

2．基本方針
3．取水口，取水路，海水ポンプ室及び貯留堰
4．放水口

器の冷却用海水は循環水ポンプにより供給し，その容量は $99,720 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個（通常運転時 2 個運転）である。原子炬補機冷却水奚熱交換器の泠却用海水は原子炬補機冷却海水ポンプにより供給し， その容量は $1,900 \mathrm{~m}^{3} / \mathrm{h} \times 4$ 個（通常運転時 2 個運転， 2 個予備）である。 タービン補機冷却水系熱交換器の冷却用海水はタービン補機冷却系海水ポンプにより供給し，その容量は $2,250 \mathrm{~m}^{3} / \mathrm{h} \times 3$ 個（通常運転時 2個運転，1個予備）である。

また，取水口，取水路及び海水ポンプ室は，設計基準事故時又は重大事故等時に取水した海水を原子炉補機冷却水系熱交換器及び高圧灲心スプレイ補機冷却水系熱交換器に冷却水として使用するための流路として設計する。原子炉補機泠却水系熱交換器の泠却用海水は原子炉補機冷却海水ポンプにより供給し，容量は $1,900 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個で ある。高圧灲心スプレイ補機泠却水系熱交換器の泠却用海水は高圧炉心スプレイ補機冷却海水ポンプにより供給し，容量は $250 \mathrm{~m}^{3} / \mathrm{h} \times 1$個である。重大事故等時には大容量送水ポンプ（タイプI），大容量送水ポンプ（タイプII）を使用して海水ポンプ室又は取水口から海水を取水する。大容量送水ポンプ（タイプI）の容量は $1,440 \mathrm{~m}^{3} / \mathrm{h} \times 1$個，大容量送水ポンプ（タイプII）容量は $1,800 \mathrm{~m}^{3} / \mathrm{h} \times 1$ 個である

取水口，取水路及び海水ポンプ室は，非常用取水設備と位置付け，重大事故時に使用することから，重大事故等対処施設として設計す る。

貯留堰は，津波時の引き波時における取水性低下への対応として取水口底面に設けるもので，引き波時に，海面が非常用海水ポンプ の取水可能水位を下回ることのないよう，取水量を確保する設計と する。貯留堰は，引き波により海面が貯留堰天端位置を下回る時間 （約4分）を上回る 10 分以上非常用海水ポンプ全個が運転可能な取水量を確保可能な設計とする。

取水口には，異物の流入防止対策として鋼製の固定式バースクリ ーンを設ける。また，海水ポンプ室には，トラベリングスクリーンを設ける

備考
設備の相違
設備の相違（女川では RSW ポンプとTSW ポンプ が独立設置）

設備の相違（設備の構成及び各設備の容量の相違）

重大事故時の水源の相違 （東二では重大事故時の水源について後述

設備の相違

引き波により海面が貯留堰天端立置を下回る時間 と取水口から海水ポンプ室までの貯留量の相違

設備の相違

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機		備考
		表 3－1 取水口の主要仕様		
		た て	33． 0 m	
		横	39.8 m	
		高 さ	12． 0 m	
		構 造	鉄筋コンクリー ト造六連カルバ ート函渠	
		取水流量 （1）通常時		
		a．循睘水ポンプ（2 個）	99， $720 \mathrm{~m}^{3} / \mathrm{h}$／個	
		b．原子炉補機洽却海水ポンプ（2個）	1，900 mh／h／個	
		c．タービン補機洽却海水ポンプ（2 個）	2， $250 \mathrm{~m}^{3} / \mathrm{h}$／個	
		（2）設計基淮事故及び重大事故等時		
			1，900 $\mathrm{m}^{3} \mathrm{~h}$／個	
		a．原子炬補機椧却海水ポンプ（2 個） b．高圧炬心スプレイ補機冷却海水ポンプ（ 1 個）	$250 \mathrm{~m}^{3} / \mathrm{h}$／個	
		c．大容量送水ポンプ（タイプI）（1個）		
		（a）海を水源とした原子炉圧力容器への注水		
		（低圧代替注水系（可搬型））	$199 \mathrm{~m} / \mathrm{h}$／個	
		（b）海を水源とした原子炉格納容器内の冷却		
		（c）海を水源とした原子炬格納容器下部への注水	$88 \mathrm{~m}^{3} \mathrm{~h} /$／固	
		（原子炉格納容器下部注水系（可搬型）	$50 \mathrm{~m}^{3} \mathrm{~h} /$ 個	
		（d）海を水源とした使用济然料プールヘのスプレイ／注水		
		（然料フールスプレイ系（常設配管）及び然料プール		
		スプレイ系（可搬型）	$126 \mathrm{~m}^{3} / \mathrm{h}$／個	
		（燃料プール代替注水系（常設配籃）及び燃料プール		
		代替注水系（可搬型）	$114 \mathrm{~m}^{3} / \mathrm{h}$／個	
		（e）復水貯蔵タンクへの補給	$150 \mathrm{~m}^{3} / \mathrm{h}$／個	
		（f）海を水源とした最終ヒートシンク（海洋）いの代替		
		熟輸送（原子炉溨機代替冾却水奚）	1， $200 \mathrm{~m}^{3} / \mathrm{h}$／個	
		d．大容量送水ポンプ（タイプII）（1個）		
		（a）海を水源とした大気への放射性物質の昖散抑制		
		（放水設備（大気－の拹散抑制設備）	$600 \mathrm{~m}^{3} / \mathrm{h}$／個	
		（b）海を水源とした航坴機称粐火災への泡消火		
			1，200 $\mathrm{m}^{3} \mathrm{~h}$／個	
		（c）海から淡水㐨水槽への供給		
		（淡水眝水槽への供給）	$613 \mathrm{~m}^{3} / \mathrm{h}$／個	

図 3－2 原子炉補機冷却海水系系統概要図 （重大事故時：原子炉補機冷却海水ポンプによる補機冷却）

備考
4．放水口
放水口は，女川湾に面した敷地前面の東防波堤外面に設置する。

通常運車時に放水口から放水する海水等は，復水器，原子炉補機冷却水系設備及びタービン補機冷却水系設備の泠却水，液体廃棄物処理設備 の蒸留水，ろ過水及び一般排水等であり，放水立坑から放水路を経て放水口まで導き外海に放水し，その流量は循環水ポンプ $99,720 \mathrm{~m}^{3} / \mathrm{h} \times 2$

個，原子炬補機冷却海水ポンプ $1,900 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個，タービン補機冷却海水 ポンプ $2,250 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個である。
設計基準事故時は，非常用海水ポンプによる原子炉補機冷却水系設
備，高圧炉心スプレイ補機冷却水系設備の冷却に使用した海水を放水立坑から放水路を経て放水口まで導き外海に放水し，その容量は，原子炉補機泠却海水ポンプ $1,900 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個，高圧烼心スプレイ補機泠却海水ボ ンプ $250 \mathrm{~m}^{3} / \mathrm{h}$ である。

また，重大事故等時においては，非常用海水ポンプによる原子烦補機冷却水系設備，高圧灲心スプレイ補機冷却水系設備の泠却に使用した海水を放水立坑から放水路を経て放水口まで導き外海に放水し，その容量 は，原子炉補機冷却海水ポンプ $1,900 \mathrm{~m}^{3} / \mathrm{h} \times 2$ 個，高圧炉心スプレイ補機泠却海水ポンプ $250 \mathrm{~m}^{3} / \mathrm{h}$ である。

放射性物質の大気への拡散抑制又は航空機然料火災への泡消火対応と して，大容量送水ポンプ（タイプII）による原子炬建屋への放水に使用 した海水については，原子炉建屋屋上から建屋雨水路を経由して構内の雨水排水路に導かれ，構内排水路及び放水路を経由し，海洋に放出する設計とする。

なお，基淮津波による遡上波を放水路の経路から敷地に流入させない設計とするため，津波高さが敷地高さに到達する放水立坑の開口部周辺 に防潮壁を設置する。また，防潮壁の外側と内側をバイパスする開口部 に逆流防止設備の設置及び貫通部止水処置を実施することで津波の流入 を防止する。

表 4－1 に放水口の主要仕様を示す。
放水設備構造概要図を図 4－1 に，放水口付近詳細図を図4－2 に，放水立坑付近詳細図を図 4－3－1，図 4－3－2，図 4－3－3 に，構内排水路配置図を

設備名称の相違

設備の相違
設備名称の相違
設備の相違（設備の構成及び各設備の容量の相違）

設備の相違（設備の構成及び各設備の容量の相違）

設備名称の相違

津波防護方針の相違

表番号の相違
設備の相違

放水ロケーソン
0．P． 5.0 m

（断面図 ：断面 B－B）

図 4－2 放水口付近詳細図
《参考》䄸崎对羽原子力発電所第7号機

