本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-02-0007_改 2
提出年月日	2021年5月21日

VI-2-4-2-2 使用済燃料貯蔵ラック (第 1, 2 号機共用) の耐震性 についての計算書

2021年5月

東北電力株式会社

目次

1. 棋	既要	1
2	-般事項	1
2. 1	構造計画	1
2.2	評価方針 ·····	3
2.3	適用規格・基準等	4
2.4	記号の説明	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 膏	平価部位	7
4. ±	也震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4. 1	地震応答解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4.2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
4. 2	.1 荷重の組合せ及び許容応力状態	11
4. 2	. 2 許容応力 ·····	11
4. 2	.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
4.3	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
4.4	固有周期 ·····	20
4.5	設計用地震力 · · · · · · · · · · · · · · · · · · ·	23
4.6	計算方法 ·····	27
4.6	.1 部材の応力	27
4.6	.2 基礎ボルトの応力	29
4.7	計算条件	31
4.8	応力の評価	31
4.8	.1 部材の応力評価	31
4.8	.2 基礎ボルトの応力評価	31
5. 章	平価結果	32
5. 1	設計基準対象施設としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
5.2	重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、使用済燃料貯蔵ラック(以下「ラック」という。)が設計用地震力に対して十分な構造強度を有していることを説明するものである。

ラックは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設 耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

ラックの構造計画を表 2-1 に示す。

枠囲みの内容は商業機密の観点から公開できません。

表 2-1 構造計画

2.2 評価方針

ラックの応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示すラックの部位を踏まえ「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

ラックの耐震評価フローを図2-1に示す。

図 2-1 ラックの耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針(JEAG4601-1987)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編(JEAG 4 6 0 1·補-1984)
- (3) 原子力発電所耐震設計技術指針(JEAG4601-1991追補版)
- (4) JSMESNC1-2005/2007発電用原子力設備規格設計・建設規格(以下「設計・建設規格」という。)

2.4 記号の説明

2.4 記号の説明		
記号	記号の説明	単位
A _b	基礎ボルトの軸断面積	mm^2
A _x	部材の断面積	mm^2
A_y , A_z	部材のせん断断面積	mm^2
Сн	水平方向設計震度	_
C _V	鉛直方向設計震度	_
E	縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
F *	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa
F _x	部材に働く引張力	N
F _y , F _z	部材に働くせん断力	N
F i	ベース底部に働くせん断力(110体又は170体)	N
f _{j i}	基礎ボルトに働く引張力(1本当たり)	N
$f_{ m s}$	部材の許容せん断応力	MPa
$f_{ m s\ b}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	部材の許容引張応力	MPa
$f_{ m t~o}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$f_{ m t\ s}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度(g=9.80665)	$\mathrm{m/s^2}$
ℓ_{g} i	ベース端から重心までの距離	mm
Q _{j i}	ベース端から基礎ボルトまでの距離	mm
M i	ベース底部の転倒モーメント (110 体又は 170 体)	N•mm
M_{v} , M_{z}	部材に働く曲げモーメント	N•mm
m	使用済燃料貯蔵時のラック全質量(110 体又は 170 体)	kg
m _F	燃料の質量	kg
m _R	ラックの質量	kg
m_{W}	ラックに含まれる水の質量	kg
n	基礎ボルトの全本数	_
n _{j i}	基礎ボルト各部の本数	_
S _u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
S _v	設計・建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(RT)$	設計・建設規格 付録材料図表 Part5 表 8 に定める材料	MPa
5 y (IC 1 /	の40°Cにおける値	ин а
Z_{v}, Z_{z}	部材の断面係数	mm^3
β_{S}	刺激係数	111111
	基礎ボルトに生じる引張応力	MD ₀
σь	を を を を を を を を に と と と と と と と と と	MPa MD-
σх, σу	✓ エ/V即例 に生 しるり	MPa

記号	記号の説明	単位
O fa	部材に生じる組合せ応力	MPa
σ _{ft}	はり部材に生じる引張応力	MPa
τь	基礎ボルトに生じるせん断応力	MPa
τ f	はり部材に生じるせん断応力	MPa
т ху	シェル部材に生じるせん断応力	MPa
[M]	質量マトリックス	_
{ φ s}	固有ベクトル	_

注1: F_i , f_{ji} , ℓ_{gi} , ℓ_{ji} , M_i 及び n_{ji} の添字iの意味は, 以下のとおりとする。

i = N: NS(短辺)方向 i = E: EW(長辺)方向

注2: f_{ii} , ℓ_{ii} 及び n_{ii} の添字 j はボルトの列番号を示すものとする。

注3: β_s , $\{\phi_s\}$ の添字Sは次数を示すものとする。

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
設計震度	_	小数点以下第3位	切上げ	小数点以下第2位
最高使用温度	$^{\circ}\!$	小数点以下第1位	四捨五入	整数位
質量	kg	_	_	整数位
長さ	mm	_	_	整数位*1
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記*1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設計降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

ラックの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す条件に基づき、耐 震評価上厳しくなる角管、補強板、燃料支持板、ベース及び基礎ボルトについて実施する。 ラックの耐震評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

- 4.1 地震応答解析及び構造強度評価方法
 - (1) 地震応答解析には、はり要素及びシェル要素を用いた有限要素法モデルによるスペクトルモーダル解析を用いる。
 - (2) ラックは,原子炉建屋の使用済燃料プールの底部(0.P. 21.38m)に基礎ボルトにより固定されるものとする。
 - (3) ラックの質量には、使用済燃料の質量及びラック自身の質量のほか、ラックに含まれる水の質量及びラック外形の付加質量*を考慮する。
 - (4) 地震力は、ラックに対して水平方向から作用するものとする。 ここで、水平方向地震力は、ラックの長辺方向に作用する場合及び短辺方向に作用する場合を考慮する。 また、鉛直方向地震力は、水平方向地震力と同時に不利な方向に作用するものとする。
 - (5) 構造概念図 (110 体ラックの例) を図 4-1 に, 各ラックの構造概要図を図 4-2 及び図 4-3 に示す。

注記*:機器が流体中で加速度を受けた場合に質量が増加したような効果を模擬した質量

5 × || ラック

図 4-1 構造概念図 (110 体ラック)

注記*:補強板aを橙,補強板fを青,補強板gを緑で色分けして示す。

図 4-2 構造概要図 (110 体ラック)

注記*:補強板 a を橙,補強板 f を青,補強板 g を緑で色分けして示す。

図 4-3 構造概要図(170 体ラック)

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

ラックの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

ラックの許容応力は,添付資料「VI-2-1-9 機能維持の基本方針」に基づき表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

ラックの許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4-4 に,重 大事故等対処設備の評価に用いるものを表 4-5 に示す。

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設区分		機器名称	耐震設計上の 重要度分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の	使用済燃料 使用液 投施設及び 貯蔵設備 貯蔵 =	使用済燃料			$D + P_D + M_D + S d^{*2}$	III _A S
取扱施設及び 貯蔵施設		貯蔵ラック	S	*1	$D+P_D+M_D+S_S$	IV _A S

注記*1:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*2: S s との組み合わせ、 **Ⅲ**_A S の評価を実施する。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 使用済燃料 使用済燃料 常設耐震/防止		$D + P_D + M_D + S_{S}^{*3}$	IV _A S			
取扱施設及び 貯蔵施設	貯蔵設備	貯蔵ラック	常設/緩和	設耐震/防止 ニャュニー 常設/緩和	$D+P_{SAD}+M_{SAD}+S_{S}$	V_AS $(V_AS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2: 重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 4-3 許容応力 (その他の支持構造物及び重大事故等その他の支持構造物)

		界* ^{1,*2} 等以外)	許容限界* ^{1,*2} (ボルト等)		
許容応力状態	一次	応力	一次応力		
	引張り	せん断	引張り	せん断	
III _A S	1.5 · f _t	1.5 · f s	1.5 · f _t	1.5 · f s	
IV _A S					
$V_A S$ $(V_A S$ として $IV_A S$ の許容限界を用いる。)	1.5 · f _t *	1.5 · f s*	1.5 · f _t *	1.5 · f s*	

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-4	使用材料の許容応力評価条件	(設計其准対象施設)
4X T T	1X 711721711 V 2 11 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	五 1	1 10/11/11/11/19 11/11	(队们至于八家地区)				
評価部材	材料	温度条件 (℃)		S (MPa)	S _y *1 (MPa)	S u*1 (MPa)	S _y (RT) (MPa)
角管		最高使用温度	66		188*2	479*2	205*2
補強板	SUS304	最高使用温度	66	ı	188	479	205
燃料支持板	SUS304	最高使用温度	66	I	188	479	205
ベース	SUS304	最高使用温度	66	I	188	479	205
基礎ボルト		最高使用温度	66	_			

注記*1:最高使用温度(66℃)で算出

*2: のSy, Suの値は, SUS304の規格値を上回っているが, 安全側の評価とするため, SUS304の値を使用する。

表 4-5 使用材料の許容応力評価条件(重大事故等対処設備)

公工			(主八字版 1717年版 1117年)				
評価部材	材料	温度条件		S	S y *1	S u *1	S _y (RT)
	,,,,,	(℃)		(MPa)	(MPa)	(MPa)	(MPa)
角管		最高使用温度	100	_	171*2	441*2	205*2
補強板	SUS304	最高使用温度	100	_	171	441	205
燃料支持板	SUS304	最高使用温度	100	_	171	441	205
ベース	SUS304	最高使用温度	100	_	171	441	205
基礎ボルト		最高使用温度	100	_			

注記*1:最高使用温度(100 ℃)で算出

*2: のS_y, S_uの値は, SUS304 の規格値を上回っているが, 安全側の評価とするため, SUS304 の値を使用 する。

4.3 解析モデル及び諸元

ラックの解析モデルを図 4-4 及び図 4-5 に、解析モデルの概要を以下に示す。また、機器の 諸元を表 4-6 に示す。

ラックは、110 体、170 体ラック各々について、はり要素及びシェル要素を用いた有限要素 モデルとする。

角管はそれぞれ等価な断面特性を持つ1本のはり要素、補強板 $a \sim e$ についてもそれぞれ同様にはり要素とし、補強板 $f \sim h$ 、燃料支持板及びベースはシェル要素とする。

解析モデルでは、角管をモデル化したはり要素をラックの角管のピッチに合わせて等間隔に 配置し、補強板をモデル化したはり要素及びシェル要素で接続している。

また,同一方向への曲げモードが支配的となること及び角管間に存在する補強板を考慮し, 角管同士の接触は考慮しない。

ベースは基礎ボルトをモデル化したバネ要素を介して床に固定されているものとする。

また、ラックの質量には、使用済燃料の質量、ラック自身の質量、ラックに含まれる水の質量及び付加質量を考慮し、使用済燃料、ラックに含まれる水の質量及び付加質量は、角管全長にわたって等分布に与える。

本ラックの			であり,		の増加に	逆って縦弾	性係對	汝
が漸増し, 固有	周期については準	脈減する傾向	を示す。	このため	,固有値解析,	静的解析	夜びん	꺗
答スペクトル解	析にあたっては,	縦弾性係数	は	Ŀ	限付近の実験の	直を用いる	が, 言	殳
計用床応答スペ	クトルから震度を	と設定するに	あたって	は,	より	想定される	固有原	刮
期帯のなかでの	最大値を評価用鱈	実度に用いる 。	n					

また、計算に用いる設計条件、固有周期の算出及び部材と基礎ボルトの応力評価に用いる要目を「4. 地震応答解析及び構造強度評価」及び「5. 評価結果」に示す。

解析コードは、「NASTRAN」を使用し、解析コードの検証及び妥当性確認等の概要については、「VI-5 計算機プログラム(解析コード)の概要」に示す。

図 4-4 解析モデル (110 体ラック)

図 4-5 解析モデル (170 体ラック)

表 4-6 機器諸元

衣 4-0 機器商尤								
項目	記号	単位	入力値					
材質	_	_	SUS304 (補強板,燃料支持板,ベース)					
質量	m	kg						
温度条件 (最高使用温度)	Т	$^{\circ}$	66					
縦弾性係数	E*1	MPa	192000 (補強板,燃料支持板,ベース) 192000 (基礎ボルト)					
ポアソン比	ν	-						
要素数	_	個						
節点数	_	個						

注記*1:最高使用温度 (66 ℃) で算出

*2: における実験値

4.4 固有周期

固有値解析の結果を表 4-7 に、各モードにおける固有ベクトルの大きさを示した振動モード図を図 4-6~図 4-9 に示す。鉛直方向は、5 次モード以降で卓越し、固有周期は、0.05 秒以下であり、剛であることを確認した。

S次モードの刺激係数 β sは (4.1) 式により算出される。尚,固有ベクトル $\{\phi$ s $\}$ は質量 マトリックス [M] で正規化した値を用いる。

$$\beta_{S} = \frac{\{\phi_{S}\}^{T}[M]\{1\}}{\{\phi_{S}\}^{T}[M]\{\phi_{S}\}} \qquad (4.1)$$

表 4-7 固有值解析結果

- 4	_ 10	固有周期	. H= 4-15-15-15-	刺激係数			
ラック	モード	(s)	卓越方向	X	Y	Z	
	1次						
110 体	2 次						
ラック	3 次						
	5 次						
	1次						
170 体	2 次						
ラック	3 次						
	6次						

図 4-6	振動モード	(110 体ラック)	1次モード	

枠囲みの内容は商業機密の観点から公開できません。

図 4-8	振動モード(170 体ラック)1 次モード	

枠囲みの内容は商業機密の観点から公開できません。

4.5 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。また、減衰定数は添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の減衰定数を用いる。

評価に用いる設計用地震力を表 4-8 及び表 4-9 に示す。

表 4-8 設計用地震力(設計基準対象施設) (1/2)

a. 110 体ラック

	× / ツ /	I							
	寸場所及び 面高さ(m)	原子炉建屋 <mark>0. P.</mark> 22. 50* ¹ (<mark>0. P.</mark> 21. 38)							
固有	有周期(s)								
減氢	長定数(%)	水平: <mark>S</mark>	水平: <mark>Sd:7.0*⁵ Ss:10.0*⁵</mark> 鉛直:一						
	地震力	弾性設計用 又は静	地震動Sd 的震度	基準地震動 S s					
モード	固有周期	水平方向	鉛直方向	水平方向	鉛直方向				
	(s)	設計震度	設計震度	設計震度	設計震度				
1次		2.32*6	<mark>*6</mark>	4. 19	_				
2 次		2. 28*6	<mark>*6</mark>	3. 99	_				
3 次		<mark>*6</mark>	<mark>*6</mark>	-	-				
動的地震力		1. 13* ⁶	0.91*6	2. 12	1. 56				
静的	地震力	0.92*6	0. 29*6	_	_				

注記*1:上階の基準床レベルを示す。

*2:下階の基準床レベルを示す。

*3:1次固有周期について記載

*4: 固有値解析により, 0.05 秒以下であり, 剛であることを確認した。

*5:試験等により、妥当性が確認されている値。

*6: III_ASについては、基準地震動Ssで評価する。

表 4-8 設計用地震力(設計基準対象施設) (2/2)

b. 170 体ラック

据付	ナノファー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	原子炉建屋	0. P. 22. 50*1	0. P. 15. 00*2	(<mark>0. P.</mark> 21. 38)				
固有	有周期(s)								
減氢	要定数(%)	水平 S	水平 Sd:7.0*5 Ss:10.0*5 鉛直:-						
;	地震力	弾性設計用 又は静	地震動Sd 的震度	基準地震動S s					
モード	固有周期	水平方向 設計震度	鉛直方向	水平方向 設計震度	鉛直方向				
1次	(s)	放司 長及 2.39 ^{*6}	設計震度 — * ⁶	(京司 長及) 4.12	設計震度				
2 次		2. 23 ^{*6}	<u></u> *6	3. 81	_				
3 次	大 — <mark>*6</mark> — <mark>*6</mark>		_	_					
動的地震力		1. 13* ⁶	0.91*6	2. 12	1.56				
静的	地震力	0.92*6	0. 29*6	_	_				

注記*1:上階の基準床レベルを示す。

*2:下階の基準床レベルを示す。

*3:1次固有周期について記載

*4: 固有値解析により, 0.05 秒以下であり, 剛であることを確認した。

*5:試験等により、妥当性が確認されている値。

*6: **M**_ASについては, 基準地震動Ssで評価する。

表 4-9 設計用地震力(重大事故等対処設備) (1/2)

a. 110 体ラック

	寸場所及び 面高さ(m)	原子炉建屋 <mark>0.P.</mark> 22.50*1(<mark>0.P.</mark> 21.38)							
固有	有周期(s)								
減氢	長定数(%)		水平:10.0*4 鉛直:						
	地震力	弾性設計用地震動 S d 又は静的震度		基準地別	통動Ss				
モード	固有周期	水平方向	鉛直方向	水平方向	鉛直方向				
モード	(s)	設計震度	設計震度	設計震度	設計震度				
1次		_	_	4. 19	_				
2 次		_	_	3. 99	_				
3 次	次 —		_	_	_				
動的地震力		_	_	2. 12	1. 56				
静的	地震力	_	_	_	_				

注記*1:基準床レベルを示す。

*2:1次固有周期について記載

*3:固有値解析により, 0.05 秒以下であり, 剛であることを確認した。

*4:試験等により、妥当性が確認されている値。

表 4-9 設計用地震力(重大事故等対処設備)(2/2)

b. 170 体ラック

	寸場所及び 面高さ(m)	原子	炉建屋 <mark>0.P.</mark> 2	2.50*1(<mark>0.P.</mark> 2)	1. 38)				
固有	有周期(s)								
減氢	· 是定数(%)		水平:10.0*4 鉛直:-						
:	地震力	弾性設計用地震動 S d 又は静的震度		基準地別	震動Ss				
モード	固有周期 (s)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度				
1次		ı	_	4. 12	_				
2 次		_	_	3. 81	_				
3 次	次 —		_	_	_				
動的地震力		_	_	2. 12	1.56				
静的	地震力	_	_	_	_				

注記*1:基準床レベルを示す。

*2:1次固有周期について記載

*3:固有値解析により, 0.05 秒以下であり, 剛であることを確認した。

*4:試験等により、妥当性が確認されている値。

4.6 計算方法

4.6.1 部材の応力

部材についての応力計算は、図 4-4 及び図 4-5 の解析モデルにて、角管、補強板、燃料 支持板及びベースから成る系全体での応力計算を解析コード「NASTRAN」を使用し て行い、本項に示す計算方法に従って引張応力、せん断応力及び組合せ応力を計算する。

(1) はり部材の応力

解析コード内では、各部材の局所座標系及び引張力 F_x せん断力 F_y 、 F_z 及び曲げモーメント M_y 、 M_z の働く向きを図 4-10 に示すように設定している。

図 4-10 はり部材の応力計算モデル

引張力 F_x 及び曲げモーメント M_y , M_z によりはり部材に生じる引張応力 σ_{ft} は (4.2) 式により求める。

$$\sigma_{ft} = \frac{F_x}{A_x} + \frac{M_y}{Z_y} + \frac{M_z}{Z_z} \qquad \cdots \qquad (4.2)$$

せん断力 F_y , F_z により部材に生じるせん断応力 τ_f は, (4.3) 式により求める。

$$\tau_{f} = \sqrt{\left(\frac{F_{y}}{A_{y}}\right)^{2} + \left(\frac{F_{x}}{A_{x}}\right)^{2}} \qquad (4.3)$$

組合せ応力
$$\sigma_{fa}$$
は、 (4.4) 式により求める。
$$\sigma_{fa} = \sqrt{\sigma_{ft}^2 + 3 \cdot \tau_{f}^2} \quad \cdots \qquad (4.4)$$

(2) シェル部材の応力

解析コード内では、各部材の局所座標系、せん断応力 τ_{xy} 及び引張応力 σ_{x} 、 σ_{y} の作用する向きを、図 4-11 に示すように設定している。

図 4-11 シェル部材の応力計算モデル

シェル部材の組合せ応力 σ_{fa} は、上記で計算したせん断応力 τ_{xy} 、引張応力 σ_{x} 、 σ_{y} を用いて、(4.5) 式より求める。

$$\sigma_{y}$$
を用いて、 (4.5) 式より求める。
$$\sigma_{fa} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot \tau_{xy}^{2}} \quad \cdots \qquad (4.5)$$

4.6.2 基礎ボルトの応力

ラックの系全体での荷重計算を解析コード「NASTRAN」を使用して行い、求められた地震時のラックに作用する転倒モーメント M_i 及びベース底部に作用するせん断力 F_i が、図 4-12 のように負荷されるものとして基礎ボルトの応力を求める。

基礎ボルトの荷重状態を図 4-12 に示す。なお、図 4-12 のボルト列数は、110 体ラックのN S 方向を想定して $\ell_{1\,i}\sim\ell_{10\,i}$ の 10 列までとしたが、ボルト列数はラック及び方向によって異なるため、最大で $\ell_{1\,i}\sim\ell_{17\,i}$ の 17 列まで考慮する。

図 4-12 基礎ボルトの荷重状態 (110 体ラックのNS方向)

(1) 引張応力

図 4-12 において支点まわりのモーメントの平衡により基礎ボルト 1 本当りの引張力 $f_{1i} \sim f_{ji}$ を求める。 $f_{1i} > f_{2i} > \cdots > f_{ji}$ の関係にあるので f_{1i} のみを(4.6)式より求める。

$$f_{1i} = \frac{\ell_{1i} \cdot \left\{ \sqrt{M_{i}^{2} + \left(C_{V} \cdot m \cdot g \cdot \ell_{gi}\right)^{2} - m \cdot g \cdot \ell_{gi}} - m \cdot g \cdot \ell_{gi}}{n_{1i} \cdot \ell_{1i}^{2} + n_{1i} \cdot \ell_{2i}^{2} + \dots + n_{ji} \cdot \ell_{ji}^{2}} \dots (4.6)$$

したがって、引張力 f_{1i} により基礎ボルトに生じる引張応力 σ_b は、(4.7)式により求める。

$$\sigma_b = \frac{f_{1i}}{A_b} \qquad (4.7)$$

ただし、 f_{1i} の値が負となった場合は、引張力が生じないので以降の引張応力の計算は省略する。

(2) せん断応力

せん断力 F_i により基礎ボルトに生じるせん断応力 τ_b は、(4.8)式により求める。

$$\tau_b = \frac{F_i}{n \cdot A_b} \qquad (4.8)$$

4.7 計算条件

応力解析に用いる自重及び荷重は、本計算書の【使用済燃料貯蔵ラックの耐震性についての 計算結果】の設計条件及び機器要目に示す。

4.8 応力の評価

4.8.1 部材の応力評価

4.6.1 項で求めた各部材の引張応力 σ_{ft} , σ_{x} , σ_{y} 及び組合せ応力 σ_{fa} が, 許容引張応 力 f_t 以下であること。

また、4.6.1 項で求めた各部材のせん断応力 τ_f 、 τ_{xy} が、許容せん断応力 f_s 以下であ ること。

ただし、 f_t 及び f_s は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 f t	$\frac{F}{1.5} \cdot 1.5 * 1$	$\frac{F^*}{1.5} \cdot 1.5^{*1}$
許容せん断応力 f _s	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5^{*1}$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5^{*1}$

の引張強さと降伏点(0.2 %耐力)の値は, SUS304 注記*1: の規格値を上回っているので、安全側の評価とするため、F及びF*値は SUS304 の値を使用する。

4.8.2 基礎ボルトの応力評価

4.6.2 項で求めた基礎ボルトの引張応力 σ_b が、次式より求めた許容引張応力 f_t 。以下 であること。

また、4.6.2項で求めた基礎ボルトのせん断応力τ,が、せん断力のみを受ける基礎ボル トの許容せん断応力 f_{sb} 以下であること。

$$f_{\text{t s}} = 1.4 \cdot f_{\text{t o}} - 1.6 \cdot \tau_{\text{b}}$$
(4.9)

弾性設計用地震動 S d	
又は静的震度	
1	

	又は静的震度	基準地震動 S s
許容引張応力 f_{t} 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	F* · 1.5
許容せん断応力 f _{s b}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

枠囲みの内容は商業機密の観点から公開できません。

5. 評価結果

5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足 しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sd及び静的震度は、基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足したため、弾性設計用地震動Sd及び静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容 限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震設計上の 重要度分類	据付場所及び 床面高さ ラック		固有周期 (s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用圧力 (MPa)	最高使用温度 (℃)	周囲環境温度 (°C)
	里安及汀短	(m)		水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向	(Mra)	(0)	(C)
使用済燃料貯蔵ラック	S 0. P.	/// // / / / / / / / / / / / / / / / /	110 体ラック		0.05以下*2	*3	*3	C _H =2.12 又は*4	$C_{V} = 1.56$		66	_
		0. P. 22. 50*1 (0. P. 21. 38) 170 体ラッ	170 体ラック		0.05以下*2	*3	*3	C _H =2.12又は*4	$C_{V} = 1.56$	_	66	_

注記*1:基準床レベルを示す。

*2:固有値解析により 0.05 秒以下であり、剛であることを確認した。

*3: Ⅲ_ASについては、基準地震動Ssで評価する。

*4:基準地震動Ssに基づく設計用床応答曲線から得られる値

1.2 基礎ボルトの応力評価に用いる項目

幸	ラッ	ック	m (kg)	m _F (kg)	m _R (kg)	m_{W} (kg)	A_b (mm^2)	C _v (-)	Q _{1E} (mm)	$\ell_{\rm 2E}$ (mm)	ℓ _{3E} (mm)	0 4E (mm)	0 _{5E} (mm)	$\ell_{\rm 6E}$ (mm)	0 _{7E} (mm)	0 8E (mm)	0 _{9E} (mm)	0 10E (mm)	0 11E (mm)	ℓ _{12E} (mm)
枠囲みの内容は商業機密の観点か	110 体	ラック					1590	1. 56	1741. 5	1577. 5	1413. 5	1249. 5	1085. 5	921. 5	757. 5	593. 5	429. 5	265. 5	101. 5	-
内容は	170 体	ラック					1590	1. 56	2725. 5	2561.5	2397. 5	2233. 5	2069. 5	1905. 5	1741. 5	1577. 5	1413. 5	1249. 5	1085. 5	921. 5
描業																				
一般の記念	0 13E (mm)	0 14E (mm)	0 _{15E} (mm)	0 16E (mm)	0 _{17E} (mm)	0 1N (mm)	0 2N (mm)	0 3N (mm)	0 4N (mm)	0 5N (mm)	0 6N (mm)	0 7N (mm)	0 8N (mm)	0 9N (mm)	0 10 N (mm)	ℓ _{gE} (mm)	$\ell_{ m g~N}$ (mm)	n 1E (-)	n _{2E} (-)	n 3E (-)
観点か	_	-	ı	ı	1	1568. 5	1408. 5	1248. 5	1088.5	928. 5	741.5	581. 5	421.5	261.5	101.5	921.5	835	10	2	2
ら公開でき	757. 5	593. 5	429. 5	265. 5	101.5	1568. 5	1408. 5	1248. 5	1088.5	928. 5	741.5	581. 5	421.5	261.5	101.5	1413.5	835	10	2	2
# (사 (건																				
ません。																				

n 4E (-)	n 5E (-)	n 6E (-)	n 7E (-)	n 8E (-)	n 9E (-)	n _{10E} (-)	n _{11E} (-)	n _{12E} (-)	n _{13E} (-)	n _{14E} (-)	n _{15E} (-)	n _{16E} (-)	n _{17E} (-)	n _{1N} (-)	n _{2N} (-)	n 3N (-)	n _{4N} (-)	n _{5N} (-)	n _{6N} (-)
2	2	2	2	2	2	2	10	-	-	_	-	-	-	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2
			Į.	l.		Į.		Į.		Į.			l.	Į.	Į.	l.		l.	

n _{7N} (-)	n _{8N} (-)	n _{9N} (-)	n _{10N} (-)	n (-)
2	2	2	11	38
2	2	2	17	50

基礎ボルト材料	S y *1 (MPa)	S _y (RT) (MPa)	S u*1 (MPa)	F (MPa)	F* (MPa)

注記*1:最高使用温度(66℃)で算出

ラック	地震の種類	F _N (N)	F _E (N)	$M_{ m N}$ (N·mm)	$M_{\rm E}$ (N·mm)	
110 体ラック	弾性設計用地震動 S d 又は静的震度	_	_	-	_	
110 14 7 9 9	基準地震動 S s	1. 614×10^6	1. 435×10^6	5. 138×10^9	4.098×10^9	
170 体ラック	弾性設計用地震動 S d 又は静的震度	_	_	_	-	
170 本 ノ ツ ク	基準地震動 S s	2. 518×10^6	2. 071×10^6	7. 836×10^9	6.659×10^9	

1.3 計算数值

1.3.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック 材料	材料	材料 応力 上		弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
		NS方向	EW方向	NS方向	EW方向		
		引張りσ _{ft}	_	_	101	79	
110体ラック		せん断 τ f	_	_	40	21	
		組合せ o fa	_	_	122	87	
		引張りσ _{ft}	_	_	134	57	
170体ラック	せん断 τ f	_	_	55	41		
		組合せ o fa	_	_	164	91	

(2) 補強板 a

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
	, , , ,	NS方向	EW方向	NS方向	EW方向	
	引張りσ _{ft}		_	60	19	
110体ラック	SUS304	せん断 τ f		_	46	35
		組合せ o fa	_	_	100	63
		引張りσ _{ft}	_	_	104	20
170体ラック SUS304	SUS304	せん断 τ f	_	_	62	37
		組合せ o fa	_	_	149	67

(3) 補強板 b

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	,,,,	, , , ,	NS方向	EW方向	NS方向	EW方向
		引張りσ _{ft}	_	_	37	21
110体ラック	SUS304	せん断 τ f	_	_	32	13
		組合せ o fa	_	_	67	30
		引張りσ _{ft}	_	_	57	19
170体ラック	SUS304	せん断 τ _f	_	_	54	13
		組合せ o fa	_	_	110	29

(4) 補強板 c

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			NS方向	EW方向	NS方向	EW方向
	引張りσ _{ft}	_	_	75	70	
110体ラック	SUS304	せん断 τ f			32	48
		組合せ o fa	_	_	93	108
		引張りσ _{ft}	_	_	116	53
170体ラック SUS:	SUS304	SUS304 せん断 τ f	_	_	47	39
		組合せ o fa	_	_	141	86

(5) 補強板 d

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
	引張りσ _{ft}		_	99	135	
110体ラック	SUS304	せん断 τ f		_	26	22
		組合せ o fa	_	_	109	140
		引張りσ _{ft}	_	_	149	116
170体ラック SUS30	SUS304	せん断 τ f	_	_	45	23
		組合せ o f a	_	_	168	123

(6) 補強板 e

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
		引張りσ _{ft}	_	_	73	30
110体ラック	SUS304	せん断 τ f		_	5	9
		組合せ o fa		_	73	33
		引張りσ _{ft}	_	_	99	28
170体ラック	SUS304	せん断 τ _f	_	_	8	8
		組合せ σ f a	_	_	100	31

(7) 補強板 f

(単位:MPa)

ラック 木	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	18	13	
	引張り σ χ	_	_	2	2	
110/4 / 9 /	SUS304	せん断 τ x y		_	29	2
		組合せ σ f a			52	12
		引張り σ x			16	11
170	CUCOOA	引張り σ γ	_	_	1	3
170体ラック SUS304	SUS304	せん断 τ _{xy}	_		49	5
		組合せ σ f a	_	_	86	12

(8) 補強板 g

ラックを	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	,,,,	, 2, 2	NS方向	EW方向	NS方向	EW方向
11045 4 000004	引張り σ x	_	_	1	1	
	引張り σ χ	_	_	1	4	
110体ラック	SUS304	せん断 τ x y	_	_	2	1
		組合せ σ f a	_	_	3	3
		引張り σ x	_	_	2	1
170体ラック	SUS304	引張り σ χ	_	_	2	3
17014 7 9 9 505304	SUSSU4	せん断 τ x y	_	_	3	0
		組合せ σ f a	_	_	5	3

(9) 補強板 h

(単位:MPa)

(+ x · i · · i · · · · · · · · · · · · · · · · · · ·							
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
			NS方向	EW方向	NS方向	EW方向	
		引張り σ x	_	_	7	22	
110体ラック	SUS304	引張り σ χ	_	_	47	18	
110件/90	303304	せん断 τ x y	_	_	12	28	
		組合せ σ f a			49	52	
		引張り σ x			5	20	
170体ラック	CUCOOA	引張り σ χ	_	_	5	16	
170体ラック SUS304	せん断 τ _{xy}	_	_	38	31		
	組合せ σ f a	_	_	66	56		

(10) 燃料支持板

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	13	17	
	引張り σ χ	_	_	41	26	
110/4 / 9 /	SUS304	せん断 τ _{xy}	_	_	2	4
		組合せ σ f a	_	_	36	23
		引張り σ x	_	_	28	12
170体ラック	CUCOOA	引張り σ y	_	_	92	29
17014 7 9 5US3U4	SUS304	せん断 τ _{xy}	_	_	2	7
		組合せ σ f a	_	_	82	28

(11) ベース

(単位:MPa)

(+E · m a)							
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
			NS方向	EW方向	NS方向	EW方向	
	引張り σ x	_	_	20	13		
110体ラック	110H= H GUGOOA	引張り σ χ	_	_	59	39	
110/4 / 9 /	SUS304	せん断 τ x y	_	_	1	5	
		組合せ σ f a			52	36	
		引張り σ x			27	7	
170体ラック SUS304	CUC204	引張り σ γ	_	_	69	37	
	505304	せん断 τ _{xy}	_	_	2	4	
		組合せ σ_{fa}	_	_	60	35	

1.3.2 基礎ボルトに生じる応力

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	, , , ,	NS方向	EW方向	NS方向	EW方向	
110休ラック	110体ラック	引張りσδ	_	_	115	83
110件/ 9 9		せん断τь	_	_	27	24
170体ラック	引張りσδ	_	_	129	66	
110件/97		せん断τь	_	_	32	26

1.4 応力

1.4.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック	ラック 材料		弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
		算出応力	許容応力	算出応力	許容応力	
		引張り	$\sigma_{ft} = 101*$	$f_{\rm t} = 205$	$\sigma_{ft} = 101$	$f_{\rm t} = 205$
110体ラック		せん断	$\tau_{\rm f} = 40^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 40$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 122*$	$f_{\rm t} = 205$	$\sigma_{fa} = 122$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 134*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 134	$f_{\rm t} = 205$
170体ラック		せん断	$\tau_{\rm f} = 55^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 55$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 164^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 164$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

(2) 補強板 a

(単位:MPa)

ラックが材料		 応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{\rm f} = 60*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 60	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_f = 46^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 46$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 100*$	$f_{\rm t} = 205$	$\sigma_{fa} = 100$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 104*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 104	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_f = 62^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 62$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 149^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 149$	$f_{\rm t} = 205$

(3) 補強板 b

(単位:MPa)

ラック材料		応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		算出応力	許容応力	算出応力	許容応力	
	引張り	$\sigma_{\rm f} = 37^*$	$f_{\rm t} = 205$	$\sigma_{\rm f} = 37$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{f} = 32*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 32$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 67^*$	$f_{\rm t} = 205$	σ _{fa} = 67	$f_{\rm t} = 205$
		引張り	$\sigma_{\rm ft} = 57^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 57$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_{\rm f} = 54^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 54$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 110^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 110$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

(4) 補強板 c

(単位:MPa)

ラック 材料		応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
	, , ,	算出応力	許容応力	算出応力	許容応力	
	引張り	$\sigma_{\rm f} = 70^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 70$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_f = 48^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 48$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 108^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 108$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 116*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 116	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_f = 47^*$	$f_{\rm s} = 118$	$\tau_{f} = 47$	$f_{\rm s} = 118$
		組合せ	σ _{fa} =141*	$f_{\rm t} = 205$	$\sigma_{fa} = 141$	$f_{\rm t} = 205$

(5) 補強板 d

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{\rm f} = 135^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 135$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_f = 22^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 22$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 140^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 140$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 149*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 149	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_f = 45^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 45$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 168^*$	$f_{\rm t} = 205$	σ _{fa} = 168	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

(6) 補強板 e

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
	, 2 , 2	算出応力	許容応力	算出応力	許容応力	
	引張り	$\sigma_{\rm f} = 73^*$	$f_{\rm t} = 205$	$\sigma_{\rm f} = 73$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_f = 5^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 5$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 73^*$	$f_{\rm t} = 205$	σ _{fa} = 73	$f_{\rm t} = 205$
		引張り	$\sigma_{\rm f} = 99^*$	$f_{\rm t} = 205$	$\sigma_{\rm f}$ t = 99	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_f = 8*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 8$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 100^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 100$	$f_{\rm t} = 205$

(7) 補強板 f

(単位:MPa)

ラック 材料	材料	材料 応力		弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		算出応力	許容応力	算出応力	許容応力		
	110体ラック SUS304	引張り	$\sigma_{x} = 18^{*}$	$f_{\rm t} = 205$	$\sigma_x = 18$	$f_{\rm t} = 205$	
110体ラック		引張り	$\sigma_{y} = 2^{*}$	$f_{\rm t} = 205$	$\sigma_y = 2$	$f_{\rm t} = 205$	
110件/ 5/5	303304	せん断	$\tau_{xy} = 29*$	$f_{\rm s} = 118$	$\tau_{xy} = 29$	$f_{\rm s} = 118$	
		組合せ	$\sigma_{fa} = 52*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$	
		引張り	$\sigma_{x} = 16^{*}$	$f_{\rm t} = 205$	$\sigma_x = 16$	$f_{\rm t} = 205$	
170体ラック	SUS304	引張り	$\sigma_y = 1^*$	$f_{\rm t} = 205$	$\sigma_y = 1$	$f_{\rm t} = 205$	
170/47 / 9 / 303304	せん断	$\tau_{xy} = 49^*$	$f_{\rm s} = 118$	$\tau_{xy} = 49$	$f_{\rm s} = 118$		
	組合せ	σ _{fa} = 86*	$f_{\rm t} = 205$	σ _{fa} = 86	$f_{\rm t} = 205$		

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

(8) 補強板 g

(単位:MPa)

ラック材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
110体ラック SUS304	引張り	$\sigma_x = 1^*$	$f_{\rm t} = 205$	$\sigma_x = 1$	$f_{\rm t} = 205$	
	引張り	$\sigma_y = 4^*$	$f_{\rm t} = 205$	$\sigma_y = 4$	$f_{\rm t} = 205$	
110/47/99	SUS304	せん断	$\tau_{xy} = 1^*$	$f_{\rm s} = 118$	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 3*$	$f_{\rm t} = 205$	$\sigma_{fa} = 3$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 2^*$	$f_{\rm t} = 205$	$\sigma_x = 2$	$f_{\rm t} = 205$
 170体ラック	SUS304	引張り	$\sigma_y = 2^*$	$f_{\rm t} = 205$	$\sigma_y = 2$	$f_{\rm t} = 205$
17074 / 9 / 505304	せん断	$\tau_{xy} = 3^*$	$f_{\rm s} = 118$	τ _{x y} = 3	$f_{\rm s} = 118$	
		組合せ	$\sigma_{fa} = 5^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 5$	$f_{\rm t} = 205$

(9) 補強板 h

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_x = 22^*$	$f_{\rm t} = 205$	$\sigma_x = 22$	$f_{\rm t} = 205$	
110体ラック	110/45 /a CUC204	引張り	$\sigma_{y} = 18^{*}$	$f_{\rm t} = 205$	$\sigma_{y} = 18$	$f_{\rm t} = 205$
110件/99	SUS304	せん断	$\tau_{xy} = 28*$	$f_{\rm s} = 118$	$\tau_{xy} = 28$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 52*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 5^*$	$f_{\rm t} = 205$	$\sigma_x = 5$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	$\sigma_{y} = 5^{*}$	$f_{\rm t} = 205$	$\sigma_y = 5$	$f_{\rm t} = 205$
170/4 / 9 / 505504	303304	せん断	$\tau_{xy} = 38^*$	$f_{\rm s} = 118$	$\tau_{xy} = 38$	$f_{\rm s} = 118$
	組合せ	σ _{fa} = 66*	$f_{\rm t} = 205$	σ _{f a} = 66	$f_{\rm t} = 205$	

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

(10) 燃料支持板

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
110体ラック SUS304	引張り	$\sigma_{x} = 13^{*}$	$f_{\rm t} = 205$	$\sigma_x = 13$	$f_{\rm t} = 205$	
	引張り	$\sigma_{y} = 41^{*}$	$f_{\rm t} = 205$	$\sigma_y = 41$	$f_{\rm t} = 205$	
110/47/99	SUS304	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	σ _{fa} = 36*	$f_{\rm t} = 205$	σ _{fa} = 36	$f_{\rm t} = 205$
		引張り	$\sigma_x = 28*$	$f_{\rm t} = 205$	$\sigma_x = 28$	$f_{\rm t} = 205$
170体ラック SUS304	CHC2O4	引張り	$\sigma_{y} = 92*$	$f_{\rm t} = 205$	$\sigma_y = 92$	$f_{\rm t} = 205$
	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$	
		組合せ	$\sigma_{fa} = 82*$	$f_{\rm t} = 205$	$\sigma_{fa} = 82$	$f_{\rm t} = 205$

(11) ベース

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
		算出応力	許容応力	算出応力	許容応力	
	引張り	$\sigma_x = 20^*$	$f_{\rm t} = 205$	$\sigma_x = 20$	$f_{\rm t} = 205$	
110体ラック	110/45 /a CUC204	引張り	$\sigma_{y} = 59^{*}$	$f_{\rm t} = 205$	$\sigma_{y} = 59$	$f_{\rm t} = 205$
110件/99	SUS304	せん断	$\tau_{xy} = 1*$	$f_{\rm s} = 118$	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 52*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 27^*$	$f_{\rm t} = 205$	$\sigma_x = 27$	$f_{\rm t} = 205$
170体ラック	CHCOOA	引張り	$\sigma_{y} = 69*$	$f_{\rm t} = 205$	$\sigma_y = 69$	$f_{\rm t} = 205$
170件 / 9 / 505304	SUS304	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$
	組合せ	σ _{fa} = 60*	$f_{\rm t} = 205$	$\sigma_{fa} = 60$	$f_{\rm t} = 205$	

注記*:基準地震動Ssによる算出応力の値 すべて許容応力以下である。

1.4.2 基礎ボルトに生じる応力

(単位:MPa)

ラック 材料	材料	材料 応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	, , , , ,	算出応力	許容応力	算出応力	許容応力	
110体ラック	110/4-	引張り	$\sigma_b = 115^{*1}$	$f_{\rm t\ s} = 455^{*2}$	$\sigma_b = 115$	$f_{\rm t\ s} = 455^{*2}$
110年799		せん断	$\tau_b = 27^{*1}$	$f_{\rm s\ b} = 350$	τ b = 27	$f_{\rm s\ b} = 350$
170体ラック	引張り	$\sigma_b = 129^{*1}$	$f_{\rm t\ s} = 455^{*2}$	$\sigma_b = 129$	$f_{\rm t\ s} = 455^{*2}$	
170年799		せん断	$\tau_b = 32^{*1}$	$f_{\rm s\ b} = 350$	$\tau_{\rm b} = 32$	$f_{\rm s\ b} = 350$

注記*1:基準地震動Ssによる算出応力の値

*2: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_b, f_{to}]$ より算出すべて許容応力以下である。

【使用済燃料貯蔵ラックの耐震性についての計算結果】

2. 重大事故等対処設備

2.1 設計条件

機器名称			ラック	固有周期 (s)		弾性設計用 又は静		基準地震動	S s	最高使用圧力 (MPa)	最高使用温度 (°C)	周囲環境温度 (°C)
		(m)		水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向	(MFa)	(0)	(C)
(古田)沙姆(小西本二) 7	常設耐震/防止	原子炉建屋	110 体ラック		0.05 以下*2			C _H =2.12 又は*3	$C_{V} = 1.56$	_	100	_
使用済燃料貯蔵ラック	常設/緩和	0. P. 22. 50*1 (0. P. 21. 38)	170 体ラック		0.05 以下*2	_	_	C _H =2.12又は*3	C _V =1.56	_	100	_

注記*1:基準床レベルを示す。

*2: 固有値解析により 0.05 秒以下であり、剛であることを確認した。

*3:基準地震動Ssに基づく設計用床応答曲線から得られる値

2.2 基礎ボルトの応力評価に用いる項目

144 144	ラッ	ック	m (kg)	m _F (kg)	m _R (kg)	m_{W} (kg)	A_b (mm^2)	C _v (-)	Q _{1E} (mm)	Q _{2E} (mm)	0 3E (mm)	0 4E (mm)	0 5E (mm)	0 _{6E} (mm)	0 _{7E} (mm)	0 8E (mm)	ℓ _{9E} (mm)	ℓ _{10 E} (mm)	0 11E (mm)	ℓ _{12E} (mm)
松用みの内容は商業機索の観点が	110 体	ラック					1590	1. 56	1741. 5	1577. 5	1413. 5	1249. 5	1085. 5	921. 5	757. 5	593. 5	429. 5	265. 5	101. 5	-
対窓は	170 体	ラック					1590	1. 56	2725. 5	2561. 5	2397. 5	2233. 5	2069. 5	1905. 5	1741. 5	1577. 5	1413. 5	1249. 5	1085. 5	921. 5
大業 均				,	•	,		•	•	,	•	•	,	,	•	1	,	1		
がある。	0 13E (mm)	0 14E (mm)	0 _{15E} (mm)	ℓ _{16E} (mm)	0 _{17E} (mm)	0 1N (mm)	0 _{2N} (mm)	Q 3N (mm)	0 4N (mm)	0 5N (mm)	0 _{6N} (mm)	0 _{7N} (mm)	0 8N (mm)	0 _{9N} (mm)	0 10N (mm)	ℓ _{g E} (mm)	$\ell_{ m g~N}$ (mm)	n _{1E} (-)	n _{2E} (-)	n 3E (-)
出上が	_	-	-	-	-	1568. 5	1408. 5	1248. 5	1088. 5	928. 5	741.5	581. 5	421.5	261.5	101.5	921.5	835	10	2	2
題今で	757. 5	593. 5	429. 5	265. 5	101. 5	1568. 5	1408. 5	1248. 5	1088. 5	928. 5	741. 5	581. 5	421.5	261.5	101.5	1413. 5	835	10	2	2
M M																				
ません。																				

	13E mm)	0 _{14E} (mm)	0 _{15E} (mm)	0 16E (mm)	0 _{17E} (mm)	0 1N (mm)	0 2N (mm)	0 3N (mm)	0 4N (mm)	0 5N (mm)	0 6N (mm)	0 7N (mm)	0 8N (mm)	0 9N (mm)	ℓ _{10 N} (mm)	$\ell_{\rm g\;E}$ (mm)	$\ell_{ m g~N}$ (mm)	n _{1E} (-)	n _{2E} (-)	n 3E (-)
	-	-	1	-	-	1568. 5	1408. 5	1248. 5	1088.5	928. 5	741. 5	581. 5	421.5	261. 5	101.5	921.5	835	10	2	2
75	57. 5	593. 5	429. 5	265. 5	101. 5	1568. 5	1408. 5	1248. 5	1088.5	928. 5	741. 5	581. 5	421. 5	261.5	101. 5	1413.5	835	10	2	2

幸田	
BZ C	
内容	
は商業機密	
業機!	
の観点だ	
794	
公開で	
]できませ,	
#	

n 4E (-)	n 5E (-)	n 6E (-)	n 7E (-)	n _{8E} (-)	n 9E (-)	n _{10E} (-)	n _{11E} (-)	n _{12E} (-)	n _{13E} (-)	n _{14E} (-)	n _{15E} (-)	n _{16E} (-)	n _{17E} (-)	n _{1N} (-)	n _{2N} (-)	n 3N (-)	n 4N (-)	n _{5N} (-)	n 6N (-)
2	2	2	2	2	2	2	10	-	-	-	-	-	-	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

n _{7N} (-)	n _{8N} (-)	n _{9N} (-)	n _{10N} (-)	n (-)
2	2	2	11	38
2	2	2	17	50

基礎ボルト材料	S y *1 (MPa)	S y (RT) (MPa)	S u*1 (MPa)	F (MPa)	F* (MPa)

注記*1:最高使用温度(100 ℃)で算出

ラック	地震の種類	F _N (N)	F _E (N)	$ m M_N$ (N·mm)	$M_{\rm E}$ (N·mm)
110 体ラック	弾性設計用地震動 S d 又は静的震度	_		-	
110 14 7 9 9	基準地震動 S s	1. 614×10^6	1. 435×10^6	5.138×10^9	4.098×10^9
170 体ラック	弾性設計用地震動 S d 又は静的震度	_	_	_	_
110 14 / 97	基準地震動 S s	2.518×10^6	2.071×10^6	7. 836×10^9	6. 659×10^9

2.3 計算数值

2.3.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック	材料	応力	弾性設計用 又は静		基準地震動Ss		
			NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	101	79	
110体ラック		せん断 τ _f	_	_	40	21	
		組合せ o fa	_	_	122	87	
		引張りσ _{ft}	_	_	134	57	
170体ラック		せん断 τ f	_	_	55	41	
		組合せ o f a	_	_	164	91	

(2) 補強板 a

(単位:MPa)

ラック	材料	応力	弾性設計用: 又は静		基準地別	통動Ss
			NS方向	EW方向	NS方向	EW方向
		引張りσ _{ft}			60	19
110体ラック	SUS304	せん断 τ f			46	35
		組合せ σ f a	_	_	100	63
		引張りσ _{ft}	_	_	104	20
170体ラック	SUS304	せん断 τ f	_	_	62	37
		組合せ σ f a	_	_	149	67

(3) 補強板 b

(単位:MPa)

						(()	
ラック	材料	応力	弾性設計用 又は静		基準地震動Ss		
	, , , ,		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	37	21	
110体ラック	SUS304	せん断 τ _f	_	_	32	13	
		組合せ σ f a	_	_	67	30	
		引張りσ _{ft}	_	_	57	19	
170体ラック	SUS304	せん断 τ _f	_	_	54	13	
		組合せ σ fa	_	_	110	29	

| 枠囲みの内容は商業機密の観点から公開できません。

(4) 補強板 c

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			NS方向	EW方向	NS方向	EW方向
	引張りσ _{ft}	_	_	75	70	
110体ラック	SUS304	せん断 τ f	_	_	32	48
		組合せ σ f a	_	_	93	108
		引張りσ _{ft}	_	_	116	53
170体ラック SUS304	SUS304	せん断 τ f	_	_	47	39
		組合せ o fa	-	_	141	86

(5) 補強板 d

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
		引張りσ _{ft}	_	_	99	135
110体ラック	SUS304	せん断 τ f	_	_	26	22
		組合せ σ f a	_	_	109	140
		引張りσ _{ft}	_	_	149	116
170体ラック	SUS304	せん断 τ f	_	_	45	23
		組合せ σ f a	_	_	168	123

(6) 補強板 e

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			NS方向	EW方向	NS方向	EW方向
	引張りσ _{ft}	_	_	73	30	
110体ラック	SUS304	せん断 τ f			5	9
		組合せ o fa			73	33
		引張りσ _{ft}	_	_	99	28
170体ラック SUS304	SUS304	せん断 τ _f	_	_	8	8
		組合せ o fa	_	_	100	31

(7) 補強板 f

(単位:MPa)

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動Ss	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	18	13	
	SUS304	引張り σ χ	_	_	2	2
110/4/99	303304	せん断 τ x y	_	-	29	2
		組合せ σ f a			52	12
		引張り σ x			16	11
17045 7	CUCOOA	引張り σ γ	_	_	1	3
170体ラック SUS304	505304	せん断 τ _{xy}		_	49	5
		組合せ σ f a	_	_	86	12

(8) 補強板 g

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
		, 2, 1	NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	1	1	
	SUS304	引張り σ χ	_	_	1	4
110/47/99	303304	せん断 τ x y	_	_	2	1
		組合せ σ f a	_	_	3	3
		引張り σ x	_	_	2	1
170体ラック	SUS304	引張り σ χ	_	_	2	3
170件 / ツク 503	303304	せん断 τ x y	_	_	3	0
		組合せ σ f a	_	_	5	3

(9) 補強板 h

(単位:MPa)

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動Ss	
			NS方向	EW方向	NS方向	EW方向
	引張り σ x	_	_	7	22	
110体ラック	1104= b CUCOO4	引張り σ χ	_	_	47	18
110/4/99	SUS304	せん断 τ _{xy}	-	_	12	28
		組合せ o f a		_	49	52
		引張り σ x	_	_	5	20
170体ラック	CHCOOA	引張り σ χ	-	_	5	16
170体ラック SUS304	せん断 τ _{xy}	_	_	38	31	
	組合せ σ fa	_	_	66	56	

(10) 燃料支持板

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		, 2, 1	NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	13	17	
	SUS304	引張り σ χ	_	_	41	26
110/47/99	303304	せん断 τ x y	_	_	2	4
		組合せ σ f a	_	_	36	23
		引張り σ x		_	28	12
170体ラック	CHCOOA	引張り σ y		_	92	29
170147 97 5083	505304	SUS304 せん断 τ x y		_	2	7
		組合せ σ f a	_	_	82	28

(11) ベース

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
	引張り σ x	_	_	20	13	
110体ラック	110/45 /a CUC20/	引張り σ χ	_	_	59	39
110体 / ググ	SUS304	せん断 τ _{xy}	_	_	1	5
		組合せ σ f a	_	_	52	36
		引張り σ x	_	_	27	7
170休与 万	CHCOOA	引張り σ χ	-	_	69	37
170体ラック SUS304	せん断 τ _{xy}	_	_	2	4	
	組合せ σ f a	_	_	60	35	

1.3.2 基礎ボルトに生じる応力

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	, , , ,	NS方向	EW方向	NS方向	EW方向	
110体ラック		引張りσь	_	_	115	83
110件/99		せん断τ ь	_	_	27	24
170体ラック		引張りσь	_	_	129	66
		せん断τ b	_	_	32	26

2.4 応力

2.4.1 部材に生じる応力

(1) 角管

(単位:MPa)

(+ <u>u</u> . m a)							
ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss		
	, , , ,		算出応力	許容応力	算出応力	許容応力	
	引張り	_	_	$\sigma_{\rm f} = 101$	$f_{\rm t} = 205$		
110体ラック		せん断	_	_	$\tau_{\rm f} = 40$	$f_{\rm s} = 118$	
		組合せ	_	_	$\sigma_{fa} = 122$	$f_{\rm t} = 205$	
		引張り	_	_	$\sigma_{\rm f}$ t = 134	$f_{\rm t} = 205$	
170体ラック		せん断	_	_	$\tau_{\rm f} = 55$	$f_{\rm s} = 118$	
		組合せ	_	_	$\sigma_{fa} = 164$	$f_{\rm t} = 205$	

すべて許容応力以下である。

(2) 補強板 a

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
		引張り		_	$\sigma_{\rm f} = 60$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断		_	$\tau_{\rm f} = 46$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 100$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{\rm f}$ t = 104	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 62$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{\rm fa} = 149$	$f_{\rm t} = 205$

(3) 補強板 b

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
	引張り	_	_	$\sigma_{\rm f} = 37$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断		_	$\tau_{\rm f} = 32$	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 67	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{\rm f} = 57$	$f_{\rm t} = 205$
170体ラック SU	SUS304	せん断	_	_	$\tau_{\rm f} = 54$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 110$	$f_{\rm t} = 205$

すべて許容応力以下である。

(4) 補強板 c

(単位:MPa)

(中/L. Mrd)						
ラック	材料	応力 .	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_{\rm f} = 70$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 48$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 108$	$f_{\rm t} = 205$
170体ラック		引張り	_	_	$\sigma_{\rm f} = 116$	$f_{\rm t} = 205$
	SUS304	せん断	_	_	$\tau_{\rm f}=47$	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 141	$f_{\rm t} = 205$

(5) 補強板 d

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
		, , , ,	算出応力	許容応力	算出応力	許容応力
	引張り		_	$\sigma_{\rm f}$ t = 135	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断		_	$\tau_{\rm f} = 22$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 140$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{\rm f}$ t = 149	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 45$	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 168	$f_{\rm t} = 205$

すべて許容応力以下である。

(6) 補強板 e

(単位:MPa)

(j± • in 6)						
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_{\rm f} = 73$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 5$	$f_{\rm s} = 118$
		組合せ		_	$\sigma_{fa} = 73$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{\rm f}$ t = 99	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 8$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 100$	$f_{\rm t} = 205$

(7) 補強板 f

(単位:MPa)

(+L. m.a)						
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
	引張り	_	_	$\sigma_x = 18$	$f_{\rm t} = 205$	
110体ラック	SUS304	引張り	_	_	$\sigma_y = 2$	$f_{\rm t} = 205$
110/4 / 9 /		せん断	_	_	$\tau_{xy} = 29$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 16$	$f_{\rm t} = 205$
170体ラック	CUCOOA	引張り	_	_	$\sigma_y = 1$	$f_{\rm t} = 205$
	SUS304	せん断	_	_	τ _{x y} = 49	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 86	$f_{\rm t} = 205$

すべて許容応力以下である。

(8) 補強板 g

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	,,,,	, 2, 1	算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_x = 1$	$f_{\rm t} = 205$
110体ラック SUS3	SUS304	引張り			$\sigma_y = 4$	$f_{\rm t} = 205$
110件/99	303304	せん断	_	_	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 3$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 2$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	_	_	$\sigma_y = 2$	$f_{\rm t} = 205$
170年799	303304	せん断	_	_	$\tau_{xy} = 3$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 5$	$f_{\rm t} = 205$

(9) 補強板 h

(単位:MPa)

(\(\pi\)\(\pi\). In (i)						
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	_	_	$\sigma_x = 22$	$f_{\rm t} = 205$	
110体ラック	SUS304	引張り	_	_	$\sigma_{y} = 18$	$f_{\rm t} = 205$
110件/99		せん断	_	_	$\tau_{xy} = 28$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 5$	$f_{\rm t} = 205$
170体ラック	CUCOOA	引張り	_	_	$\sigma_y = 5$	$f_{\rm t} = 205$
	SUS304	せん断			τ _{x y} = 38	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 66	$f_{\rm t} = 205$

すべて許容応力以下である。

(10) 燃料支持板

(単位:MPa)

(平位、脈音)						
ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_x = 13$	$f_{\rm t} = 205$
110体ラック	SUS304	引張り	_	_	$\sigma_y = 41$	$f_{\rm t} = 205$
110/4/99	303304	せん断	_	_	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	_	_	σ _{fa} = 36	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 28$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	_	_	$\sigma_y = 92$	$f_{\rm t} = 205$
	303304	せん断	_	_	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 82$	$f_{\rm t} = 205$

(11) ベース

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_x = 20$	$f_{\rm t} = 205$
110体ラック	SUS304	引張り	_	_	$\sigma_{y} = 59$	$f_{\rm t} = 205$
110体 / 9 9	303304	せん断	_	_	τ _{x y} = 1	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 27$	$f_{\rm t} = 205$
170体ラック	CHCSO4	引張り	_	_	$\sigma_{y} = 69$	$f_{\rm t} = 205$
	SUS304	せん断	_	_	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 60$	$f_{\rm t} = 205$

すべて許容応力以下である。

2.4.2 基礎ボルトに生じる応力

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		, , , ,	算出応力	許容応力	算出応力	許容応力
110体ラック		引張り		_	$\sigma_{\rm b} = 115$	$f_{\rm t\ s} = 444^*$
		せん断	_	_	$\tau_{b} = 27$	$f_{\rm s\ b} = 341$
170体ラック		引張り	_	_	$\sigma_b = 129$	$f_{\rm t\ s} = 444^*$
		せん断	_	_	$\tau_{b} = 32$	$f_{\rm s\ b}\!=341$

注記*: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_b, f_{to}]$ より算出すべて許容応力以下である。