| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02 －他－F－01－0065＿改 0 \\

\hline 提出年月日 \& 2021 年 5 月 26 日 \\
\hline\end{array}\right.\)

原子炉機器冷却海水配管ダクト（鉛直部）の耐震安全性評価に係る補足

本資料は「補足－6 1 0－2 0 【屋外重要土木構造物の耐震安全性評価について】」のらち，「資料5 原子炉機器椧却海水配管ダクト（鋁直部）の耐震安全性評価」の内容を補足する資料となりま す。
6 評価結果 1
6.1 地震応答解析結果 1
6．1．1 解析ケースと照査値 1
6．1．2 作用荷重分布図 13
6．1．3 最大せん断ひずみ分布． 15
6．2 二次元構造解析結果 20
6．2．1 曲げ・軸力系の破壊に対する照査． 20
6．2．2 せん断破壊に対する照査． 34
6.3 構造部材の健全性に対する評価結果 40
6．3．1 曲げ・軸力系の破壊に対する評価結果 40
6．3．2 せん断破壊に対する評価結果． 97
6.4 基礎地盤の支持性能に対する評価結果。 146

6 評価結果

6.1 地震応答解析結果

地震応答解析結果として，曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査の うち最大照査値となる地震動•解析ケースの「作用荷重分布図」，曲げ・軸力系の破壊に対す る照査及びせん断破壊に対する照査で最大照査値となる地震動•解析ケースの「最大せん断ひ ずみ」を記載する。

6．1．1 解析ケースと照査値
耐震評価においては，「資料1 屋外重要土木構造物の耐震安全性評価について」のうち
「10．屋外重要土木構造物等の耐震評価における追加解析ケースの選定」に基づき，すべ ての基準地震動 S s に対して実施するケース①において，曲げ・軸力系の破壊及びせん断破壊の照査において，照査値が 0.5 を超えるすべての照査項目に対して，最も厳しい（許容限界に対する裕度が最も小さい）地震動を用いて，ケース（2）～④を実施する。

また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析を実施する。
（1）断面（1）
a．曲げ・軸力系の破壊に対する照査
表 6－1 に曲げ・軸力系の破壊に対する照査の実施ケースと照査値を示す。

表 6－1 曲げ・軸力系の破壊に対する照査の実施ケースと照査値
（断面（1）：頂版）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0． 28			
	－＋	0.27			
S s－D 2	＋＋	0.31	0.32	0． 27	0.35
	－＋	0． 29			
S s－D 3	＋＋	0． 23			
	－＋	0． 22			
S s－F 1	$++$	0． 24			
	－＋	0.24			
$\mathrm{S} s-\mathrm{F} 2$	＋＋	0.28			
	$-+$	0． 28			
S s－F 3	＋＋	0.25			
	－＋	0.24			
S s－N 1	$++$	0． 26			
	$-+$	0.31			

注記＊：赤枠は，前述図3－21 のフローに基づき，解析ケース（2）～④を実施する地震動の基本ケース①の照査値を示す。
b．せん断破壞に対する照査
表 6－2 にせん断破壊に対する照査の実施ケースと照査値を示す。
表 6－2 せん断破壊に対する照査の実施ケースと照査値（断面（1）：頂版）

解析ケース 地震動		せん断破壊に対する照査			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.18			
	－＋	0． 18			
S s－D 2	＋＋	0.21	0． 23	0.21	0.20
	－＋	0． 20			
Ss－D 3	＋＋	0.18			
	－＋	0． 20			
S s－F 1	＋＋	0.16			
	－＋	0． 16			
S s－F 2	＋＋	0.15			
	－＋	0.18			
S s－F 3	＋＋	0.21			
	－＋	0.18			
S s -N 1	＋＋	0． 20			
	－＋	0.15			

（2）断面（2）～（5）
a．曲げ・軸力系の破壊に対する照査（鉄筋コンクリート部材）
表6－3に曲げ・軸力系の破壊に対する照査（鉄筋コンクリート部材）の実施ケース と照査値を示す。表6－4に曲げ・軸力系の破壊に対する照査（鋼材）の実施ケースと照査値を示す。

表6－3（1）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査 ${ }^{* 1,2}$ （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	$++$	0.76			
	－＋	0． 73			
S s－D 2	＋＋	0． 75	0． 77	0． 72	0． 73
	－＋	0． 81		0． 78	
$\mathrm{S} \mathrm{s}-\mathrm{D} 3$	＋＋	0.69			
	－＋	0． 71			
S s－F 1	＋＋	0.62			
	－＋	0.65			
S s－F 2	＋＋	0． 72			
	－＋	0.73			
S s－F 3	＋＋	0.68			
	－＋	0． 69			
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	0.70			
	－＋	0.86	0． 80	0． 93	0． 81

注記＊1：照査値は，構造強度を有することに対する評価結果とSクラスの施設を支持 する機能に対する評価結果の厳しい方を記載。
＊2：赤枠は，前述図 3－21 のフローに基づき，解析ケース（2）～④を実施する地震動の基本ケース①の照査値を示す。

表 6－3（2）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～⑤）：側壁（東西））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊ （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$++$	0． 63			
	－＋	0． 63			
S s－D 2	＋＋	0.61	0． 62	0.58	0.55
	－＋	0． 60			
$\mathrm{S} \mathrm{s}-\mathrm{D} 3$	＋＋	0.55			
	－＋	0． 54			
S s－F 1	＋＋	0． 49			
	－＋	0． 45			
S s－F 2	＋＋	0.54			
	－＋	0.53			
S s－F 3	＋＋	0.55			
	－＋	0.57			
S s－N 1	$++$	0.50			
	－＋	0.54	0.54	0.57	0.49

注記＊：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持す る機能に対する評価結果の厳しい方を記載。

表 6－3（3）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～⑤）：隔壁（南北））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊ （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.53			
	－＋	0.59			
S s－D 2	＋＋	0.52	0.51	0.54	0.49
	－＋	0.58			
S s－D 3	＋＋	0.48			
	－＋	0.49			
S s－F 1	$++$	0． 42			
	－＋	0.39			
S s－F 2	＋＋	0.51			
	－＋	0． 48			
S s－F 3	＋＋	0． 49			
	－＋	0． 57			
S s－N 1	$++$	0.54			
	－＋	0.45	0.45	0． 47	0． 45

注記＊：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持す る機能に対する評価結果の厳しい方を記載。

表 6－3（4）曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～⑤）隔壁（東西））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊ （鉄筋コンクリート部材）			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0.52			
	－＋	0.52			
S s－D 2	＋＋	0.53	0.54	0.51	0.55
	－＋	0． 52			
S s－D 3	＋＋	0． 46			
	－＋	0.45			
S s－F1	＋＋	0． 43			
	－＋	0.45			
S s－F 2	＋＋	0.51			
	－＋	0.50			
S s－F 3	＋＋	0． 46			
	－＋	0.46			
S s－N 1	＋＋	0． 46			
	－＋	0.53	0.52	0.57	0.54

注記＊：照査値は，構造強度を有することに対する評価結果と S クラスの施設を支持す る機能に対する評価結果の厳しい方を記載。

表6－4 曲げ・軸力系の破壊に対する照査の実施ケースと照査値（鋼材）
（断面（2）～（4））

解析ケース 地震動		曲げ・軸力系の破壊に対する照査＊ （鋼材）			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.53			
	－＋	0． 63			
S s－D 2	＋＋	0.59	0.58	0.61	0.55
	－＋	0.61			
S s－D 3	＋＋	0.57			
	－＋	0.61			
S s－F 1	＋＋	0.53			
	－＋	0． 43			
S s－F 2	＋＋	0.55			
	－＋	0． 48			
S s－F 3	＋＋	0.61			
	－＋	0． 63			
$\mathrm{St}-\mathrm{N} 1$	＋＋	0.61			
	－＋	0.59	0.41	0． 43	0.33

注記＊：照査値は，応力の照査と座屈に対する安定の照査のうち厳しい方を記載。
b．せん断破壊に対する照査
表 6－5にせん断破壊に対する照査の実施ケースと照査値を示す。

表6－5（1）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～（5）：側壁（南北））

解析ケース 地震動		せん断破壊に対する照査＊1			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0． $50 * 2$			
	－＋	0． $59 * 2$			
S s－D 2	$++$	0． $66 * 2$	0． $64 * 2$	$0.56 * 2$	$0.57 * 2$
	－＋	0． $57 * 2$			
S s－D 3	＋＋	0． 52 ＊2			
	－＋	$0.56 * 2$			
S s－F 1	＋＋	0． $50 * 2$			
	－＋	$0.53 * 2$			
S s－F 2	$++$	$0.51 * 2$			
	－＋	0． $47 * 2$			
S s－F 3	＋＋	0． $46 * 2$			
	$-+$	$0.54 * 2$			
S s－N 1	＋＋	0． 60 ＊2			
	－＋	0． 66 ＊2	0． $62 * 2$	0．65＊2	0． $47 * 2$

 を行っているため，最も厳しい解析ケースとして選定されている解析ケース の照査値が最大とならない場合がある。
＊2：材料非線形解析によるせん断耐力を用いた照査。

表6－5（2）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）：側壁（東西））

解析ケース 地震動		せん断破壊に対する照査＊			
		（1）	（2）	（3）	（4）
S s－D 1	$++$	0.69			
	－＋	0． 71			
S s－D 2	＋＋	0.70	0.71	0.70	0.71
	－＋	0． 69			
S s－D 3	＋＋	0． 62			
	－＋	0.65			
S s－F 1	$++$	0． 60			
	－＋	0.59			
S s－F 2	＋＋	0.69			
	－＋	0． 66			
S s－F 3	＋＋	0． 60			
	－＋	0.64			
S s -N 1	＋＋	0.71			
	－＋	0.67	0.67	0.71	0.67

注記＊：せん断破壊に対する照査として，材料非線形によるせん断耐力を用いた照査 を行っているため，最も厳しい解析ケースとして選定されている解析ケース の照査値が最大とならない場合がある。

表6－5（3）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材）
（断面（2）～⑤）隔壁（南北））

解析ケース 地震動		せん断破壊に対する照査＊1			
		（1）	（2）	（3）	（4）
Sc －D 1	$++$	0． $43^{* 2}$			
	－＋	0． 50 ＊2			
S s－D 2	＋＋	0．47＊	0． $46 * 2$	0． $48 * 2$	0． 42 ＊2
	－＋	0． 44 ＊			
S s－D 3	＋＋	0． 41 ＊2			
	－＋	0． 43 ＊			
S s－F 1	＋＋	0． $37^{* 2}$			
	－＋	0． 33 ＊2			
S s－F 2	＋＋	0． 41 ＊2			
	－＋	0． $36 * 2$			
S s－F 3	＋＋	0． 42 ＊			
	－＋	0． $48 * 2$			
S s－N 1	＋＋	0． 42 ＊2			
	－＋	0． 35 ＊2	0． $34 * 2$	0．33＊2	0．30＊2

注記＊1：せん断破壊に対する照査として，材料非線形によるせん断耐力を用いた照査 を行っているため，最も厳しい解析ケースとして選定されている解析ケース の照査値が最大とならない場合がある。
＊2：材料非線形解析によるせん断耐力を用いた照査。

表6－5（4）せん断破壊に対する照査の実施ケースと照査値（鉄筋コンクリート部材） （断面（2）～⑤）：隔壁（東西））

解析ケース 地震動		せん断破壊に対する照査＊${ }^{\text {1，} 2}$			
		（1）	（2）	（3）	（4）
S s－D 1	＋＋	0． $70 * 3$			
	－＋	0． $75 * 3$			
S s－D 2	＋＋	0． $77 * 3$	0． $80 * 3$	0． $74^{* 3}$	0． $90 * 3$
	－＋	0． $75 * 3$			0． $86 * 3$
S s－D 3	＋＋	0． $67 * 3$			
	－＋	0．69＊3			
S s－F 1	＋＋	0．65＊3			
	－＋	$0.61 * 3$			
S s－F 2	$++$	0． $68{ }^{* 3}$			
	－＋	0． 66 ＊3			
S s－F 3	＋＋	$0.65 * 3$			
	－＋	0． 69 ＊3			
S s－N 1	＋＋	0． 72 ＊3			
	－＋	0． 70 ＊3	0．65＊3	0． 74 ＊3	0． 83 ＊3

注記＊1：せん断破壊に対する照査として，材料非線形によるせん断耐力を用いた照査 を行っているため，最も厳しい解析ケースとして選定されている解析ケース の照査値が最大とならない場合がある。
＊2：赤枠は，前述図 3－21 のフローに基づき，解析ケース（2）～④を実施する地震動の基本ケース（1）の照査値を示す。
＊3：材料非線形解析によるせん断耐力を用いた照査。

6．1．2 作用荷重分布図

構造部材の曲げ・軸力系の破壊及びせん断破壊に対する照査のうち，照査値が最大とな る曲げ・軸力系の破壊に対する照査の地震動•解析ケースにおける作用荷重分布図を図 6 －1に示す。

南

北

直応力
南

北

北

せん断応力

図6－1（1）作用荷重分布図（直応力及びせん断応力）
（断面（5），解析ケース③）S s－N $1(-+)$ ）

北

設計震度（NS）

$\left.\begin{array}{l}+ \text { 側 } \\ \text { 設計震度 }\end{array}\right]$

- 側 2

一側
設計震度

- 側	
\leftarrow 設計震度	$\begin{array}{l}\text { 設計震度 }\end{array} \rightarrow$
側	

図6－1（2）作用荷重分布図（設計震度分布）
（断面（5），解析ケース（3），S s－N $1(-+)$ ）

6．1．3 最大せん断ひずみ分布

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示す解析 ケースについて地盤に発生した最大せん断ひずみを確認する。最大照査値を示す解析ケー スの一覧を表6－6に，最大せん断ひずみ分布図を図6－2に示す。

表 6－6 最大照査値を示す解析ケースの一覧

評価項目	
曲げ・軸力系の破壊に対する照査	せん断破壊に対する照査
ケース③	ケース（4）
S s－N 1 $(-+)$	$\mathrm{S} \mathrm{s}-\mathrm{D} 2 \quad(++)$

注：耐震評価における解析ケース一覧

解析ケース	ケース①	ケース（2）	ケース③	ケース（4）
	基本ケース	地盤物性のばらつ き（＋1 o ）を考慮した解析ケース	地盤物性のばらつ き（－1 o ）を考慮した解析ケース	材料物性（コンク リート）に実強度 を考慮した解析ケ ース
地盤物性	平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性	設計基準強度	設計基準強度	設計基準強度	実強度に基づく 圧縮強度

（a）全体図

（b）構造物周辺拡大図

図 6－2（1）最大せん断ひずみ分布図（曲げ・軸力系の破壊）
（A－A 断面 解析ケース③）地震動S s－N $1(-+))$

（a）全体図

（b）構造物周辺拡大図

図6－2（2）最大せん断ひずみ分布図（せん断破壊）
（A－A 断面 解析ケース（4），地震動S s－D $2(++)$ ）

（a）全体図

（b）構造物周辺拡大図

図 6－2（3）最大せん断ひずみ分布図（曲げ・軸力系の破壊）
（B－B断面 解析ケース（3），地震動S s－N $1(-+))$

（a）全体図

（b）構造物周辺拡大図

図6－2（4）最大せん断ひずみ分布図（せん断破壊）
（B－B断面 解析ケース（4），地震動S s－D $2(++)$ ）

6．2 二次元構造解析結果

6．2．1 曲げ・軸力系の破壊に対する照査
（1）断面（1）
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査について，各解析ケースのう ち最も厳しい照査値となる結果を表6－7及び表6－8に示す。また，最大照査値となる解析ケースの断面力分布図を図6－3～図6－7 に示す。

なお，断面（1）と断面（2）の壁部材は壁厚及び配筋が同一であり，断面（1）は頂版を有するた め断面（2）よりも構造的に有利となることから，断面（1）における壁部材の照査は断面（1）と断面（2）の荷重を包絡して照査を行う断面（2）で代表とし，断面（1）では面部材である頂版の照査 を行う。

表 6－7 曲げ・軸力系の破壊に対する最大照査値（コンクリート）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 $\begin{gathered} \sigma^{\prime} \quad \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{aligned} & \text { 照査値 } \\ & \sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }} \end{aligned}$
頂版	101	（1）	S s D D $1 \quad(-+)$	17	－1894	2.5	11.7	0． 22

注記＊：評価位置は図6－8に示す。

表6－8 曲げ・軸力系の破壊に対する最大照査値（鉄筋）

評価位置＊		解析 ケース	地震動	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 $\begin{gathered} \sigma \mathrm{s} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma \text { sa } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}} \end{gathered}$
頂版	101	（4）	S s－D $2(++)$	2	664	100	294	0.35

注記＊：評価位置は図6－8に示す。

図 6－3 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{x}}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－4 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント（kN•m／m）： M_{y} ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－5 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図

$$
\left(\text { 軸力 }(k N / m): N_{x}\right)
$$

（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－6 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図 6－7 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （面内せん断力（ kN / m ）： $\mathrm{N}_{\mathrm{x} \text { y }}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）

図6－8 評価位置図（断面（1）
（2）断面（2）～（5）
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査について，各解析ケースのう ち最も厳しい照査値となる結果を表6－9～表6－26に示す。また，各断面で最大照査値と なる解析ケースの断面力分布図を図6－9，図6－11，図6－13 及び図6－15に示す。

表 6－9 曲げ・軸力系の破壊に対する最大照査値
（断面（2），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2	限界 ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	212	（1）	S s - D $2(-+)$	362μ	10000μ	0.04
側壁（東西）	222	（1）	S s $-\mathrm{D} 2(++)$	261μ	10000μ	0.03
隔壁（南北）	242	（1）	S s $-\mathrm{D} 1(-+)$	553μ	10000μ	0.06
隔壁（東西）	233	（1）	S s－D $2(++)$	683μ	10000μ	0.07

注記＊1：評価位置は図 6－10に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表6－10 曲げ・軸力系の破壊に対する最大照査値
（断面（2），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊${ }^{*}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon d \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	212	（1）	S s－D $2(-+)$	362μ	2000μ	0． 19
側壁（東西）	222	（1）	S s－D $2(++)$	261μ	2000μ	0． 14
隔壁（南北）	242	（1）	S s－D $1 \quad(-+)$	553μ	2000μ	0． 28
隔壁（東西）	233	（1）	S s－D $2(++)$	683μ	2000μ	0.35

注記＊1：評価位置は図6－10に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表 6－11 曲げ・軸力系の破壊に対する最大照査値（断面（2），主筋ひずみ）

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	211	（1）	S s－N $1 \quad(++)$	847μ	1725 m	0.50
側壁（東西）	222	（3）	S s - N $1(-+)$	647μ	1725μ	0.38
隔壁（南北）	242	（1）	S s - D $1(-+)$	1017μ	1725μ	0.59
隔壁（東西）	238	（4）	S s - N $1(-+)$	577μ	1725μ	0.34

注記 $* 1$ ：評価位置は図 6－10に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 6－12 曲げ・軸力系の破壊に対する最大照査値（断面（2），鋼材：応力の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 応力度 σ 。 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{cal}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{c} \text { a } 1} \end{gathered}$
鋼材	251	（1）	S s－F $3(-+)$	155	277	0.56

注記＊：評価位置は図 6－10に示す。

表 6－13 曲げ・軸力系の破壊に対する最大照査値（断面（2），鋼材：座屈に対する安定の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	応力度 区分	発生 $\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 $\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{caa}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	251	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (-+) \end{gathered}$	軸力	150	252	0.60	0.63
				強軸 曲げ	1	247	0.01	
				弱軸曲げ	3	246	0.02	

注記＊：評価位置は図6－10に示す。

数値：評価位置における断面力
曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

数値：評価位置における断面力
軸力（kN）（＋：引張，- ：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－9 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（2），隔壁（南北），解析ケース（1），S s－D $1(-+)$ ）

図 6－10 評価位置図（断面（2））

表6－14 曲げ・軸力系の破壊に対する最大照査値
（断面（3），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊1		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
側壁（南北）	314	（2）	S s－D $2(++)$	524μ	10000μ	0.06
側壁（東西）	322	（2）	S s－D $2(++)$	313μ	10000μ	0.04
隔壁（南北）	342	（2）	S s－D $2(++)$	441μ	10000μ	0.05
隔壁（東西）	336	（2）	S s－D $2(++)$	712μ	10000μ	0.08

注記 $* 1$ ：評価位置は図 6－12 に示す。
$* 2$ ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－15 曲げ・軸力系の破壊に対する最大照査値
（断面（3），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	314	（2）	S s－D $2(++)$	524μ	2000μ	0.27
側壁（東西）	322	（2）	S s－D $2(++)$	313μ	2000μ	0． 16
隔壁（南北）	342	（2）	S s－D $2(++)$	441μ	2000μ	0． 23
隔壁（東西）	336	（2）	S s－D $2(++)$	712μ	2000μ	0.36

注記＊1：評価位置は図6－12に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－16 曲げ・軸力系の破壊に対する最大照査値（断面③，主筋ひずみ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	311	（2）	S s－D $2(++)$	873μ	1725μ	0.51
側壁（東西）	322	（1）	S s－D $1(++)$	834μ	1725μ	0． 49
隔壁（南北）	343	（1）	S s－D $2(++)$	656μ	1725μ	0． 39
隔壁（東西）	338	（1）	S s－D $1(++)$	632μ	1725μ	0.37

注記＊1：評価位置は図6－12に示す。
$* 2:$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－17 曲げ・軸力系の破壊に対する最大照査値（断面③，鋼材：応力の照査）

評価位置＊			解析 ケース	地震動	発生 応力度 σ 。 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{cal}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca} 1} \end{gathered}$
断面（3）	鋼材	351	（2）	S s－D $2(++)$	97	277	0.36

注記 $* ~: ~$ 評価位置は図 6－12に示す。

表 6－18 曲げ・軸力系の破壊に対する最大照査値（断面（3），鋼材：座屈に対する安定の照査）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	351	（2）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	軸力	91	242	0.38	0.41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0.02	

注記＊：評価位置は図 6－12に示す。

数値：評価位置における断面力
曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

数値：評価位置における断面力
軸力（kN）（＋：引張，－：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－11 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（3），側壁（南北），解析ケース（2），S s－D $2(++)$ ）

図 6－12 評価位置図（断面（3）

表6－19 曲げ・軸力系の破壊に対する最大照査値
（断面（4），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
側壁（南北）	414	（2）	S s－D $2(++)$	1022 н	10000μ	0.11
側壁（東西）	422	（2）	S s－D $2(++)$	437μ	10000μ	0.05
隔壁（南北）	442	（1）	S s－N $1(++)$	268 ر	10000μ	0.03
隔壁（東西）	437	（2）	S s－D $2(++)$	913μ	10000μ	0.10

注記 $* 1$ ：評価位置は図6－14に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－20 曲げ・軸力系の破壊に対する最大照査値
（断面（4），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	414	（2）	S s－D $2(++)$	1022 н	2000μ	0.52
側壁（東西）	422	（2）	S s－D $2(++)$	437μ	2000μ	0.22
隔壁（南北）	442	（1）	S s－N1 $(++)$	268μ	2000μ	0.14
隔壁（東西）	437	（2）	S s－D $2(++)$	913μ	2000μ	0． 46

注記＊1：評価位置は図6－14に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－21 曲げ・軸力系の破壊に対する最大照査値（断面（4），主筋ひずみ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	416	（3）	S s－N $1(-+)$	1345 m	1725μ	0.78
側壁（東西）	422	（1）	S s－D $1(++)$	1077 н	1725μ	0.63
隔壁（南北）	442	（1）	S s－D $1(-+)$	939 н	1725μ	0.55
隔壁（東西）	437	（1）	S s－D $1 \quad(-+)$	880μ	1725 M	0.52

注記＊1：評価位置は図6－14に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－22 曲げ・軸力系の破壊に対する最大照査値（断面（4），鋼材：応力の照查）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 応力度 σ c （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\sigma_{\mathrm{ca}} 1$ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca} ~} \end{gathered}$
鋼材	451	（2）	S s $-\mathrm{D} 2(++)$	88	277	0.32

注記＊：評価位置は図6－14に示す。

表 6－23 曲げ・軸力系の破壊に対する最大照查値（断面（4），鋼材：座屈に対する安定の照查）

評価位置＊		解析 ケース	地震動	応力度区分	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma_{c}, \quad \sigma_{b c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$	照査値
鋼材	451	（2）	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ (++) \end{gathered}$	軸力	69	190	0.37	0． 45
				強軸曲げ	1	190	0.01	
				弱軸曲げ	13	210	0.07	

注記＊：評価位置は図6－14に示す。

図 6－13 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（4），側壁（南北），解析ケース（3），S s－N $1 \quad(-+)$ ）

図 6－14 評価位置図（断面（4）

表6－24 曲げ・軸力系の破壊に対する最大照査値
（断面（5），コンクリートの圧縮ひずみ：限界ひずみ 10000μ ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
側壁（南北）	512	（3）	S s－N $1(-+)$	600μ	10000μ	0.06
側壁（東西）	522	（3）	S s－N $1(-+)$	357μ	10000μ	0.04
隔壁（南北）	542	（2）	S s－D $2(++)$	186μ	10000μ	0.02
隔壁（東西）	536	（3）	S s－N $1(-+)$	805μ	10000μ	0.09

注記 $* 1$ ：評価位置は図6－16に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－25 曲げ・軸力系の破壊に対する最大照査値
（断面（5），コンクリートの圧縮ひずみ：限界ひずみ 2000μ ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2 $\varepsilon{ }_{d}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
側壁（南北）	512	（3）	S s－N $1(-+)$	600μ	2000μ	0.30
側壁（東西）	522	（3）	S s－N $1(-+)$	357μ	2000μ	0.18
隔壁（南北）	542	（2）	S s－D $2(++)$	186μ	2000μ	0． 10
隔壁（東西）	536	（3）	S s－N $1 \quad(-+)$	805μ	2000μ	0.41

注記＊1：評価位置は図6－16に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－26 曲げ・軸力系の破壊に対する最大照査値（断面（5），主筋ひずみ）

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
側壁（南北）	512	（3）	S s－N $1(-+)$	1596μ	1725μ	0． 93
側壁（東西）	522	（2）	S s－D $2(++)$	751μ	1725μ	0． 44
隔壁（南北）	542	（1）	S s－F $2(-+)$	702μ	1725μ	0． 41
隔壁（東西）	536	（3）	S s－N $1 \quad(-+)$	981μ	1725μ	0． 57

注記＊1：評価位置は図6－16に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

数値：評価位置における断面力

> 曲げモーメント (kN•m)

数値：評価位置における断面力軸力（kN）（＋：引張，－：圧縮）

$-10000 \mathrm{kN}$ － 5000
数値：評価位置における断面力 せん断力（kN）

図 6－15 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （断面（5），側壁（南北），解析ケース（3），S s－N $1(-+)$ ）

図 6－16 評価位置図（断面（5））

6．2．2 せん断破壊に対する照査

（1）断面（1）
鉄筋コンクリート部材のせん断破壊に対する照査について，各解析ケースのうち最も厳 しい照査値となる結果を表6－27に示す。また，最大照査値となる解析ケースの断面力分布図を図6－17～図6－18に示す。

なお，断面（1）と断面（2）の壁部材は壁厚及び配筋が同一であり，断面（1）は頂版を有するた め断面（2）よりも構造的に有利となることから，断面（1）における壁部材の照査は断面（1）と断面（2）の荷重を包絡して照査を行う断面（2）で代表とし，断面（1）では面部材である頂版の照査 を行う。

表6－27 せん断破壊に対する照査

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 （kN／m）	発生 応力度 $\begin{gathered} \tau_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \tau_{\mathrm{a} 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \tau_{\mathrm{d}} / \tau_{\mathrm{a} 1} \end{gathered}$
頂版	101	（2）	S s－D $2(++$ ）	－67	0.14	0.63	0． 23

注記＊：評価位置は図6－8に示す。

図 6－17 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力 $(k N / m): \mathrm{Q}_{\mathrm{x}}$ ）
（頂版，解析ケース（2），S s－D $2(++)$ ）

図 6－18 せん断破壊に対する照査における照査値最大時の断面力分布図 （せん断力（kN／m）： Q_{y} ）
（頂版，解析ケース（2），S s－D $2(++)$ ）
（2）断面（2）～（5）
鉄筋コンクリート部材のせん断破壊に対する照査について，各解析ケースのうち最も厳 しい照査値となる結果を表 6－28～表6－31に示す。また，各断面で最大照査値となる解析ケースの断面力分布図を図6－19～図6－22 に示す。

表 6－28 せん断破壊に対する最大照査値（断面（2））

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 $V_{y d}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
側壁（南北）	216	（4）	S s－D $2(++)$	660	702	0.95
側壁（東西）	221	（4）	S s－D $2(++)$	5395	7984	0.68
隔壁（南北）	242	（1）	S s－D $1(-+)$	51	104＊3	0.50
隔壁（東西）	238	（4）	S s－D $2(++)$	829	$1649 * 3$	0.51

注記＊1：評価位置は図 6－10に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

数値：評価位置における断面力

数値：評価位置における断面力
軸力（kN）（＋：引張，－：圧縮）

数値：評価位置における断面力 せん断力（kN）

図 6－19 せん断破壊に対する照査値最大時の断面力図
（断面（2），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表 6－29 せん断破壊に対する最大照査値（断面（3））

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
側壁（南北）	314	（2）	S s－D $2(++)$	667	$1102 * 3$	0.61
側壁（東西）	321	（4）	S s $-\mathrm{D} 2(++)$	6309	8989	0.71
隔壁（南北）	342	（1）	S s－D $1(-+)$	4	$11^{* 3}$	0． 36
隔壁（東西）	333	（4）	S s－D $2(++)$	502	$563 * 3$	0.90

注記＊1：評価位置は図6－12に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ $3: ~$ 材料非線形解析によるせん断耐力

数値：評価位置における断面力
せん断力（kN）

図 6－20 せん断破壊に対する照査値最大時の断面力図
（断面（3），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表 6－30 せん断破壊に対する最大照査値（断面（4））

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
側壁（南北）	416	（1）	S s－D $2(++)$	872	1326 ＊3	0.66
側壁（東西）	422	（4）	S s－D $2(++)$	5825	8217	0.71
隔壁（南北）	442	（1）	S s－N $1 \quad(++)$	191	695	0.28
隔壁（東西）	437	（4）	S s－D $2(++)$	1400	1808＊3	0.78

注記＊1：評価位置は図6－14に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
$* 3: ~$ 材料非線形解析によるせん断耐力

数値：評価位置における断面力
軸力（kN）（＋：引張，－：圧縮）

数値：評価位置における断面力
せん断力（kN）

図 6－21 せん断破壊に対する照査値最大時の断面力図
（断面（4），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

表 6－31 せん断破壊に対する最大照査値（断面（5））

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 $\mathrm{V}_{\mathrm{y} \text { d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
側壁（南北）	513	（4）	S s－N $1 \quad(-+)$	1054	1475	0.72
側壁（東西）	522	（3）	S s - N $1 \quad(-+)$	5716	8621	0.67
隔壁（南北）	542	（1）	S s－F $2(-+)$	105	668	0.16
隔壁（東西）	537	（4）	S s－D $2(++)$	1255	1965＊3	0.64

注記＊1：評価位置は図 6－16に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

図6－22 せん断破壊に対する照査値最大時の断面力図
（断面（5），隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

6．3 構造部材の健全性に対する評価結果

6．3．1 曲げ・軸力系の破壊に対する評価結果
（1）断面（1）
構造強度を有することの確認，止水機能を損なわないこと及びS クラスの施設を支持す る機能を損なわないことの確認における曲げ・軸力系の破壊に対する評価結果を表 6－32及び表 6－33に示す。

同表のとおり，全ケースにおいて発生応力度は短期許容応力度を下回ることを確認し た。

表 6－32 曲げ・軸力系の破壊に対する評価結果（コンクリート）

解析 ケース	地震動		評価位置＊		発生応力度 $\begin{gathered} \sigma^{\prime}{ }^{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 o＇c／ σ^{\prime} ca
（1）	S s－D 1	＋＋	頂版	101	2． 1	11.7	0.18
		－＋			2． 5	11.7	0.22
	S s－D 2	＋＋	頂版	101	2.4	11.7	0.21
		－＋			2.4	11.7	0.21
	S s－D 3	＋＋	頂版	101	2.0	11.7	0.18
		－＋			2.0	11.7	0.18
	S s－F1	＋＋	頂版	101	1． 7	11.7	0.15
		－＋			1.6	11.7	0.14
	S s－F 2	＋＋	頂版	101	1.9	11.7	0.17
		－＋			1.7	11.7	0.15
	Ss－F 3	＋＋	頂版	101	2． 3	11.7	0.20
		－＋			2.2	11.7	0.19
	S s -N 1	＋＋	頂版	101	1.9	11.7	0． 17
		－＋			1． 8	11.7	0.16
（2）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	頂版	101	2.3	11.7	0.20
（3）	S s－D 2	＋＋	頂版	101	2.5	11.7	0.22
（4）	S s－D 2	＋＋	頂版	101	2.4	11.7	0.21

注記 $*:$ 評価位置は図6－23に示す。

表6－33 曲げ・軸力系の破壊に対する評価結果（鉄筋）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生 応力度 σ s $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\begin{gathered} \sigma_{\mathrm{s} \text { a }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\begin{gathered} \sigma_{\mathrm{s}} / \\ \sigma_{\mathrm{sa}} \end{gathered}$
（1）	S s－D 1	＋＋	頂版	101	81	294	0． 28
		－＋			77	294	0． 27
	S s－D 2	＋＋	頂版	101	90	294	0.31
		－＋			85	294	0.29
	S s－D 3	＋＋	頂版	101	66	294	0.23
		－＋			64	294	0.22
	S s－F 1	＋＋	頂版	101	68	294	0.24
		－＋			70	294	0.24
	S s－F 2	＋＋	頂版	101	80	294	0.28
		－＋			80	294	0.28
	S s－F 3	＋＋	頂版	101	71	294	0.25
		－＋			70	294	0． 24
	S s－N 1	＋＋	頂版	101	74	294	0.26
		－＋			89	294	0.31
（2）	S s－D 2	＋＋	頂版	101	92	294	0.32
（3）	$\mathrm{Sc}-\mathrm{D} 2$	＋＋	頂版	101	78	294	0.27
（4）	S s－D 2	＋＋	頂版	101	100	294	0.35

注記＊：評価位置は図6－23に示す。

図 6－23 評価位置図（断面（1）
（2）断面（2）～（5）
構造強度を有することの確認における曲げ・軸力系の破壊に対する評価結果を表 6－34 ～表6－37に示す。また，Sクラスの施設を支持する機能を損なわないことの確認におけ る曲げ・軸力系の破壊に対する評価結果を表6－38～表6－41 に示す。
表6－34～表6－37のとおり，コンクリートの圧縮縁ひずみが，全ケースにおいて許容限界（コンクリートの圧縮縁ひずみ：10000 μ ）を下回ることを確認した。

表 6－38～表6－41 のとおり，S クラスの施設を支持する機能を有する部材におけるコ ンクリートの圧縮ひずみ及び主筋ひずみが，全ケースにおいて許容限界（コンクリートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ）を下回ることを確認した。

また，断面（2）及び断面（5）について，CCb 工法を適用する箇所に発生するひずみは，部材降伏に相当する限界ひずみ（コンクリートの圧縮ひずみ：2000 μ ，主筋ひずみ： 1725μ ） に至っておらず，CCb 工法の適用範囲内であることを確認した。

表6－34（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－24に示す。
$* 2:$ 照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－34（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
S s－F1			側壁（南北）	212	293μ	10000μ	0.03
			側壁（東西）	222	215μ	10000μ	0.03
			隔壁（南北）	242	430μ	10000μ	0.05
			隔壁（東西）	233	566μ	10000μ	0.06
			側壁（南北）	216	258μ	10000μ	0.03
			側壁（東西）	221	206μ	10000μ	0.03
			隔壁（南北）	242	390μ	10000μ	0.04
			隔壁（東西）	233	522μ	10000μ	0.06
（1）	S s－F 2	＋＋	側壁（南北）	212	306μ	10000μ	0.04
			側壁（東西）	221	220μ	10000μ	0.03
			隔壁（南北）	242	463μ	10000μ	0.05
			隔壁（東西）	233	597μ	10000μ	0.06
		$-+$	側壁（南北）	212	282μ	10000μ	0.03
			側壁（東西）	222	218μ	10000μ	0.03
			隔壁（南北）	242	419μ	10000μ	0.05
			隔壁（東西）	233	566μ	10000μ	0.06
	Ss－F 3	＋＋	側壁（南北）	212	327 m	10000μ	0.04
			側壁（東西）	222	246μ	10000μ	0.03
			隔壁（南北）	242	487μ	10000μ	0.05
			隔壁（東西）	233	615μ	10000μ	0.07
		－＋	側壁（南北）	212	328 н	10000μ	0.04
			側壁（東西）	222	247μ	10000μ	0.03
			隔壁（南北）	242	531μ	10000μ	0.06
			隔壁（東西）	233	626μ	10000μ	0.07

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－34（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ }{ }^{2} \text {. } \varepsilon_{\mathrm{d}} \end{gathered}$	限界 $\begin{gathered} \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s -N 1	＋＋	側壁（南北）	212	339 m	10000μ	0． 04
			側壁（東西）	221	238μ	10000μ	0.03
			隔壁（南北）	242	463μ	10000μ	0.05
			隔壁（東西）	233	616μ	10000μ	0.07
		－＋	側壁（南北）	212	293μ	10000μ	0.03
			側壁（東西）	222	239 m	10000μ	0.03
			隔壁（南北）	242	433μ	10000μ	0.05
			隔壁（東西）	233	609μ	10000μ	0.07
（2）	S s－D 2	＋+	側壁（南北）	212	335μ	10000μ	0.04
			側壁（東西）	222	259μ	10000μ	0.03
			隔壁（南北）	242	527μ	10000μ	0.06
			隔壁（東西）	233	680μ	10000μ	0.07
（3）	S s－D 2	＋＋	側壁（南北）	212	334μ	10000μ	0.04
			側壁（東西）	222	244μ	10000μ	0.03
			隔壁（南北）	242	535μ	10000μ	0.06
			隔壁（東西）	233	652μ	10000μ	0.07
（4）	Ss－D 2	＋＋	側壁（南北）	212	251μ	10000μ	0.03
			側壁（東西）	222	206μ	10000μ	0.03
			隔壁（南北）	242	403μ	10000μ	0.05
			隔壁（東西）	233	478μ	10000μ	0.05

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 6－34（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（2）	S s - N 1	－＋	側壁（南北）	212	287μ	10000μ	0.03
			側壁（東西）	222	240μ	10000μ	0.03
			隔壁（南北）	242	431μ	10000μ	0.05
			隔壁（東西）	233	602μ	10000μ	0.07
（3）	S s - N 1	－＋	側壁（南北）	212	293μ	10000μ	0.03
			側壁（東西）	222	244μ	10000μ	0.03
			隔壁（南北）	242	408μ	10000μ	0.05
			隔壁（東西）	233	604μ	10000μ	0.07
（4）	S s -N 1	－＋	側壁（南北）	212	178μ	10000μ	0.02
			側壁（東西）	221	216μ	10000μ	0． 03
			隔壁（南北）	242	327 н	10000μ	0.04
			隔壁（東西）	233	420μ	10000μ	0． 05

注記 $* 1$ ：評価位置は図 6－24に示す。
$* 2$ ：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－34（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：応力の照査）

解析 ケース	地震動		評価位置＊	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \sigma{ }_{c} \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \mathrm{c} \text { a } 1 \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\left(\begin{array}{lllll} \sigma_{\mathrm{c}} & \sigma_{\mathrm{c}} & \mathrm{a} & 1 \end{array}\right)$
（1）	$\mathrm{S} s-\mathrm{D} 1$	＋＋	251	130	277	0． 47
		$-+$	251	154	277	0.56
	S s－D 2	$++$	251	145	277	0． 53
		－＋	251	149	277	0.54
	S s－D 3	$++$	251	141	277	0.51
		$-+$	251	150	277	0． 55
	S s－F 1	$++$	251	129	277	0． 47
		－＋	251	105	277	0.38
	S s－F 2	＋＋	251	134	277	0． 49
		$-+$	251	118	277	0． 43
	S s－F 3	$++$	251	150	277	0.55
		－＋	251	155	277	0.56
	S s -N 1	＋＋	251	149	277	0.54
		－＋	251	144	277	0.52
（2）	S s－D 2	＋＋	251	144	277	0.52
（3）	S s－D 2	＋＋	251	152	277	0.55
（4）	S s－D 2	$++$	251	136	277	0.50
（2）	S s－N 1	－＋	251	100	277	0.37
（3）	S s－N 1	$-+$	251	105	277	0.38
（4）	S s－N 1	－＋	251	81	277	0.30

注記 $*$ ：評価位置は図 6－24に示す。

表6－34（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：座屈に対する安定の照査）

注記＊：評価位置は図 6－24に示す。

表6－34（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（2），鋼材：座屈に対する安定の照査）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}},\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	S s－F 3	＋＋	251	軸力	145	252	0.58	0.61
				強軸曲げ	1	248	0.01	
				弱軸曲げ	3	247	0.02	
		－＋	251	軸力	150	252	0.60	0． 63
				強軸曲げ	1	247	0.01	
				弱軸曲げ	3	246	0.02	
	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	＋＋	251	軸力	144	252	0.58	0.61
				強軸曲げ	1	248	0.01	
				弱軸曲げ	3	247	0.02	
		－＋	251	軸力	139	252	0.56	0.59
				強軸曲げ	1	248	0.01	
				弱軸曲げ	3	248	0.02	
（2）	S s－D 2	＋＋	251	軸力	138	252	0.55	0.58
				強軸曲げ	1	248	0.01	
				弱軸曲げ	4	248	0.02	
（3）	Ss－D 2	＋＋	251	軸力	146	252	0． 58	0.61
				強軸曲げ	1	248	0.01	
				弱軸曲げ	4	247	0.02	
（4）	S s－D 2	＋＋	251	軸力	131	252	0． 52	0.55
				強軸曲げ	1	249	0.01	
				弱軸曲げ	3	250	0.02	
（2）	S s -N 1	－＋	251	軸力	96	252	0． 39	0.41
				強軸曲げ	1	251	0.01	
				弱軸曲げ	2	257	0.01	
（3）	S s - N 1	－＋	251	軸力	100	252	0． 40	0． 43
				強軸曲げ	1	251	0.01	
				弱軸曲げ	3	256	0.02	
（4）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	－＋	251	軸力	77	252	0.31	0.33
				強軸曲げ	1	252	0.01	
				弱軸曲げ	2	261	0． 01	

注記 $*: ~$ 評価位置は図 6－24に示す。

図6－24 評価位置図（断面（2）

表6－35（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面③）コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－35（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	314	421μ	10000μ	0.05
			側壁（東西）	322	239μ	10000μ	0.03
			隔壁（南北）	342	354μ	10000μ	0． 04
			隔壁（東西）	336	587μ	10000μ	0.06
			側壁（南北）	313	343μ	10000μ	0.04
			側壁（東西）	322	235μ	10000μ	0.03
			隔壁（南北）	342	333μ	10000μ	0.04
			隔壁（東西）	336	535μ	10000μ	0.06
			側壁（南北）	314	427μ	10000μ	0.05
			側壁（東西）	322	250μ	10000μ	0.03
			隔壁（南北）	342	374μ	10000μ	0.04
			隔壁（東西）	336	619μ	10000μ	0.07
	S S－F 2		側壁（南北）	314	387μ	10000μ	0.04
			側壁（東西）	322	255μ	10000μ	0.03
			隔壁（南北）	342	359μ	10000μ	0.04
			隔壁（東西）	336	581μ	10000μ	0.06
	S s－F 3	＋＋	側壁（南北）	313	380μ	10000μ	0.04
			側壁（東西）	322	272μ	10000μ	0.03
			隔壁（南北）	342	359μ	10000μ	0.04
			隔壁（東西）	336	572μ	10000μ	0.06
		－＋	側壁（南北）	314	462μ	10000μ	0.05
			側壁（東西）	322	277 ／	10000μ	0.03
			隔壁（南北）	342	378μ	10000μ	0.04
			隔壁（東西）	336	624μ	10000μ	0.07

注記 $* 1$ ：評価位置は図6－25に示す。
$* 2:$ 照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－35（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（3），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	314	515μ	10000μ	0.06
			側壁（東西）	321	260μ	10000μ	0.03
			隔壁（南北）	342	387μ	10000μ	0.04
			隔壁（東西）	336	694μ	10000μ	0． 07
		－＋	側壁（南北）	313	386μ	10000μ	0.04
			側壁（東西）	322	279μ	10000μ	0.03
			隔壁（南北）	342	387μ	10000μ	0.04
			隔壁（東西）	333	592μ	10000μ	0.06
（2）	S s－D 2	＋＋	側壁（南北）	314	524μ	10000μ	0.06
			側壁（東西）	322	313μ	10000μ	0.04
			隔壁（南北）	342	441μ	10000μ	0.05
			隔壁（東西）	336	712μ	10000μ	0.08
（3）	Ss－D 2	＋＋	側壁（南北）	314	477μ	10000μ	0.05
			側壁（東西）	322	283μ	10000μ	0.03
			隔壁（南北）	342	408μ	10000μ	0.05
			隔壁（東西）	336	676μ	10000μ	0.07
（4）	Ss－D 2	＋＋	側壁（南北）	314	312μ	10000μ	0.04
			側壁（東西）	321	250μ	10000μ	0.03
			隔壁（南北）	342	268μ	10000μ	0.03
			隔壁（東西）	336	459μ	10000μ	0.05

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－35（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
（2）	S s－N 1	$-+$	側壁（南北）	313	415μ	10000μ	0.05
			側壁（東西）	322	283μ	10000μ	0.03
			隔壁（南北）	342	396μ	10000μ	0.04
			隔壁（東西）	336	608μ	10000μ	0.07
（3）	S s－N 1	－＋	側壁（南北）	314	467μ	10000μ	0.05
			側壁（東西）	322	289μ	10000μ	0.03
			隔壁（南北）	342	412μ	10000μ	0.05
			隔壁（東西）	336	653μ	10000μ	0.07
（4）	S s－N 1	－＋	側壁（南北）	314	309μ	10000μ	0.04
			側壁（東西）	321	232μ	10000μ	0.03
			隔壁（南北）	342	252μ	10000μ	0.03
			隔壁（東西）	336	438μ	10000μ	0.05

注記 $* 1$ ：評価位置は図 6－25に示す。
$* 2$ ：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－35（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：応力の照査）

解析 ケース	地震動		評価位置＊	発生応力度 σ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\begin{gathered} \sigma_{\text {cal } 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \left.\left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}\right)^{2}\right) \end{gathered}$
（1）	S s－D 1	＋＋	351	79	277	0． 29
		－＋	351	93	277	0.34
	Ss－D 2	$++$	351	88	277	0． 32
		$-+$	351	91	277	0． 33
	S s－D 3	$++$	351	84	277	0.31
		－＋	351	89	277	0． 33
	S s－F 1	$++$	351	79	277	0． 29
		$-+$	351	66	277	0． 24
	S s－F 2	$++$	351	81	277	0． 30
		$-+$	351	75	277	0． 28
	S s－F 3	＋＋	351	73	277	0． 27
		－＋	351	88	277	0． 32
	S s - N 1	$++$	351	97	277	0.36
		－＋	351	71	277	0． 26
（2）	S s－D 2	＋＋	351	97	277	0． 36
（3）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	351	89	277	0.33
（4）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	351	67	277	0． 25
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	－＋	351	77	277	0． 28
（3）	$\mathrm{Ss}-\mathrm{N} 1$	－＋	351	86	277	0． 32
（4）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	－＋	351	66	277	0． 24

注記＊：評価位置は図6－25に示す。

表6－35（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：座屈に対する安定の照査）

注記＊：評価位置は図6－25に示す。

表6－35（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（3），鋼材：座屈に対する安定の照査）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}},\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	S s－F 3	＋＋	351	軸力	67	242	0． 28	0.31
				強軸曲げ	1	243	0.01	
				弱軸曲げ	4	257	0.02	
		－＋	351	軸力	82	242	0． 34	0． 37
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	253	0.02	
	S s－N 1	＋＋	351	軸力	91	242	0.38	0． 41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0.02	
		－＋	351	軸力	66	242	0.28	0.31
				強軸曲げ	1	243	0.01	
				弱軸曲げ	3	257	0.02	
（2）	S s－D 2	＋＋	351	軸力	91	242	0.38	0． 41
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	250	0.02	
（3）	S s－D 2	＋＋	351	軸力	83	242	0.35	0.38
				強軸曲げ	1	241	0.01	
				弱軸曲げ	4	252	0.02	
（4）	S s－D 2	＋＋	351	軸力	61	242	0． 26	0.29
				強軸曲げ	1	244	0.01	
				弱軸曲げ	4	259	0.02	
（2）	S s－N 1	－＋	351	軸力	72	242	0． 30	0.33
				強軸曲げ	1	242	0.01	
				弱軸曲げ	3	256	0． 02	
（3）	S s－N 1	－＋	351	軸力	81	242	0． 34	0.37
				強軸曲げ	1	242	0.01	
				弱軸曲げ	3	253	0.02	
（4）	S s－N 1	－＋	351	軸力	61	242	0． 26	0． 29
				強軸曲げ	1	244	0.01	
				弱軸曲げ	3	259	0.02	

注記＊：評価位置は図6－25に示す。

図 6－25 評価位置図（断面（3）

表6－36（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	$++$	側壁（南北）	414	899μ	10000μ	0.09
			側壁（東西）	422	416μ	10000μ	0.05
			隔壁（南北）	442	241μ	10000μ	0.03
			隔壁（東西）	437	853μ	10000μ	0.09
		$-+$	側壁（南北）	414	842μ	10000μ	0.09
			側壁（東西）	422	405μ	10000μ	0.05
			隔壁（南北）	442	257μ	10000μ	0.03
			隔壁（東西）	437	828μ	10000μ	0.09
			側壁（南北）	414	957μ	10000μ	0.10
			側壁（東西）	422	421μ	10000μ	0.05
			隔壁（南北）	442	235μ	10000μ	0.03
			隔壁（東西）	437	880μ	10000μ	0.09
			側壁（南北）	414	893μ	10000μ	0.09
			側壁（東西）	422	408μ	10000μ	0.05
			隔壁（南北）	442	231μ	10000μ	0.03
			隔壁（東西）	437	843μ	10000μ	0.09
	S s－D 3	＋＋	側壁（南北）	414	763μ	10000μ	0.08
			側壁（東西）	422	358μ	10000μ	0.04
			隔壁（南北）	442	224μ	10000μ	0.03
			隔壁（東西）	437	731μ	10000μ	0.08
		$-+$	側壁（南北）	414	791μ	10000μ	0.08
			側壁（東西）	422	358μ	10000μ	0.04
			隔壁（南北）	442	232μ	10000μ	0.03
			隔壁（東西）	437	738μ	10000μ	0.08

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－36（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	414	722μ	10000μ	0.08
			側壁（東西）	422	324μ	10000μ	0.04
			隔壁（南北）	442	211μ	10000μ	0.03
			隔壁（東西）	437	671μ	10000μ	0.07
		－＋	側壁（南北）	414	799μ	10000μ	0.08
			側壁（東西）	422	327μ	10000μ	0.04
			隔壁（南北）	442	192μ	10000μ	0.02
			隔壁（東西）	437	685μ	10000μ	0.07
	S s－F 2	＋＋	側壁（南北）	413	801μ	10000μ	0.09
			側壁（東西）	422	355μ	10000μ	0.04
			隔壁（南北）	442	255μ	10000μ	0.03
			隔壁（東西）	437	748μ	10000μ	0.08
		－＋	側壁（南北）	414	769μ	10000μ	0.08
			側壁（東西）	422	353μ	10000μ	0.04
			隔壁（南北）	442	235μ	10000μ	0.03
			隔壁（東西）	437	735μ	10000μ	0.08
	S s－F 3	＋＋	側壁（南北）	414	763μ	10000μ	0.08
			側壁（東西）	422	364μ	10000μ	0.04
			隔壁（南北）	442	203μ	10000μ	0.03
			隔壁（東西）	437	737μ	10000μ	0.08
		－＋	側壁（南北）	414	795μ	10000μ	0.08
			側壁（東西）	422	375μ	10000μ	0.04
			隔壁（南北）	442	221μ	10000μ	0.03
			隔壁（東西）	437	769μ	10000μ	0.08

注記 $* 1$ ：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－36（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s - N 1	＋＋	側壁（南北）	413	781μ	10000μ	0.08
			側壁（東西）	422	332μ	10000μ	0.04
			隔壁（南北）	442	268μ	10000μ	0． 03
			隔壁（東西）	437	704μ	10000μ	0.08
		－＋	側壁（南北）	414	945μ	10000μ	0． 10
			側壁（東西）	422	387μ	10000μ	0.04
			隔壁（南北）	442	224μ	10000μ	0.03
			隔壁（東西）	437	820μ	10000μ	0.09
（2）	S s－D 2	＋＋	側壁（南北）	414	1022μ	10000μ	0.11
			側壁（東西）	422	437μ	10000μ	0.05
			隔壁（南北）	442	228μ	10000μ	0.03
			隔壁（東西）	437	913μ	10000μ	0． 10
（3）	Ss－D 2	＋＋	側壁（南北）	414	852μ	10000μ	0.09
			側壁（東西）	422	387μ	10000μ	0.04
			隔壁（南北）	442	253μ	10000μ	0.03
			隔壁（東西）	437	805μ	10000μ	0.09
（4）	Ss－D 2	＋＋	側壁（南北）	413	633μ	10000μ	0． 07
			側壁（東西）	422	334μ	10000μ	0.04
			隔壁（南北）	442	174μ	10000μ	0.02
			隔壁（東西）	437	594μ	10000μ	0.06

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－36（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（2）	S s－N 1	－＋	側壁（南北）	414	956μ	10000μ	0． 10
			側壁（東西）	422	389 н	10000μ	0.04
			隔壁（南北）	442	221μ	10000μ	0.03
			隔壁（東西）	437	825μ	10000μ	0.09
（3）	$\mathrm{Sm}-\mathrm{N} 1$	－＋	側壁（南北）	414	1016μ	10000μ	0.11
			側壁（東西）	422	408μ	10000μ	0.05
			隔壁（南北）	442	238μ	10000μ	0.03
			隔壁（東西）	437	866μ	10000μ	0.09
（4）	S s－N 1	$-+$	側壁（南北）	413	597μ	10000μ	0.06
			側壁（東西）	422	301μ	10000μ	0.04
			隔壁（南北）	442	165μ	10000μ	0.02
			隔壁（東西）	437	541μ	10000μ	0.06

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－36（5）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：応力の照査）

解析 ケース	地震動		評価位置＊	発生応力度 σ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\begin{gathered} \sigma_{\text {cal } 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}{ }^{2}\right) \end{gathered}$
（1）	S s－D 1	＋＋	451	71	277	0． 26
		－＋	451	65	277	0.24
	Ss－D 2	＋＋	451	79	277	0． 29
		$-+$	451	72	277	0． 26
	Ss－D 3	＋＋	451	62	277	0． 23
		－＋	451	65	277	0.24
	S s－F 1	＋＋	451	59	277	0． 22
		－＋	451	70	277	0.26
	S s－F 2	＋＋	451	59	277	0． 22
		$-+$	451	61	277	0． 23
	S s－F 3	$++$	451	67	277	0． 25
		－＋	451	65	277	0． 24
	S s－N 1	$++$	451	59	277	0.22
		－＋	451	76	277	0.28
（2）	S s－D 2	$++$	451	88	277	0． 32
（3）	Ss－D 2	＋＋	451	67	277	0． 25
（4）	Ss－D 2	＋＋	451	68	277	0． 25
（2）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	$-+$	451	78	277	0． 29
（3）	$\mathrm{Ss}-\mathrm{N} 1$	$-+$	451	81	277	0． 30
（4）	S s－N 1	$-+$	451	61	277	0.23

注記＊：評価位置は図 6－26に示す。

表6－36（6）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：座屈に対する安定の照査）

注記 $*: ~$ 評価位置は図6－26に示す。

表6－36（7）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（4），鋼材：座屈に対する安定の照査）

解析 ケース	地震動		評価位置＊	応力度 区分	発生 応力度 $\begin{gathered} \sigma_{\mathrm{c}}, \quad \sigma_{\mathrm{bc}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期 許容応力度 $\begin{gathered} \sigma_{\mathrm{ca}}, \quad \sigma_{\mathrm{ba}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	個別照査値 $\begin{aligned} & \left(\sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}\right. \\ & \left.\sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}}\right) \end{aligned}$	照査値
（1）	Ss－F 3	$++$	451	軸力	50	190	0.27	0.34
				強軸曲げ	1	195	0.01	
				弱軸曲げ	12	229	0.06	
		$-+$	451	軸力	49	190	0.26	0.32
				強軸曲げ	1	195	0.01	
				弱軸曲げ	11	230	0.05	
	S s－N 1	$++$	451	軸力	42	190	0.23	0.30
				強軸曲げ	1	197	0.01	
				弱軸曲げ	12	236	0.06	
		$-+$	451	軸力	63	190	0.34	0.39
				強軸曲げ	1	191	0.01	
				弱軸曲げ	8	216	0.04	
（2）	S s－D 2	$++$	451	軸力	69	190	0.37	0.45
				強軸曲げ	1	190	0.01	
				弱軸曲げ	13	210	0.07	
（3）	S s－D 2	$++$	451	軸力	51	190	0.27	0.34
				強軸曲げ	1	195	0.01	
				弱軸曲げ	12	228	0.06	
（4）	S s－D 2	$++$	451	軸力	52	190	0.28	0.34
				強軸曲げ	1	194	0.01	
				弱軸曲げ	11	227	0.05	
（2）	S s－N 1	$-+$	451	軸力	65	190	0.35	0． 40
				強軸曲げ	1	191	0.01	
				弱軸曲げ	8	214	0.04	
（3）	S s－N 1	$-+$	451	軸力	67	190	0.36	0． 42
				強軸曲げ	1	190	0.01	
				弱軸曲げ	9	212	0.05	
（4）	S s－N 1	$-+$	451	軸力	49	190	0.26	0.31
				強軸曲げ	1	195	0.01	
				弱軸曲げ	8	230	0.04	

注記＊：評価位置は図 6－26に示す。

図 6－26 評価位置図（断面（4））

表6－37（1）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－37（2）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	512	365μ	10000μ	0.04
			側壁（東西）	522	274μ	10000μ	0.03
			隔壁（南北）	542	147μ	10000μ	0． 02
			隔壁（東西）	536	545μ	10000μ	0.06
		－＋	側壁（南北）	512	402μ	10000μ	0.05
			側壁（東西）	522	272μ	10000μ	0.03
			隔壁（南北）	542	142μ	10000μ	0.02
			隔壁（東西）	536	572μ	10000μ	0.06
	S s－F 2	＋＋	側壁（南北）	512	398μ	10000μ	0.04
			側壁（東西）	522	318μ	10000μ	0.04
			隔壁（南北）	542	176μ	10000μ	0.02
			隔壁（東西）	537	637μ	10000μ	0.07
		－＋	側壁（南北）	512	415μ	10000μ	0.05
			側壁（東西）	522	325μ	10000μ	0.04
			隔壁（南北）	542	181μ	10000μ	0.02
			隔壁（東西）	537	651μ	10000μ	0.07
	S s－F 3	＋＋	側壁（南北）	512	435μ	10000μ	0.05
			側壁（東西）	522	272μ	10000μ	0.03
			隔壁（南北）	542	142μ	10000μ	0.02
			隔壁（東西）	536	602μ	10000μ	0.07
		－＋	側壁（南北）	512	428μ	10000μ	0.05
			側壁（東西）	522	301μ	10000μ	0.04
			隔壁（南北）	542	164μ	10000μ	0.02
			隔壁（東西）	536	628μ	10000μ	0.07

注記 $* 1$ ：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 6－37（3）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認）
（断面（5），コンクリートの圧縮ひずみ）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 ひずみ*2	限界 ひずみ $\varepsilon_{\text {R }}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	512	393μ	10000μ	0.04
			側壁（東西）	522	278μ	10000μ	0． 03
			隔壁（南北）	542	156μ	10000μ	0.02
			隔壁（東西）	536	582μ	10000μ	0.06
		－＋	側壁（南北）	512	559μ	10000μ	0.06
			側壁（東西）	522	328μ	10000μ	0.04
			隔壁（南北）	542	163μ	10000μ	0.02
			隔壁（東西）	536	747μ	10000μ	0.08
（2）	Ss－D 2	＋+	側壁（南北）	512	475μ	10000μ	0.05
			側壁（東西）	522	343μ	10000μ	0.04
			隔壁（南北）	542	186μ	10000μ	0.02
			隔壁（東西）	536	712μ	10000μ	0.08
（3）	Ss－D 2	＋＋	側壁（南北）	512	413μ	10000μ	0． 05
			側壁（東西）	522	323μ	10000μ	0.04
			隔壁（南北）	542	178μ	10000μ	0.02
			隔壁（東西）	537	647μ	10000μ	0.07
		－＋	側壁（南北）	512	486μ	10000μ	0.05
（4）	S s－D 2	＋＋	側壁（南北）	512	311μ	10000μ	0.04
			側壁（東西）	522	274μ	10000μ	0.03
			隔壁（南北）	542	130μ	10000μ	0.02
			隔壁（東西）	537	488μ	10000μ	0.05

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－37（4）曲げ・軸力系の破壊に対する評価結果（構造強度を有することの確認） （断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（2）	S s－N 1	$-+$	側壁（南北）	512	484μ	10000μ	0.05
			側壁（東西）	522	317μ	10000μ	0.04
			隔壁（南北）	542	166μ	10000μ	0.02
			隔壁（東西）	536	689μ	10000μ	0.07
（3）	S s－N 1	$-+$	側壁（南北）	512	600μ	10000μ	0.06
			側壁（東西）	522	357μ	10000μ	0.04
			隔壁（南北）	542	176μ	10000μ	0.02
			隔壁（東西）	536	805μ	10000μ	0.09
（4）	S s－N 1	$-+$	側壁（南北）	512	368μ	10000μ	0.04
			側壁（東西）	522	266μ	10000μ	0.03
			隔壁（南北）	542	113μ	10000μ	0.02
			隔壁（東西）	536	531μ	10000μ	0.06

注記 $~ 1 ~: ~$ 評価位置は図 6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

図 6－27 評価位置図（断面（5））

表6－38（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	212	317μ	2000μ	0． 16
			側壁（東西）	222	260μ	2000μ	0.13
			隔壁（南北）	242	494μ	2000μ	0． 25
			隔壁（東西）	233	641μ	2000μ	0.33
			側壁（南北）	212	338μ	2000μ	0.17
			側壁（東西）	222	246μ	2000μ	0.13
			隔壁（南北）	242	553μ	2000μ	0.28
			隔壁（東西）	233	647μ	2000μ	0.33
			側壁（南北）	212	335μ	2000μ	0.17
			側壁（東西）	222	261μ	2000μ	0.14
			隔壁（南北）	242	544μ	2000μ	0.28
	S		隔壁（東西）	233	683μ	2000μ	0.35
	S 5		側壁（南北）	212	362μ	2000μ	0.19
			側壁（東西）	222	250μ	2000μ	0.13
			隔壁（南北）	242	512μ	2000μ	0． 26
			隔壁（東西）	233	656μ	2000μ	0.33
	Ss－D 3	＋＋	側壁（南北）	212	306μ	2000μ	0． 16
			側壁（東西）	222	226μ	2000μ	0.12
			隔壁（南北）	242	471μ	2000μ	0.24
			隔壁（東西）	233	583μ	2000μ	0.30
		－＋	側壁（南北）	212	329 н	2000μ	0.17
			側壁（東西）	222	238 н	2000μ	0.12
			隔壁（南北）	242	469 н	2000μ	0． 24
			隔壁（東西）	233	594μ	2000μ	0.30

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－38（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－38（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	212	339 н	2000μ	0.17
			側壁（東西）	221	238μ	2000μ	0． 12
			隔壁（南北）	242	463μ	2000μ	0.24
			隔壁（東西）	233	616μ	2000μ	0.31
		－＋	側壁（南北）	212	293μ	2000μ	0.15
			側壁（東西）	222	239μ	2000μ	0． 12
			隔壁（南北）	242	433μ	2000μ	0． 22
			隔壁（東西）	233	609μ	2000μ	0.31
（2）	S s－D 2	＋＋	側壁（南北）	212	335μ	2000μ	0.17
			側壁（東西）	222	259μ	2000μ	0.13
			隔壁（南北）	242	527μ	2000μ	0.27
			隔壁（東西）	233	680μ	2000μ	0.34
（3）	S s－D 2	＋＋	側壁（南北）	212	334μ	2000μ	0.17
			側壁（東西）	222	244μ	2000μ	0.13
			隔壁（南北）	242	535μ	2000μ	0． 27
			隔壁（東西）	233	652μ	2000μ	0.33
（4）	S s－D 2	＋＋	側壁（南北）	212	251μ	2000μ	0.13
			側壁（東西）	222	206μ	2000μ	0.11
			隔壁（南北）	242	403μ	2000μ	0.21
			隔壁（東西）	233	478μ	2000μ	0． 24
（2）	S s－N 1	－＋	側壁（南北）	212	287μ	2000μ	0.15
			側壁（東西）	222	240μ	2000μ	0． 12
			隔壁（南北）	242	431μ	2000μ	0． 22
			隔壁（東西）	233	602μ	2000μ	0.31
（3）	S s－N 1	$-+$	側壁（南北）	212	293μ	2000μ	0.15
			側壁（東西）	222	244μ	2000μ	0． 13
			隔壁（南北）	242	408μ	2000μ	0.21
			隔壁（東西）	233	604μ	2000μ	0.31
（4）	S s－N 1	$-+$	側壁（南北）	212	178μ	2000μ	0.09
			側壁（東西）	221	216μ	2000μ	0.11
			隔壁（南北）	242	327μ	2000μ	0.17
			隔壁（東西）	233	420μ	2000μ	0.21

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－38（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	211	781μ	1725μ	0． 46
			側壁（東西）	222	624μ	1725μ	0． 37
			隔壁（南北）	242	770μ	1725μ	0． 45
			隔壁（東西）	233	508μ	1725μ	0.30
			側壁（南北）	211	826μ	1725μ	0.48
			側壁（東西）	222	507μ	1725μ	0.30
		－	隔壁（南北）	242	1017μ	1725μ	0.59
			隔壁（東西）	233	534μ	1725μ	0.31
			側壁（南北）	211	818μ	1725μ	0.48
			側壁（東西）	222	589μ	1725μ	0.35
		$+$	隔壁（南北）	242	893μ	1725μ	0． 52
			隔壁（東西）	233	548μ	1725μ	0.32
	S 5 － 2		側壁（南北）	211	826μ	1725μ	0． 48
		－＋	側壁（東西）	222	542μ	1725μ	0.32
		－	隔壁（南北）	242	995μ	1725μ	0.58
			隔壁（東西）	233	535μ	1725μ	0.32
	S s－D 3	$++$	側壁（南北）	211	732μ	1725μ	0． 43
			側壁（東西）	222	473μ	1725μ	0.28
			隔壁（南北）	242	813μ	1725μ	0． 48
			隔壁（東西）	233	481μ	1725μ	0.28
		$-+$	側壁（南北）	211	789μ	1725μ	0． 46
			側壁（東西）	222	522μ	1725μ	0.31
			隔壁（南北）	242	836μ	1725μ	0． 49
			隔壁（東西）	233	487μ	1725μ	0.29

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－38（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	211	729μ	1725 m	0． 43
			側壁（東西）	222	463μ	1725μ	0． 27
			隔壁（南北）	242	682μ	1725μ	0． 40
			隔壁（東西）	233	461μ	1725μ	0． 27
			側壁（南北）	211	694μ	1725μ	0.41
			側壁（東西）	221	500μ	1725μ	0.29
		$-+$	隔壁（南北）	242	606μ	1725μ	0.36
			隔壁（東西）	233	408μ	1725μ	0． 24
			側壁（南北）	211	775μ	1725μ	0.45
			側壁（東西）	221	474μ	1725μ	0.28
		＋	隔壁（南北）	242	757μ	1725μ	0． 44
			隔壁（東西）	233	485μ	1725μ	0.29
	S S F 2		側壁（南北）	211	739μ	1725μ	0.43
		－＋	側壁（東西）	222	510μ	1725μ	0.30
		－	隔壁（南北）	242	655μ	1725μ	0.38
			隔壁（東西）	233	449μ	1725μ	0.27
	Ss－F 3	＋＋	側壁（南北）	211	787μ	1725μ	0． 46
			側壁（東西）	222	526μ	1725μ	0.31
			隔壁（南北）	242	832μ	1725μ	0． 49
			隔壁（東西）	233	510μ	1725μ	0.30
		$-+$	側壁（南北）	211	771μ	1725μ	0． 45
			側壁（東西）	222	512μ	1725μ	0.30
			隔壁（南北）	242	968μ	1725μ	0.57
			隔壁（東西）	233	521μ	1725μ	0.31

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－38（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（2），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	211	847μ	1725μ	0． 50
			側壁（東西）	221	505μ	1725μ	0.30
			隔壁（南北）	242	764μ	1725μ	0． 45
			隔壁（東西）	233	509μ	1725μ	0． 30
		$-+$	側壁（南北）	211	744μ	1725μ	0． 44
			側壁（東西）	222	614μ	1725μ	0． 36
			隔壁（南北）	242	616μ	1725μ	0.36
			隔壁（東西）	238	480μ	1725μ	0.28
（2）	S s－D 2	＋＋	側壁（南北）	211	819μ	1725μ	0． 48
			側壁（東西）	222	590μ	1725μ	0.35
			隔壁（南北）	242	848μ	1725μ	0． 50
			隔壁（東西）	233	545μ	1725μ	0.32
（3）	S s－D 2	$++$	側壁（南北）	211	812μ	1725μ	0． 48
			側壁（東西）	222	508μ	1725μ	0． 30
			隔壁（南北）	242	929μ	1725μ	0． 54
			隔壁（東西）	233	535μ	1725μ	0． 32
（4）	S s－D 2	$++$	側壁（南北）	211	753μ	1725μ	0． 44
			側壁（東西）	222	502μ	1725μ	0.30
			隔壁（南北）	242	842μ	1725μ	0． 49
			隔壁（東西）	238	396μ	1725μ	0.23
（2）	S s－N 1	$-+$	側壁（南北）	211	724μ	1725μ	0． 42
			側壁（東西）	222	638μ	1725μ	0． 37
			隔壁（南北）	242	610μ	1725μ	0.36
			隔壁（東西）	238	513μ	1725μ	0.30
（3）	S s－N 1	$-+$	側壁（南北）	211	750μ	1725μ	0． 44
			側壁（東西）	222	647μ	1725μ	0.38
			隔壁（南北）	244	539μ	1725μ	0.32
			隔壁（東西）	238	513μ	1725μ	0． 30
（4）	S s－N 1	$-+$	側壁（南北）	211	629μ	1725μ	0.37
			側壁（東西）	221	631μ	1725μ	0.37
			隔壁（南北）	244	537μ	1725μ	0.32
			隔壁（東西）	238	577μ	1725μ	0．34

注記＊1：評価位置は図6－24に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－39（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	313	422 н	2000μ	0． 22
			側壁（東西）	322	302μ	2000μ	0.16
			隔壁（南北）	342	404μ	2000μ	0.21
			隔壁（東西）	336	628μ	2000μ	0． 32
			側壁（南北）	314	500μ	2000μ	0.25
			側壁（東西）	322	297μ	2000μ	0.15
			隔壁（南北）	342	413μ	2000μ	0.21
			隔壁（東西）	336	697μ	2000μ	0.35
			側壁（南北）	314	468μ	2000μ	0． 24
			側壁（東西）	322	305μ	2000μ	0.16
			隔壁（南北）	342	426μ	2000μ	0.22
	S		隔壁（東西）	336	673μ	2000μ	0.34
	S s－D 2		側壁（南北）	314	484μ	2000μ	0.25
			側壁（東西）	322	298μ	2000μ	0.15
			隔壁（南北）	342	415μ	2000μ	0.21
			隔壁（東西）	336	678μ	2000μ	0.34
	Ss－D 3	＋＋	側壁（南北）	314	443μ	2000μ	0． 23
			側壁（東西）	322	266μ	2000μ	0． 14
			隔壁（南北）	342	370μ	2000μ	0． 19
			隔壁（東西）	336	610μ	2000μ	0.31
		－＋	側壁（南北）	314	474μ	2000μ	0． 24
			側壁（東西）	322	260μ	2000μ	0.13
			隔壁（南北）	342	379μ	2000μ	0.19
			隔壁（東西）	336	653μ	2000μ	0.33

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－39（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－39（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（3），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	側壁（南北）	314	515μ	2000μ	0． 26
			側壁（東西）	321	260μ	2000μ	0． 13
			隔壁（南北）	342	387μ	2000μ	0． 20
			隔壁（東西）	336	694μ	2000μ	0.35
		－＋	側壁（南北）	313	386μ	2000μ	0． 20
			側壁（東西）	322	279μ	2000μ	0． 14
			隔壁（南北）	342	387μ	2000μ	0． 20
			隔壁（東西）	333	592μ	2000μ	0.30
（2）	S s－D 2	＋＋	側壁（南北）	314	524μ	2000μ	0． 27
			側壁（東西）	322	313μ	2000μ	0.16
			隔壁（南北）	342	441μ	2000μ	0． 23
			隔壁（東西）	336	712μ	2000μ	0.36
（3）	S s－D 2	＋＋	側壁（南北）	314	477μ	2000μ	0． 24
			側壁（東西）	322	283μ	2000μ	0.15
			隔壁（南北）	342	408μ	2000μ	0． 21
			隔壁（東西）	336	676μ	2000μ	0.34
（4）	S s－D 2	＋＋	側壁（南北）	314	312μ	2000μ	0.16
			側壁（東西）	321	250μ	2000μ	0． 13
			隔壁（南北）	342	268μ	2000μ	0． 14
			隔壁（東西）	336	459μ	2000μ	0． 23
（2）	S s－N 1	－＋	側壁（南北）	313	415μ	2000μ	0.21
			側壁（東西）	322	283μ	2000μ	0.15
			隔壁（南北）	342	396μ	2000μ	0． 20
			隔壁（東西）	336	608μ	2000μ	0.31
（3）	S s－N 1	$-+$	側壁（南北）	314	467μ	2000μ	0． 24
			側壁（東西）	322	289μ	2000μ	0.15
			隔壁（南北）	342	412μ	2000μ	0.21
			隔壁（東西）	336	653μ	2000μ	0.33
（4）	S s－N 1	－＋	側壁（南北）	314	309μ	2000μ	0.16
			側壁（東西）	321	232μ	2000μ	0． 12
			隔壁（南北）	342	252μ	2000μ	0． 13
			隔壁（東西）	336	438μ	2000μ	0． 22

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－39（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	$++$	側壁（南北）	311	825μ	1725μ	0． 48
			側壁（東西）	322	834μ	1725μ	0． 49
			隔壁（南北）	343	646μ	1725μ	0.38
			隔壁（東西）	338	632μ	1725μ	0.37
			側壁（南北）	311	870μ	1725μ	0.51
			側壁（東西）	322	750μ	1725μ	0． 44
		－	隔壁（南北）	343	593μ	1725μ	0.35
			隔壁（東西）	336	567μ	1725μ	0.33
			側壁（南北）	311	852μ	1725μ	0.50
			側壁（東西）	322	803μ	1725μ	0． 47
		＋	隔壁（南北）	343	656μ	1725μ	0.39
			隔壁（東西）	338	599μ	1725μ	0.35
	S 5 － 2		側壁（南北）	311	849 н	1725μ	0． 50
		－＋	側壁（東西）	322	767μ	1725μ	0． 45
		－	隔壁（南北）	343	608μ	1725μ	0.36
			隔壁（東西）	336	550μ	1725μ	0.32
	S s－D 3	＋＋	側壁（南北）	311	758μ	1725μ	0． 44
			側壁（東西）	322	674μ	1725μ	0． 40
			隔壁（南北）	343	543μ	1725μ	0.32
			隔壁（東西）	336	496μ	1725μ	0.29
		$-+$	側壁（南北）	311	807μ	1725μ	0． 47
			側壁（東西）	322	625μ	1725μ	0.37
			隔壁（南北）	343	530μ	1725μ	0.31
			隔壁（東西）	336	532μ	1725μ	0.31

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表6－39（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	311	743μ	1725μ	0． 44
			側壁（東西）	322	593μ	1725μ	0． 35
			隔壁（南北）	343	471μ	1725μ	0． 28
			隔壁（東西）	336	476μ	1725μ	0． 28
			側壁（南北）	311	728μ	1725μ	0． 43
			側壁（東西）	321	633μ	1725μ	0.37
			隔壁（南北）	343	511μ	1725μ	0.30
			隔壁（東西）	338	489μ	1725μ	0.29
			側壁（南北）	311	797μ	1725μ	0． 47
			側壁（東西）	321	626μ	1725μ	0.37
			隔壁（南北）	343	511μ	1725μ	0.30
			隔壁（東西）	336	499μ	1725μ	0.29
	S		側壁（南北）	311	768μ	1725μ	0.45
			側壁（東西）	322	675μ	1725μ	0.40
			隔壁（南北）	343	539μ	1725μ	0.32
			隔壁（東西）	338	508μ	1725μ	0.30
	Ss－F 3	$++$	側壁（南北）	311	755μ	1725μ	0． 44
			側壁（東西）	322	748μ	1725μ	0． 44
			隔壁（南北）	343	592μ	1725μ	0.35
			隔壁（東西）	338	561μ	1725μ	0.33
		$-+$	側壁（南北）	311	767μ	1725μ	0． 45
			側壁（東西）	322	707μ	1725μ	0.41
			隔壁（南北）	343	544μ	1725μ	0.32
			隔壁（東西）	336	510μ	1725μ	0． 30

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表6－39（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面③）主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	311	847μ	1725μ	0． 50
			側壁（東西）	321	605μ	1725μ	0.36
			隔壁（南北）	342	565μ	1725μ	0． 33
			隔壁（東西）	336	568μ	1725μ	0.33
		$-+$	側壁（南北）	311	788μ	1725μ	0． 46
			側壁（東西）	322	775μ	1725μ	0． 45
			隔壁（南北）	343	628μ	1725μ	0． 37
			隔壁（東西）	338	625μ	1725μ	0.37
（2）	S s－D 2	＋＋	側壁（南北）	311	873μ	1725μ	0.51
			側壁（東西）	322	800μ	1725μ	0． 47
			隔壁（南北）	343	619μ	1725μ	0.36
			隔壁（東西）	336	582μ	1725μ	0.34
（3）	S s－D 2	$++$	側壁（南北）	311	848μ	1725μ	0． 50
			側壁（東西）	322	710μ	1725μ	0． 42
			隔壁（南北）	343	598μ	1725μ	0.35
			隔壁（東西）	336	547μ	1725μ	0． 32
（4）	S s－D 2	$++$	側壁（南北）	311	761μ	1725μ	0． 45
			側壁（東西）	322	717μ	1725μ	0． 42
			隔壁（南北）	343	543μ	1725μ	0． 32
			隔壁（東西）	338	628μ	1725μ	0.37
（2）	S s－N 1	$-+$	側壁（南北）	317	796μ	1725μ	0． 47
			側壁（東西）	322	765μ	1725μ	0． 45
			隔壁（南北）	343	615μ	1725μ	0.36
			隔壁（東西）	338	591μ	1725μ	0.35
（3）	S s－N 1	$-+$	側壁（南北）	311	826μ	1725μ	0． 48
			側壁（東西）	322	753μ	1725μ	0． 44
			隔壁（南北）	343	559μ	1725μ	0.33
			隔壁（東西）	338	547μ	1725μ	0． 32
（4）	S s－N 1	$-+$	側壁（南北）	311	720μ	1725μ	0． 42
			側壁（東西）	322	645μ	1725μ	0.38
			隔壁（南北）	343	492μ	1725μ	0． 29
			隔壁（東西）	338	553μ	1725μ	0.33

注記＊1：評価位置は図6－25に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－40（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－40（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	414	722μ	2000μ	0． 37
			側壁（東西）	422	324μ	2000μ	0． 17
			隔壁（南北）	442	211μ	2000μ	0.11
			隔壁（東西）	437	671μ	2000μ	0.34
			側壁（南北）	414	799μ	2000μ	0． 40
			側壁（東西）	422	327μ	2000μ	0.17
		$-+$	隔壁（南北）	442	192μ	2000μ	0.10
			隔壁（東西）	437	685μ	2000μ	0.35
			側壁（南北）	413	801μ	2000μ	0． 41
			側壁（東西）	422	355μ	2000μ	0.18
		$++$	隔壁（南北）	442	255μ	2000μ	0.13
	S		隔壁（東西）	437	748μ	2000μ	0.38
	S S－F 2		側壁（南北）	414	769μ	2000μ	0.39
		－	側壁（東西）	422	353μ	2000μ	0.18
		－+	隔壁（南北）	442	235μ	2000μ	0.12
			隔壁（東西）	437	735μ	2000μ	0.37
	Ss－F 3	＋＋	側壁（南北）	414	763μ	2000μ	0.39
			側壁（東西）	422	364μ	2000μ	0.19
			隔壁（南北）	442	203μ	2000μ	0.11
			隔壁（東西）	437	737μ	2000μ	0.37
		$-+$	側壁（南北）	414	795μ	2000μ	0． 40
			側壁（東西）	422	375μ	2000μ	0.19
			隔壁（南北）	442	221μ	2000μ	0.12
			隔壁（東西）	437	769μ	2000μ	0.39

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－40（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	側壁（南北）	413	781μ	2000μ	0． 40
			側壁（東西）	422	332μ	2000μ	0.17
			隔壁（南北）	442	268μ	2000μ	0． 14
			隔壁（東西）	437	704μ	2000μ	0.36
		－＋	側壁（南北）	414	945μ	2000μ	0． 48
			側壁（東西）	422	387μ	2000μ	0． 20
			隔壁（南北）	442	224μ	2000μ	0． 12
			隔壁（東西）	437	820μ	2000μ	0.41
（2）	S s－D 2	＋＋	側壁（南北）	414	1022μ	2000μ	0． 52
			側壁（東西）	422	437μ	2000μ	0． 22
			隔壁（南北）	442	228μ	2000μ	0． 12
			隔壁（東西）	437	913μ	2000μ	0． 46
（3）	S s－D 2	＋＋	側壁（南北）	414	852μ	2000μ	0． 43
			側壁（東西）	422	387μ	2000μ	0． 20
			隔壁（南北）	442	253μ	2000μ	0． 13
			隔壁（東西）	437	805μ	2000μ	0． 41
（4）	S s－D 2	＋＋	側壁（南北）	413	633μ	2000μ	0.32
			側壁（東西）	422	334μ	2000μ	0.17
			隔壁（南北）	442	174μ	2000μ	0.09
			隔壁（東西）	437	594μ	2000μ	0.30
（2）	S s－N 1	－＋	側壁（南北）	414	956μ	2000μ	0． 48
			側壁（東西）	422	389μ	2000μ	0.20
			隔壁（南北）	442	221μ	2000μ	0． 12
			隔壁（東西）	437	825μ	2000μ	0． 42
（3）	S s－N 1	$-+$	側壁（南北）	414	1016μ	2000μ	0.51
			側壁（東西）	422	408μ	2000μ	0.21
			隔壁（南北）	442	238μ	2000μ	0． 12
			隔壁（東西）	437	866μ	2000μ	0． 44
（4）	S s－N 1	－＋	側壁（南北）	413	597μ	2000μ	0.30
			側壁（東西）	422	301μ	2000μ	0.16
			隔壁（南北）	442	165μ	2000μ	0.09
			隔壁（東西）	437	541μ	2000μ	0． 28

注記＊1：評価位置は図 6－26に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－40（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	412	1164μ	1725μ	0． 68
			側壁（東西）	422	1077 m	1725μ	0． 63
			隔壁（南北）	442	903μ	1725μ	0.53
			隔壁（東西）	437	847μ	1725μ	0． 50
			側壁（南北）	412	1142μ	1725μ	0.67
			側壁（東西）	422	1076μ	1725μ	0． 63
		－	隔壁（南北）	442	939μ	1725μ	0.55
			隔壁（東西）	437	880μ	1725μ	0． 52
			側壁（南北）	412	1220μ	1725μ	0． 71
			側壁（東西）	422	1051μ	1725μ	0.61
		$+$	隔壁（南北）	442	885μ	1725μ	0． 52
			隔壁（東西）	437	805μ	1725μ	0． 47
	S 5 － 2		側壁（南北）	412	1117μ	1725μ	0.65
		－＋	側壁（東西）	422	1034μ	1725μ	0.60
		－	隔壁（南北）	442	892μ	1725μ	0.52
			隔壁（東西）	437	800μ	1725μ	0． 47
	S s－D 3	$++$	側壁（南北）	412	1033μ	1725μ	0.60
			側壁（東西）	422	942μ	1725μ	0.55
			隔壁（南北）	442	805μ	1725μ	0． 47
			隔壁（東西）	437	761μ	1725μ	0． 45
		$-+$	側壁（南北）	412	1068 m	1725μ	0． 62
			側壁（東西）	422	915μ	1725μ	0.54
			隔壁（南北）	442	810μ	1725μ	0． 47
			隔壁（東西）	437	725μ	1725μ	0． 43

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表6－40（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	412	995μ	1725μ	0.58
			側壁（東西）	422	830μ	1725μ	0． 49
			隔壁（南北）	442	721μ	1725μ	0． 42
			隔壁（東西）	437	667μ	1725μ	0.39
			側壁（南北）	416	1081μ	1725μ	0.63
			側壁（東西）	422	773μ	1725μ	0． 45
		－	隔壁（南北）	442	664μ	1725μ	0.39
			隔壁（東西）	437	586μ	1725μ	0.34
			側壁（南北）	412	1130μ	1725μ	0.66
			側壁（東西）	422	918μ	1725μ	0.54
		＋	隔壁（南北）	442	873μ	1725μ	0.51
			隔壁（東西）	437	772μ	1725μ	0． 45
	S S F 2		側壁（南北）	412	1089μ	1725μ	0.64
		－＋	側壁（東西）	422	913μ	1725μ	0.53
		－	隔壁（南北）	442	819μ	1725μ	0.48
			隔壁（東西）	437	748μ	1725μ	0． 44
	S s－F 3	$++$	側壁（南北）	412	955μ	1725μ	0.56
			側壁（東西）	422	942μ	1725μ	0.55
			隔壁（南北）	442	798μ	1725μ	0． 47
			隔壁（東西）	437	729μ	1725μ	0． 43
		$-+$	側壁（南北）	412	1054μ	1725μ	0． 62
			側壁（東西）	422	973μ	1725μ	0.57
			隔壁（南北）	442	852μ	1725μ	0.50
			隔壁（東西）	437	771μ	1725μ	0． 45

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表6－40（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（4），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	412	1137μ	1725μ	0.66
			側壁（東西）	422	857μ	1725μ	0.50
			隔壁（南北）	442	920μ	1725μ	0． 54
			隔壁（東西）	437	786μ	1725μ	0． 46
		$-+$	側壁（南北）	416	1252μ	1725μ	0． 73
			側壁（東西）	422	929μ	1725μ	0． 54
			隔壁（南北）	442	775μ	1725μ	0． 45
			隔壁（東西）	437	699μ	1725μ	0.41
（2）	S s－D 2	＋+	側壁（南北）	416	1284μ	1725μ	0.75
			側壁（東西）	422	1060μ	1725μ	0.62
			隔壁（南北）	442	874μ	1725μ	0.51
			隔壁（東西）	437	779μ	1725μ	0． 46
（3）	S s－D 2	＋+	側壁（南北）	412	1148μ	1725μ	0.67
			側壁（東西）	422	998μ	1725μ	0.58
			隔壁（南北）	442	879μ	1725μ	0.51
			隔壁（東西）	437	811μ	1725μ	0． 48
（4）	Ss－D 2	$++$	側壁（南北）	412	955μ	1725μ	0.56
			側壁（東西）	422	937μ	1725μ	0． 55
			隔壁（南北）	442	814μ	1725μ	0． 48
			隔壁（東西）	437	866μ	1725μ	0.51
（2）	S s－N 1	$-+$	側壁（南北）	416	1269 m	1725μ	0． 74
			側壁（東西）	422	925μ	1725μ	0． 54
			隔壁（南北）	442	776μ	1725μ	0． 45
			隔壁（東西）	437	705μ	1725μ	0.41
（3）	S s－N 1	$-+$	側壁（南北）	416	1345μ	1725μ	0.78
			側壁（東西）	422	974μ	1725μ	0.57
			隔壁（南北）	442	808μ	1725μ	0． 47
			隔壁（東西）	437	739μ	1725μ	0． 43
（4）	S s－N 1	－＋	側壁（南北）	416	909μ	1725μ	0． 53
			側壁（東西）	422	829μ	1725μ	0． 49
			隔壁（南北）	442	760μ	1725μ	0． 45
			隔壁（東西）	437	770μ	1725μ	0． 45

注記＊1：評価位置は図6－26に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－41（1）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－41（2）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表6－41（3）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\text {R }} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	512	393μ	2000μ	0． 20
			側壁（東西）	522	278μ	2000μ	0． 14
			隔壁（南北）	542	156μ	2000μ	0.08
			隔壁（東西）	536	582μ	2000μ	0.30
		$-+$	側壁（南北）	512	559μ	2000μ	0.28
			側壁（東西）	522	328 н	2000μ	0.17
			隔壁（南北）	542	163μ	2000μ	0.09
			隔壁（東西）	536	747μ	2000μ	0.38
（2）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	側壁（南北）	512	475μ	2000μ	0． 24
			側壁（東西）	522	343μ	2000μ	0.18
			隔壁（南北）	542	186μ	2000μ	0.10
			隔壁（東西）	536	712μ	2000μ	0． 36
（3）	S s－D 2	＋＋	側壁（南北）	512	413μ	2000μ	0.21
			側壁（東西）	522	323μ	2000μ	0.17
			隔壁（南北）	542	178μ	2000μ	0.09
			隔壁（東西）	537	647μ	2000μ	0.33
		－+	側壁（南北）	512	486μ	2000μ	0.25
（4）	S s－D 2	$++$	側壁（南北）	512	311μ	2000μ	0.16
			側壁（東西）	522	274μ	2000μ	0.14
			隔壁（南北）	542	130μ	2000μ	0.07
			隔壁（東西）	537	488μ	2000μ	0.25
（2）	S s－N 1	$-+$	側壁（南北）	512	484μ	2000μ	0． 25
			側壁（東西）	522	317μ	2000μ	0.16
			隔壁（南北）	542	166μ	2000μ	0.09
			隔壁（東西）	536	689μ	2000μ	0.35

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－41（4）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），コンクリートの圧縮ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon{ }_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（3）	S s－N 1	－＋	側壁（南北）	512	600μ	2000μ	0.30
			側壁（東西）	522	357μ	2000μ	0.18
			隔壁（南北）	542	176μ	2000μ	0.09
			隔壁（東西）	536	805μ	2000μ	0． 41
（4）	S s－N 1	－＋	側壁（南北）	512	368μ	2000μ	0． 19
			側壁（東西）	522	266μ	2000μ	0.14
			隔壁（南北）	542	113μ	2000μ	0.06
			隔壁（東西）	536	531μ	2000μ	0． 27

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－41（5）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－D 1	＋＋	側壁（南北）	512	1299 н	1725μ	0.76
			側壁（東西）	522	733μ	1725μ	0． 43
			隔壁（南北）	542	683μ	1725μ	0． 40
			隔壁（東西）	532	893μ	1725μ	0.52
			側壁（南北）	512	1249 m	1725μ	0． 73
			側壁（東西）	522	740μ	1725μ	0.43
			隔壁（南北）	542	702μ	1725μ	0.41
			隔壁（東西）	536	873μ	1725μ	0.51
			側壁（南北）	512	1292 m	1725μ	0． 75
			側壁（東西）	522	732μ	1725μ	0.43
			隔壁（南北）	542	688μ	1725μ	0． 40
			隔壁（東西）	536	907μ	1725μ	0.53
	S 5 D		側壁（南北）	512	1384μ	1725μ	0.81
			側壁（東西）	522	686μ	1725μ	0.40
			隔壁（南北）	542	659μ	1725μ	0.39
			隔壁（東西）	532	892μ	1725μ	0． 52
	S s－D 3	$++$	側壁（南北）	512	1190μ	1725μ	0.69
			側壁（東西）	522	620μ	1725μ	0.36
			隔壁（南北）	542	581μ	1725μ	0.34
			隔壁（東西）	532	783μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1214μ	1725μ	0.71
			側壁（東西）	522	633μ	1725μ	0.37
			隔壁（南北）	542	614μ	1725μ	0.36
			隔壁（東西）	536	775μ	1725μ	0． 45

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表6－41（6）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$
（1）	S s－F 1	＋＋	側壁（南北）	512	1055 M	1725μ	0． 62
			側壁（東西）	522	606μ	1725μ	0． 36
			隔壁（南北）	542	571μ	1725μ	0.34
			隔壁（東西）	536	725μ	1725μ	0． 43
			側壁（南北）	512	1116μ	1725μ	0.65
			側壁（東西）	522	585μ	1725μ	0.34
		－	隔壁（南北）	542	550μ	1725μ	0.32
			隔壁（東西）	532	766μ	1725μ	0． 45
			側壁（南北）	512	1225 m	1725μ	0． 72
			側壁（東西）	522	711μ	1725μ	0． 42
		$+$	隔壁（南北）	542	678μ	1725μ	0． 40
			隔壁（東西）	536	863μ	1725μ	0.51
	S S－ 2		側壁（南北）	512	1245μ	1725μ	0． 73
		－＋	側壁（東西）	522	717μ	1725μ	0． 42
		－	隔壁（南北）	542	702μ	1725μ	0.41
			隔壁（東西）	536	861μ	1725μ	0.50
	S s－F 3	$++$	側壁（南北）	512	1170μ	1725μ	0.68
			側壁（東西）	522	565μ	1725μ	0.33
			隔壁（南北）	542	541μ	1725μ	0.32
			隔壁（東西）	532	777μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1174μ	1725μ	0． 69
			側壁（東西）	522	647μ	1725μ	0.38
			隔壁（南北）	542	631μ	1725μ	0.37
			隔壁（東西）	536	781μ	1725μ	0． 46

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表6－41（7）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	限界 ひずみ	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（1）	S s－N 1	＋＋	側壁（南北）	512	1200μ	1725μ	0． 70
			側壁（東西）	522	590μ	1725μ	0.35
			隔壁（南北）	542	612μ	1725μ	0.36
			隔壁（東西）	532	792μ	1725μ	0． 46
		$-+$	側壁（南北）	512	1467μ	1725μ	0． 86
			側壁（東西）	522	676μ	1725μ	0． 40
			隔壁（南北）	542	611μ	1725μ	0.36
			隔壁（東西）	536	900μ	1725μ	0.53
（2）	S s－D 2	＋＋	側壁（南北）	512	1325 н	1725μ	0.77
			側壁（東西）	522	751μ	1725μ	0． 44
			隔壁（南北）	542	693μ	1725μ	0.41
			隔壁（東西）	536	923μ	1725μ	0.54
（3）	S s－D 2	＋＋	側壁（南北）	512	1235μ	1725μ	0.72
			側壁（東西）	522	716μ	1725μ	0． 42
			隔壁（南北）	542	689 н	1725μ	0． 40
			隔壁（東西）	532	871μ	1725μ	0.51
		－＋	側壁（南北）	512	1337 н	1725μ	0.78
（4）	S s－D 2	$++$	側壁（南北）	512	1257μ	1725μ	0.73
			側壁（東西）	522	693μ	1725μ	0.41
			隔壁（南北）	542	667μ	1725μ	0.39
			隔壁（東西）	536	939μ	1725μ	0.55
（2）	S s－N 1	$-+$	側壁（南北）	512	1380μ	1725μ	0． 80
			側壁（東西）	522	673μ	1725μ	0.40
			隔壁（南北）	542	625μ	1725μ	0.37
			隔壁（東西）	536	885μ	1725μ	0． 52

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表6－41（8）曲げ・軸力系の破壊に対する評価結果
（S クラスの施設を支持する機能を損なわないことの確認）
（断面（5），主筋ひずみ）

解析 ケース	地震動		評価位置＊1		照査用 ひずみ*2	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
（3）	S s－N 1	$-+$	側壁（南北）	512	1596μ	1725μ	0.93
			側壁（東西）	522	740μ	1725μ	0． 43
			隔壁（南北）	542	668μ	1725μ	0.39
			隔壁（東西）	536	981μ	1725μ	0． 57
（4）	S s－N 1	$-+$	側壁（南北）	512	1396μ	1725 m	0.81
			側壁（東西）	522	627 ر	1725μ	0.37
			隔壁（南北）	542	577μ	1725μ	0.34
			隔壁（東西）	536	926μ	1725μ	0． 54

注記＊1：評価位置は図6－27に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

6．3．2 せん断破壊に対する評価結果

（1）断面（1）
せん断破壊に対する評価結果を表6－42に示す。
同表のとおり，全ケースにおいて発生応力度が短期許容応力度を下回ることを確認し た。

表 6－42 せん断破壊に対する評価結果

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊		発生 応力度 τ d $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応 力度 τ a 1 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \tau_{\mathrm{d}} / \tau_{\mathrm{a} 1} \end{gathered}$
（1）	S s－D 1	＋＋	頂版	101	0.11	0.63	0． 18
		－＋			0． 11	0.63	0． 18
	S s－D 2	＋＋	頂版	101	0.13	0.63	0.21
		－＋			0.12	0.63	0.20
	S s－D 3	＋＋	頂版	101	0.11	0． 63	0.18
		－＋			0.12	0.63	0． 20
	S s－F 1	＋＋	頂版	101	0.10	0.63	0.16
		－＋			0． 10	0.63	0.16
	S s－F 2	＋＋	頂版	101	0.09	0.63	0． 15
		－＋			0.11	0.63	0.18
	S s－F 3	＋＋	頂版	101	0.13	0.63	0.21
		－＋			0.11	0.63	0.18
	S s -N 1	＋＋	頂版	101	0.12	0.63	0.20
		－＋			0.09	0.63	0.15
（2）	S s－D 2	＋＋	頂版	101	0.14	0.63	0.23
（3）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	頂版	101	0.13	0.63	0.21
（4）	S s－D 2	＋＋	頂版	101	0.12	0.63	0.20

注記＊：評価位置は図6－23に示す。
（2）断面（2）～（5）
a．せん断耐力式による評価結果
せん断破壊に対する評価結果のうち，せん断耐力式による評価結果を表 6－43～表6 －46に示す。

同表中には，照査値が 1.0 を上回る解析ケース，部材があることから，次項「b．材料非線形解析による評価結果」にて照査値が 1.0 を下回ることを確認する。

表 6－43（1）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 照査値*4 } \\ & \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（1）	S s－D 1	＋＋	側壁（南北）	216	562	702	0.81
			側壁（東西）	221	5140	7984	0.65
			隔壁（南北）	244	31	0	－
			隔壁（東西）	238	792	693	1． 15
		－＋	側壁（南北）	212	785	904	0.87
			側壁（東西）	222	5191	7984	0.66
			隔壁（南北）	242	34	0	－
			隔壁（東西）	238	772	693	1． 12
	S s－D 2	＋+	側壁（南北）	216	587	702	0． 84
			側壁（東西）	221	5360	7984	0.68
			隔壁（南北）	242	28	0	－
			隔壁（東西）	238	808	693	1． 17
		－＋	側壁（南北）	212	780	904	0.87
			側壁（東西）	222	5106	7984	0.64
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	779	693	1． 13
	S s－D 3	＋＋	側壁（南北）	212	716	904	0． 80
			側壁（東西）	222	4511	7984	0.57
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	708	693	1． 03
		－＋	側壁（南北）	212	772	904	0.86
			側壁（東西）	222	4806	7984	0.61
			隔壁（南北）	242	26	0	－
			隔壁（東西）	238	697	693	1.01

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－43（2）せん断破壊に対する評価結果（断面（2），せん断耐力式）

解析 ケース	地震動		評価位置＊1		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値＊4 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$	
			側壁（南北）	212	680	904	0.76	
			側壁（東西）	222	4563	7984	0.58	
			隔壁（南北）	242	18	0	－	
			隔壁（東西）	238	679	693	0.98	
		$-+$	側壁（南北）	212	586	904	0.65	
		側壁（東西）	222	4479	7984	0.57		
		隔壁（南北）	242	19	0	－		
		隔壁（東西）	238	633	693	0.92		
（1）	$\mathrm{Ss}-\mathrm{F} 2$		＋＋	側壁（南北）	212	712	904	0.79
				側壁（東西）	222	4857	7984	0.61
				隔壁（南北）	242	21	0	－
		隔壁（東西）		238	691	693	1.00	
		$-+$	側壁（南北）	212	641	904	0.71	
			側壁（東西）	222	4785	7984	0.60	
			隔壁（南北）	242	20	0	－	
			隔壁（東西）	238	680	693	0.99	
	S s－F 3	$++$	側壁（南北）	212	773	904	0.86	
			側壁（東西）	222	4722	7984	0.60	
			隔壁（南北）	242	26	0	－	
			隔壁（東西）	238	755	693	1． 09	
		$-+$	側壁（南北）	212	773	904	0.86	
			側壁（東西）	222	4661	7984	0.59	
			隔壁（南北）	242	33	0	－	
			隔壁（東西）	238	763	693	1.11	

注記 $* 1$ ：評価位置は図 6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a ＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。 ＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－43（3）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値＊4 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s - N 1	＋+	側壁（南北）	212	795	904	0.88
			側壁（東西）	222	5214	7984	0.66
			隔壁（南北）	242	20	0	－
			隔壁（東西）	238	718	693	1.04
		－＋	側壁（南北）	216	487	702	0.70
			側壁（東西）	221	5115	7984	0.65
			隔壁（南北）	244	31	0	－
			隔壁（東西）	239	27	0	－
（2）	S s－D 2	＋+	側壁（南北）	216	585	702	0.84
			側壁（東西）	221	5343	7984	0.67
			隔壁（南北）	242	25	0	－
			隔壁（東西）	238	803	693	1． 16
（3）	S s－D 2	＋+	側壁（南北）	212	774	904	0.86
			側壁（東西）	222	5087	7984	0.64
			隔壁（南北）	242	30	0	－
			隔壁（東西）	238	769	693	1.11
（4）	S s－D 2	＋＋	側壁（南北）	216	660	702	0.95
			側壁（東西）	221	5395	7984	0.68
			隔壁（南北）	242	27	0	－
			隔壁（東西）	238	871	693	1． 26

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－43（4）せん断破壊に対する評価結果（断面（2），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 }{ }^{* 4} \\ \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（2）	S s -N 1	－＋	側壁（南北）	216	473	804	0.59
			側壁（東西）	221	5122	13227	0． 39
			隔壁（南北）	244	32	0	－
			隔壁（東西）	239	28	0	－
（3）	S s－N1	－＋	側壁（南北）	216	489	804	0.61
			側壁（東西）	221	5108	13227	0.39
			隔壁（南北）	242	14	0	－
			隔壁（東西）	239	27	0	－
（4）	S s－N 1	－＋	側壁（南北）	216	469	804	0.59
			側壁（東西）	221	5246	13227	0． 40
			隔壁（南北）	242	17	0	－
			隔壁（東西）	238	731	793	0.93

注記 $~$ 1：評価位置は図 6－24に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊4：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－44（1）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 照査値 }{ }^{* 4} \\ & \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（1）	S s－D 1	＋+	側壁（南北）	314	1078	693	1． 56
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	877	693	1． 27
			側壁（南北）	314	1268	693	1． 83
			側壁（東西）	322	5838	8989	0.65
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	878	693	1． 27
			側壁（南北）	314	1191	693	1． 72
			側壁（東西）	321	6204	8989	0.70
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	899	693	1． 30
	S ${ }^{\text {d }}$		側壁（南北）	314	1230	693	1． 78
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	879	693	1． 27
	S s－D 3	＋+	側壁（南北）	314	1125	693	1． 63
			側壁（東西）	321	5250	8989	0.59
			隔壁（南北）	342	12	0	－
			隔壁（東西）	338	793	693	1.15
		－＋	側壁（南北）	314	1205	693	1． 74
			側壁（東西）	322	5400	8989	0.61
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	790	693	1． 14

注記 $* 1$ ：評価位置は図 6－24に示す。
＊2：照查用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（2）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊1		$\begin{gathered} \text { 照査用 } \\ \text { せん断力*2 } \\ \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{y} \text { d }} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 照查值 }{ }^{* 4} \\ & \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（1）	S s－F 1	＋＋	側壁（南北）	314	1076	693	1.56
			側壁（東西）	321	5029	8989	0.56
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	729	693	1． 06
		－＋	側壁（南北）	314	884	693	1． 28
			側壁（東西）	322	5015	8989	0.56
			隔壁（南北）	342	9	0	－
			隔壁（東西）	338	700	693	1.02
	Ss－F 2	＋＋	側壁（南北）	314	1099	693	1.59
			側壁（東西）	321	5392	8989	0.60
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	762	693	1． 10
		－＋	側壁（南北）	314	1001	693	1． 45
			側壁（東西）	322	5265	8989	0.59
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	760	693	1． 10
	Ss－F 3	＋＋	側壁（南北）	314	979	693	1． 42
			側壁（東西）	321	5263	8989	0.59
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	791	693	1． 15
		－＋	側壁（南北）	314	1173	693	1．70
			側壁（東西）	321	5273	8989	0.59
			隔壁（南北）	342	12	0	－
			隔壁（東西）	338	814	693	1． 18

注記 $* 1$ ：評価位置は図6－24に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表6－44（3）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 照査値 }{ }^{* 4} \\ & \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{aligned}$
（1）	S s - N 1	＋＋	側壁（南北）	314	1297	693	1． 88
			側壁（東西）	322	5637	8989	0.63
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	763	693	1.11
		－＋	側壁（南北）	314	975	693	1.41
			側壁（東西）	321	5830	8989	0.65
			隔壁（南北）	342	10	0	－
			隔壁（東西）	338	821	693	1． 19
（2）	S s－D 2	＋＋	側壁（南北）	314	1316	693	1.90
			側壁（東西）	321	6205	8989	0.70
			隔壁（南北）	342	13	0	－
			隔壁（東西）	338	921	693	1． 33
（3）	S s－D 2	＋＋	側壁（南北）	314	1215	693	1． 76
			側壁（東西）	321	5837	8989	0.65
			隔壁（南北）	342	14	0	－
			隔壁（東西）	338	852	693	1． 23
（4）	S s－D 2	＋＋	側壁（南北）	314	1312	794	1.66
			側壁（東西）	321	6309	8989	0.71
			隔壁（南北）	342	9	0	－
			隔壁（東西）	333	498	351	1． 42
		－＋	隔壁（東西）	333	476	355	1.35

注記 $* 1$ ：評価位置は図6－24に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊ 4 ：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－44（4）せん断破壊に対する評価結果（断面（3），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （ kN / m ）	$\begin{gathered} \text { せん断 } \\ \text { 耐力*3 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値*4 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s -N 1	－＋	側壁（南北）	314	1061	693	1． 54
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	11	0	－
			隔壁（東西）	338	838	693	1.21
（3）	S s－N 1	－＋	側壁（南北）	314	1190	693	1． 72
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	9	0	－
			隔壁（東西）	338	857	693	1． 24
（4）	S s - N 1	－＋	側壁（南北）	314	1295	794	1． 64
			側壁（東西）	321	5926	8989	0.66
			隔壁（南北）	342	9	0	－
			隔壁（東西）	333	472	355	1． 33

注記＊1：評価位置は図6－24に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：せん断補強筋の無い部材については，引張軸力が発生する場合にせん断耐力が 0 となる。
＊4：照査値が「一」の場合は照査用せん断力が最大となるケース

表 6－45（1）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{aligned} & \text { せん断 } \\ & \text { 耐力 } \\ & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	416	633	673	0.95
			側壁（東西）	422	5663	8217	0.69
			隔壁（南北）	442	177	708	0.25
			隔壁（東西）	437	1287	920	1． 40
		－＋	側壁（南北）	416	561	665	0.85
			側壁（東西）	422	5816	8217	0.71
			隔壁（南北）	442	184	694	0.27
			隔壁（東西）	437	1253	920	1． 37
	Ss－D 2	＋＋	側壁（南北）	416	691	670	1.04
			側壁（東西）	422	5742	8217	0.70
			隔壁（南北）	442	171	695	0.25
			隔壁（東西）	437	1309	920	1． 43
		－＋	側壁（南北）	416	638	672	0.95
			側壁（東西）	422	5596	8217	0.69
			隔壁（南北）	442	171	707	0.25
			隔壁（東西）	437	1267	920	1．38
	S s－D 3	＋＋	側壁（南北）	416	527	664	0． 80
			側壁（東西）	422	5090	8217	0.62
			隔壁（南北）	442	161	697	0.24
			隔壁（東西）	437	1123	920	1． 23
		－＋	側壁（南北）	416	296	349	0.85
			側壁（東西）	422	5322	8217	0.65
			隔壁（南北）	442	170	709	0． 24
			隔壁（東西）	437	1139	920	1． 24

注記 $* 1$ ：評価位置は図 6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 6－45（2）せん断破壊に対する評価結果（断面（4），せん断耐力式）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （ kN / m ）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－F 1	＋＋	側壁（南北）	416	276	349	0． 80
			側壁（東西）	422	4851	8217	0.60
			隔壁（南北）	442	153	697	0． 22
			隔壁（東西）	437	1034	920	1． 13
			側壁（南北）	416	384	367	1.05
		－	側壁（東西）	422	4797	8217	0.59
		－	隔壁（南北）	442	140	695	0． 21
			隔壁（東西）	437	1057	920	1． 15
			側壁（南北）	416	523	640	0.82
			側壁（東西）	422	5653	8217	0.69
			隔壁（南北）	442	185	707	0.27
	S		隔壁（東西）	434	614	472	1.31
	S S－F 2		側壁（南北）	416	520	651	0． 80
		－	側壁（東西）	422	5376	8217	0.66
		－	隔壁（南北）	442	172	706	0.25
			隔壁（東西）	434	594	478	1． 25
	S s－F 3	＋＋	側壁（南北）	416	555	683	0． 82
			側壁（東西）	422	4854	8217	0.60
			隔壁（南北）	442	145	694	0.21
			隔壁（東西）	437	1128	920	1． 23
		－＋	側壁（南北）	416	556	670	0． 83
			側壁（東西）	422	5183	8217	0.64
			隔壁（南北）	442	162	710	0． 23
			隔壁（東西）	437	1171	920	1． 28

注記＊1：評価位置は図 6－26に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 6－45（3）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { せん断 } \\ & \text { 耐力 } \\ & \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	416	476	628	0.76
			側壁（東西）	422	5796	8217	0.71
			隔壁（南北）	442	191	695	0． 28
			隔壁（東西）	434	622	463	1.35
		－＋	側壁（南北）	416	430	349	1． 24
			側壁（東西）	422	5494	8217	0.67
			隔壁（南北）	442	163	698	0.24
			隔壁（東西）	437	1230	920	1．34
（2）	Ss－D 2	＋＋	側壁（南北）	416	771	680	1．14
			側壁（東西）	422	5760	8217	0.71
			隔壁（南北）	442	164	694	0.24
			隔壁（東西）	437	1356	920	1． 48
（3）	Ss－D 2	＋＋	側壁（南北）	416	576	654	0.89
			側壁（東西）	422	5741	8217	0.70
			隔壁（南北）	442	184	708	0.26
			隔壁（東西）	437	1217	920	1． 33
（4）	Ss－D 2	＋＋	側壁（南北）	416	702	722	0.98
			側壁（東西）	422	5825	8217	0． 71
			隔壁（南北）	442	183	698	0． 27
			隔壁（東西）	437	1376	920	1． 50

注記＊1：評価位置は図6－26に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}

表 6－45（4）せん断破壊に対する評価結果（断面（4），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{ydd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（2）	S s -N 1	－＋	側壁（南北）	416	444	349	1． 28
			側壁（東西）	422	5465	8217	0.67
			隔壁（南北）	442	161	698	0.24
			隔壁（東西）	437	1238	920	1． 35
（3）	S s -N 1	－＋	側壁（南北）	416	468	349	1． 35
			側壁（東西）	422	5809	8217	0.71
			隔壁（南北）	442	174	698	0.25
			隔壁（東西）	437	1295	920	1.41
（4）	S s -N 1	－＋	側壁（南北）	416	661	711	0.93
			側壁（東西）	422	5454	8217	0.67
			隔壁（南北）	442	174	700	0.25
			隔壁（東西）	437	1266	920	1． 38

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 6－46（1）せん断破壊に対する評価結果（断面（5），せん断耐力式）

解析 ケース	地震動		評価位置＊＊		照査用 せん断力＊2 V_{d} （ kN / m ）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	513	917	1475	0.63
			側壁（東西）	522	5571	8621	0.65
			隔壁（南北）	542	101	669	0． 16
			隔壁（東西）	537	1096	851	1． 29
			側壁（南北）	513	891	1475	0.61
		－＋	側壁（東西）	522	5601	8621	0.65
		－	隔壁（南北）	542	104	668	0.16
			隔壁（東西）	537	1090	851	1． 29
			側壁（南北）	513	886	1475	0.61
			側壁（東西）	522	5544	8621	0.65
			隔壁（南北）	542	104	672	0.16
	S s－D 2		隔壁（東西）	537	1079	851	1． 27
	S S－D 2		側壁（南北）	513	950	1475	0.65
			側壁（東西）	522	5339	8621	0.62
		－＋	隔壁（南北）	542	101	671	0.16
			隔壁（東西）	537	1082	851	1． 28
	S s－D 3	＋＋	側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	4771	8621	0.56
			隔壁（南北）	542	86	668	0． 13
			隔壁（東西）	537	965	851	1． 14
		－＋	側壁（南北）	513	836	1475	0.57
			側壁（東西）	522	4874	8621	0.57
			隔壁（南北）	542	91	668	0． 14
			隔壁（東西）	537	991	851	1． 17

注記＊1：評価位置は図6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}

表 6－46（2）せん断破壊に対する評価結果（断面（5），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	513	742	1475	0.51
			側壁（東西）	522	4594	8621	0.54
			隔壁（南北）	542	84	668	0.13
			隔壁（東西）	537	906	851	1． 07
			側壁（南北）	513	770	1475	0.53
		－＋	側壁（東西）	522	4489	8621	0.53
		－＋	隔壁（南北）	542	81	668	0.13
			隔壁（東西）	537	906	851	1． 07
			側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	5352	8621	0.63
			隔壁（南北）	542	100	669	0.15
	Ss－F 2		隔壁（東西）	537	1043	851	1.23
	S S－F 2		側壁（南北）	513	855	1475	0.58
		－	側壁（東西）	522	5443	8621	0.64
		－	隔壁（南北）	542	105	668	0.16
			隔壁（東西）	537	1067	851	1． 26
	S s－F 3	＋＋	側壁（南北）	513	793	1475	0.54
			側壁（東西）	522	4405	8621	0.52
			隔壁（南北）	542	82	671	0.13
			隔壁（東西）	537	903	851	1． 07
		－＋	側壁（南北）	513	834	1475	0.57
			側壁（東西）	522	4984	8621	0.58
			隔壁（南北）	542	97	668	0． 15
			隔壁（東西）	537	992	851	1.17

注記＊1：評価位置は図 6－27に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}

表6－46（3）せん断破壊に対する評価結果（断面（5），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊＊		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 $\mathrm{V}_{\mathrm{y} \text { d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	513	767	1475	0． 52
			側壁（東西）	522	4570	8621	0.54
			隔壁（南北）	542	94	668	0.15
			隔壁（東西）	537	942	851	1.11
		－＋	側壁（南北）	513	973	1475	0.66
			側壁（東西）	522	5245	8621	0.61
			隔壁（南北）	542	91	672	0.14
			隔壁（東西）	537	1079	851	1． 27
（2）	Ss－D 2	＋＋	側壁（南北）	513	933	1475	0.64
			側壁（東西）	522	5699	8621	0.67
			隔壁（南北）	542	104	673	0． 16
			隔壁（東西）	537	1108	851	1.31
（3）	Ss－D 2	＋＋	側壁（南北）	513	851	1475	0.58
			側壁（東西）	522	5417	8621	0.63
			隔壁（南北）	542	103	668	0.16
			隔壁（東西）	537	1059	851	1． 25
（4）	S s－D 2	＋＋	側壁（南北）	513	965	1475	0． 66
			側壁（東西）	522	5413	8621	0.63
			隔壁（南北）	542	103	673	0． 16
			隔壁（東西）	537	1231	851	1． 45

注記＊1：評価位置は図6－27に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}

表 6－46（4）せん断破壊に対する評価結果（断面（5），せん断耐力式）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	513	899	1475	0.61
			側壁（東西）	522	5165	8621	0.60
			隔壁（南北）	542	93	672	0.14
			隔壁（東西）	537	1048	851	1.24
（3）	S s－N 1	－＋	側壁（南北）	513	1048	1475	0.72
			側壁（東西）	522	5716	8621	0.67
			隔壁（南北）	542	97	670	0.15
			隔壁（東西）	537	1175	851	1． 39
（4）	S s－N 1	－＋	側壁（南北）	513	1054	1475	0.72
			側壁（東西）	522	5051	8621	0.59
			隔壁（南北）	542	88	673	0． 14
			隔壁（東西）	537	1234	851	1． 46

注記＊1：評価位置は図6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
b．材料非線形解析による評価結果
（a）評価条件
前項「a．せん断耐力式による評価結果」では，原子炉機器冷却海水配管ダクト（鉛直部）の隔壁及び側壁において，照査用せん断力がせん断耐力式によるせん断耐力を上回 る結果となった。

せん断耐力式は，既往の実験等から一般化されたものであることから，ここでは，構造部材の形状，作用荷重及び鉄筋コンクリートの非線形特性を踏まえた材料非線形解析 を実施することにより，より高い精度でせん断耐力を求め，構造部材のせん断破壊に対 する健全性を確認する 。

図 6－28に材料非線形解析によりせん断破壊に対する評価を実施する対象部材を示す。 また，評価対象部材の要素分割図を図6－29に，要素プロパティ番号図を図6－30，要素プロパティ条件を表6－47に示す。

図6－28（1）材料非線形解析における評価対象部材（断面（3））

図6－28（2）材料非線形解析における評価対象部材（断面（4））

図6－29（1）要素分割図（隔壁）

図6－29（2）要素分割図（側壁）

図6－30（1）要素プロパティ番号図（隔壁）

表6－47（1）要素プロパティ条件（隔壁）

番号	材料	引張硬化軟化係数	
		C x	C y
1	R C	1.9	0.4
2	無筋	1.5	2.9
3	無筋	1.5	2.2
4	無笳	1.5	1.7
5	無筋	1.5	1.5

図6－30（2）要素プロパティ番号図（側壁）

表6－47（2）要素プロパティ条件（側壁）

番号	元要素			オーバーラッピング要素		
	材料	引張硬化軟化係数		材料	引張硬化軟化係数	
		C x	C y		C x	C y
1	R C	0.4	0． 4	R C	0.4	1.9
2	R C	1.7	0.4	無筋	1.7	1． 3
3	R C	2.2	0.4	無筋	2.2	1． 3
4	R C	2.5	0． 4	無筋	2.5	1． 3
5	無筋	1.5	1.5	－	－	－

材料非線形解析によるせん断耐力の算定において考慮する荷重は，地震応答解析から得られる荷重を考慮する。具体的には地震応答解析で評価対象部材のせん断照査が厳し くなる断面力（曲げモーメント，軸力，せん断力）を材料非線形解析モデルに図 6－31 のように作用させる。材料非線形解析では，二次元構造解析から得られた断面力分布を再現できる荷重分布を算出し，この荷重を 100 分割したものを $\Delta \mathrm{M}, ~ \Delta \mathrm{Q}, ~ \Delta \mathrm{~N}$ とし， これらの比率を維持しながら漸増載荷する。

なお，作用荷重は，常時荷重（ $\Delta \mathrm{M}_{\mathrm{s}}, \Delta \mathrm{Q}_{\mathrm{s}}, \Delta \mathrm{N}_{\mathrm{s}}$ ）及び地震時荷重（ $\Delta \mathrm{M}_{\mathrm{d}}, \Delta \mathrm{Q}$ d ，$\Delta \mathrm{N}_{\mathrm{d}}$ ）とし，図6－32に作用手順を示す。表6－48に代表例として，材料非線形解析による評価において隔壁及び側壁の最も照査値が厳しい解析ケースにおける $\Delta \mathrm{M}, ~ \Delta$ Q，$\Delta \mathrm{N}$ を示す。

図6－31（1）材料非線形解析における載荷状況（隔壁）

図6－31（2）材料非線形解析における載荷状況（側壁）

図6－32 荷重の作用手順

表6－48 材料非線形解析における作用荷重

部材			隔壁	側壁
地震動			S s－ $22(++)$	S s－D $2(++)$
解析ケース			解析ケース（4）	解析ケース（1）
常 時 荷 重	曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	$\Delta \mathrm{M}$	12.837	－58．358
	せん断力（kN）	ΔQ_{1}	－15．301	111.316
		ΔQ_{2}	0.000	－24．618
		ΔQ_{3}	0.000	－32． 003
		ΔQ_{4}	0.000	－34．465
		ΔQ_{5}	0.000	－34． 465
		ΔQ_{6}	0.000	－34． 465
		ΔQ_{7}	0.000	－32． 003
		ΔQ_{8}		－24．618
	軸力（kN）	$\Delta \mathrm{N}_{1}$	－387． 558	164． 629
		ΔN_{2}	0.000	0.000
		ΔN_{3}	0.000	0.000
		ΔN_{4}	0.000	0.000
		ΔN_{5}	0.000	0.000
		ΔN_{6}	0.000	0.000
		$\Delta \mathrm{N}_{7}$	0.000	0.000
		ΔN_{8}		0.000
地震時荷重	曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	$\Delta \mathrm{M}$	329．931	38.600
	せん断力（kN）	ΔQ_{1}	－474．578	547.659
		ΔQ_{2}	－3． 886	－170． 086
		ΔQ_{3}	－4．859	－221．113
		ΔQ_{4}	－5． 829	－238． 120
		ΔQ_{5}	－6． 801	－238． 120
		ΔQ_{6}	－7． 773	－238．121
		ΔQ_{7}	－7． 773	－221．113
		ΔQ_{8}		－170． 086
	軸力（kN）	ΔN_{1}	－2640． 843	2956.230
		$\Delta \mathrm{N}_{2}$	－3． 780	79.532
		ΔN_{3}	－4． 722	103.409
		ΔN_{4}	－5．664	111.353
		ΔN_{5}	－6． 606	111.364
		ΔN_{6}	－7． 559	111.353
		$\Delta \mathrm{N}_{7}$	－7． 548	103.398
		$\Delta \mathrm{N}_{8}$		79.543

（b）評価結果

イ．隔壁の照査結果

評価対象部材における荷重一変位曲線を図 6－33に示す。同図は，評価対象部材 において最も厳しい照査値となる地震動と解析ケースの組合せ（解析ケース（4），地震動S s－D $2(++)$ ）の結果を示している。

図中の赤丸で示した 100 ステップは，二次元構造解析において得られた断面力を再現した状態である。127 ステップ以降，水平変位の急増が認められる。

図6－34に，各ステップにおけるひび割れ図を示す。
ひび割れ図に着目すると， 127 ステップまでは，荷重の増加に伴い軸方向の圧縮力による部材軸方向のひび割れとせん断力による部材直角方向のひび割れの両方の ひび割れが徐々に進展し， 127 ステップ以降は，圧縮力及びせん断力により，それ ぞれのひび割れが進展する様相を示している。したがって， 127 ステップ以降の水平変位の発生は，圧縮力によるひび割れとせん断力によるひび割れの進展に伴うも のであると判断される。

以上のとおり，評価対象部材に対する材料非線形解析では，せん断ひび割れの進展によりせん断破壊に至ることを考慮し，127 ステップ（図中の青丸）をせん断耐力発生時の状態として設定する。

また，図6－35に，各ステップにおける変形図を示す。

図6－33 荷重一変位曲線
（隔壁，解析ケース（4）地震動 S s－D $2(++)$ ）

図6－34 各ステップにおけるひび割れ図
（隔壁，解析ケース（4）地震動 S s－D $2(++)$ ）

図6－35 各ステップにおける変形図 （隔壁，解析ケース（4）地震動 S s－D $2(++)$ ）

口．側壁の照査結果
評価対象部材における荷重一変位曲線を図6－36に示す。同図は，評価対象部材 において最も厳しい照査値となる地震動と解析ケースの組合せ（解析ケース（1），地震動S s－D 2（＋＋））の結果を示している。
図中の赤丸で示した 100 ステップは，二次元構造解析において得られた断面力を再現した状態である。172 ステップ以降，水平変位の急増が認められる。なお， 108 ステップにおいて，せん断補強筋の降伏が発生している。せん断補強筋の初期降伏箇所を図6－37に示す。
図6－38に，各ステップにおけるひび割れ図を示す。
ひび割れ図に着目すると， 172 ステップまでは，荷重の増加に伴い軸方向の圧縮力による部材軸方向のひび割れが一部で生じている。せん断力による部材直角方向 のひび割れは，せん断補強筋の効果により進展は見られないが，172 ステップ以降 は，基部側でせん断力によるひび割れが進展する様相を示している。したがって， 172 ステップ以降の水平変位の発生は，せん断力によるひび割れの進展に伴うもの であると判断される。
以上のとおり，評価対象部材に対する材料非線形解析では，せん断ひび割れの進展によりせん断破壊に至ることを考慮し， 172 ステップ（図中の青丸）をせん断耐力発生時の状態として設定する。

また，図6－39に，各ステップにおける変形図を示す。

図6－36 荷重一変位曲線
（側壁，解析ケース① 地震動S s－D $2(++)$ ）

図6－37 せん断補強筋の初期降伏箇所
（側壁，解析ケース（1）地震動 S s－D $2(++) 108$ STEP）

100STEP
断面力再現時

108STEP
せん断補強筋初期降伏時

193STEP

201STEP

図6－38 各ステップにおけるひび割れ図 （側壁，解析ケース① 地震動 S s－D $2(++)$ ）

図6－39 各ステップにおける変形図 （側壁，解析ケース① 地震動 S s－D $2(++)$ ）

八．せん断力に対する評価結果
せん断耐力式及び材料非線形解析によるせん断破壊に対する照査結果を，表6－ 49～表6－52に示す。

同表より，全部材で照査用せん断力がせん断耐力を下回ることを確認した。

表 6－49（1）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { せん断 } \\ & \text { 耐力 } \\ & \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	＋＋	側壁（南北）	216	562	702	0.81
			側壁（東西）	221	5140	7984	0.65
			隔壁（南北）	242	33	78＊3	0． 43
			隔壁（東西）	238	760	1639＊3	0． 47
			側壁（南北）	212	785	904	0.87
			側壁（東西）	222	5191	7984	0.66
			隔壁（南北）	242	51	104＊3	0.50
			隔壁（東西）	238	740	1623＊3	0． 46
			側壁（南北）	216	587	702	0.84
			側壁（東西）	221	5360	7984	0.68
			隔壁（南北）	242	42	$91^{* 3}$	0． 47
			隔壁（東西）	238	766	1638＊3	0． 47
	S ${ }^{\text {D }}$		側壁（南北）	212	780	904	0.87
			側壁（東西）	222	5106	7984	0.64
			隔壁（南北）	242	38	88＊3	0.44
			隔壁（東西）	238	740	$1610 * 3$	0． 46
	Ss－D 3	＋＋	側壁（南北）	212	716	904	0.80
			側壁（東西）	222	4511	7984	0.57
			隔壁（南北）	242	38	$94^{* 3}$	0.41
			隔壁（東西）	238	683	1625＊3	0． 43
		－＋	側壁（南北）	212	772	904	0.86
			側壁（東西）	222	4806	7984	0.61
			隔壁（南北）	242	38	89＊3	0． 43
			隔壁（東西）	238	674	$1567 * 3$	0． 44

注記 $* 1$ ：評価位置は図 6－24 に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

表6－49（2）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置 ${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 $V_{\text {y d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F1	＋＋	側壁（南北）	212	680	904	0.76
			側壁（東西）	222	4563	7984	0.58
			隔壁（南北）	242	28	78＊3	0.37
			隔壁（東西）	238	679	693	0.98
			側壁（南北）	212	586	904	0.65
			側壁（東西）	222	4479	7984	0.57
			隔壁（南北）	242	23	69＊3	0.33
			隔壁（東西）	238	633	693	0.92
			側壁（南北）	212	712	904	0.79
			側壁（東西）	222	4857	7984	0.61
			隔壁（南北）	242	33	82＊3	0.41
			隔壁（東西）	238	659	1602＊3	0． 42
	S ${ }^{\text {r }}$		側壁（南北）	212	641	904	0.71
			側壁（東西）	222	4785	7984	0.60
		－	隔壁（南北）	242	25	$69 * 3$	0.36
			隔壁（東西）	238	680	693	0.99
	S s－F 3	＋＋	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4722	7984	0.60
			隔壁（南北）	242	38	$91 * 3$	0． 42
			隔壁（東西）	238	725	1602＊3	0.46
		－＋	側壁（南北）	212	773	904	0.86
			側壁（東西）	222	4661	7984	0.59
			隔壁（南北）	242	49	104＊3	0.48
			隔壁（東西）	238	732	1598＊3	0． 46

注記 $* 1$ ：評価位置は図 $6-24$ に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：材料非線形解析によるせん断耐力

表 6－49（3）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （ kN / m ）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	212	795	904	0.88
			側壁（東西）	222	5214	7984	0.66
			隔壁（南北）	242	30	$74 * 3$	0． 42
			隔壁（東西）	238	692	$1567 * 3$	0.45
		－＋	側壁（南北）	216	487	702	0． 70
			側壁（東西）	221	5115	7984	0.65
			隔壁（南北）	242	21	59＊3	0.35
			隔壁（東西）	238	690	1575＊3	0． 44
（2）	Ss－D 2	＋＋	側壁（南北）	216	585	702	0.84
			側壁（東西）	221	5343	7984	0.67
			隔壁（南北）	242	38	85＊3	0.46
			隔壁（東西）	238	759	$1643 * 3$	0． 47
（3）	Ss－D 2	＋＋	側壁（南北）	212	774	904	0.86
			側壁（東西）	222	5087	7984	0.64
			隔壁（南北）	242	45	96＊3	0． 48
			隔壁（東西）	238	737	1609＊3	0． 46
（4）	S s－D 2	＋＋	側壁（南北）	216	660	702	0.95
			側壁（東西）	221	5395	7984	0.68
			隔壁（南北）	242	38	92＊3	0． 42
			隔壁（東西）	238	829	$1649 * 3$	0.51

注記＊1：評価位置は図6－24に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－49（4）せん断破壊に対する評価結果（断面（2），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	216	473	804	0.59
			側壁（東西）	221	5122	13227	0． 39
			隔壁（南北）	242	20	$61 * 3$	0.34
			隔壁（東西）	239	23	$464 * 3$	0.05
（3）	S s－N 1	－＋	側壁（南北）	216	489	804	0.61
			側壁（東西）	221	5108	13227	0． 39
			隔壁（南北）	242	14	47＊3	0.31
			隔壁（東西）	239	23	$470 * 3$	0.05
（4）	S s -N 1	－＋	側壁（南北）	216	469	804	0.59
			側壁（東西）	221	5246	13227	0． 40
			隔壁（南北）	242	20	$67 * 3$	0． 30
			隔壁（東西）	238	731	793	0.93

注記＊1：評価位置は図6－24に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（1）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	314	559	1126＊3	0.50
			側壁（東西）	321	5889	8989	0.66
			隔壁（南北）	342	3	8＊3	0.33
			隔壁（東西）	333	404	$603 * 3$	0.67
			側壁（南北）	314	647	1110＊3	0.59
		－＋	側壁（東西）	322	5838	8989	0.65
		－	隔壁（南北）	342	4	$11^{* 3}$	0.36
			隔壁（東西）	333	410	$550 * 3$	0.75
			側壁（南北）	314	617	$1130 * 3$	0.55
			側壁（東西）	321	6204	8989	0.70
			隔壁（南北）	342	4	$12^{* 3}$	0.34
	S s－D		隔壁（東西）	333	436	$567 * 3$	0.77
	S s－D 2		側壁（南北）	314	630	1114＊3	0.57
		＋	側壁（東西）	321	5889	8989	0.66
		－	隔壁（南北）	342	3	9＊3	0.35
			隔壁（東西）	333	420	$560 * 3$	0.75
	Ss－D 3	＋＋	側壁（南北）	314	578	$1118 * 3$	0.52
			側壁（東西）	321	5250	8989	0.59
			隔壁（南北）	342	3	9＊3	0.31
			隔壁（東西）	333	367	548＊3	0.67
		－＋	側壁（南北）	314	619	1122＊3	0.56
			側壁（東西）	322	5400	8989	0.61
			隔壁（南北）	342	4	$11^{* 3}$	0． 33
			隔壁（東西）	333	371	$540 * 3$	0． 69

注記＊1：評価位置は図 6－25に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（2）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F 1	＋＋	側壁（南北）	314	547	1108＊3	0.50
			側壁（東西）	321	5029	8989	0.56
			隔壁（南北）	342	1	3＊3	0.30
			隔壁（東西）	333	353	$551 * 3$	0.65
			側壁（南北）	314	464	1135＊3	0.41
		－＋	側壁（東西）	322	5015	8989	0.56
		－	隔壁（南北）	342	2	7＊3	0． 29
			隔壁（東西）	333	337	$561 * 3$	0.61
			側壁（南北）	314	564	$1117 * 3$	0.51
			側壁（東西）	321	5392	8989	0.60
			隔壁（南北）	342	3	8＊3	0.33
	S s－F 2		隔壁（東西）	333	380	$560 * 3$	0.68
	S S－F 2		側壁（南北）	314	518	1122＊3	0． 47
			側壁（東西）	322	5265	8989	0.59
		－＋	隔壁（南北）	342	3	8＊3	0.32
			隔壁（東西）	333	366	$563 * 3$	0.66
	S s－F 3	＋＋	側壁（南北）	314	513	$1137 * 3$	0.46
			側壁（東西）	321	5263	8989	0.59
			隔壁（南北）	342	4	$12^{* 3}$	0.31
			隔壁（東西）	333	365	$564 * 3$	0.65
		－＋	側壁（南北）	314	597	1113＊3	0.54
			側壁（東西）	321	5273	8989	0.59
			隔壁（南北）	342	2	7＊3	0． 33
			隔壁（東西）	333	379	$552 * 3$	0． 69

注記＊1：評価位置は図 6－25に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（3）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s -N 1	＋＋	側壁（南北）	314	659	1106＊3	0.60
			側壁（東西）	322	5637	8989	0.63
			隔壁（南北）	342	3	8＊3	0.36
			隔壁（東西）	333	377	$532 * 3$	0.71
		－＋	側壁（南北）	314	513	$1142 * 3$	0． 45
			側壁（東西）	321	5830	8989	0.65
			隔壁（南北）	342	3	9＊3	0.31
			隔壁（東西）	333	395	$572 * 3$	0.70
（2）	S s－D 2	＋＋	側壁（南北）	314	667	1102＊3	0.61
			側壁（東西）	321	6205	8989	0． 70
			隔壁（南北）	342	4	$10 * 3$	0． 36
			隔壁（東西）	333	447	$561 * 3$	0.80
（3）	$\mathrm{Ss}-\mathrm{D} 2$	＋＋	側壁（南北）	314	628	1128＊3	0.56
			側壁（東西）	321	5837	8989	0.65
			隔壁（南北）	342	4	$12^{* 3}$	0.35
			隔壁（東西）	333	408	$555 * 3$	0． 74
（4）	S s－D 2	＋＋	側壁（南北）	314	1665	2930＊3	0.57
			側壁（東西）	321	6309	8989	0.71
			隔壁（南北）	342	4	$13^{* 3}$	0.31
			隔壁（東西）	333	502	$563 * 3$	0． 90
		－＋	隔壁（東西）	333	479	559＊3	0.86

注記＊1：評価位置は図6－25に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a} a
＊ 3 ：材料非線形解析によるせん断耐力

表6－50（4）せん断破壊に対する評価結果（断面（3），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	314	551	1130＊3	0． 49
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	3	9＊3	0.31
			隔壁（東西）	338	801	1566＊3	0.52
（3）	S s－N 1	－＋	側壁（南北）	314	601	1099＊3	0.55
			側壁（東西）	321	5847	8989	0.66
			隔壁（南北）	342	0	$1^{* 3}$	0.33
			隔壁（東西）	333	413	$562 * 3$	0． 74
（4）	S s -N 1	－＋	側壁（南北）	314	1644	$3505 * 3$	0.47
			側壁（東西）	321	5926	8989	0.66
			隔壁（南北）	342	4	$14^{* 3}$	0.29
			隔壁（東西）	333	475	$575 * 3$	0.83

注記＊1：評価位置は図 6－25に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ $3:$ 材料非線形解析によるせん断耐力

表6－51（1）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置 ${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	側壁（南北）	416	633	673	0.95
			側壁（東西）	422	5663	8217	0.69
			隔壁（南北）	442	177	708	0.25
			隔壁（東西）	437	1306	1871＊3	0.70
		－＋	側壁（南北）	416	561	665	0.85
			側壁（東西）	422	5816	8217	0.71
			隔壁（南北）	442	184	694	0.27
			隔壁（東西）	434	546	800＊3	0.69
	S s－D 2	＋＋	側壁（南北）	416	872	1326＊3	0.66
			側壁（東西）	422	5742	8217	0.70
			隔壁（南北）	442	171	695	0.25
			隔壁（東西）	434	563	806＊3	0.70
			側壁（南北）	416	638	672	0.95
			側壁（東西）	422	5596	8217	0.69
		－	隔壁（南北）	442	171	707	0.25
			隔壁（東西）	434	546	801＊3	0.69
			側壁（南北）	416	527	664	0.80
			側壁（東西）	422	5090	8217	0.62
		＋	隔壁（南北）	442	161	697	0． 24
	Ss－D 3		隔壁（東西）	437	1137	1861＊3	0.62
	S S D		側壁（南北）	416	296	349	0.85
			側壁（東西）	422	5322	8217	0.65
		－＋	隔壁（南北）	442	170	709	0． 24
			隔壁（東西）	434	517	$817 * 3$	0.64

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－51（2）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置 ${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $V_{\text {y d }}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－F1	＋＋	側壁（南北）	416	276	349	0． 80
			側壁（東西）	422	4851	8217	0.60
			隔壁（南北）	442	153	697	0． 22
			隔壁（東西）	437	1048	1910＊3	0.55
			側壁（南北）	416	792	1512＊3	0.53
			側壁（東西）	422	4797	8217	0.59
			隔壁（南北）	442	140	695	0.21
			隔壁（東西）	434	510	978＊3	0.53
			側壁（南北）	416	523	640	0.82
			側壁（東西）	422	5653	8217	0.69
			隔壁（南北）	442	185	707	0.27
			隔壁（東西）	434	533	787＊3	0.68
	S ${ }^{\text {r }}$		側壁（南北）	416	520	651	0． 80
			側壁（東西）	422	5376	8217	0.66
		＋	隔壁（南北）	442	172	706	0.25
			隔壁（東西）	434	503	800＊3	0.63
	S s－F 3	＋＋	側壁（南北）	416	555	683	0.82
			側壁（東西）	422	4854	8217	0.60
			隔壁（南北）	442	145	694	0.21
			隔壁（東西）	437	1105	2051＊3	0.54
		－＋	側壁（南北）	416	556	670	0.83
			側壁（東西）	422	5183	8217	0.64
			隔壁（南北）	442	162	710	0.23
			隔壁（東西）	434	503	804＊3	0.63

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－51（3）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （ kN / m ）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	416	476	628	0.76
			側壁（東西）	422	5796	8217	0.71
			隔壁（南北）	442	191	695	0． 28
			隔壁（東西）	434	532	$747^{* 3}$	0． 72
		－＋	側壁（南北）	416	954	1451＊3	0.66
			側壁（東西）	422	5494	8217	0.67
			隔壁（南北）	442	163	698	0.24
			隔壁（東西）	434	555	$814 * 3$	0.69
（2）	Ss－D 2	＋＋	側壁（南北）	416	986	1552＊3	0.64
			側壁（東西）	422	5760	8217	0.71
			隔壁（南北）	442	164	694	0.24
			隔壁（東西）	437	1381	1967＊3	0.71
（3）	S s－D 2	＋＋	側壁（南北）	416	576	654	0.89
			側壁（東西）	422	5741	8217	0． 70
			隔壁（南北）	442	184	708	0.26
			隔壁（東西）	434	640	1024＊3	0.63
（4）	S s－D 2	＋+	側壁（南北）	416	702	722	0.98
			側壁（東西）	422	5825	8217	0.71
			隔壁（南北）	442	183	698	0.27
			隔壁（東西）	437	1400	1808＊3	0． 78

注記＊1：評価位置は図 6－26に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－51（4）せん断破壊に対する評価結果（断面（4），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s－N 1	－＋	側壁（南北）	416	920	1505＊3	0.62
			側壁（東西）	422	5465	8217	0.67
			隔壁（南北）	442	161	698	0.24
			隔壁（東西）	437	1260	1950＊3	0.65
（3）	S s－N 1	－＋	側壁（南北）	416	969	1507＊3	0.65
			側壁（東西）	422	5809	8217	0.71
			隔壁（南北）	442	174	698	0.25
			隔壁（東西）	437	1316	1956＊3	0.68
（4）	S s－N 1	－＋	側壁（南北）	416	661	711	0.93
			側壁（東西）	422	5454	8217	0.67
			隔壁（南北）	442	174	700	0.25
			隔壁（東西）	437	1287	1878＊3	0.69

注記＊1：評価位置は図 6－26に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ $3:$ 材料非線形解析によるせん断耐力

表6－52（1）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（1）	S s－D 1	＋＋	側壁（南北）	513	917	1475	0.63
			側壁（東西）	522	5571	8621	0.65
			隔壁（南北）	542	101	669	0.16
			隔壁（東西）	537	1115	2012＊3	0.56
			側壁（南北）	513	891	1475	0.61
		－＋	側壁（東西）	522	5601	8621	0.65
		－	隔壁（南北）	542	104	668	0.16
			隔壁（東西）	537	1109	1981＊3	0.56
			側壁（南北）	513	886	1475	0.61
			側壁（東西）	522	5544	8621	0.65
			隔壁（南北）	542	104	672	0.16
	$\mathrm{S}-\mathrm{D} 2$		隔壁（東西）	537	1103	2000＊3	0.56
	S s－D 2		側壁（南北）	513	950	1475	0.65
		＋	側壁（東西）	522	5339	8621	0.62
		－	隔壁（南北）	542	101	671	0.16
			隔壁（東西）	537	1104	2051＊3	0.54
	Ss－D 3	＋＋	側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	4771	8621	0.56
			隔壁（南北）	542	86	668	0.13
			隔壁（東西）	537	980	$2037 * 3$	0． 49
		－＋	側壁（南北）	513	836	1475	0.57
			側壁（東西）	522	4874	8621	0.57
			隔壁（南北）	542	91	668	0.14
			隔壁（東西）	537	1004	$2032 * 3$	0． 50

注記＊1：評価位置は図 6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－52（2）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
（1）	S s－F 1	＋＋	側壁（南北）	513	742	1475	0.51
			側壁（東西）	522	4594	8621	0.54
			隔壁（南北）	542	84	668	0． 13
			隔壁（東西）	537	886	2077＊3	0． 43
			側壁（南北）	513	770	1475	0.53
			側壁（東西）	522	4489	8621	0.53
			隔壁（南北）	542	81	668	0.13
			隔壁（東西）	537	886	2083＊3	0． 43
			側壁（南北）	513	830	1475	0.57
			側壁（東西）	522	5352	8621	0.63
			隔壁（南北）	542	100	669	0.15
	S s－F		隔壁（東西）	537	1062	1981＊3	0.54
	S S－F 2		側壁（南北）	513	855	1475	0． 58
		－	側壁（東西）	522	5443	8621	0.64
		－	隔壁（南北）	542	105	668	0.16
			隔壁（東西）	537	1044	2095＊3	0.50
	S s－F 3	＋＋	側壁（南北）	513	793	1475	0.54
			側壁（東西）	522	4405	8621	0.52
			隔壁（南北）	542	82	671	0． 13
			隔壁（東西）	537	922	2053＊3	0． 45
		－＋	側壁（南北）	513	834	1475	0． 57
			側壁（東西）	522	4984	8621	0.58
			隔壁（南北）	542	97	668	0.15
			隔壁（東西）	537	1010	2036＊3	0.50

注記 $~$ 1：評価位置は図 6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊ 3 ：材料非線形解析によるせん断耐力

表6－52（3）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		評価位置＊${ }^{*}$		照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
（1）	S s－N 1	＋＋	側壁（南北）	513	767	1475	0.52
			側壁（東西）	522	4570	8621	0.54
			隔壁（南北）	542	94	668	0.15
			隔壁（東西）	537	924	2099＊3	0． 45
		－＋	側壁（南北）	513	973	1475	0.66
			側壁（東西）	522	5245	8621	0.61
			隔壁（南北）	542	91	672	0． 14
			隔壁（東西）	537	1050	2081＊3	0.51
（2）	Ss－D 2	＋＋	側壁（南北）	513	933	1475	0.64
			側壁（東西）	522	5699	8621	0.67
			隔壁（南北）	542	104	673	0.16
			隔壁（東西）	537	1134	$2025 * 3$	0.56
（3）	Ss－D 2	＋＋	側壁（南北）	513	851	1475	0． 58
			側壁（東西）	522	5417	8621	0.63
			隔壁（南北）	542	103	668	0.16
			隔壁（東西）	537	1077	1982＊3	0.55
（4）	Ss－D 2	＋＋	側壁（南北）	513	965	1475	0.66
			側壁（東西）	522	5413	8621	0.63
			隔壁（南北）	542	103	673	0． 16
			隔壁（東西）	537	1255	1965＊3	0.64

注記＊1：評価位置は図6－27に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}
＊3：材料非線形解析によるせん断耐力

表6－52（4）せん断破壊に対する評価結果（断面（5），せん断耐力式及び材料非線形解析）

解析 ケース	地震動		評価位置＊${ }^{* 1}$		照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
（2）	S s - N 1	－＋	側壁（南北）	513	899	1475	0.61
			側壁（東西）	522	5165	8621	0.60
			隔壁（南北）	542	93	672	0.14
			隔壁（東西）	537	1070	$2043 * 3$	0.53
（3）	S s -N 1	－＋	側壁（南北）	513	1048	1475	0.72
			側壁（東西）	522	5716	8621	0.67
			隔壁（南北）	542	97	670	0.15
			隔壁（東西）	537	1196	2041＊3	0.59
（4）	S s - N 1	－＋	側壁（南北）	513	1054	1475	0． 72
			側壁（東西）	522	5051	8621	0.59
			隔壁（南北）	542	88	673	0． 14
			隔壁（東西）	537	1206	2101＊3	0.58

注記 $~$ 1：評価位置は図6－27に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}
＊ $3:$ 材料非線形解析によるせん断耐力

6.4 基礎地盤の支持性能に対する評価結果

原子炉機器泠却海水配管ダクト（鉛直部）は，海水ポンプ室に懸架され一体構造になって いることから，添付資料「VI－2－2－8 海水ポンプ室の耐震性についての計算書」により，基礎地盤に発生する応力（接地圧）が極限支持力に基づく許容限界を下回ること，MMR に発生す る応力（接地圧）が支圧強度を下回ること，及び MMR の健全性を確認した。

