本資料のらち，枠囲みの内容

| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－4－2－2 使用済燃料貯蔵ラック（第1，2号機共用）の耐震性 についての計算書

2021年5月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2．4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4． 1 地震応答解析及び構造強度評価方法 7
4.2 荷重の組合せ及び許容応力 11
4．2．1 荷重の組合せ及び許容応力状態 11
4．2．2 許容応力 11
4．2．3 使用材料の許容応力評価条件 11
4.3 解析モデル及び諸元 16
4． 4 固有周期 20
4.5 設計用地震力 23
4．6 計算方法 27
4．6．1 部材の応力 27
4．6．2 基礎ボルトの応力 29
4．7 計算条件 31
4.8 応力の評価 31
4．8．1 部材の応力評価 31
4．8．2 基礎ボルトの応力評価 31
5．評価結果 32
5.1 設計基準対象施設としての評価結果 32
5.2 重大事故等対処設備としての評価結果 32

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，使用済燃料貯蔵ラック（以下「ラック」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

ラックは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画 ラックの構造計画を表 2－1 に示す。

表 2－1 構造計画

2.2 評価方針

ラックの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1 構造強度上 の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」に て示すラックの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3 解析モデ ル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。確認結果を「5．評価結果」に示す。

ラックの耐震評価フローを図2－1 に示す。

図2－1 ラックの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S M E S N C 1 －2005／2007発電用原子力設備規格設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A ${ }_{\text {b }}$	基礎ボルトの軸断面積	mm^{2}
A ${ }_{\text {x }}$	部材の断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{y}}, \mathrm{A}_{z}$	部材のせん断断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
E	総弾性係数	MPa
F	設計•建設規格 SSB－3121．1又はSSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F ${ }_{\text {x }}$	部材に働く引張力	N
$\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$	部材に働くせん断力	N
Fi_{i}	ベース底部に働くせん断力（110体又は170体）	N
$\mathrm{f}_{\mathrm{j}} \mathrm{i}$	基礎ボルトに働く引張力（1本当たり）	N
$f_{\text {s }}$	部材の許容せん断応力	MPa
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	部材の許容引張応力	MPa
$f_{\text {t }}$ 。	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{t}	引張力とせん断力を同時に受ける基碮ボルトの許容引張応力	MPa
g	重力加速度（ $\mathrm{g}=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
$\ell_{g} \mathrm{i}$	ベース端から重心までの距離	mm
$\ell_{\mathrm{j} ~}^{\text {i }}$	ベース端から基礎ボルトまでの距離	mm
M_{i}	ベース底部の転倒モーメント（110体又は170体）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{z}}$	部材に働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	使用済燃料貯蔵時のラック全質量（110 体又は 170 体）	kg
m_{F}	燃料の質量	kg
m_{R}	ラックの質量	kg
m_{w}	ラックに含まれる水の質量	kg
n	基礎ボルトの全本数	－
$n \mathrm{n}_{\mathrm{i}}$	基礎ボルト各部の本数	－
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8 に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料	MPa
	の $40^{\circ} \mathrm{C}$ における値	
$\mathrm{Z}_{y}, \mathrm{Z}_{\mathrm{z}}$	部材の断面係数	mm^{3}
β s	刺激係数	－
σ b	基礎ボルトに生じる引張応力	MPa
σ_{x}, σ_{y}	シェル部材に生じる引張応力	MPa

記号	記号の説明	単位
σ_{fa}	部材に生じる組合せ応力	MPa
σ_{ft}	はり部材に生じる引張応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
τ_{f}	はり部材に生じるせん断応力	MPa
τ_{xy}	シェル部材に生じるせん断応力	MPa
$[\mathrm{M}]$	質量マトリックス	-
$\{\phi \mathrm{s}\}$	固有ベクトル	-

注1： $\mathrm{F}_{\mathrm{i}}, \mathrm{f}_{\mathrm{ji}}, \ell_{\mathrm{g}}, \ell_{\mathrm{ji}}, \mathrm{M}_{\mathrm{i}}$ 及び n_{ji} の添字 i の意味は，以下のとおりとする。

$$
\begin{aligned}
& \mathrm{i}=\mathrm{N}: \mathrm{NS} \text { (短辺) 方向 } \\
& \mathrm{i}=\mathrm{E}: \mathrm{EW} \text { (長辺) 方向 }
\end{aligned}
$$

注2： $\mathrm{f} \mathrm{j}_{\mathrm{i}}$ ，$\ell_{\mathrm{j}} \mathrm{i}$ 及び $\mathrm{n}_{\mathrm{j}} \mathrm{i}$ の添字 j はボルトの列番号を示すものとする。
注 $3: ~ \beta \mathrm{~S}$ ，$\{\phi \mathrm{S}\}$ の添字 S は次数を示すものとする。

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
設計震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用温度	${ }^{\circ} \mathrm{C}$	小数点以下第 1 位	四捨五入	整数位
質量	kg	-	—	整数位
長さ	mm	—	整数位＊1	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設計降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ラックの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる角管，補強板，燃料支持板，ベース及び基礎ボルトについて実施する。 ラックの耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）地震応答解析には，はり要素及びシェル要素を用いた有限要素法モデルによるスペク トルモーダル解析を用いる。
（2）ラックは，原子炉建屋の使用済燃料プールの底部（0．P．21．38m）に基礎ボルトにより固定されるものとする。
（3）ラックの質量には，使用済燃料の質量及びラック自身の質量のほか，ラックに含まれ る水の質量及びラック外形の付加質量＊を考慮する。
（4）地震力は，ラックに対して水平方向から作用するものとする。 ここで，水平方向地震力は，ラックの長辺方向に作用する場合及び短辺方向に作用す る場合を考慮する。
また，鉛直方向地震力は，水平方向地震力と同時に不利な方向に作用するものとす る。
（5）構造概念図（110 体ラックの例）を図 4－1 に，各ラックの構造概要図を図 4－2 及び図 4－3 に示す。

注記＊：機器が流体中で加速度を受けた場合に質量が増加したような効果を模擬した質量
$5 \times 1 \mid$ ラック
裕㻐板：C

5体ラック

図 4－1 構造概念図（110体ラック）

注記＊：補強板 a を橙，補強板 f を青，補強板 g を緑で色分けして示す。

図 4－2 構造概要図（110 体ラック）

注記＊：補強板 a を橙，補強板 f を青，補強板 g を緑で色分けして示す。
図 4－3 構造概要図（170 体ラック）
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ラックの荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
ラックの許容応力は，添付資料「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとお りとする。

4．2．3 使用材料の許容応力評価条件
ラックの許容応力評価条件のらち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 | | 機器名称 | 耐震設計上の
 重要度分類 | 機器等の区分 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 荷重の組合せ |
| :---: |

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊2：S s との組み合わせ， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。
ì

| 施設区分 | | 機器名称 | 設備分類＊1 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

＊2：重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1, ~ * 2 ~}$ （ボルト等以外）		許容限界＊1，＊2 （ボルト等）	
	一次応力		一次応力	
	引張り	せん断	引張り	せん断
III $_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot{ }_{\text {f }}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S} \text { の許容限界を用いる。) }\right) ~ \end{gathered}$				

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

注記 $* 1$ ：最高使用温度 $\left(100{ }^{\circ} \mathrm{C}\right)$ で算出

4.3 解析モデル及び諸元

ラックの解析モデルを図 4－4 及び図 4－5 に，解析モデルの概要を以下に示す。また，機器の諸元を表4－6に示す。

ラックは，110体，170体ラック各々について，はり要素及びシェル要素を用いた有限要素 モデルとする。

角管はそれぞれ等価な断面特性を持つ 1 本のはり要素，補強板 $\mathrm{a} ~ \mathrm{e}$ についてもそれぞれ同様にはり要素とし，補強板 $\mathrm{f} \sim \mathrm{h}$ ，燃料支持板及びベースはシェル要素とする。

解析モデルでは，角管をモデル化したはり要素をラックの角管のピッチに合わせて等間隔に配置し，補強板をモデル化したはり要素及びシェル要素で接続している。

また，同一方向への曲げモードが支配的となること及び角管間に存在する補強板を考慮し，角管同士の接触は考慮しない。

ベースは基礎ボルトをモデル化したバネ要素を介して床に固定されているものとする。
また，ラックの質量には，使用済燃料の質量，ラック自身の質量，ラックに含まれる水の質量及び付加質量を考慮し，使用済燃料，ラックに含まれる水の質量及び付加質量は，角管全長 にわたって等分布に与える。

本ラックの \square であり，\square 増加に従って縦弾性係数 が漸増し，固有周期については漸減する傾向を示す。このため，固有値解析，静的解析及び応答スペクトル解析にあたつては，縦弾性係数は
上限付近の実験値を用いるが，設計用床応答スペクトルから震度を設定するにあたつては， \square より想定される固有周期帯のなかでの最大値を評価用震度に用いる。

また，計算に用いる設計条件，固有周期の算出及び部材と基礎ボルトの応力評価に用いる要目を「4．地震応答解析及び構造強度評価」及び「5．評価結果」に示す。

解析コードは，「 N A S T R A N 」を使用し，解析コードの検証及び妥当性確認等の概要に ついては，「VI－5 計算機プログラム（解析コード）の概要」に示す。
\square
図 4－5 解析モデル（170体ラック）

表 4－6 機器諸元

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
$* 2: \square$ における実験値

4． 4 固有周期

固有値解析の結果を表4－7に，各モードにおける固有ベクトルの大きさを示した振動モード図を図 4－6～図 4－9 に示す。鉛直方向は，5次モード以降で卓越し，固有周期は，0．05秒以下 であり，剛であることを確認した。

S 次モードの刺激係数 $\beta \mathrm{s}$ は（4．1）式により算出される。尚，固有ベクトル $\{\phi \mathrm{s}\}$ は質量 マトリックス［M］で正規化した値を用いる。

$$
\begin{equation*}
\beta \mathrm{s}=\frac{\{\phi \mathrm{s}\}^{\mathrm{T}}[\mathrm{M}]\{1\}}{\{\phi \mathrm{s}\}^{\mathrm{T}}[\mathrm{M}]\{\phi \mathrm{s}\}} \tag{4.1}
\end{equation*}
$$

表 4－7 固有値解析結果

ラック	モード	固有周期 （s）	卓越方向	刺激係数		
				X	Y	Z
$\begin{aligned} & 110 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	5 次					
$\begin{aligned} & 170 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	6 次					

\square
図 4－6 振動モード（110 体ラック）1 次モード

図 4－7 振動モード（110 体ラック）2次モード \square
\square

図 4－9 振動モード（170 体ラック）2次モード

4.5 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表 4－8 及び表4－9に示す。

表 4－8 設計用地震力（設計基準対象施設）（1／2）
a． 110 体ラック

据付場所及び 床面高さ（m）		原子炉建屋 O．P． $22.50{ }^{* 1}$（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：S d ：7．0＊5 S s ：10．0＊5			鉛直：－
地震力		弾性設計用地震動 S d又は静的震度		基準地震動S s	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		2． $32 * 6$	－＊6	4． 19	－
2 次		2． $28^{* 6}$	－＊6	3.99	－
3 次		－＊6	－＊6	－	－
動的地震力		1． $13^{* 6}$	$0.91{ }^{* 6}$	2． 12	1． 56
静的地震力		0． $92 * 6$	0． $29{ }^{* 6}$	－	－

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
＊3： 1 次固有周期について記載
＊4：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊5：試験等により，妥当性が確認されている値。
＊6： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 4－8 設計用地震力（設計基準対象施設）（2／2）
b． 170 体ラック

据付場所及び 床面高さ（m）		原子炉建尾	P．22．50＊	0．P． $15.00^{* 2}$（0．P．21．38）	
固有周期（s）					
減衰定数（\％）		水平 $\mathrm{S} \mathrm{d}: 7.0{ }^{* 5} \mathrm{~S} \mathrm{~s} \mathrm{:} 10.0{ }^{* 5}$ 鉛直：－			
地震力		弹性設計用地震動 S d又は静的震度		基準地震動 S s	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		2． $39 * 6$	－＊6	4． 12	－
2 次		2． 23 ＊6	－＊6	3.81	－
3 次		－＊6	－＊6	－	－
動的	震力	1． $13 * 6$	0． 91 ＊6	2． 12	1． 56
静的	震力	0． $92^{* 6}$	0． $29 * *$	－	－

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
＊3： 1 次固有周期について記載
＊ 4 ：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊5：試験等により，妥当性が確認されている値。
＊6： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 4－9 設計用地震力（重大事故等対処設備）（1／2）
a． 110 体ラック

据付場所及び 床面高さ（m）		原子炉建屋 O．P．22．50＊1（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：10．0＊4 鉛直：－			
地震力		弹性設計用地震動 S d又は静的震度		基準地震動 S s	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		－	－	4.19	－
2 次		－	－	3.99	－
3 次		－	－	－	－
動的地震力		－	－	2． 12	1． 56
静的地震力		－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊ $2: 1$ 次固有周期について記載
＊ 3 ：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊ 4 ：試験等により，妥当性が確認されている値。

表 4－9 設計用地震力（重大事故等対処設備）（2／2）
b． 170 体ラック

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：試験等により，妥当性が確認されている値。

4.6 計算方法

4．6．1 部材の応力
部材についての応力計算は，図 4－4 及び図 4－5 の解析モデルにて，角管，補強板，燃料支持板及びベースから成る系全体での応力計算を解析コード「NASTRAN」を使用し て行い，本項に示す計算方法に従って引張応力，せん断応力及び組合せ応力を計算する。
（1）はり部材の応力
解析コード内では，各部材の局所座標系及び引張力 F_{x} せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ 及び曲げ モーメント $M_{y}, ~ M_{z}$ の働く向きを図 4－10に示すように設定している。

図 4－10 はり部材の応力計算モデル

引張力 F_{x} 及び曲げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ によりはり部材に生じる引張応力 $\sigma_{\mathrm{f}} \mathrm{t}$ は
（4．2）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ft}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{y}}}+\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{Z}_{\mathrm{z}}} \tag{4.2}
\end{equation*}
$$

せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ により部材に生じるせん断応力 τ_{f} は，（4．3）式により求め る。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\sqrt{\left(\frac{F_{y}}{A_{y}}\right)^{2}+\left(\frac{F_{x}}{A_{x}}\right)^{2}} \tag{4.3}
\end{equation*}
$$

組合せ応力 σ_{fa} は，（4．4）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{ft}}{ }^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \tag{4.4}
\end{equation*}
$$

（2）シェル部材の応力
解析コード内では，各部材の局所座標系，せん断応力 τ_{xy} 及び引張応力 $\sigma_{\mathrm{x}}, ~ \sigma \mathrm{y}$ の作用する向きを，図4－11に示すように設定している。

図 4－11 シェル部材の応力計算モデル

シェル部材の組合せ応力 σ_{fa} は，上記で計算したせん断応力 $\tau_{\mathrm{x}} \mathrm{y}$ ，引張応力 σ_{x} ， σ_{y} を用いて，（4．5）式より求める。
$\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2}-\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}+3 \cdot \tau_{\mathrm{xy}}{ }^{2}}$

4．6．2 基礎ボルトの応力
ラックの系全体での荷重計算を解析コード「NASTRAN」を使用して行い，求めら れた地震時のラックに作用する転倒モーメント M_{i} 及びベース底部に作用するせん断力 F_{i} が，図 4－12 のように負荷されるものとして基礎ボルトの応力を求める。

基礎ボルトの荷重状態を図 4－12 に示す。なお，図4－12のボルト列数は， 110 体ラック の N S 方向を想定して $\ell_{1 \mathrm{i}} \sim \ell_{10 \mathrm{i}}$ の 10 列までとしたが，ボルト列数はラック及び方向によ って異なるため，最大で $\ell_{1 \mathrm{i}} \sim \ell_{17 \mathrm{i}}$ の 17 列まで考慮する。

図 4－12 基礎ボルトの荷重状態（110 体ラックのN S 方向）
（1）引張応力
図 4－12 において支点まわりのモーメントの平衡により基礎ボルト 1 本当りの引張力 $\mathrm{f}_{1 \mathrm{i}} \sim \mathrm{f}_{\mathrm{j} \mathrm{i}}$ を求める。 $\mathrm{f}_{1 \mathrm{i}}>\mathrm{f}_{2 \mathrm{i}}>\cdots \cdots>\mathrm{f}_{\mathrm{ji}}$ の関係にあるので $\mathrm{f}_{1 \mathrm{i}}$ のみを（4．6）式より求める。

$$
\begin{equation*}
f_{1 i}=\frac{\ell_{1 \mathrm{i}} \cdot\left\{\sqrt{\mathrm{M}_{\mathrm{i}}^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right)^{2}}-\mathrm{m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right\}}{\mathrm{n}_{1 \mathrm{i}} \cdot \ell_{1 \mathrm{i}}{ }^{2}+\mathrm{n}_{1 \mathrm{i}} \cdot \ell_{2 i}{ }^{2}+\cdots \cdots+\mathrm{n}_{\mathrm{ji}} \cdot \ell_{\mathrm{ji}}{ }^{2}} . \tag{4.6}
\end{equation*}
$$

したがって，引張力 $\mathrm{f}_{1 \mathrm{i}}$ により基礎ボルトに生じる引張応力 σ_{b} は，（4．7）式に より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{f}_{1 \mathrm{i}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.7}
\end{equation*}
$$

ただし， $\mathrm{f}_{1 \mathrm{i}}$ の値が負となった場合は，引張力が生じないので以降の引張応力の計算は省略する。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.8}
\end{equation*}
$$

4．7 計算条件

応力解析に用いる自重及び荷重は，本計算書の【使用済燃料貯蔵ラックの耐震性についての計算結果】の設計条件及び機器要目に示す。

4． 8 応力の評価

4．8．1 部材の応力評価

4．6．1項で求めた各部材の引張応力 $\sigma_{\mathrm{f} \mathrm{t}}, ~ \sigma \mathrm{x}, ~ \sigma \mathrm{y}$ 及び組合せ応力 σ_{fa} が，許容引張応力 f_{t} 以下であること。

また，4．6．1項で求めた各部材のせん断応力 $\tau \mathrm{f}, ~ \tau \mathrm{xy}$ が，許容せん断応力 f_{s} 以下であ ること。

ただし，f_{t} 及び f_{s} は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5^{* 1}$
許容せん断応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$

注記 $* 1$ ：
引張強さと降伏点（0．2 \％耐力）の値は，SUS304 の規格値を上回っているので，安全側の評価とするため，F及びF ${ }^{*}$ 値は SUS304 の値を使用する。

4．8．2 基礎ボルトの応力評価

4．6．2項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式より求めた許容引張応力 $f_{\mathrm{t} \mathrm{s}}$ 以下 であること。

また，4．6．2 項で求めた基礎ボルトのせん断応力 $\tau \mathrm{b}$ が，せん断力のみを受ける基礎ボル トの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であること。

$$
\begin{equation*}
f_{\mathrm{ts}}=1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{4.9}
\end{equation*}
$$

$$
\begin{align*}
& \text { かつ } \\
& f_{\mathrm{ts}} \leqq f_{\mathrm{to}} \tag{4.10}
\end{align*}
$$

ただし，f_{t} 。及び $f_{\mathrm{s} \mathrm{b}}$ は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 $f_{\mathrm{t} \text { o }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足 しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は，基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足したため，弾性設計用地震動S d 及び静的震度による発生値の算出を省略した。
5.2 重大事故等対処設備としての評価結果

ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【使用済燃料貯蔵ラックの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び床面高さ （m）	ラック	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲噮境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向			
使用斎燃料貯蔵ラック	S	$$	110 体ラック		0．05以下＊${ }^{\text {2 }}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は ${ }^{\text {2 }} 4$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	66	－
			170 体ラック		0．05以下＊${ }^{\text {2 }}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 4$	$C_{v}=1.56$	－	66	－

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊ $3: ~ \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
${ }_{\omega}^{\omega}$
＊ 4 ：基準地震動 S s に基づく設計用床応答曲線から得られる値

	ラック		$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{aligned} & \mathrm{m}_{\mathrm{F}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{R}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{W}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}} \\ (-) \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{(11 \mathrm{E}} \\ (\mathrm{mm}) \end{gathered}$	$\ell_{12 \mathrm{E}}$
	110 体ラック						1590	1． 56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429.5	265.5	101.5	－
	170 体ラック						1590	1.56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249.5	1085.5	921.5
	$\begin{gathered} \ell_{13 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{14 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{15 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{16 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{17 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\overline{\ell_{6 \mathrm{~N}}}$	$\begin{aligned} & \ell_{7 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & l_{8 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\overline{\ell_{10 \mathrm{~N}}}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{2 \mathrm{E}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
	－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
	757.5	593.5	429.5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\begin{gathered} \mathrm{n}_{4 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{\text {TE }} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{8 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{n}_{\text {QE }} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{13 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{15 \mathrm{E}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{17 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 N} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{2 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{3 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{4 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{5 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{6 \mathrm{~N}} \\ & (-) \end{aligned}$
2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

注記 $* 1$ ：最高使用温度 $\left(66{ }^{\circ} \mathrm{C}\right)$ で算出

ラック	地震の種類	$\begin{aligned} & \hline \mathrm{F}_{\mathrm{N}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \hline \mathrm{M}_{\mathrm{N}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
110 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	1.614×10^{6}	1． 435×10^{6}	5． 138×10^{9}	4． 098×10^{9}
170 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	2.518×10^{6}	2． 071×10^{6}	7． 836×10^{9}	6． 659×10^{9}

1.3 計算数値

1．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り σ_{ft}	－	－	101	79
		せん断 τ_{f}	－	－	40	21
		組合せ $\sigma_{\text {fa }}$	－	－	122	87
170体ラック		引張り $\sigma_{\text {ft }}$	－	－	134	57
		せん断 $\tau_{\text {f }}$	－	－	55	41
		組合せ $\sigma_{\text {fa }}$	－	－	164	91

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {f }}$	－	－	60	19
		せん断 $\tau_{\text {f }}$	－	－	46	35
		組合せ $\sigma_{\text {fa }}$	－	－	100	63
170体ラック	SUS304	引張り σ_{ft}	－	－	104	20
		せん断 τ_{f}	－	－	62	37
		組合せ $\sigma_{\text {fa }}$	－	－	149	67

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	37	21
		せん断 $\tau_{\text {f }}$	－	－	32	13
		組合せ $\sigma_{\text {fa }}$	－	－	67	30
170体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	57	19
		せん断 τ_{f}	－	－	54	13
		組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	110	29

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	75	70
		せん断 τ_{f}	－	－	32	48
		組合せ $\sigma_{\text {fa }}$	－	－	93	108
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	116	53
		せん断 τ_{f}	－	－	47	39
		組合せ $\sigma_{\text {fa }}$	－	－	141	86

（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	99	135
		せん断 τ_{f}	－	－	26	22
		組合せ $\sigma_{\text {fa }}$	－	－	109	140
170体ラック	SUS304	引張り σ_{ft}	－	－	149	116
		せん断 τ_{f}	－	－	45	23
		組合せ $\sigma_{\text {fa }}$	－	－	168	123

（6）補強板 e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	73	30
		せん断 $\tau_{\text {f }}$	－	－	5	9
		組合せ $\sigma_{\text {fa }}$	－	－	73	33
170体ラック	SUS304	引張り σ_{ft}	－	－	99	28
		せん断 $\tau_{\text {f }}$	－	－	8	8
		組合せ σ_{fa}	－	－	100	31

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{x}	－	－	18	13
		引張り σ_{y}	－	－	2	2
		せん断 τ_{xy}	－	－	29	2
		組合せ $\sigma_{\text {fa }}$	－	－	52	12
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	16	11
		引張り σ_{y}	－	－	1	3
		せん断 τ_{xy}	－	－	49	5
		組合せ $\sigma_{\text {f a }}$	－	－	86	12

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $0_{\text {x }}$	－	－	7	22
		引張り σ_{y}	－	－	47	18
		せん断 τ_{xy}	－	－	12	28
		組合せ $\sigma_{\text {fa }}$	－	－	49	52
170体ラック	SUS304	引張り $0_{\text {x }}$	－	－	5	20
		引張り $\sigma_{\text {y }}$	－	－	5	16
		せん断 τ_{xy}	－	－	38	31
		組合せ $\sigma_{\text {fa }}$	－	－	66	56

(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	13
		引張り σ_{y}	－	－	59	39
		せん断 τ_{xy}	－	－	1	5
		組合せ $\sigma_{\text {fa }}$	－	－	52	36
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	27	7
		引張り $\sigma_{\text {y }}$	－	－	69	37
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {f a }}$	－	－	60	35

1．3．2 基礎ボルトに生じる応力
（単位： MPa ）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	115	83
		せん断 $\tau_{\text {b }}$	－	－	27	24
170体ラック		引張り $\sigma_{\text {b }}$	－	－	129	66
		せん断 $\tau_{\text {b }}$	－	－	32	26

1．4 応力

1．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{\mathrm{ft}}=101^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=101$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=40^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{f}}=40$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=122^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック		引張り	$\sigma_{\mathrm{f} \mathrm{t}}=134^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=134$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=55^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=55$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=164 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=164$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=60^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=60$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=46^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=100^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=104^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=104$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=62^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=62$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=149^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=149$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=37^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=37$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=32^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=32$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=67^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=67$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{f} \mathrm{t}}=57^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=57$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=54 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=54$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=110^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=110$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=70^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=70$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=48^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=48$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=108^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=108$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=116^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=116$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=47^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=47$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=141^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=141$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=135^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=135$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=22^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=22$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=140^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=140$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=149^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=149$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=45^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=45$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=168^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=168$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（6）補強板e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=73 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=73$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=5^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=5$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=73^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=73$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=99^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=99$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=8^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=8$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=100^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{x}=18 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=18$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=2$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=29 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x}} \mathrm{y}=29$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=16^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=16$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=1^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=1$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=49$＊	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=49$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=86^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=86$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=1^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=1$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=4^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=4$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x}}{ }=1 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x}}^{\mathrm{y}} \mathrm{l}=1$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=3^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=3$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{x}=2$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=2$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} y}=3^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=3$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=5$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=22^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=22$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=18^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=18$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} y}=28^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{xy}}=28$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=5$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=5$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=38^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{xy}}=38$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=66^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=66$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=13^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=13$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=41^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=41$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=2^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=36 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=36$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=28^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=28$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=92^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=92$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} y}=2^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=82^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（11）ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{x}=20^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{x}=20$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=59^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=59$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=1 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=1$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=27^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=27$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=69^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=69$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=2$＊	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=60^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=60$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。

1．4．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{\mathrm{b}}=115^{* 1}$	$f_{\mathrm{ts}}=455^{* 2}$	$\sigma_{\mathrm{b}}=115$	$f_{\mathrm{ts}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=27^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=27$	$f_{\text {s b }}=350$
170体ラック		引張り	$\sigma_{\mathrm{b}}=129 * 1$	$f_{\text {t s }}=455^{* 2}$	$\sigma_{\mathrm{b}}=129$	$f_{\mathrm{t} \mathrm{s}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=32^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=32$	$f_{\text {s b }}=350$

注記 $* 1$ ：基準地震動 S s による算出応力の値

$$
* 2: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \text { より算出 }
$$

すべて許容応力以下である。

【使用済燃料貯蔵ラックの耐震性についての計算結果】

2．重大事故等対処設備

2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	ラック	固有周期(s)		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鈖直方向	水平方向	鉛直方向			
使用済燃料貯蔵ラック	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O. P. } 22.50^{* 1} \\ & \text { (0. P. } 21.38 \text {) } \end{aligned}$	110 体ラック		0.05 以下＊ 2	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	100	－
			170 体ラック		$0.05{\text { 以下 }{ }^{*} \text { 2 }}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は ${ }^{\text {2 }} 3$	$C_{v}=1.56$	－	100	－

注記＊1：基準床レベルを示す。
＊2：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊3：基準地震動 S s に基づく設計用床応答曲線から得られる値
क

	ラック		$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{F}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{R}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{W}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{V}} \\ & (-) \\ & \hline \end{aligned}$	$\begin{aligned} & \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{9 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \ell_{10 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{11 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \ell_{12 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$
	110 体	ック					1590	1． 56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429.5	265.5	101.5	－
	170 体	ック					1590	1． 56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249.5	1085.5	921.5
	$\begin{gathered} \ell_{13 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{14 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\ell_{15 \mathrm{E}}$	$\begin{gathered} \ell_{(\mathrm{mm})} \end{gathered}$	$\begin{gathered} \ell_{(\mathrm{mm})} \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{iN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{~N}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
	－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
	757.5	593.5	429.5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\begin{gathered} \mathrm{n}_{4 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{7 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{8 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{9 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{13 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{15 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{17 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{4 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{~N}} \\ (-) \end{gathered}$
2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

$\stackrel{\rightharpoonup}{\nu}$	基礎ボルト材料	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{\text {y }}\left(\mathrm{R}^{(\mathrm{MPa})}\right) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$

注記 $* 1$ ：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出

ラック	地震の種類	$\begin{aligned} & \mathrm{F}_{\mathrm{N}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{N}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
110 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	1． 614×10^{6}	1． 435×10^{6}	5.138×10^{9}	4． 098×10^{9}
170 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	2． 518×10^{6}	2． 071×10^{6}	7． 836×10^{9}	6． 659×10^{9}

2.3 計算数値

2．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り σ_{ft}	－	－	101	79
		せん断 τ_{f}	－	－	40	21
		組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	122	87
170体ラック		引張り $\sigma_{\text {ft }}$	－	－	134	57
		せん断 τ_{f}	－	－	55	41
		組合せ $\sigma_{\text {f a }}$	－	－	164	91

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	60	19
		せん断 $\tau_{\text {f }}$	－	－	46	35
		組合せ $0_{\text {f a }}$	－	－	100	63
170体ラック	SUS304	引張り σ_{ft}	－	－	104	20
		せん断 τ_{f}	－	－	62	37
		組合せ $\sigma_{\text {f a }}$	－	－	149	67

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	37	21
		せん断 $\tau_{\text {f }}$	－	－	32	13
		組合せ $\sigma_{\text {fa }}$	－	－	67	30
170体ラック	SUS304	引張り σ_{ft}	－	－	57	19
		せん断 τ_{f}	－	－	54	13
		組合せ $\sigma_{\text {fa }}$	－	－	110	29

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	75	70
		せん断 τ_{f}	－	－	32	48
		組合せ $\mathrm{ffa}^{\text {f }}$	－	－	93	108
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	116	53
		せん断 τ_{f}	－	－	47	39
		組合せ $\sigma_{\text {fa }}$	－	－	141	86

（5）補強板 d

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	99	135
		せん断 τ_{f}	－	－	26	22
		組合せ $\mathrm{ffa}_{\text {f }}$	－	－	109	140
170体ラック	SUS304	引張り σ_{ft}	－	－	149	116
		せん断 $\tau_{\text {f }}$	－	－	45	23
		組合せ $\mathrm{ffa}_{\text {f }}$	－	－	168	123

（6）補強板 e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	73	30
		せん断 τ_{f}	－	－	5	9
		組合せ $\sigma_{\text {fa }}$	－	－	73	33
170体ラック	SUS304	引張り σ_{ft}	－	－	99	28
		せん断 τ_{f}	－	－	8	8
		組合せ $\sigma_{\text {fa }}$	－	－	100	31

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	18	13
		引張り σ_{y}	－	－	2	2
		せん断 τ_{xy}	－	－	29	2
		組合せ $\sigma_{\text {fa }}$	－	－	52	12
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	16	11
		引張り σ_{y}	－	－	1	3
		せん断 τ_{xy}	－	－	49	5
		組合せ σ_{fa}	－	－	86	12

（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	1	1
		引張り $\sigma_{\text {y }}$	－	－	1	4
		せん断 τ_{xy}	－	－	2	1
		組合せ $\sigma_{\text {fa }}$	－	－	3	3
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	2	1
		引張り σ_{y}	－	－	2	3
		せん断 τ_{xy}	－	－	3	0
		組合せ $\sigma_{\text {fa }}$	－	－	5	3

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	7	22
		引張り $\sigma_{\text {y }}$	－	－	47	18
		せん断 τ_{xy}	－	－	12	28
		組合せ $\sigma_{\text {fa }}$	－	－	49	52
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	5	20
		引張り $\sigma_{\text {y }}$	－	－	5	16
		せん断 τ_{xy}	－	－	38	31
		組合せ $\sigma_{\text {f a }}$	－	－	66	56

（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{x}	－	－	13	17
		引張り σ_{y}	－	－	41	26
		せん断 τ_{xy}	－	－	2	4
		組合せ σ_{fa}	－	－	36	23
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	28	12
		引張り σ_{y}	－	－	92	29
		せん断 τ_{xy}	－	－	2	7
		組合せ $\sigma_{\text {fa }}$	－	－	82	28

(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	13
		引張り $\sigma_{\text {y }}$	－	－	59	39
		せん断 τ_{xy}	－	－	1	5
		組合せ $\sigma_{\text {fa }}$	－	－	52	36
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	27	7
		引張り $\sigma_{\text {y }}$	－	－	69	37
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {fa }}$	－	－	60	35

1．3．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	115	83
		せん断 $\tau_{\text {b }}$	－	－	27	24
170体ラック		引張り $\sigma_{\text {b }}$	－	－	129	66
		せん断 $\tau_{\text {b }}$	－	－	32	26

2． 4 応力

2．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=101$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=40$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック		引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=134$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=55$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=164$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=60$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=104$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=62$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=149$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=37$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=32$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=67$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=57$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=110$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（4）補強板 c

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=70$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=48$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=108$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=116$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=47$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=141$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f}}{ }_{\mathrm{t}}=135$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=22$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=140$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=149$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=45$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=168$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（6）補強板 e

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=73$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=5$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=73$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=99$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=8$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=18$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=2$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=29$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{x}=16$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=1$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} y}=49$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=86$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=1$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=4$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} y}=1$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=3$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=2$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=2$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=3$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=5$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=22$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=18$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=28$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{x}=5$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=5$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=38$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}=66}$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=13$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=41$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{x y}=2$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=36$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=28$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=92$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=20$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=59$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=1$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=27$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=69$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}=60}$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。

2．4．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	－	－	$\sigma_{b}=115$	$f_{\mathrm{t} \mathrm{s}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=27$	$f_{\mathrm{sb}}=341$
170体ラック		引張り	－	－	$\sigma_{\mathrm{b}}=129$	$f_{\mathrm{t} \mathrm{s}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=32$	$f_{\mathrm{s} \text { b }}=341$

注記 $*: ~ f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

