継電器，過電流検知器及び配線用遮断器を設置し，過電流を検出した場合は，遮断器を開放する設計と する。
（3）電気的，磁気的障害の防止
閉鎖構造（金属製の筐体）及び接地の実施により，電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。
（4）供給支障の防止
変圧器，母線及びそれを支持する碍子は，短絡電流により生ずる機械的衝撃に耐

える設計とする。発電所構内には，電気設備の運転に必要な知識及び技能を有する者が常時駐在することにより，常時監視しない発電所は施設しない設計とする。

表 2－1 HEAF 対策対象盤
【凡例】 \bigcirc ：対象 \times ：対象外

女川原子力発電所第2号機 電気盤＊1	（1）：常時接続さ れる電気盤か＊2	（2）：重要安全施設 （MS－1）への電力供給に係る電気盤か	③：重要安全施設（MS－1）への電力供給に係る電気盤の周囲 2.5 m 以内に設置されている電気盤か＊3	HEAF 対 策 が必要な電気盤
$\begin{aligned} & \text { メタルクラッドスイッチギア (非常用) 及びメタルクラッドスイッチ } \\ & \text { ギア (高圧炉心スプレイ系用) (M/C 6-2C, M/C 6-2D 及びM/C 6-2H) } \end{aligned}$	\bigcirc	\bigcirc		\bigcirc
パワーセンタ（非常用）（P／C 4－2C 及びP／C 4－2D）	\bigcirc	\bigcirc		\bigcirc
モータコントロールセンタ（非常用）及び モータコントロールセンタ（高圧炉心スプレイ系用） （MCC C 系，MCC D 系及びMCC H 系）（原子炉建屋及び制御建屋）	\bigcirc	\bigcirc		\bigcirc
モータコントロールセンタ（非常用） （MCC C 系及びMCC D 系）（タービン建屋）	\bigcirc	\times	$\times^{* 4}$	\times
$\begin{aligned} & \text { メタルクラッドスイッチギア(常用), パワーセンタ (常用) 及び } \\ & \text { モータコントロールセンタ (常用) } \\ & \text { (M/C 6-2A, M/C 6-2B, P/C 4-2A, P/C 4-2B, MCC A 系及び MCC B 系) } \end{aligned}$	\bigcirc	\times	$\times^{* 4}$	\times
$\begin{aligned} & \text { メタルクラッドスイッチギア(共通用), パワーセンタ (共通用) 及び } \\ & \text { モータコントロールセンタ(共通用) } \\ & \text { (M/C 6-2SA-1, M/C 6-2SB-1, M/C 6-2SA-2, M/C 6-2SB-2, P/C 4-2SA, } \\ & \text { P/C 4-2SB, MCC SA 系及び MCC SB 系) } \end{aligned}$	\bigcirc	\times	$\times^{* 4}$	\times
メタルクラッドスイッチギア（予備用）（M／C 6－E）	\bigcirc	\times	$\times^{* 4}$	\times
メタルクラッドスイッチギア（緊急時対策所用）及びモータコントロ ールセンタ（緊急時対策所用）（M／C 6－J－1，M／C 6－J－2 及び MCC J 系）	\bigcirc	\times	$\times^{* 4}$	\times

注記＊1 ：電気盤は高圧電源盤（メタルクラッドスイッチギヤ等をいう。）及び低圧電源盤（パワーセンタ及びモータコントロールセンタをい
う。）をいう（審査ガイドによる。）。当該電源盤が HEAF 対策の対象となる電気盤である。
＊2：電線路，主発電機又は非常用電源設備から電気が供給されている「電気盤」をいう。
＊ 3 ：審査ガイドによる。
＊ 4 ：重要安全施設（MS－1）への電力供給に係る電気盤と 2.5 m 以上離れた別区画に設置している。

表 2－2 電気盤のアークエネルギー及びアーク放電の遮断時間一覧（ $1 / 4$ ）
（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時以外）

10

アーク発生箇所			アーク放電を遮断するために 開放する遮断器	アーク放電の遮断時間 （s）	アークエネルギー （MJ）
電気盤名称		遮断器名称			
$\begin{aligned} & \ngtr \\ & \text { タ } \\ & \text { ル } \\ & \text { ク } \\ & ラ \\ & \text { ッ } \\ & \text { ド } \\ & \text { ス } \\ & \text { ッ } \\ & \text { チ } \\ & \text { ギ } \\ & \text { 韭 } \\ & \text { 常 } \end{aligned}$	$\begin{gathered} \mathrm{M} / \mathrm{C} \\ 6-2 \mathrm{C} \end{gathered}$	母線連絡遮断器＊1 $52-6-2 \mathrm{CA}$	母線連絡遮断器＊1 $52-6-2 \mathrm{AC}$	0． 400	22.56
		母線連絡遮断器＊1 $52-6-2 \mathrm{CE}$	母線連絡遮断器＊1 52-6-E2	0.513	18． 50
		M／C 6－2C に接続される遮断器＊1 （母線連絡遮断器 52－6－2CA，	母線連絡遮断器＊1 $52-6-2 \mathrm{CA}$	0． 374	21.09
		非常用ディーゼル発電機（A）受電遮断器 52－6－2DGA を除く。）	母線連絡遮断器＊1 $52-6-2 \mathrm{CE}$	0． 286	10． 31
	$\begin{aligned} & \mathrm{M} / \mathrm{C} \\ & 6-2 \mathrm{D} \end{aligned}$	母線連絡遮断器＊1 $52-6-2 \mathrm{DB}$	$\begin{gathered} \hline \text { 母線連絡遮断器*1 } \\ 52-6-2 \mathrm{BD} \\ \hline \end{gathered}$	0． 400	22.56
		母線連絡遮断器＊1 $52-6-2 \mathrm{DE}$	母線連絡遮断器＊1 52-6-E2	0.513	18． 50
		M／C 6－2D に接続される遮断器＊1 （母線連絡遮断器 52－6－2DB，	母線連絡遮断器＊1 $52-6-2 \mathrm{DB}$	0． 374	21.09
		母線連絡遮断器 52－6－2DE 及び 非常用ディーゼル発電機（B）受電遮断器 52－6－2DGBを除く。）	母線連絡遮断器＊1 $52-6-2 \mathrm{DE}$	0． 286	10． 31

注記＊1：遮断器の種類は真空遮断器である。

表2－2 電気盤のアークエネルギー及びアーク放電の遮断時間一覧（2／4）
（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時以外）

アーク発生箇所			アーク放電を遮断するために開放する遮断器	アーク放電の遮断時間 （s）	アークエネルギー （MJ）
電気盤名称		遮断器名称			
$\begin{aligned} & \text { 又 } \\ & \text { 돔 } \end{aligned}$		母線連絡遮断器＊1 $52-6-2 \mathrm{HA}$	母線連絡遮断器＊1 $52-6-2 \mathrm{AH}$	0． 370	20． 86
$\begin{gathered} \text { 鬲 ル } \\ \text { 炬 ク } \end{gathered}$		母線連絡遮断器＊1 $52-6-2 \mathrm{HE}$	母線連絡遮断器＊1 52-6-E2	0.513	18． 50
$\begin{array}{ll} \text { Lu } & \text { シ } \\ \text { プ } & \text { ド } \\ \text { レ } & \text { K } \end{array}$	$\begin{gathered} \mathrm{M} / \mathrm{C} \\ 6-2 \mathrm{H} \end{gathered}$	M／C 6－2H に接続される遮断器＊1 （母線連絡遮断器 52－6－2HA，	母線連絡遮断器＊1 $52-6-2 \mathrm{HA}$	0． 345	19． 46
		母線連絡遮断器 52－6－2HE 及び 高圧炉心スプレイ系ディーゼル発電機受電遮断器 52－6－2DGH を除く。）	母線連絡遮断器＊1 $52-6-2 \mathrm{HE}$	0． 286	10． 31

注記＊1：遮断器の種類は真空遮断器である。

表 2－2 電気盤のアークエネルギー及びアーク放電の遮断時間一覧（3／4）
（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時以外）

アーク発生箇所			アーク放電を遮断するために開放する遮断器	アーク放電の遮断時間 （s）	アークエネルギー （MJ）
電気盤名称		遮断器名称			
	P／C	受電遮断器＊2 $52-4-2 \mathrm{C}$	動力変圧器遮断器＊1 $52-6-2 \mathrm{PC}$	0.996	15.67
	4－2C	P／C 4－2C に接続される遮断器＊2 （受電遮断器 52－4－2C を除く。）	受電遮断器＊2 $52-4-2 \mathrm{C}$	0． 670	10.54
	P／C	受電遮断器＊2 $52-4-2 \mathrm{D}$	動力変圧器遮断器＊1 $52-6-2 \mathrm{PD}$	0.996	15.67
	4－2D	P／C 4－2D に接続される遮断器＊2 （受電遮断器 52－4－2D を除く。）	受電遮断器＊2 $52-4-2 \mathrm{D}$	0． 670	10.54

注記＊1：遮断器の種類は真空遮断器である。
＊2：遮断器の種類は気中遮断器である。

表 2－2 電気盤のアークエネルギー及びアーク放電の遮断時間一覧（4／4）
（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時以外）

13

アーク発生箇所			アーク放電を遮断するために開放する遮断器	アーク放電の遮断時間 （s）	アークエネルギー （MJ）
電気盤名称		遮断器名称			
	MCC C 系	C／B MCC 2C－1 に接続される遮断器＊3	C／B MCC 2C－1 受電遮断器＊2	0.170	3.87
		C／B MCC 2C－2 に接続される遮断器＊3	C／B MCC 2C－2 受電遮断器＊2	0.170	3.87
		R／B MCC 2C－1 に接続される遮断器＊3	R／B MCC 2C－1 受電遮断器＊2	0.170	3.87
		R／B MCC 2C－2 に接続される遮断器＊3	R／B MCC 2C－2 受電遮断器＊2	0.170	3.87
		R／B MCC 2C－3 に接続される遮断器＊3	R／B MCC 2C－3 受電遮断器＊2	0.170	3． 87
		R／B MCC 2C－4 に接続される遮断器＊3	R／B MCC 2C－4 受電遮断器＊2	0.170	3.87
		R／B MCC 2C－5 に接続される遮断器＊3	R／B MCC 2C－5 受電遮断器＊2	0.170	3.87
	MCC D 系	C／B MCC 2D－1 に接続される遮断器＊3	C／B MCC 2D－1受電遮断器＊2	0.170	3.87
		C／B MCC 2D－2 に接続される遮断器＊3	C／B MCC 2D－2 受電遮断器＊2	0.170	3.87
		R／B MCC 2D－1 に接続される遮断器＊3	R／B MCC 2D－1 受電遮断器＊2	0.170	3.87
		R／B MCC 2D－2 に接続される遮断器＊3	R／B MCC 2D－2 受電遮断器＊2	0.170	3.87
		R／B MCC 2D－3 に接続される遮断器＊3	R／B MCC 2D－3 受電遮断器＊2	0.170	3.87
		R／B MCC 2D－4 に接続される遮断器＊3	R／B MCC 2D－4 受電遮断器＊2	0.170	3.87
		R／B MCC 2D－5 に接続される遮断器＊3	R／B MCC 2D－5 受電遮断器＊2	0.170	3.87
	MCC H 系	R／B MCC 2 H に接続される遮断器＊3	動力変圧器遮断器＊1 $52-6-2 \mathrm{PH}$	0． 318	3.71

注記 $* 1$ ：遮断器の種類は真空遮断器である。＊2：遮断器の種類は気中遮断器である。＊ $3:$ 遮断器の種類は配線用遮断器である。

表2－3 電気盤のアークエネルギー及びアーク放電の遮断時間一覧
（非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機からの給電時）

	アーク発生箇所			アーク放電を遮断するために 開放する遮断器	アーク放電の遮断時間 （s）	アークエネルギー （MJ）
	電気盤名称		遮断器名称			
	韭		非常用ディーゼル発電機（A）受電遮断器＊1 52-6-2DGA	—＊2	7． 077	10． 44
		$\begin{gathered} \mathrm{M} / \mathrm{C} \\ 6-2 \mathrm{C} \end{gathered}$	M／C 6－2C に接続される遮断器＊1 （非常用ディーゼル発電機（A）受電遮断器 52－6－2DGA を除く。）	非常用ディーゼル発電機（A）受電遮断器＊1 52－6－2DGA	2． 485	6.95
			非常用ディーゼル発電機（B）受電遮断器＊1 52－6－2DGB	－＊2	7． 077	10． 44
\nLeftarrow		$6-2 \mathrm{D}$	M／C 6－2D に接続される遮断器＊1 （非常用ディーゼル発電機（B）受電遮断器 52－6－2DGB を除く。）	非常用ディーゼル発電機（B）受電遮断器＊1 52－6－2DGB	2． 485	6.95
		M／C	高圧炉心スプレイ系ディーゼル発電機受電遮断器＊ $52-6-2 \mathrm{DGH}$	－＊2	6． 834	12． 99
	$\begin{aligned} & \text { プス } \\ & \text { レ } \\ & \text { イ } \\ & \text { 系 } \\ & \text { 年 } \\ & \text { 年 } \end{aligned}$	6－2H	M／C 6－2H に接続される遮断器＊1 （高圧炉心スプレイ系ディーゼル発電機受電遮断器 52－6－2DGH を除く。）	高圧炉心スプレイ系 ディーゼル発電機受電遮断器＊1 52－6－2DGH	1． 702	7.56

注記＊1：遮断器の種類は真空遮断器である。
＊2：メタルクラッドスイッチギアにおけるアーク放電を遮断するため，非常用ディーゼル発電機又は高圧炉心スプレイ系ディーゼル発電機を停止する。

図 2－1 アーク放電発生箇所とアーク放電を遮断する遮断器
（非常用ディーゼル発電機又は高圧灯心スプレイ系ディーゼル発電機からの給電時以外）

図2－2 アーク放電発生箇所とアーク放電を遮断する遮断器
（非常用ディーゼル発電機又は高圧炬心スプレイ系ディーゼル発電機からの給電時）
2.2 可搬型の非常用発電装置の出力に関する設計方針

重大事故等対処設備における可搬型の非常用発電装置のうち電源車は，重大事故等 が発生した場合において，炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プ ール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止す るために必要な電力を供給できる出力を有する設計とする。

電源車は，外部電源系，非常用ディーゼル発電設備及び高圧炉心スプレイ系ディー ゼル発電設備の機能が喪失（全交流動力電源喪失）した場合に，必要な設備に電力を供給できる設計とする。

電源車は， 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器と組み合わせて使用することにより，重大事故等時の対応に必要な直流設備に電力を供給で きる設計とする。

電源車（緊急時対策所用）及び可搬型窒素ガス供給装置発電設備は，専用の負荷に電力を供給できる出力を有する設計とする。

また，非常用発電装置としての機能の重要性を考慮し，電源車，電源車（緊急時対策所用）及び可搬型窒素ガス供給装置発電設備については，火力省令及び電気設備に関する技術基準を定める省令を引用している日本内燃力発電設備協会規格の「NEG
A C 3 3 1－2005 可搬形発電設備技術基準」（以下「可搬形発電設備技術基準」 という。）を準用する設計とする。

可搬型の非常用発電装置の内燃機関は，流入する燃料を自動的に調整する調速装置並びに軸受が異常な摩耗，変形及び過熱が生じないよう潤滑油装置を設ける設計とし，回転速度，潤滑油圧力，潤滑油温度等の運転状態を計測する装置を設ける設計とする。回転速度が著しく上昇した場合及び冷却水温度が著しく上昇した場合等に自動的に停止する設計とする。また，過回転防止装置は定格回転速度の 116% 以下で動作する設計 とする。

可搬型の非常用発電装置の発電機は，電気的•機械的に十分な性能を持つ絶縁巻線 を使用し，耐熱性及び耐湿性を考慮した絶縁処理を施す設計とする。過電流が発生し た場合等に電路から自動的に遮断する設計とする。

可搬型の非常用発電装置の強度については，完成品として一般産業品規格で規定さ れる温度試験等を実施し，定格負荷状態において十分な強度を有する設計とする。

耐圧部分に対する強度については，可搬形発電設備技術基準に関連する事項がない ため，「日本電機工業会規格 J E M 1 3 9 8－2006 ディーゼルエンジン駆動可搬形交流発電装置」又は「日本電機工業会規格 J E M 1 4 3 5－2014 非常用陸用同期発電機」で規定される温度試験による強度評価の基本方針，強度評価方法及び強度評価結果を添付書類「VI－3 強度に関する説明書」の別添にて説明する。

2．2．1 可搬型の非常用発電装置
可搬型の非常用発電装置は，可搬形発電設備技術基準を準用し，以下の設計と する。
（1）原動機
内燃機関に流入する燃料を自動的に調整する調速装置を設ける設計とする。
また，内燃機関の軸受は，運転中の荷重を安定に支持できるものであり，かつ，異常な摩耗，変形及び過熱が生じないよう潤滑油装置を設ける設計とする。
（2）発電機
通常の使用状態において発生する熱に耐える設計とし，発電機の耐熱クラスは， E種絶縁以上の設計とする。発電機の巻線は，非常停止速度や短絡電流に対して十分な電気的•機械的強度及び絶縁性能を有する設計とする。
（3）計測装置
回転速度等の運転状態を計測する装置を設ける設計とする。
（4）保護装置
電圧低下，過速度，冷却水温度上昇及び潤滑油圧力低下時に，原動機を自動的 に停止する設計とする。定格回転速度の 116% 以下で動作する非常調速装置を設け る設計とする。

また，発電機は，過電流が発生した場合に電路から自動的に遮断する保護装置 を設ける設計とする。
（5）運転性能
定格出力のもとで 1 時間運転し，安定した運転が維持される設計とする。
（6）絶縁抵抗及び絶縁耐力
出力端子と大地間の絶縁抵抗値を測定し，出力端子と大地間に規定の交流電圧 を印加したときこれに耐える設計とする。

3．施設の詳細設計方針
3.1 非常用ディーゼル発電機

3．1．1 設計基準対象施設
発電用原子炉施設には，外部電源が喪失した場合において，発電用原子炉施設 の安全性を確保するために必要な設備の機能を維持するため，非常用ディーゼル発電機を設置する設計とする。

また，火力省令及び原子力電技命令を準用し，「2．1．2 内燃機関」及び「2．1．3発電機」に記載の設計とする。

技術基準規則に基づき，非常用ディーゼル発電機は，使用済燃料プールの温度及び水位の監視設備，使用済燃料プールエリア放射線モニタ，使用済燃料プール監視カメラ，モニタリングポスト，通信連絡設備等へ給電できる設計とする。

非常用ディーゼル発電機の容量は，表3－1及び表3－2に示す発電所を安全に停止するために必要な負荷（2A：5634．6kW，2B：5635．4kW）並びに表 3－3 及び表 3－4 に示す工学的安全施設の作動時に必要な負荷（2A：5366．9kW，2B：4860．4kW）に対 し，十分な容量が確保できるよう，非常用ディーゼル発電機は，6100kWの出力を有する設計とする。

また，非常用ディーゼル発電機は，10秒以内に電圧を確立し，工学的安全施設等へ順次自動で電力を供給できる設計とし，燃料プール冷却浄化系ポンプに対し ては，これらの一連の設備への電力供給が開始された後に，必要により手動起動 を実施する際に，電力を供給できる設計とする。負荷積算イメージを図3－1 から図 3－4に示す。

非常用ディーゼル発電機の内燃機関の出力及び発電機の容量は以下のとおりと する。
（1）内燃機関
発電機の出力 6100 kW から，内燃機関の出力は次式により 6421 kW 以上の 6435 kW とする。

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} & \div \eta=6100 \div 0.95 \fallingdotseq 6421 \\
\mathrm{P}_{\mathrm{E}} & : \text { 内燃機関の出力 }(\mathrm{kW}) \\
\mathrm{P} & : \text { 発電機の定格出力 }(\mathrm{kW})=6100 \\
\eta & : \text { 発電機の効率 }=0.95
\end{aligned}
$$

（2）発電機
発電機の容量は，次式により 7625 kVA とする。

$$
\begin{aligned}
\mathrm{Q}=\mathrm{P} & \div \mathrm{pf}=6100 \div 0.80=7625 \\
\mathrm{Q} & : \text { 発電機の容量 }(\mathrm{kVA}) \\
\mathrm{P} & : \text { 発電機の定格出力 }(\mathrm{kW})=6100 \\
\mathrm{pf} & : \text { 力率 }=0.80
\end{aligned}
$$

表 3－1 発電所を安全に停止するために必要な負荷（非常用ディーゼル発電機 2A）

設備•機器名	負荷容量（kW）
残留熱除去系ポンプ A	511.6
原子炉補機冷却水ポンプ A	235.0
原子炉補機冷却水ポンプ C	235.0
原子炉補機冷却海水ポンプA	397.9
原子炉補機冷却海水ポンプC	397.9
制御棒駆動水ポンプA	284.2
タービン補機冷却水ポンプA	312.6
タービン補機冷却海水ポンプA	331.6
非常用照明	120.0
非常用ガス処理装置＊1	50.8
ディーゼル室換気設備	135.0
蓄電池用充電器（使用済燃料プール水位／温度，使用済燃料プール上部空間放射線モニタ等）	118.0
蓄電池用充電器	130.0
その他の非常用負荷＊2 （燃料プール泠却浄化系ポンプ A，使用済燃料プール水位／温度，使用済燃料プール監視カメラ，モニタリングポスト，通信連絡設備，地下水位低下設備等）	2375.0
負荷合計	5634.6

注記＊1：非常用ガス処理系空気乾燥装置電気ヒータ，非常用ガス処理系フィルタ装置スペースヒータ等を含む。
＊2：「工学的安全施設の作動時に必要な負荷」の共通負荷以外に，工学的安全施設ではないが，発電所の安全停止に必要なタービン・発電機補機等を起動 する。

表 3－2 発電所を安全に停止するために必要な負荷（非常用ディーゼル発電機 2B）

設備•機器名	負荷容量（kW）
残留熱除去系ポンプ B	511.6
原子炉補機冷却水ポンプ B	235.0
原子炉補機冷却水ポンプD	235.0
原子炉補機冷却海水ポンプ B	397.9
原子炉補機冷却海水ポンプD	397.9
制御棒駆動水ポンプ B	284.2
タービン補機冷却水ポンプB	312.6
タービン補機冷却海水ポンプB	331.6
非常用照明	120.0
非常用ガス処理装置＊1	50.8
ディーゼル室換気設備	135.0
蓄電池用充電器（使用済燃料プール水位／温度等）	118.0
その他の非常用負荷＊2 （燃料プール冷却浄化系ポンプB，モニタリングポスト，緊急時対策建屋，通信連絡設備，地下水位低下設備等）	2505.8
負荷合計	5635.4

注記＊1：非常用ガス処理系空気乾燥装置電気ヒータ，非常用ガス処理系フィルタ装置スペースヒータ等を含む。
＊2：「工学的安全施設の作動時に必要な負荷」の共通負荷以外に，工学的安全施設ではないが，発電所の安全停止に必要なタービン・発電機補機等を起動 する。

表 3－3 工学的安全施設の作動時に必要な負荷（非常用ディーゼル発電機 2A）

設備•機器名	負荷容量（kW）
低圧炉心スプレイ系ポンプ	947.4
残留熱除去系ポンプA	511.6
原子炉補機冷却水ポンプ A	235.0
原子炉補機冷却水ポンプC	235.0
原子炉補機冷却海水ポンプA	397.9
原子炉補機冷却海水ポンプ C	397.9
非常用照明	120.0
非常用ガス処理装置＊${ }^{*}$	35.0
ディーゼル室換気設備	135.0
蓄電池用充電器（使用済燃料プール水位／温度，使用済燃料プール上部空間放射線モニタ等）	118.0
蓄電池用充電器	130.0
その他の非常用負荷＊2 （燃料プール泠却浄化系ポンプ A，使用済燃料プール水位／温度，使用済燃料プール監視カメラ，モニタリングポスト，通信連絡設備，地下水位低下設備等）	2104.1
負荷合計	5366.9

注記＊1：非常用ガス処理系空気乾燥装置電気ヒータを含む。
＊2：「発電所を安全に停止するために必要な負荷」の共通負荷以外に，低圧炉心 スプレイ系ポンプ室空調機を起動する。

表 3－4 工学的安全施設の作動時に必要な負荷（非常用ディーゼル発電機 $2 B$ ）

設備•機器名	負荷容量（kW）
残留熱除去系ポンプ B	511.6
残留熱除去系ポンプ C	511.6
原子炉補機冷却水ポンプ B	235.0
原子炉補機冷却水ポンプ D	235.0
原子炉補機冷却海水ポンプB	397.9
原子炉補機冷却海水ポンプD	397.9
非常用照明	120.0
非常用ガス処理装置＊1	35.0
ディーゼル室換気設備	135.0
蓄電池用充電器（使用済燃料プール水位／温度等）	118.0
その他の非常用負荷＊2 （燃料プール冷却浄化系ポンプB，モニタリングポスト，緊急時対策建屋，通信連絡設備，地下水位低下設備等）	2163.4
負荷合計	4860.4

注記 $* 1$ ：非常用ガス処理系空気乾燥装置電気ヒータを含む。
＊2：「発電所を安全に停止するために必要な負荷」の共通負荷以外に，残留熱除去系ポンプC室空調機を起動する。

図 3－1 発電所を安全に停止するために必要な負荷（非常用ディーゼル発電機 2A）積算イメージ

図 3－2 発電所を安全に停止するために必要な負荷（非常用ディーゼル発電機 2B）

図 3－3 工学的安全施設の作動時に必要な負荷（非常用ディーゼル発電機 2A）
積算イメージ

負荷名称		
その他の非常用負荷		
$\begin{gathered} \text { 第 } 5 \\ \text { ブロック } \end{gathered}$	その他の非常用負荷	
	原子炬補機冷却海水ポンプD	
	原子炉補機冷却海水ポンプB	
$\begin{gathered} \text { 第4 } \\ \text { ブロック } \end{gathered}$	その他の非常用負荷	
	原子炬補機泠却水ポンプD	
	原子炬補機冷却水ポンプB	
$\begin{gathered} \text { 第3} \\ \text { ブロック } \end{gathered}$	その他の非常用負荷	
	残留熱除去系ポンプB	
$\begin{gathered} \text { 第2 } \\ \text { ブロック } \end{gathered}$	その他の非常用負荷	
	残留熱除去系ポンプC	
$\begin{gathered} \text { 第1 } \\ \text { ブロック } \end{gathered}$	その他の非常用負荷	
	ディーゼル室換気設備	
	非常用ガス処理装置	
	非常用照明	
	蓄電池用充電器	
		ディーゼル発電機始動信号

図 3－4 工学的安全施設の作動時に必要な負荷（非常用ディーゼル発電機 2B）

3．1．2 重大事故等対処設備

非常用ディーゼル発電機は，工学的安全施設及び設計基準事故に対処するため の設備がその機能を確保するために十分な容量を有しているため，重大事故等時 に非常用ディーゼル発電機から電力供給が可能な場合には，重大事故等時の対応 に必要な設備へ電力を供給可能な設計とする。

火力省令及び原子力電技命令を準用し，「2．1．2 内燃機関」及び「2．1．3 発電機」に記載の設計とする。

技術基準規則第 59 条～第 69 条，第 73 条，第 74 条，第 76 条及び第 77 条の各条文に基づく重大事故等時の対応において，非常用ディーゼル発電機から電力供給を期待する重大事故等対処設備の負荷を表 3－5に示す。技術基準規則に基づき必要となる重大事故等対処設備は，各条文により異なるため，すべての機器を同時に使用することはないが，仮にすべての負荷を合計した場合の最大所要負荷は 4219． 4 kW である。

発電機の出力は，十分な容量が確保できるよう，6100kWの出力を有する設計と し，設定した発電機出力を発電機の効率で除すことにより，内燃機関の必要な出力を算出する。

非常用ディーゼル発電機の内燃機関の出力及び発電機の容量は，3．1．1項の「（1）内燃機関」及び「（2）発電機」に示す。

表 3－5 非常用ディーゼル発電機の最大所要負荷リスト

設備•機器名	台数	負荷容量 $(\mathrm{kW}) * 1$	技術基準規則適用条文
ほう酸水注入系ポンプ	1	37.0	第 59 条，第 60 条，第 66 条
低圧炉心スプレイ系ポンプ	1	947.4	第 62 条
復水移送ポンプ	2	90.0	第 62 条，第 64 条，第 66 条
残留熱除去系ポンプ	2	1023.2	第62条～第64条
代替循環冷却ポンプ	1	90.0	第 62 条，第 65 条，第 66 条
原子炉補機冷却水ポンプ	2	470.0	第62 条～第 66 条
原子炉補機冷却海水ポンプ	2	795.8	第62条～第66条
燃料プール浄化系ポンプ	1	75.0	第 69 条
中央制御室送風機	1	110.0	第 74 条
中央制御室再循環送風機	1	15.0	第 74 条
中央制御室排風機	1	3.7	第 74 条
非常用ガス処理装置	1	50.8	第 74 条
蓄電池用充電器＊2 －ATWS 緩和設備 （代替制御棒挿入機能） －ATWS 緩和設備 （代替原子炉再循環ポンプ トリップ機能） －ATWS 緩和設備 （自動減圧系作動阻止機能） －代替自動減圧回路 （代替自動減圧機能） - 安全パラメータ表示システム（SPDS） - 計装設備	1	118.0	第 59 条，第 61 条，第 67 条，第 68 条，第 69 条，第 73 条，第 76 条，第 77 条
その他の非常用負荷＊3 －ATWS 緩和設備 （自動減圧系作動阻止機能） －計装設備	－	96.6	第 59 条，第 61 条，第 67 条，第 73 条
緊急時対策建屋 - 緊急時対策所非常用送風機 - 緊急時対策所非常用フィルタ装置 - 安全パラメータ表示システム（SPDS） - 衛星電話設備（固定型） - 無線連絡設備（固定型） - 統合原子力防災ネットワークを用い た通信連絡設備	－	296.9	第 76 条，第 77 条
合計	－	4219.4	－

注記＊1：電磁弁及び電動弁は負荷容量が小さく又は動作時間が短時間であるため，負荷容量には含めない。 ＊ 2 ：各設備•機器のうち，直流で運転する負荷。

3.2 高圧炉心スプレイ系ディーゼル発電機

3．2．1 設計基準対象施設
発電用原子炉施設には，外部電源が喪失した場合において，発電用原子炉施設 の安全性を確保するために必要な設備の機能を維持するため，高圧炉心スプレイ系ディーゼル発電機を設置する設計とする。

また，火力省令及び原子力電技命令を準用し，「2．1．2 内燃機関」及び「2．1．3発電機」に記載の設計とする。

高圧炉心スプレイ系ディーゼル発電機の容量は，表3－6に示すとおり工学的安全施設の作動時に必要な負荷（2081．6kW）に対し，十分な容量が確保できるよう，高圧炉心スプレイ系ディーゼル発電機は， 3000 kW の出力を有する設計とする。

また，高圧炉心スプレイ系ディーゼル発電機は， 13 秒以内に電圧を確立し，工学的安全施設等へ順次自動で電力を供給できる設計とする。負荷積算イメージを図 3－5 に示す。

高圧炉心スプレイ系ディーゼル発電機の内燃機関の出力及び発電機の容量は以下のとおりとする。
（1）内燃機関
発電機の出力 3000 kW から，内燃機関の出力は次式により 3226 kW 以上の 3236 kW とする。
$\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} \div \eta=3000 \div 0.93 \doteqdot 3226$
P_{E} ：内燃機関の出力 $(k W)$
P ：発電機の定格出力 $(k W)=3000$
η ：発電機の効率 $=0.93$
（2）発電機
発電機の容量は，次式により 3750 kVA とする。

$$
\mathrm{Q}=\mathrm{P} \div \mathrm{pf}=3000 \div 0.80=3750
$$

Q ：発電機の容量（kVA）
P ：発電機の定格出力 $(k W)=3000$
$\mathrm{pf}:$ 力率 $=0.80$

表 3－6 工学的安全施設の作動時に必要な負荷（高圧炉心スプレイ系ディーゼル発電機）

設備•機器名	負荷容量（kW）
高圧炉心スプレイ系ポンプ	1800.0
高圧炉心スプレイ補機冷却水ポンプ	40.0
高圧炉心スプレイ補機冷却海水ポンプ	60.0
ディーゼル室換気設備	90.0
蓄電池用充電器	10.0
その他の非常用負荷	81.6
負荷合計	2081.6

図 3－5 工学的安全施設の作動時に必要な負荷（高圧炉心スプレイ系ディーゼル発電機）
積算イメージ

3．2．2 重大事故等対処設備

高圧炉心スプレイ系ディーゼル発電機は，工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有しているため，重大事故等時に高圧炉心スプレイ系ディーゼル発電機から電力供給が可能な場合 には，重大事故等時の対応に必要な設備へ電力を供給可能な設計とする。

火力省令及び原子力電技命令を準用し，「2．1．2 内燃機関」及び「2．1．3 発電機」に記載の設計とする。

技術基準規則第 60 条，第 63 条及び第 73 条の各条文に基づく重大事故等時の対応において，高圧炉心スプレイ系ディーゼル発電機から電力供給を期待する重大事故等対処設備の負荷を表3－7に示す。所要負荷は1918．0kWである。

発電機の出力は，十分な容量が確保できるよう， 3000 kW の出力を有する設計と し，設定した発電機出力を発電機の効率で除すことにより，内燃機関の必要な出力を算出する。

高圧炉心スプレイ系ディーゼル発電機の内燃機関の出力及び発電機の容量は，

表 3－7 高圧炉心スプレイ系ディーゼル発電機の最大所要負荷リスト

設備•機器名	台数	負荷容量 $(\mathrm{kW}) *$	技術基準規則適用条文
高圧炉心スプレイ系ポンプ	1	1800.0	第 60 条
高圧炉心スプレイ補機冷却水ポンプ	1	40.0	第 63 条
高圧炉心スプレイ補機冷却海水ポンプ	1	60.0	第 63 条
その他の非常用負荷 －計装設備	－	18.0	第 73 条
合計	－	1918． 0	－

注記＊：電磁弁及び電動弁は負荷容量が小さく又は動作時間が短時間であるため，負荷容量には含めない。

3.3 ガスタービン発電機

設置（変更）許可申請書の添付書類十における事故シーケンスにおいて，ガスター ビン発電機から電力を供給する有効性評価で期待する負荷に加え，評価上期待してい ない不要負荷であるが，電源が供給されるため発電機の負荷として考慮する必要があ る負荷を抽出した結果，所要負荷が最大となる事故シーケンスは，「雰囲気圧力•温度 による静的負荷（格納容器過圧•過温破損）（代替循環冷却系を使用する場合）」であ り，負荷積算イメージを図3－6に示す。最大負荷は，4536． 2 kW であり，最大所要負荷 リストを表3－8に示す。

発電機の出力は，十分な容量が確保できるよう， $7200 \mathrm{~kW} ~(3600 \mathrm{~kW} \times 2$ 台）（常用連続運用仕様＊ $6000 \mathrm{~kW} ~(3000 \mathrm{~kW} \times 2$ 台））の出力を有する設計とし，設定した発電機出力を発電機の効率で除すことにより，ガスタービンの必要な出力を算出する。

最大所要負荷に基づき，ガスタービンの出力及び発電機の容量を以下のとおりとす る。

また，火力省令及び原子力電技命令を準用し，「2．1．1 ガスタービン」及び「2．1．3発電機」に記載の設計とする。

注記 $*:$ ガスタービン発電機は，取り込んだ外気を圧縮して使用していることから，外気温度の上昇により圧縮空気量が減少する事で出力も減少する特性を持 っている。そのため，ガスタービン発電機使用時の外気温度での出力を記載 している。

3．3．1 ガスタービン
発電機の出力 7200 kW から，ガスタービンの出力は次式により $\square \mathrm{kW}$ 以上の 7620 kW （ $3810 \mathrm{~kW} \times 2$ 台）とする。

$$
\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} \div \eta=7200 \div \square=\square
$$

P_{E} ：ガスタービンの出力 (kW)
P ：発電機の定格出力 $(k W)=7200$
$\eta \quad:$ 発電機の効率 $=\square$

3．3．2 発電機

発電機の容量は，次式により $9000 \mathrm{kVA}(4500 \mathrm{kVA} \times 2$ 台）とする。

$$
\mathrm{Q}=\mathrm{P} \div \mathrm{pf}=7200 \div 0.80=9000
$$

Q ：発電機の容量（kVA）
P ：発電機の定格出力 $(k W)=7200$
$\mathrm{pf}:$ 力率 $=0.80$

表 3－8 ガスタービン発電機の最大所要負荷リスト

負荷名称	負荷容量（kW）＊ 1 （括弧内は停止する負荷容量を示す。）	負荷累計（kW）	最大負荷（kW）
緊急時対策建屋緊急用電気品建屋	296.9 311.1	608.0	
D 母線自動起動負荷 - 蓄電池用充電器 - 非常用照明 - 中央制御室 120 V 交流分電盤 - 非常用ガス処理装置＊2 －モニタリングポスト －その他の負荷＊3	$\begin{array}{r} 118.0 \\ 120.0 \\ 52.5 \\ 50.8 \\ 5.0 \\ 609.7 \end{array}$	1564． 0	
C母線自動起動負荷 - 蓄電池用充電器 - 非常用照明 - 中央制御室 120 V 交流分電盤 - 非常用ガス処理装置＊2 －モニタリングポスト －その他の負荷＊4	$\begin{array}{r} 118.0 \\ 120.0 \\ 52.5 \\ 50.8 \\ 5.0 \\ 1250.6 \end{array}$	3160.9	
復水移送ポンプ復水移送ポンプ中央制御室送風機中央制御室再循環送風機原子炉格納容器 pH 調整系ポンプ	$\begin{array}{r} 45.0 \\ 45.0 \\ 110.0 \\ 15.0 \\ 22.0 \end{array}$	3397.9	
1 回目停止負荷＊5	（246．6）	3151.3	
残留熱除去系ポンプ＊6 代替循環冷却ポンプ その他の負荷＊7	$\begin{array}{r} 511.6 \\ (511.6) \\ 90.0 \\ 214.9 \end{array}$	3456.2	4536．2
2 回目停止負荷＊8	（3．7）	3452.5	
燃料プール泠却浄化系ポンプ その他の負荷＊9	$\begin{array}{r} 75.0 \\ 1.5 \end{array}$	3529.0	
3 回目停止負荷＊ 10	（338．1）	3190.9	
連続負荷最大負荷			$\begin{aligned} & 3190.9 \\ & 4536.2 \end{aligned}$

注記 $* 1$ ：電磁弁及び電動弁は負荷容量が小さく又は動作時間が短時間であるため，負荷容量には含めない。
＊2：非常用ガス処理系空気乾燥装置電気ヒータ，非常用ガス処理系フィルタ装置スペースヒータ等を含む。
＊3：その他の負荷は，緊急用電気品室（2）非常用送風機，CAMS（B）室空調機，SGTS室空調機（B），計測制御電源（B）室送風機（A），計測制御電源（B）室排風機（A），
＊5：1回目停止負荷は，グランド蒸気排風機（B），主油タンクガス抽出機（B），第4軸受ジャッキング油ポンプ，グランド蒸気排風機（A），主油タンクガス抽出機（A），第 3 軸受ジャッキング油ポンプ等である。
＊6：起動後，即時トリップを想定する。起動時負荷容量は1080．0kWである。 ＊7：その他の負荷は，RHR ポンプ（A）室空調機，HECW 冷水ポンプ（A），HECW 冷凍機（A）潤滑油ポンプ，HECW 泠涷機（A）圧縮機，原子炉補機（B）室送風機（A）及 び原子炉補機（B）室排風機（A）である。
＊8：2回目停止負荷は，RHR ポンプ（A）室空調機である。
＊9：その他の負荷は，FPC ポンプ（A）室空調機である。
＊ $10: 3$ 回目停止負荷は，清水加熱器（B），潤滑油加熱器（B），清水加熱器（A），潤滑油加熱器（A）等である。

図 3－6 重大事故時に想定される事故シーケンスのうち最大負荷「雰囲気圧力•温度によ る静的負荷（格納容器過圧•過温破損）（代替循環冷却系を使用する場合）」積算イメージ

3． 4 可搬型の非常用発電装置

3．4．1 電源車

電源車は，設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）し た場合に，2 台で必要な設備に電力を供給できる設計とする。また，設計基準事故対処設備の交流電源及び直流電源が喪失した場合に，電源車1台で 125 V 代替蓄電池， 250 V 蓄電池， 125 V 代替充電器及び 250 V 充電器と組み合わせて使用する ことで，重大事故等時の対応に必要な直流設備に電力を供給できる設計とする。電源車の最大容量は，2台で使用する場合であり，表 3－9 及び図3－7 に示すメタ ルクラッドスイッチギア（非常用）又はモータコントロールセンタ（緊急用）へ の給電時の負荷（656．8kW）に対し，十分な容量を確保できるよう，680kW（ $340 \mathrm{~kW} \times 2$台）の出力を有する設計とし，設定した発電機出力を発電機の効率で除すことに より，内燃機関の必要な出力を算出する。（電源車 1 台で直流設備に給電する場合 の負荷は 125 V 代替充電器（118．0kW）及び 250 V 充電器（ 130.0 kW ）の合計 248.0 kW であり，表 3－9に包含される。）

電源車の内燃機関の出力及び発電機の容量を以下のとおりとする。
なお，可搬形発電設備技術基準を準用し，「2．2 可搬型の非常用発電装置の出力に関する設計方針」に記載の設計とする。
（1）内燃機関
発電機の出力 680 kW から，内燃機関の出力は次式により $\square \mathrm{kW}$ 以上の 860 kW （ $430 \mathrm{~kW} \times 2$ 台）とする。
$\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} \div \eta=680 \div \square \div \square$
P_{E} ：内燃機関の出力 $(k W)$
P ：発電機の定格出力 $(k W)=680$
η ：発電機の効率
（2）発電機
発電機の容量は，次式により $800 \mathrm{kVA}(400 \mathrm{kVA} \times 2$ 台）とする。

$$
\begin{aligned}
\mathrm{Q}=\mathrm{P} & \div \mathrm{pf}=680 \div 0.85=800 \\
\mathrm{Q} & : \text { 発電機の容量 }(\mathrm{kVA}) \\
\mathrm{P} & : \text { 発電機の定格出力 }(\mathrm{kW})=680 \\
\mathrm{pf} & : \text { 力率 }=0.85
\end{aligned}
$$

表 3－9 メタルクラッドスイッチギア（非常用）又は
モータコントロールセンタ（緊急用）への給電時の負荷

負荷名称	負荷容量（kW）＊${ }^{\text {c }}$	負荷累計（kW）	最大負荷（kW）
蓄電池用充電器 非常用照明 中央制御室 120 V 交流分電盤 その他の負荷＊2	$\begin{array}{r} 118.0 \\ 30.0 \\ 52.5 \\ 7.2 \end{array}$	207． 7	
蓄電池用充電器 非常用照明 中央制御室 120 V 交流分電盤 その他の負荷＊3	$\begin{array}{r} 118.0 \\ 30.0 \\ 52.5 \\ 7.1 \end{array}$	415.3	
復水移送ポンプ復水移送ポンプ	$\begin{aligned} & 45.0 \\ & 45.0 \end{aligned}$	505.3	\rangle
燃料プール冷却浄化系ポンプ＊4 その他の負荷＊5	$\begin{array}{r} 75.0 \\ 1.5 \end{array}$	581.8	$\underline{656.8}$
その他の負荷＊6	60.0	641.8	
その他の負荷＊7	1.5	643.3	
合計 連続負荷最大負荷			$\begin{aligned} & 643.3 \\ & 656.8 \end{aligned}$

注記＊1：電磁弁及び電動弁は負荷容量が小さく又は動作時間が短時間であるため，負荷容量には含めない。
＊2：その他の負荷は，計測制御電源（B）室排風機（A）及びページング用整流器で ある。
＊3：その他の負荷は，計測制御電源（A）室排風機（A）及びページング用分電盤で ある。
＊4：起動時負荷容量は 150.0 kW である。
＊5：その他の負荷は，FPCポンプ（A）室空調機である。
＊6：その他の負荷は，無停電交流電源用静止形無停電電源装置 2 A 及び無停電交流電源用静止形無停電電源装置 2 B である。
＊7：その他の負荷は，フィルタ装置出口水素濃度計吸引ポンプ及びフィルタ装置出口水素濃度計排気ポンプである。

図 3－7 メタルクラッドスイッチギア（非常用）又は モータコントロールセンタ（緊急用）への給電時の負荷積算イメージ

3．4．2 電源車（緊急時対策所用）
最大所要負荷は，重大事故等発生時に緊急時対策所で要求される負荷の 296． 9 kW である。負荷リストを表 3－10に示す。

発電機の出力は，十分な容量が確保できるよう，340kW の出力を有する設計と し，設定した発電機出力を発電機の効率で除すことにより，内燃機関の必要な出力を算出する。

最大所要負荷に基づき，内燃機関の出力及び発電機の容量を以下のとおりとす る。

また，可搬形発電設備技術基準を準用し，「2．2 可搬型の非常用発電装置の出力に関する設計方針」に記載の設計とする。
（1）内燃機関
発電機の出力 340 kW から，内燃機関の出力は次式によ \square kW 以上の 430 kW と する。

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} & \div \eta=340 \div \square \\
\mathrm{P}_{\mathrm{E}} & : \text { 内燃機関の出力 }(\mathrm{kW}) \\
\mathrm{P} & : \text { 発電機の定格出力 }(\mathrm{kW})=340 \\
\eta & : \text { 発電機の効率 }
\end{aligned}
$$

（2）発電機
発電機の容量は，次式により 400 kVA とする。

$$
\mathrm{Q}=\mathrm{P} \div \mathrm{pf}=340 \div 0.85=400
$$

Q：発電機の容量（kVA）
P ：発電機の定格出力 $(k W)=340$
pf：力率 $=0.85$

表 3－10 電源車（緊急時対策所用）の負荷リスト

負荷名称	負荷容量（kW）＊
換気空調設備 - 緊急時対策所非常用送風機 - 緊急時対策所非常用フィルタ装置 - その他	164.3
照明設備	40.1
通信連絡設備	5.0
蓄電池用充電器 - 安全パラメータ表示システム（SPDS） - 衛星電話設備（固定型） - 無線連絡設備（固定型） - 統合原子力防災ネットワークを用いた通信連絡設備 - その他	77.0
その他の負荷	10.5
負荷合計	296.9

注記＊：電磁弁及び電動弁は負荷容量が小さく又は動作時間が短時間であるため，負荷容量には含めない。

3．4．3 可搬型窒素ガス供給装置発電設備
可搬型窒素ガス供給装置発電設備の最大所要負荷は，可搬型窒素ガス供給装置運転時の 75 kW である。

発電機の出力は，十分な容量を確保できるよう，160kW の出力を有する設計と し，設定した発電機出力を発電機の効率で除すことにより，内燃機関の必要な出力を算出する。

最大所要負荷に基づき，内燃機関の出力及び発電機の容量を以下のとおりとす る。

なお，可搬形発電設備技術基準を準用し，「2．2 可搬型の非常用発電装置の出力に関する設計方針」に記載の設計とする。
（1）内燃機関
発電機の出力 160 kW から，内燃機関の出力は次式により 173 kW 以上の 178 kW と する。

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} \geqq \mathrm{P} & \div \eta=160 \div 0.924 \fallingdotseq 173 \\
\mathrm{P}_{\mathrm{E}} & : \text { 内燃機関の出力 }(\mathrm{kW}) \\
\mathrm{P} & : \text { 発電機の定格出力 }(\mathrm{kW})=160 \\
\eta & : \text { 発電機の効率 }=0.924
\end{aligned}
$$

（2）発電機
発電機の容量は，次式により 200 kVA とする。

$$
\mathrm{Q}=\mathrm{P} \div \mathrm{pf}=160 \div 0.80=200
$$

Q：発電機の容量（kVA）
P ：発電機の定格出力 $(k W)=160$
$\mathrm{pf}:$ 力率 $=0.80$

