> 本資料のうち, 枠囲みの内容は当社の商業機密を含むため, 又は他社の機密事項を含む可能性があるため公開できません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－27＿改 0
提出年月日	2021 年 5 月 14 日

補足－600－27 海水ポンプ室門型クレーンの耐震性についての計算書に関する補足説明資料

1．はじめに
女川 2 号機の海水ポンプ室門型クレーン（Cクラス施設）は，下部に設置された上位ク ラス施設である原子炉補機冷却海水ポンプ等に対して，波及的影響を及ぼさないことを確認する必要があるため，添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性 についての計算書」において耐震評価結果を示している。

本書は，添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書」に関する補足説明資料の位置づけであり，評価に用いた解析手法の適用性，評価用地震動の選定方法等についてまとめたものである。

①海水ポンプ室門型クレーンの耐震評価に用いた解析手法の適用性に関する補足説明
海水ポンプ室門型クレーンがレール上に固定されていないという構造上の特徴を踏 まえ，水平方向へのすべりと鉛直方向の車輪部の浮上りを考慮した解析モデルによる非線形時刻歴応答解析を適用しているため，設置変更許可申請の内容も踏まえ，以下の資料にてその妥当性を補足する。

添付 1 海水ポンプ室門型クレーンへの非線形時刻歴応答解析の適用性
添付2 先行実績との構造／評価手法比較
添付 3 海水ポンプ室門型クレーンの地震時挙動に関する補足説明
（2）海水ポンプ室門型クレーンの耐震評価条件に関する補足説明
海水ポンプ室門型クレーンの耐震評価に用いた地震動の選定方法（材料物性の不確 かさ等に関する検討含む）やワイヤロープ長さ設定の考え方について以下の資料に示 す。

添付4 海水ポンプ室門型クレーン評価用地震動の選定
添付5 ワイヤロープの長さと吊荷の速度変化及び衝撃荷重との関係
（3）主要部材以外の評価結果，影響検討項目に関する補足説明
添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書」 に記載した主要部材以外（車輪部，脱輪防止装置と接触する躯体，ブレーキ制動力） の評価結果，側面接触（車輪—レール間，脱輪防止装置—レール躯体）による摩擦力 に対する影響検討結果及びすべりに対するストッパへの影響検討結果を以下の資料に示す。

添付 6 地震時の本体車輪部及び脱輪防止装置が衝突するレール躯体の評価
添付 7 主巻ワイヤのブレーキ制動力
添付 8 側面の接触による摩擦力の影響
添付 9 海水ポンプ室門型クレーンの地震時におけるストッパへの影響
（4）海水ポンプ室門型クレーンの改造概要に関する補足説明
海水ポンプ室門型クレーンについては耐震性向上のための改造工事を実施するた め，その概要について以下の資料に示す。

添付10海水ポンプ室門型クレーン改造概要

2．添付資料

添付1 海水ポンプ室門型クレーンへの非線形時刻歴応答解析の適用性
添付2 先行実績との構造／評価手法比較
添付 3 海水ポンプ室門型クレーンの地震時挙動に関する補足説明
添付 4 海水ポンプ室門型クレーン評価用地震動の選定
添付5ワイヤロープの長さと吊荷の速度変化及び衝撃荷重との関係
添付 6 地震時の本体車輪部及び脱輪防止装置が衝突するレール躯体の評価
添付 7 主巻ワイヤのブレーキ制動力
添付 8 側面の接触による摩擦力の影響
添付 9 海水ポンプ室門型クレーンの地震時におけるストッパへの影響
添付 10 海水ポンプ室門型クレーン改造概要

：今回提出範囲

海水ポンプ室門型クレーンへの非線形時刻歴応答解析の適用性

1．概要

女川 2 号機海水ポンプ室門型クレーン（以下「門型クレーン」という。）が上位クラス施設へ波及的影響を及ぼさないことを確認するため，基準地震動 S s に対して十分な構造強度を有することを確認する必要がある。構造概要図を図1－1に示す。

門型クレーンがレール上に固定されていないという構造上の特徴を踏まえ，水平方向へ のすべりと鉛直方向の車輪部の浮上りを考慮した解析モデルによる非線形時刻歴応答解析を適用する。

解析モデル概要図を図1－2に示す。

図 1－1 構造概要図

図 1－2 解析モデル概要図

2．先行実績（大間 1 号機原子炉建屋クレーン）との構造比較
門型クレーンに非線形時刻歴応答解析を適用するにあたつて，先行実績として大間1号機原子炉建屋クレーン（以下「原子炉建屋クレーン」という。）で適用実績があるため，そ れぞれの構造や特徴を比較し，適用性について確認する。

2.1 全体構造

（1）構造概要
原子炉建屋クレーンは，トロリ式天井クレーンに分類されるものであり，2 本のレ ール上を走行する方式である。走行レール間はガーダと呼ばれる部材が渡された桁構造で，ガーダ下部に設けられている車輪を介して走行レール上に設置されている。 また，ガーダ上部には横行レールとトロリが設置され，吊荷の吊上げ，吊下げ及び移動が行われる。

門型クレーンは，トロリ式橋型クレーンに分類されるものであり，2 本のレール上 を走行する方式である。走行レール間はトロリ式天井クレーンと同様にガーダが渡 された桁構造となっている。ガーダ下部には脚が設けられており，この脚の下部の車輪を介して走行レール上に設置されている。ガーダ上部にはトロリ式天井クレー ンと同じく横行レールとトロリが設置され，吊荷の吊上げ，吊下げ及び移動が行わ れる。

両設備の概要図について図1－3に示す。
（2）全体構造
原子炉建屋クレーンの本体構造はガーダ，サドルと呼ばれる鋼構造物が主体とな

つている。トロリ本体も同様に鋼構造物で構成されている。ガーダは走行レール上 に，トロリは横行レール上にともに 4 箇所にある車輪を介して固定されずに設置さ れていることから地震時には水平方向にすべり，鉛直方向に浮上りが発生する。

門型クレーンの本体構造はガーダ，サドル及び脚と呼ばれる鋼構造物が主体とな つている。トロリ本体も同様に鋼構造物で構成されている。脚は走行レール上に， トロリは横行レール上にともに 4 箇所にある車輪を介して固定されずに設置されて いることから地震時には，原子炉建屋クレーンと同様，水平方向にすべり，鉛直方向に浮上りが発生する。
（3）構造の特徴比較
原子炉建屋クレーンと門型クレーンの構造について特徴を比較した結果を表1－1 に示す。

両設備の違いは脚の有無だけであり，それ以外の構造物としての特徴は類似して いる。また，レールと 4 箇所の車輪が固定されずに接触し，水平方向にすべり，鉛直方向に浮上りが発生する挙動は両クレーンで類似している。

図 1－3 大間1号機原子炉建屋クレーン及び女川 2 号機門型クレーンの構造概要図

表 1－1 構造の特徴比較

	大間 1 号機 原子炉建屋クレーン	女川 2 号機 門型クレーン
構造概要	- 2本のレール間を跨ぐ桁構造 - ガーダ上にトロリを設置 - 車輪を介してレール上に設置	同左
主要構造物	－ガーダ －サドル －トロリ	－ガーダ －サドル －トロリ －脚
構造形状	鋼構造物（炭素鋼）	同左
	溶接構造物	同左

注記＊：下線は相違点を示す。

2.2 荷重伝達

原子炉建屋クレーンと門型クレーンの本体及びトロリはいずれも固定されずにレー ル上に車輪を介して設置されており，以下に示す荷重伝達機能も同様であると考えら れる。
（1）クレーン本体走行方向の水平力
a．クレーン本体
（a）クレーン本体は走行レール上に固定されずに設置されているため，走行方向の水平力が加わっても，クレーン本体は走行レール上を滑るだけで，クレーン本体には走行レールと走行車輪間の最大静止摩擦力以上の水平力は加わらない。
（b）クレーン本体の走行車輪は，駆動輪及び従動輪で構成される。
（c）駆動輪は，電動機及び減速機等の回転部分と連結されているため，地震力が車輪部に加わると回転部分が追随できず，最大静止摩擦力以上の水平力が加われ ば走行レール上を滑る。
（d）従動輪は回転が拘束されないため，クレーン本体の動きに合わせて自由に回転 することからクレーン本体走行方向の水平力をクレーン本体に伝達しない。
b．トロリ
（a）トロリはクレーン本体の走行レールに対して直交方向の関係にある横行レール上に設置していることから，クレーン本体の走行方向の地震力はガーダ本体及 び横行レールを介してトロリへ作用する。
（2）トロリ走行方向（横行方向）の水平力
a．クレーン本体
（a）クレーン本体はトロリの横行レールに対して直交方向の関係にある走行レール上に設置していることから，トロリ走行方向（横行方向）の地震力は横行レー ルを介してクレーン本体へ作用する。
b．トロリ
（a）トロリはガーダ上の横行レール上に固定されずに設置されているため，水平力 がトロリに加わっても，トロリは横行レール上を滑るだけで，トロリ本体には横行レールと横行車輪間の最大静止摩擦力以上の水平力は加わらない。
（b）トロリの横行車輪は，駆動輪及び従動輪で構成される。
（c）トロリの駆動輪は，電動機及び減速機等の回転部分と連結されているため，地震力が車輪部に加わると回転部分が追随できず，最大静止摩擦力以上の水平力 が加われば横行レール上を滑る。
（d）従動輪は回転が拘束されないため，トロリの動きに合わせて自由に回転するこ とからトロリ走行方向の水平力をトロリ本体に伝達しない。
（3）鉛直力
クレーン本体及びトロリは，共にレールと固定されていないことから，鉛直方向 の地震力によってはレールから浮上がる可能性がある。

2.3 車輪まわりの構造比較

今回工認で適用する解析手法は車輪まわりのすべりや浮上りを考慮した非線形時刻歴応答解析であり，車輪まわりの特徴を踏まえたモデル化が必要であることから，車輪とレールの接触部分について，原子炉建屋クレーンと門型クレーンの詳細な構造比較を行ら。原子炉建屋クレーン及び門型クレーンの車輪まわりの模式図を図 1－4 に示 す。
（1）原子炉建屋クレーン
原子炉建屋クレーンの車輪まわりは，走行装置が前後左右の 4 隅に配置された構造であり，各走行装置は 2 輪ずつの車輪で構成されている。車輪と走行レール間に は鉛直上向きの拘束がなく浮上りが発生する構造となっており，クレーンと走行レ ールの接触点は，ともに鋼製部材である車輪と走行レールの接触となる。また，車輪については，駆動装置が設置された駆動輪（2隅分）とクレーンの動きに追随して回転する従動輪（2 隅分）があり，全体の半分の車輪で駆動力を伝達する機構となっ ている。

トロリの車輪まわりは，前後左右で 1 輪ずつ配置された構造となっており，クレ ーン本体の車輪と同様に鉛直方向の拘束がないため浮上りが発生する構造となって いる。駆動輪と従動輪についてもクレーン本体の車輪と同様に前後で役割の異なる

車輪が配置されている。
クレーン本体車輪まわり及びトロリ車輪まわりには，それぞれ脱線防止ラグ及び トロリストッパが設置されているため，車輪がレールから浮上がる現象が発生した場合でも，脱線を防止する構造となっている。
（2）門型クレーン
門型クレーンの本体車輪まわりは，図 1－4 に示すとおり走行装置が前後左右の 4隅に配置された構造であり，各走行装置は 2 輪ずつの車輪で構成されている。車輪 とレール間は鋼製部材同士の接触で上向きの拘束がなく浮上りが発生する点や駆動輪と従動輪が半数ずつで車輪が構成されている点など，原子炉建屋クレーンと同一 の構造となっている。トロリの車輪まわりについても車輪（駆動輪，従動輪）配置や接触状況などについて同一構造となっている。

門型クレーン本体車輪まわり及びトロリ車輪まわりについては改造工事として脱輪防止装置を設置するため，原子炉建屋クレーンと同様に，車輪がレールから浮上 がる現象が発生した場合でも，脱線を防止する構造である。

（a）概略構造比較

図 1－4 原子炉建屋クレーン及び門型クレーンの構造比較（1／2）

（b）車輪まわり構造詳細比較

図 1－4 原子炉建屋クレーン及び門型クレーンの構造比較（2／2）

3．先行実績（大間1号機原子炉建屋クレーン）との評価方法の比較
3.1 評価方法の比較

原子炉建屋クレーンと門型クレーンの評価方法の比較を表1－2に示す。門型クレー ンの解析手法や解析モデル，境界条件などの解析評価の基本となる設定は原子炉建屋 クレーンと同一の評価方法である。

入力地震動はそれぞれの設備を設置している位置の地震動を適用するため，評価方法の差異にはあたらない。

表 1－2 原子炉建屋クレーンと門型クレーンの評価方法比較

3.2 地震応答解析モデルの比較

原子炉建屋クレーン及び門型クレーンの解析モデル概要を図1－5に示す。
門型クレーンは原子炉建屋クレーンと同様に，クレーンの主要構成部材をはり要素， ワイヤ部分をトラス要素でモデル化している。また，車輪部についても原子炉建屋ク レーンと同様に水平方向のすべり及び鉛直方向の浮上りを考慮するため，ギャップ要素及びばね，減衰要素でモデル化している。
\square
（a）大間 1 号機 原子炉建屋クレーン

（b）女川 2 号機海水ポンプ室門型クレーン

図 1－5 解析モデル概要図

朹囲みの内容は当社の商業機密を含むため，又は他社の
機密事項を含む可能性があるため，公開できません。

4．非線形時刻歴応答解析の適用性（まとめ）
女川 2 号機海水ポンプ室門型クレーンに対して非線形時刻歴応答解析を適用するにあ たり，先行実績（大間 1 号機原子炉建屋クレーン）との構造及び評価方法等の比較を行っ た。

前述の 2 項のとおり，全体構造，荷重伝達及び車輪まわりの構造について比較した結果，先行実績のある原子炉建屋クレーンに対して，門型クレーンは，クレーン本体の鋼構造物 として脚が存在することのみが差異であり，これ以外の全体構造，荷重伝達及び車輪まわ り構造が同様であることを確認した。なお，クレーン本体の鋼構造物として脚が存在する ことについては，適切に解析モデルに反映することで問題はない。

また，前述の 3 項のとおり，評価方法及び解析モデルについて比較した結果，解析モデ ルの設定方法として， 3 次元はり要素によるモデル化，水平方向のすべり，鉛直方向の浮上りの挙動を考慮する非線形要素の考え方が同様であることを確認した。

したがって，女川 2 号機海水ポンプ室門型クレーンの耐震評価に対して，先行実績のあ る非線形時刻歴応答解析の適用性があると判断した。

先行実績との構造／評価手法比較（1／2 BWR プラント）

先行実績との構造／評価手法比較（2／2PWRプラント）

	項目		玄海3号機	海水ポンプ室門型クレーン	伊方 3 号機	海水ポンプ室門型クレーン	女川 2 号機 海水ポンプ室門型クレーン
	構造概要						同左
	主要構造物						同左
	構造形状						同左
	構造概略図						
評 価	解析手法						非線形時刻歴応答解析
	解析モデル						同左
	車輪—レール間 の境界条件						同左
	地震力	水平					同左
	入力地震動						同左
							同左
手 法 比	解析プログラム						ABAQUS Ver6．14－1 （ABAQUS は既往知見＊において，固有周期や車輪部荷重等 に対して地震応答解析結果と振動試験結果を比較した検証 が実施されており，適用性に問題ないと考える。）
較	時刻歴の保守性検討						考慮 ASME Time History Broadening －女川 2 号機門型クレーンは，クレーンがレール上をすべる ため，水平方向応答に対して非線形特性を有していること に加え，浮上がり挙動を考慮しているため，鉛直方向応答 に対しても非線形特性を有していることから，ASME の手法を基に保守性を検討。

＊：「平成 19 年度 原子力施設等の耐震性評価技術に関する試験及び調查 動的上下動耐震試験（クレーン類）に係る報告書（ 08 耐部報 -0021 ，（独）原子力安全基盤機構）」「平成 20 年度 原子力施設等の耐震性評価技術に関する試験及び調査 動的上下動耐震試験（クレーン類）に係る報告書（ 09 耐部報－0008，（独）原子力安全基盤機構）

海水ポンプ室門型クレーンの地震時挙動に関する補足説明

1．はじめに
本資料は，海水ポンプ室門型クレーンの解析における摩擦力の設定と解析の前提条件（車輪はレール上にあり，レール直角方向に対しては脱輪防止装置又はトロリストッパが接触 して機能する）の考え方について補足説明するものである。

2．車輪とレールとの摩擦力及び脱輪防止装置との接触による摩擦力の考慮
門型クレーンはレール上を車輪で移動する構造であり，レールと車輪は固定されていな いため，地震時には走行方向（レール長手方向）にはすべりが発生し，摩擦力以上の荷重 を受けない構造である。

門型クレーン本体車輪部とレール間の取り合い部を例とすると，接触面としては，鉛直方向（走行車輪～走行レール間）と水平方向（脱輪防止装置～走行レール躯体間）が挙げ られる（図3－1）。

鉛直方向には常時自重が加わつており，地震力による鉛直方向加速度が上向きに1Gを超えるごく僅かな時間を除き，常に車輪はレールに接触し垂直抗力 N が発生する状態であ ることから，評価上，摩擦係数 $\mu(=0.3)$ 一定の条件の下，垂直抗力 N を時々刻々変化さ せた摩擦力f $\mathrm{f}(=\mu \mathrm{N})$ を考慮している。

なお，基準地震動 S s による地震力に対して，駆動輪に接続される電動機及び減速機等 の回転部が破損し駆動輪が自由に回転する可能性も考えられるが，その場合，摩擦力は低減することから，上記のように摩擦力を考慮した評価を行うことで保守的な評価となって いる。

これに対して，水平方向には常時作用する荷重が無いが，水平方向（横行方向）の地震力によって，脱輪防止装置がレール躯体に接触する場合に垂直抗力 R が発生する。しかし ながら，地震力は交番荷重であること及び，接触後も部材間の跳ね返りが発生することか ら，側面の接触時間はごく僅かな時間となる。また，大きな摩擦力が発生するためには，横行方向の地震力により瞬間的に垂直抗力 R が発生する間に，走行方向の大きな地震力が同時に作用する必要があることから，各方向地震力の非同時性を考慮し，側面の接触によ る摩擦力は考慮していない（ただし，念のため側面の接触による摩擦力考慮した場合の影響を添付 8 に示す）。

図 3－1 鉛直方向と水平方向の接触面

3．レール等の破損による解析条件への影響
門型クレーンのモデル化にあたっては，車輪がレール上にあり，レール直角方向に対し ては脱輪防止装置またはトロリストッパが接触して機能することを前提としている。

ここでは，地震応答解析モデルの前提としている「レール上に車輪が乗っていること」 が脱輪防止装置またはトロリストッパの健全性を確認することで満足されることを，門型 クレーン本体車輪部を例に示す。

門型クレーンに地震力が作用する際は，車輪が走行レール上に乗り上がる挙動が想定さ れるが，脱輪防止装置が走行レール躯体に接触することで横行方向の移動量は制限される。脱輪防止装置は構造強度部材として基準地震動S s によって生じる地震力に対して許容応力を満足する設計としており，地震で破損することは無いため，脱輪防止装置と走行レ ール躯体間のギャップ量に相当する移動量となった場合でも車輪が走行レール上から落 ちることは無い（図 3－2）。なお，トロリ車輪部についても同様である。

また，脱輪防止装置と走行レール躯体が接触する前に車輪から走行レールに荷重が伝わ ることになるが，車輪のつばと走行レールが接触（移動量 17.5 mm ）してから脱輪防止装置と走行レール躯体が接触（移動量 20 mm ）し，移動量が制限されるまでの移動量は 2.5 mm （ $=20.0 \mathrm{~mm}-17.5 \mathrm{~mm}$ ）程度であることから，脱輪防止装置が接触して機能する前に鋼製部材である走行レールが大きく破損することは無いと考える。このように，車輪のつばの有無によらず構造強度部材である脱輪防止装置が機能することで車輪が走行レールにとど まる設計であることから，車輪のつばは地震応答解析の前提条件に影響するものではない。

以上より，地震時に脱輪防止装置がレール躯体に接触して機能する前に車輪がすべり面 である走行レールから落下することや，走行レールが大きく破損することが無いことから脱輪防止装置が機能する前に地震応答解析モデルの前提を満足しなくなるおそれは無い と考える。

（b）地震力により車輪のつばが走行レールに接触（水平移動量 17.5 mm ）

（c）地震力により脱輪防止装置と走行レール躯体が接触（水平移動量 20.0 mm ）

図 3－2 本体車輪部概念図
（本図は車輪が走行レールから外れないことを示すための概念図であり，構造物の大きさ や間隙については実物と異なる。）

海水ポンプ室門型クレーン評価用地震動の選定

1．はじめに
海水ポンプ室門型クレーン（以下「門型クレーン」という。）の耐震評価において は，地震加速度によって浮上りが発生する可能性があるため，その浮上り状況を適切に評価するために，多質点はりモデルによる非線形時刻歴応答解析を適用している。した がって，スペクトルモーダル解析のように地震応答の包絡条件を用いた耐震評価ではな く，基準地震動 S s を個別に適用した耐震評価を実施している。
添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書」の評価に適用している地震動（以下「評価用地震動」という。）は，基準地震動 S s 7 波のう ち，門型クレーンの耐震評価に影響の大きい（発生応力や浮上り量が大きい）地震動を選定していることから，本資料では地震動選定の考え方についてまとめるものである。以下 2 項では基準地震動 7 波のうち門型クレーンの耐震評価に影響の大きい地震動の選定手順と結果を，3項では設計用床応答曲線で考慮している周期方向 $\pm 10 \%$ の拡幅に相当す る門型クレーンに対する不確かさの考慮方法と結果を示す。

2．門型クレーンの耐震評価に適用する地震動の選定
本項では，基準地震動S s 7 波のらち門型クレーンの耐震評価に適用する地震動の選定方法と結果を示す。門型クレーンはレール上に設置されているため，地震時にクレーン本体ガーダもしくはトロリの滑りが発生する構造特徴があることから，門型クレーンに対する地震影響の大きい応答方向を絞り込んだ上で，更に影響の大きい地震動を選定す る手順で実施している。
2.1 地震応答方向の選定

門型クレーンは図4－1に示すとおり，走行レール上を剛脚，摇脚を有するクレーン本体がーダが走行し，クレーン本体ガーダ上部の横行レール上をトロリが走行する。剛脚，摇脚は脱輪防止装置，トロリはトロリストッパを備えており，各々浮上り代を設 けた鉛直方向の浮上りを拘束しない構造である。そのため，地震発生時にクレーン本体ガーダは走行方向（NS方向）に，トロリは横行方向（EW方向）に滑りを生じること になり，鉛直方向（UD方向）については固定されていないため浮上りが発生する。

構造特徴を踏まえ，門型クレーンに対する各方向の地震影響は以下のとおり整理で きることから，地震応答方向としては，横行方向（EW方向）及び鉛直方向（UD方向） の 2 方向を選定する。
（1）走行方向（NS方向）
地震時に発生する荷重が静摩擦係数による摩擦力を超過した場合に門型クレーン全体に滑りが発生するため，走行方向（NS方向）に対しては地震によってクレーン本体がーダに有意な荷重が発生しない。
（2）横行方向（EW方向）
地震時にトロリが滑るものの，走行レールに対して直角方向となるクレーン本体 ガーダ，剛脚及び摇脚は脱輪防止装置で拘束され，地震による水平力がクレーン本体ガーダに発生する。
（3）鉛直方向（UD方向）
鉛直下向き方向は海水ポンプ室躯体に支持され地震による鉛直力が発生し，鉛直上向き方向は固定されていないためクレーン本体ガーダ及びトロリに浮上りが発生 する。

図4－1 構造概要図

2.2 地震動の選定

2．2．1 地震動の選定方法
女川原子力発電所第2号機の基準地震動 S s は表4－1（「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」より抜粋）に示すとおり 7 種類の地震動を策定していることから，この中から図4－2に示す（1）～（3）の手順で門型クレー ンの耐震評価に影響の大きい地震動を選定する。

表 4－1 基準地震動 S s の概要

基準地震動		最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s－D 2	海洋プレート内地震（SMGA＊マントル内）の応 答スペクトルに基づく手法による基準地震動	1， 000	600
S s－D 3	海洋プレート内地震（SMGA＊地殻内）の応答ス ペクトルに基づく手法による基準地震動	800	500
$\mathrm{S} s$－F 1	プレート間地震の断層モデルを用いた手法に よる基準地震動（応力降下量（短周期レベル） の不確かさ）	717	393
$\mathrm{S} s-\mathrm{F} 2$	プレート間地震の断層モデルを用いた手法に よる基準地震動（SMGA＊位置と応力降下量（短周期レベル）の不確かさの重畳）	722	396
S s－F 3	海洋プレート内地震（SMGA＊マントル内）の断層モデルを用いた手法による基準地震動 （SMGA＊マントル内集約）	835	443
S s－N 1	2004年北海道留萌支庁南部地震（K—NET港町）の検討結果に保守性を考慮した地震動	620	320

注記 $*$ ：強震動生成域
［地震動の選定手順（2．2項）］

［選定した地震動の妥当性確認手順（2．3項）］

①代表地震動に次いで門型クレーンの耐震評価に影響 の大きい地震動の選定
 （1）～（3）で選定した代表地震動に次いで影響が大き
 い地震動（妥当性確認用地震動）を同様の手順で選定

③代表地震動及び妥当性確認用地震動の耐震評価結果の比較
代表地震動と妥当性確認用地震動の結果を比較し，選定した代表地震動 •••表4－5 の妥当性を確認

図4－2 門型クレーンの耐震評価に適用する地震動の選定及び妥当性確認手順

2．2．2 地震動の選定結果

図4－2に示す手順で検討した結果を以下に示す。
（1）門型クレーンの主要モードの整理
表4－2に主要モードを整理した結果を示す。
（2）主要モードの固有周期で加速度最大の地震動の整理
表4－2に主要モードで加速度が最大となる地震動／節点を整理した結果を示 す。
（3）門型クレーンの耐震評価に影響の大きい地震動の選定
（1），（2）で整理した結果に基づき門型クレーンの耐震評価に影響の大きい地震動（以下「代表地震動」という。）を選定する。

表4－2に示すとおり，S s－D 1 及びS s－D 2 の 2 種類の地震動が，門型ク レーンの主要モードの多くで最大加速度となっていることが分かる。特に水平
（横行）方向は S s－D 1 と S s－D 2 がほぼ全てのモードで最大加速度とな っている。これは，表4－1のとおりS s－D 1 及び S s－D 2 は，応答スペクト ルに基づく手法による基準地震動であり全ての周期帯において安定的な応答を示すことが要因と考えられる。

一方，S s－F 2 や S s－F 3 が鉛直方向の特定のモードにおいて最大加速度となっているものの，これらの地震動は断層モデルを用いた手法による基準地震動であることから，周期帯によって応答の大きさにばらつきがありS s－ D 1 や $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ と比較すると水平方向への影響は小さい。

以上の内容を踏まえ，門型クレーンの水平（横行）方向及び鉛直方向いずれ の主要モードに対しても影響が大きいと考えられる，S s－D 1 及び S s－D 2 を代表地震動として選定した。選定結果を表4－3にまとめる。
（4）代表地震動による耐震評価
代表地震動による評価結果（表4－5）は2．3項にて後述する。

表4－2 門型クレーンの耐震評価に影響の大きい地震動の整理

O

図4－3 海水ポンプ室の地震応答解析モデル
\square
図4－4 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：剛脚側の場合の水平モード固有周期との重ね合わせ（ $1 / 2$ ）

図4－4 門型クレーンに適用する基準地震動 S S の床応答スペクトル
トロリ位置：剛脚側の場合の水平モード固有周期との重ね合わせ（2／2）

図4－5 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：中央の場合の水平モード固有周期との重ね合わせ（ $1 / 3$ ）

図4－5 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：中央の場合の水平モード固有周期との重ね合わせ（2／3）

図4－5 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：中央の場合の水平モード固有周期との重ね合わせ（3／3）

A領域拡大図

B 領域拡大図

C 領域拡大図

図4－6 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：摇脚側の場合の水平モード固有周期との重ね合わせ（2／2）
\square

図4－7 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：剛脚側の場合の鉛直モード固有周期との重ね合わせ（2／2）

図4－8 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：中央の場合の鉛直モード固有周期との重ね合わせ（ $1 / 2$ ）

図4－8 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：中央の場合の鉛直モード固有周期との重ね合わせ（ $1 / 2$ ）

図4－9 門型クレーンに適用する基準地震動 S s の床応答スペクトル
トロリ位置：揺脚側の場合の鉛直モード固有周期との重ね合わせ（2／2）

表 $4-3 \quad$ 代表地震動の選定結果		
地震動の種類	方向ごとに適用する節点位置	
	水平（横行）方向（EW方向）	鉛直方向（UD方向）
S s－D 1	2701	1708
S s－D 2	2701	2701

2.3 選定した地震動の妥当性確認

2．2項で選定した代表地震動（S s－D 1 及び $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）について，選定の妥当性を確認するため，代表地震動（S s－D 1 及びS s－D 2 ）に次いで影響が大きい と考えられる地震動を選定して耐震評価結果を比較する。妥当性確認は，2．2項と同様，図4－2に示す（1）～（3）の手順で実施し，その結果を以下に示す。
（1）代表地震動に次いで門型クレーンの耐震評価に影響の大きい地震動の選定
表4－4に示すとおり，代表地震動（S s－D 1 及び S s－D 2）に次いで門型ク レーンの耐震評価に影響の大きい地震動（以下「妥当性確認用地震動」という。） としては，鉛直方向で影響の大きいS s－F 2 （水平方向節点：2701，鉛直方向節点：1708）を選定した。選定理由は以下のとおりである。

後述する代表地震動（S s－D 1 及び S s－D 2）の評価結果（表4－8参照）か ら，クレーン本体ガーダの裕度が最も小さくなることが分かっており，さらにトロ リが中央に位置する場合が最も厳しい結果となっている。これはクレーン本体がー ダ中央部が鉛直方向に撓むモードに対してトロリ質量が中央部に位置することで影響を及ぼしているためである。

以上より，トロリ中央位置での鉛直方向主要モードのらち刺激係数が最も大きい モード（刺激係数1位のモード）で最大加速度となるS s－F 2 を妥当性確認用地震動として選定する。
（2）妥当性確認用地震動による耐震評価表4－5に妥当性確認用地震動（S s－F 2 ）による耐震評価結果を示す。
（3）代表地震動及び妥当性確認用地震動の評価結果の比較
表4－5に，代表地震動（S s－D 1 及び S s－D 2）及び妥当性確認用地震動（ S s －F 2）による門型クレーンの耐震評価結果を整理，比較したものを示す。評価結果 の比較は，裕度最小部位がクレーン本体ガーダであることを踏まえて，当該部位に最 も厳しい条件であるトロリ中央位置での結果について整理している。
各部位の評価結果を比較し最も厳しい結果となっているケースを表中に赤字で示し ている。連結構（摇脚側）の引張応力の評価を除いて，他評価では全て代表地震動 （ $\mathrm{S} \mathrm{s}-\mathrm{D} 1$ 及び $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）の発生値が最大となっている。なお，連結構（摇脚側）の引張応力については妥当性確認用地震動（S s－F 2 ）が最大値となっている ものの，引張も考慮した組合せ応力ではS s－D 2 が最大値となっており部材に対し て最も厳しい地震動はS s－D 2 であると考えられるため，代表地震動としてS s－ D 1 及びS s－D 2 を選定した判断は妥当である。

表4－4 門型クレーンの妥当性確認用地震動の選定

表4－5 代表地震動（S s－D 1，S s－D 2）及び妥当性確認用地震動 （S s－F 2 ）の耐震評価結果の比較（1／4）
a．クレーン本体ガーダ

応力 分類	トロリ 位置	吊荷	地震動の種類	発生値 （MPa）	許容限界 (MPa)	裕度
曲げ 応力	中央	有	S s－D 1	240	280	1． 16
			S s－D 2	207		1． 35
			S s－F 2	238		1． 17
せん断 応力	中央	有	S s－D 1	30	161	5． 36
			S s－D 2	26		6． 19
			S s－F 2	25		6． 44

b．剛脚

応力 分類	トロリ 位置	吊荷	地震動の種類	発生値 （MPa）	許容限界 （MPa）	裕度
引張 応力	中央	有	S s－D 1	5	280	56.0
			S s－D 2	9		31.1
			S s－F 2	3		93.3
圧縮 応力	中央	有	S s－D 1	55	262	4.76
			S s－D 2	60		4． 36
			S s－F 2	48		5． 45
$\begin{aligned} & \text { 曲げ } \\ & \text { 応力 } \end{aligned}$	中央	有	S s－D 1	181	280	1． 54
			S s－D 2	180		1． 55
			S s－F 2	131		2.13
組合せ 応力	中央	有	S s－D 1	0． 70	1	1． 42
			S s－D 2	0.69		1． 44
			S s－F 2	0.51		1． 96

表4－5 代表地震動（S s－D 1，S s－D 2）及び妥当性確認用地震動 （S s－F 2 ）の耐震評価結果の比較（2／4）
c．摇脚

応力 分類	トロリ 位置	吊荷	地震動の種類	発生値 （MPa）	許容限界 (MPa)	裕度
$\begin{aligned} & \text { 引張 } \\ & \text { 応力 } \end{aligned}$	中央	有	S s－D 1	7	280	40.0
			S s－D 2	8		35.0
			S s－F 2	4		70.0
圧縮 応力	中央	有	S s－D 1	64	210	3.28
			S s－D 2	71		2． 95
			S s－F 2	59		3.55
曲げ 応力	中央	有	S s－D 1	118	280	2． 37
			S s－D 2	149		1． 87
			S s－F 2	109		2.56
組合せ 応力	中央	有	S s－D 1	0.61	1	1． 63
			S s－D 2	0.71		1． 40
			Ss－F 2	0.55		1． 81

d．連結構（剛脚側）

応力 分類	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	地震動の種類	発生値 （MPa）	許容限界 (MPa)	裕度
引張 応力	中央	有	S s－D 1	17	280	16． 4
			S s－D 2	14		20.0
			S s－F 2	11		25.4
圧縮 応力	中央	有	S s－D 1	6	250	41.6
			S s－D 2	10		25.0
			S s－F 2	5		50.0
曲げ 応力	中央	有	S s－D 1	145	280	1.93
			S s－D 2	195		1． 43
			S s－F 2	109		2.56
組合せ 応力	中央	有	S s－D 1	0.53	1	1． 88
			S s－D 2	0.71		1． 40
			S s－F 2	0． 40		2． 50

表4－5 代表地震動（S s－D 1，S s－D 2）及び妥当性確認用地震動 （S s－F 2 ）の耐震評価結果の比較（3／4）
e．連結構（摇脚側）

応力 分類	トロリ 位置	吊荷	地震動の種類	発生値 （MPa）	許容限界 (MPa)	裕度
	中央	有	S s－D 1	14	280	20.0
応力			S s－D 2	14		20.0
			$\mathrm{So}-\mathrm{F} 2 *$	18＊		15.5
応力	中央	有	S s－D 1	7	246	35.1
			$\mathrm{S} s-\mathrm{D} 2$	13		18． 9
			S s－F 2	7		35.1
応力	中央	有	S s－D 1	113	280	2． 47
			$\mathrm{S} \mathrm{s}-\mathrm{D} 2$	156		1． 79
			S s－F 2	115		2． 43
組合せ 応力	中央	有	S s－D 1	0． 43	1	2． 32
			S s－D 2	0.61		1.63
			S s－F 2	0． 43		2． 32

注記＊：連結構（摇脚側）の引張応力に対して妥当性確認用地震動（S s－F 2 ）の評価が最大値で あるが，他応力も考慮した組合せ応力ではS s－D 2 の評価が最大値となっている。
f．脱輪防止装置＊

| 荷重の種類 | トロリ
 位置 | 吊荷 |
| :---: | :---: | :---: | :---: | :---: |\quad| 地震動の種類 |
| :---: | | 車輪荷重 |
| :---: |
| (kN) |

注記＊：脱輪防止装置については解析で算出される最大車輪荷重に対して応力評価を実施している ため，地震動ごとの比較は車輪荷重で示す。なお，「VI－2－11－2－1 海水ポンプ室門型クレ ーンの耐震性に関する計算書」に示すとおり，最も評価の厳しい脱輪防止装置においても裕度2．01の余裕を有している。

表4－5 代表地震動（S s－D 1，S s－D 2）及び妥当性確認用地震動 （S s－F 2）の耐震評価結果の比較（4／4）
g．クレーン浮上り量

トロリ 位置	吊荷	地震動の種類	発生値 （mm）	許容限界 （mm）	裕度
中央	有	S s－D 1	6	75	12.5
		S s－D 2	11		6． 81
		S s－F 2	6		12.5

h．トロリ浮上り量

トロリ 位置	吊荷	地震動の種類	発生値 （mm）	許容限界 （mm）	裕度
中央	有	S s－D 1	35	170	4． 85
		S s－D 2	10		17.0
		S s－F 2	15		11.3

i．吊具

荷重の種類	トロリ 位置	吊荷	地震動の種類	吊具荷重 (kN)	許容荷重 (kN)	裕度
吊具 荷重	中央	有	S s－D 1	4207	6396＊	1.52
			S s－D 2	3120		2.05
			S s－F 2	3844		1.66

注記 $*: ~$ 評価対象部位はワイヤロープとフックであり許容荷重が異なることから許容荷重のより低いワ
イヤロープの許容荷重を記載する。

3．門型クレーンに適用する時刻歴応答解析における材料物性の不確かさ等に関する検討耐震評価のスペクトルモーダル解析に適用する設計用床応答曲線は，地盤及び間接支持構造物の物性等の不確かさによる固有周期のシフトを考慮して周期方向に $\pm 10 \%$ の拡幅したものを用いている。門型クレーンの評価では，設計用床応答曲線を用いない時刻歴応答解析手法を採用していることから，地盤及び間接支持構造物（海水ポンプ室）の固有周期に対する不確かさを，時刻歴応答解析において考慮する必要がある。

そこで，本項では設計用床応答曲線で考慮している周期方向 $\pm 10 \%$ の拡幅に相当する不確かさの考慮方法と結果を示す。

門型クレーンの耐震評価における不確かさの考慮方法は，固有周期のシフトを考慮して いない海水ポンプ室の応答解析結果より算出される時刻歴応答加速度波による解析に加 えて，ASME Boiler Pressure Vessel Code SECTION III，DIVISION1－NONMANDATORY APPENDIX N－1222．3 Time History Broadeningの規定を参考に，設計用床応答曲線の拡幅 の考慮分として加速度時刻歴波の時間刻みを土 10% シフトさせた加速度時刻歴波による解析を行う方針とする。また，$\pm 10 \%$ シフトさせた範囲の中に設計用床応答曲線のピーク が存在する場合は，A S M E の規定に基づきピーク位置を考慮した評価も行うことで不確 かさを考慮する。時刻歴応答をシフトする場合の概念を図4－10に示す。

A S ME Boiler Pressure Vessel Code SECTION III，DIVISION1－NONMANDATORY APPENDIX N－1222．3 Time History Broadening より引用

－オリジナルの時刻歴波に加えて時間刻みを $\pm 10 \%$ シフトさせた時刻歴波を

作成

周期（s）
－各時刻歴波を床応答スペクトル化
－機器の固有周期が床応答スペクトルピークの谷間に存在する場合，ピークと
合うような時刻歴波を作成し，時刻歴応答解析を実施

図 4－10 Time History Broadening 概念図
3.1 時刻歴応答解析の不確かさの考慮方法

評価部位は門型クレーンの主要構造であり，耐震計算書で評価している評価部位の うち裕度最小となるクレーン本体ガーダ（詳細は2項参照）に着目して検討を行う。な お，不確かさの検討における耐震評価方法は添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書」と同様に，非線形挙動を考慮した時刻歴応答解析で評価する。また，解析モデルについても同計算書と同じモデルを適用する。

時刻歴応答解析の不確かさの考慮方法に係る検討フローを図4－11に示す。

> (1) 2 項で選定した代表地震動 (S s - D 1 , S$\mathrm{s}-\mathrm{D} 2)$ のらち, 裕度最小部位のクレーン本体ガーダに厳しい地震動を選定。
（2）裕度最小部位のクレーン本体ガーダに最も影響の大きい固有周期（水平，鉛直それぞれ から選定）に対して $\pm 10 \%$ シフトした範囲の中で最も大きいピークを有する地震動を選定。

> (1) 選定した地震動における基準となる地震動$\quad(\pm 10 \%$ トフレしていないもの) 及び土 10% シフトした地震動を用いて地震応答解析を実施。 $\pm 10 \%$ シフを考慮した地震動は時間長さを 1.1 倍 $(+10 \%)$ 又は 0.9 倍 (-10%) シフトして作成した地震動を入力。
> (2)選定した地震動について, 床応答のピークと固有周期が合致するよう地震動をシフトし
> て作成した地震動を入力。

図 4－11 時刻歴応答解析の不確かさに係る検討フロー

3.2 不確かさの検討に用いる地震動の選定

図4－11のフローに基づく，不確かさの検討に用いる地震動（以下「不確かさ検討用地震動」という。）の選定方法と選定結果を以下に示す。

3．2．1 不確かさ検討用地震動の選定方法

不確かさ検討用地震動については以下に示す2通りの方法で選定する。ここで，設計用床応答曲線（拡幅なし）と門型クレーンの固有周期（土10\％シフトも含む）を重 ね書きした結果を図4－12～図4－17に示す。
（1）2項で選定した代表地震動（S s－D 1，S s－D 2）のうち，門型クレーン全体 の裕度最小部位であるクレーン本体ガーダが厳しくなる地震動を選定する。選定 した地震動に対して $\pm 10 \%$ のシフトを考慮した加速度時刻歴波を作成し評価に適用 する。
（2）クレーン本体ガーダに最も影響の大きい水平（横行）方向及び鉛直方向の固有周期に着目し，$\pm 10 \%$ シフト範囲の中で最も大きなピークを有する地震動を選定し， ピークと固有周期が合致するようシフトした加速度時刻歴波を作成し評価に適用 する。なお，地震動の選定に当たつてはクレーン本体ガーダに最も厳しい条件と してトロリ中央位置，吊荷有の条件での固有周期に着目する。

3．2．2 不確かさ検討用地震動の選定結果

不確かさ検討用地震動の選定結果を表4－6に示す。
3．2．1項の（1）の観点で，表4－5に示す代表地震動の評価結果を踏まえ， $\mathrm{S} \mathrm{s}-\mathrm{D} 1$
（水平（横行）方向節点：2701，鉛直方向節点：1708）を選定し，固有周期をシフ トしない基準ケースと $\pm 10 \%$ シフトケースの合計 3 ケースの評価を実施する。

3．2．1項の（2）の観点で，最弱部位のクレーン本体ガーダに影響の最も大きい水平
（横行）方向固有周期
 のモード）へ最大ピークを合致させるケースとし て S s－F 1 （水平（横行）方向節点：2701，鉛直方向節点：1708）の－7．9\％ケース を実施する。なお，図4－14に示すとおりS s－F 1 の最大ピーク位置における水平
（横行）方向節点1708と2701の加速度はほぼ同一値となることから，より厳しい評価となるように，本固有周期以外の影響も考慮し，他の固有周期で加速度がより大 きくなる節点2701を対象ケースとして選定している。

また，同様に図4－17に示すとおり鉛直方向固有周期
 のモード）へ最大 ピークを合致させるケースとしてS s－F 2 （水平方向節点：2701，鉛直方向節点：1708）の基準ケースを実施する。なお，S s－F 2 の基準ケースは最大ピーク の周期と固有周期に差があるものの，その差は僅か 0.2%（加速度の差は 0.9% ）であ ったことから，結果に及ぼす影響は軽微と判断し基準ケースで評価を実施している ものである。

表 4－6 不確かさ検討用地震動の選定結果

選定方法	不確かさ検討用地震動		備考	
	地震動	時間刻みシフト	トロリ 位置	吊荷
（代表地震動）	S s－D $1, \mathrm{~S}$ s -D 2	基準	中央	有
3．2．1（1）	S s－D 1	＋ 10% シフト		
		－10\％シフト		
3．2．1（2）	S s－F 2	基準		
	S s－F 1	-7.9% シフト		

\square
図4－12 設計用床応答曲線（水平（横行方向），減衰 2% ）とクレーン固有周期
（トロリ位置中央の場合の水平方向モード）との重ね書き 床応答スペクトル全体図

図4－13 設計用床応答曲線（水平（横行方向），減衰 2% ）とクレーン固有周期 （トロリ位置中央の場合の水平方向モード）との重ね書き 固有周期帯拡大図（1／3）

図4－13 設計用床応答曲線（水平（横行方向），減衰 2% ）とクレーン固有周期 （トロリ位置中央の場合の水平方向モード）との重数書き 固有周期帯拡大図（ $2 / 3$ ）

図4－13 設計用床応答曲線（水平（横行方向），減衰2 \％）とクレーン固有周期
（トロリ位置中央の場合の水平方向モード）との重ね書き 固有周期帯拡大図（3／3）

図4－14 設計用床応答曲線（水平（横行方向），減衰 2% ）とクレーン固有周期 （クレーン本体ガーダ評価に影響が大きい水平方向モード）との重ね書き図
\square
図4－15 設計用床応答曲線（鉛直方向，減衰2\％）とクレーン固有周期
（トロリ位置中央の場合の鉛直方向モード）との重ね書き 床応答スペクトル全体図

図4－16 設計用床応答曲線（鉛直方向，減衰 2% ）とクレーン固有周期
（トロリ位置中央の場合の鉛直方向モード）との重ね書き 固有周期帯拡大図（ $1 / 3$ ）

図4－16 設計用床応答曲線（鉛直方向，減衰2\％）とクレーン固有周期
（トロリ位置中央の場合の鉛直方向モード）との重ね書き 固有周期帯拡大図（ $2 / 3$ ）

図4－16 設計用床応答曲線（鉛直方向，減衰 2% ）とクレーン固有周期
（トロリ位置中央の場合の鉛直方向モード）との重ね書き 固有周期帯拡大図（3／3）

図4－17 設計用床応答曲線（鉛直方向，減衰 2% ）とクレーン固有周期
（クレーン本体ガーダ評価に影響が大きい鉛直方向モード）との重ね書き図
3.3 時刻歴波の時間刻み $\pm 10 \%$ シフト

不確かさ検討用地震動のうち時間刻み土 10% シフトした例を図 4－18に示す。＋ 10% シフトについては時刻歴波の時間刻みを 1.1 倍，-10% シフトについては時間刻 みを 0.9 倍したものを用いている。なお，この時間シフトは，不確かさ検討用地震動 の 3 方向全てに対して適用している。

図 4－18 不確かさ検討用地震動の時刻歴波の時間刻み士 10% シフトの例
3.4 地震応答解析結果

3．2項で選定した不確かさ検討用地震動に対する地震応答解析結果を表4－7に示す。本表には裕度最小部位であるクレーン本体ガーダの最も厳しい応力分類である曲げ応力について整理している。

地震応答解析の結果，表 4－7に示す通り，全ての解析ケースの発生応力は許容限界 を満足しており，代表地震動のS s－D 1 を＋10\％シフトした解析ケースの結果が最も大きな発生応力となっていることを確認した。

なお，海水ポンプ室門型クレーンは，車輪部を非線形要素により模擬しており，ト ロリやクレーン本体の浮き上がりによる非線形の影響が含まれるため，地震応答解析 では複雑な挙動を示すことから，発生応力の大きさの傾向は必ずしも設計用床応答曲線と一致していないと考えられる。

以上より，地震応答解析における材料物性の不確かさ等を考慮した場合の耐震評価 について問題のないことを確認した。

表 4－7 材料物性の不確かさ等を考慮した地震応答解析結果

解析ケース				応力 分類	発生応力(MPa)	許容限界(MPa)	選定 方法＊1
トロリ 位置	吊荷	地震動	時間刻み シフト				
中央	有	S s－D 1	基準	曲げ 応力	240	280	（代表地震動）
			＋ 10% シフト		$263 * 2$		3．2．1（1）
			-10% シフト		235		
		S s－D 2	基準		207		（代表地震動）
		S s－F 2	基準		238		3．2．1（2）
		S s－F 1	-7.9% シフト		221		

注記＊1：3．2．1項に示す地震動選定の観点を示す
＊2：添付書類「VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書」の記載値

4．評価用地震動の選定結果
2 項で基準地震動 7 波より代表地震動を選定し， 3 項で材料物性の不確かさ等を考慮 したケースで評価する地震動を選定した。以上の検討結果を踏まえて，門型クレーンの耐震評価に適用する評価用地震動及びそれぞれの地震動に対する解析ケースを整理し た内容を表4－8に示すとともに，各解析ケースの評価結果一覧を表4－9に示す。

表 4－9に示す評価結果のらち，各評価部位及び応力分類で最も発生応力が大きくなる ケース（赤字のケース）を，門型クレーンに厳しい評価結果として，添付書類「VI－2－11－ 2－1 海水ポンプ室門型クレーンの耐震性についての計算書」に代表で記載しているも のである。

表 4－8 評価用地震動及び解析ケースの整理結果

No．	解析ケース				方向ごとに適用する節点位置		選定理由
	$\begin{gathered} \hline \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト	水平 （横行方向）	鉛直方向	
1	剛脚側	有	S s－D 1	基準	2701	1708	代表地震動ケー スとして評価
2			S s－D 2	基準	2701	2701	
3＊		無	S s－D 1	基準	2701	1708	
4	中央	有	S s－D 1	基準	2701	1708	
5			S s－D 2	基準	2701	2701	
6＊		無	S s－D 1	基準	2701	1708	
7	揺脚側	有	S s－D 1	基準	2701	1708	
8			S s－D 2	基準	2701	2701	
9＊		無	S s－D 1	基準	2701	1708	
10	中央	有	S s－D 1	$+10 \%$ シフト	2701	1708	不確かさ等を考慮したケースと して評価
11				-10% シフト	2701	1708	
12			S s－F 2	基準	2701	1708	
13			S s－F1	-7.9% シフト	2701	1708	

注記＊：No．3，6，9については裕度最小部位のクレーン本体ガーダが最も厳しくなるS s－D 1 に対して吊荷無しの条件で評価を実施しているもの。

表4－9 門型クレーンの耐震評価結果一覧（1／13）
a－1．クレーン本体ガーダ 曲げ応力

No．	解析ケース				$\begin{gathered} \text { 発生値 } \\ \text { (MPa) } \end{gathered}$	許容限界(MPa)	裕度
	$\begin{aligned} & \text { トロリ } \\ & \text { 位置 } \end{aligned}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	176	280	1． 59
2			S s－D 2	基準	179		1.56
3		無	S s－D 1	基準	139		2． 01
4	中央	有	S s－D 1	基準	240		1． $16^{* 1}$
5			S s－D 2	基準	207		1.35
6		無	S s－D 1	基準	160		1． 75
7	摇脚側	有	S s－D 1	基準	185		1.51
8			S s－D 2	基準	160		1． 75
9		無	S s－D 1	基準	145		1.93
10	中央	有	S s－D 1	＋ 10% シフト	263		1． $06{ }^{* 2}$
11				－10\％シフト	235		1． 19
12			S s－F 2	基準	238		1． 17
13			S s－F1	－7．9\％シフト	221		1． 26

注記 $* 1$ ：時間刻みシフト基準のケースのうち，裕度が最小となったもの。
＊2：材料物性等の不確かさを考慮したケースを含む全評価ケースで裕度が最小とな ったもの。
a－2．クレーン本体ガーダ せん断応力

No．	解析ケース				発生値 （MPa）	許容限界 （ MPa ）	裕度
	トロリ 位置	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	35	161	4． 60
2			S s－D 2	基準	34		4． 73
3		無	S s－D 1	基準	25		6． 44
4	中央	有	S s－D 1	基準	30		5． 36
5			S s－D 2	基準	26		6． 19
6		無	S s－D 1	基準	17		9． 47
7	摇脚側	有	S s－D 1	基準	53		3.03
8			S s－D 2	基準	45		3.57
9		無	S s－D 1	基準	27		5.96
10	中央	有	S s－D 1	＋ 10% シフト	26		6． 19
11				－10\％シフト	26		6． 19
12			S s－F 2	基準	25		6． 44
13			S s－F1	-7.9% シフト	30		5． 36

表4－9 門型クレーンの耐震評価結果一覧（2／13）
b－1．剛脚 引張応力

No．	解析ケース				$\begin{gathered} \text { 発生値 } \\ \text { (MPa) } \end{gathered}$	許容限界(MPa)	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	6	280	46.6
2			S s－D 2	基準	8		35.0
3		無	S s－D 1	基準	7		40.0
4	中央	有	S s－D 1	基準	5		56.0
5			S s－D 2	基準	9		31.1
6		無	S s－D 1	基準	7		40.0
7	摇脚側	有	S s－D 1	基準	9		31.1
8			S s－D 2	基準	10		28.0
9		無	S s－D 1	基準	8		40.0
10	中央	有	S s－D 1	＋ 10% シフト	5		56.0
11				－10\％シフト	5		56.0
12			S s－F 2	基準	3		93.3
13			S s－F1	-7.9% シフト	4		70.0

b－2．剛脚 圧縮応力

No．	解析ケース				発生値 （MPa）	許容限界 （MPa）	裕度
	トロリ 位置	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	85	262	3.08
2			S s－D 2	基準	83		3.15
3		無	S s－D 1	基準	50		5． 24
4	中央	有	S s－D 1	基準	55		4． 76
5			S s－D 2	基準	60		4． 36
6		無	S s－D 1	基準	48		5． 45
7	摇脚側	有	S s－D 1	基準	58		4.51
8			S s－D 2	基準	58		4.51
9		無	S s－D 1	基準	50		5． 24
10	中央	有	S s－D 1	＋ 10% シフト	50		5． 24
11				－ 10% シフト	53		4． 94
12			S s－F 2	基準	48		5． 45
13			S s－F 1	-7.9% シフト	50		5.24

表4－9 門型クレーンの耐震評価結果一覧（3／13）
b－3．剛脚 曲げ応力

No．	解析ケース				発生値 （MPa）	許容限界 （MPa）	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	162	280	1． 72
2			S s－D 2	基準	155		1． 80
3		無	S s－D 1	基準	132		2． 12
4	中央	有	S s－D 1	基準	181		1． 54
5			S s－D 2	基準	180		1.55
6		無	S s－D 1	基準	142		1． 97
7	摇脚側	有	S s－D 1	基準	172		1.62
8			S s－D 2	基準	161		1． 73
9		無	S s－D 1	基準	143		1． 95
10	中央	有	S s－D 1	＋ 10% シフト	171		1.63
11				－10\％シフト	150		1． 86
12			S s－F 2	基準	131		2． 13
13			S s－F1	－7．9\％シフト	166		1． 68

b－4．剛脚 組合せ応力

No．	解析ケース				発生値＊	許容限界＊	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	0.68	1	1． 47
2			S s－D 2	基準	0.73		1． 36
3		無	S s－D 1	基準	0.54		1． 85
4	中央	有	S s－D 1	基準	0.70		1． 42
5			S s－D 2	基準	0.69		1． 44
6		無	S s－D 1	基準	0.54		1.85
7	摇脚側	有	S s－D 1	基準	0.62		1.61
8			S s－D 2	基準	0.65		1． 53
9		無	S s－D 1	基準	0． 55		1． 81
10	中央	有	S s－D 1	＋ 10% シフト	0.66		1.51
11				－10\％シフト	0.61		1． 63
12			S s－F 2	基準	0.51		1.96
13			S s－F 1	-7.9% シフト	0.66		1.51

注記＊：単位は無次元

表4－9 門型クレーンの耐震評価結果一覧（4／13）
c－1．揺脚 引張応力

No．	解析ケース				$\begin{gathered} \text { 発生値 } \\ \text { (MPa) } \end{gathered}$	許容限界(MPa)	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	13	280	21.5
2			S s－D 2	基準	11		25.4
3		無	S s－D 1	基準	12		23.3
4	中央	有	S s－D 1	基準	7		40.0
5			S s－D 2	基準	8		35.0
6		無	S s－D 1	基準	7		40.0
7	摇脚側	有	S s－D 1	基準	7		40.0
8			S s－D 2	基準	7		40.0
9		無	S s－D 1	基準	10		28.0
10	中央	有	S s－D 1	＋ 10% シフト	6		46.6
11				－10\％シフト	5		56.0
12			S s－F 2	基準	4		70.0
13			S s－F 1	－7．9\％シフト	4		70.0

c－2．摇脚 圧縮応力

No．	解析ケース				発生値 （MPa）	許容限界(MPa)	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	74	210	2． 83
2			S s－D 2	基準	69		3.04
3		無	S s－D 1	基準	67		3.13
4	中央	有	S s－D 1	基準	63		3.33
5			S s－D 2	基準	71		2.95
6		無	S s－D 1	基準	56		3.75
7	摇脚側	有	S s－D 1	基準	101		2.07
8			S s－D 2	基準	98		2.14
9		無	S s－D 1	基準	62		3.38
10	中央	有	S s－D 1	＋ 10% シフト	70		3.00
11				－10\％シフト	67		3.13
12			S s－F 2	基準	59		3.55
13			S s－F 1	-7.9% シフト	67		3.13

表4－9 門型クレーンの耐震評価結果一覧（5／13）
c－3．摇脚 曲げ応力

No．	解析ケース				発生値 （MPa）	許容限界 （MPa）	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	92	280	3.04
2			S s－D 2	基準	129		2.17
3		無	S s－D 1	基準	87		3.21
4	中央	有	S s－D 1	基準	117		2.39
5			S s－D 2	基準	150		1． 86
6		無	S s－D 1	基準	95		2.94
7	摇脚側	有	S s－D 1	基準	122		2． 29
8			S s－D 2	基準	126		2.22
9		無	S s－D 1	基準	96		2.91
10	中央	有	S s－D 1	＋ 10% シフト	134		2.08
11				－10\％シフト	93		3.01
12			S s－F 2	基準	109		2.56
13			S s－F 1	-7.9% シフト	108		2.59

c－4．摇脚 組合せ応力

No．	解析ケース				発生値＊	許容限界＊	裕度
	$\begin{aligned} & \text { トロリ } \\ & \text { 位置 } \end{aligned}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	0.52	1	1． 92
2			S s－D 2	基準	0.60		1.66
3		無	S s－D 1	基準	0.48		2.08
4	中央	有	S s－D 1	基準	0.61		1.63
5			S s－D 2	基準	0.71		1． 40
6		無	S s－D 1	基準	0.48		2.08
7	摇脚側	有	S s－D 1	基準	0.75		1.33
8			S s－D 2	基準	0.84		1． 19
9		無	S s－D 1	基準	0.48		2.08
10	中央	有	S s－D 1	＋ 10% シフト	0.65		1.53
11				－10\％シフト	0.61		1.63
12			S s－F 2	基準	0.55		1． 81
13			S s－F 1	-7.9% シフト	0.68		1． 47

注記＊：単位は無次元

表4－9 門型クレーンの耐震評価結果一覧（6／13）
$d-1$ ．連結構（剛脚側）引張応力

No．	解析ケース				$\begin{gathered} \text { 発生値 } \\ (\mathrm{MPa}) \end{gathered}$	許容限界(MPa)	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	20	280	14.0
2			S s－D 2	基準	15		18.6
3		無	S s－D 1	基準	15		18.6
4	中央	有	S s－D 1	基準	17		16.4
5			S s－D 2	基準	14		20.0
6		無	S s－D 1	基準	16		17.5
7	摇脚側	有	S s－D 1	基準	14		20.0
8			S s－D 2	基準	16		17.5
9		無	S s－D 1	基準	14		20.0
10	中央	有	S s－D 1	＋10\％シフト	15		18.6
11				－10\％シフト	16		17.5
12			S s－F 2	基準	11		25.4
13			S s－F 1	－7． 9% シフト	15		18.6

d－2．連結構（剛脚側）圧縮応力

No．	解析ケース				発生値 （MPa）	許容限界(MPa)	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	8	250	31.2
2			S s－D 2	基準	8		31.2
3		無	S s－D 1	基準	8		31.2
4	中央	有	S s－D 1	基準	6		41.6
5			S s－D 2	基準	10		25.0
6		無	S s－D 1	基準	7		35.7
7	摇脚側	有	S s－D 1	基準	9		27.7
8			S s－D 2	基準	8		31.2
9		無	S s－D 1	基準	8		31.2
10	中央	有	S s－D 1	＋ 10% シフト	6		41.6
11				－10\％シフト	7		35.7
12			S s－F 2	基準	5		50.0
13			S s－F 1	-7.9% シフト	5		50.0

表4－9 門型クレーンの耐震評価結果一覧（7／13）
d－3．連結構（剛脚側）曲げ応力

No．	解析ケース				発生値 （MPa）	許容限界 （MPa）	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	153	280	1． 83
2			S s－D 2	基準	188		1． 48
3		無	S s－D 1	基準	120		2.33
4	中央	有	S s－D 1	基準	145		1． 93
5			S s－D 2	基準	195		1． 43
6		無	S s－D 1	基準	121		2.31
7	摇脚側	有	S s－D 1	基準	140		2.00
8			S s－D 2	基準	199		1． 40
9		無	S s－D 1	基準	106		2.64
10	中央	有	S s－D 1	＋ 10% シフト	112		2.50
11				－10\％シフト	118		2． 37
12			S s－F 2	基準	109		2.56
13			S s－F1	－7．9\％シフト	102		2． 74

d－4．連結構（剛脚側）組合せ応力

No．	解析ケース				発生値＊	許容限界＊	裕度
	トロリ 位置	吊荷	$\begin{aligned} & \text { 評価用 } \\ & \text { 地震動 } \end{aligned}$	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	0.58	1	1． 72
2			S s－D 2	基準	0.70		1． 42
3		無	S s－D 1	基準	0． 44		2． 27
4	中央	有	S s－D 1	基準	0.53		1． 88
5			S s－D 2	基準	0.71		1． 40
6		無	S s－D 1	基準	0． 45		2.22
7	摇脚側	有	S s－D 1	基準	0.52		1.92
8			S s－D 2	基準	0.71		1． 40
9		無	S s－D 1	基準	0． 40		2． 50
10	中央	有	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	＋10\％シフト	0． 42		2． 38
11				－ 10% シフト	0． 44		2． 27
12			S s－F 2	基準	0． 40		2． 50
13			S s－F 1	-7.9% シフト	0.38		2． 63

注記＊：単位は無次元

表4－9 門型クレーンの耐震評価結果一覧（8／13）
e－1．連結構（摇脚側）引張応力

No．	解析ケース				$\begin{gathered} \text { 発生値 } \\ \text { (MPa) } \end{gathered}$	許容限界 （MPa）	裕度
	トロリ 位置	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	21	280	13.3
2			S s－D 2	基準	18		15.5
3		無	S s－D 1	基準	18		15.5
4	中央	有	S s－D 1	基準	14		20.0
5			S s－D 2	基準	14		20.0
6		無	S s－D 1	基準	14		20.0
7	摇脚側	有	S s－D 1	基準	21		13.3
8			S s－D 2	基準	20		14.0
9		無	S s－D 1	基準	15		18.6
10	中央	有	S s－D 1	＋ 10% シフト	13		21.5
11				－10\％シフト	15		18.6
12			S s－F 2	基準	18		15.5
13			S s－F 1	-7.9% シフト	18		15.5

e－2．連結構（摇脚側）圧縮応力

No．	解析ケース				発生値 （MPa）	許容限界(MPa)	裕度
	$\begin{aligned} & \text { トロリ } \\ & \text { 位置 } \end{aligned}$	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	12	246	20.5
2			S s－D 2	基準	10		24.6
3		無	S s－D 1	基準	9		27． 3
4	中央	有	S s－D 1	基準	7		35.1
5			S s－D 2	基準	13		18.9
6		無	S s－D 1	基準	8		30.7
7	摇脚側	有	S s－D 1	基準	11		22.3
8			S s－D 2	基準	11		22.3
9		無	S s－D 1	基準	9		27.3
10	中央	有	S s－D 1	＋ 10% シフト	9		27.3
11				－10\％シフト	9		27.3
12			S s－F 2	基準	7		35.1
13			S s－F 1	-7.9% シフト	7		35.1

表4－9 門型クレーンの耐震評価結果一覧（9／13）
e－3．連結構（摇脚側）曲げ応力

No．	解析ケース				発生値 （MPa）	許容限界 （MPa）	裕度
	トロリ 位置	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	116	280	2.41
2			S s－D 2	基準	132		2.12
3		無	S s－D 1	基準	113		2． 47
4	中央	有	S s－D 1	基準	113		2． 47
5			S s－D 2	基準	156		1． 79
6		無	S s－D 1	基準	94		2.97
7	揺脚側	有	S s－D 1	基準	113		2． 47
8			S s－D 2	基準	139		2． 01
9		無	S s－D 1	基準	104		2． 69
10	中央	有	S s－D 1	＋ 10% シフト	131		2． 13
11				－10\％シフト	131		2． 13
12			S s－F 2	基準	115		2． 43
13			S s－F 1	-7.9% シフト	100		2． 80

e－4．連結構（摇脚側）組合せ応力

No．	解析ケース				発生値＊	許容限界＊	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	0． 44	1	2.27
2			S s－D 2	基準	0.50		2.00
3		無	S s－D 1	基準	0． 43		2.32
4	中央	有	S s－D 1	基準	0． 43		2． 32
5			S s－D 2	基準	0.61		1． 63
6		無	S s－D 1	基準	0.36		2.77
7	摇脚側	有	S s－D 1	基準	0． 44		2.27
8			S s－D 2	基準	0.53		1． 88
9		無	S s－D 1	基準	0.38		2.63
10	中央	有	S s－D 1	＋ 10% シフト	0.50		2.00
11				－10\％シフト	0． 49		2.04
12			S s－F 2	基準	0.43		2.32
13			S s－F1	－7．9\％シフト	0.38		2． 63

注記 $*$ ：単位は無次元

表4－9 門型クレーンの耐震評価結果一覧（10／13）
f．脱輪防止装置＊

No．	解析ケース				車輪荷重 （kN）
	$\begin{aligned} & \text { トロリ } \\ & \text { 位置 } \end{aligned}$	吊荷	評価用地震動	時間刻み シフト	
1	剛脚側	有	S s－D 1	基準	1012
2			S s－D 2	基準	944
3		無	S s－D 1	基準	771
4	中央	有	S s－D 1	基準	1088
5			S s－D 2	基準	1036
6		無	S s－D 1	基準	844
7	摇脚側	有	S s－D 1	基準	947
8			S s－D 2	基準	905
9		無	S s－D 1	基準	729
10	中央	有	S s－D 1	＋ 10% シフト	912
11				－10\％シフト	908
12			S s－F 2	基準	720
13			S s－F 1	－7．9\％シフト	727

注記＊：脱輪防止装置については解析で算出される最大車輪荷重に対して応力評価を実施している ため，地震動ごとの比較は車輪荷重で示す。なお，「VI－2－11－2－1 海水ポンプ室門型クレ ーンの耐震性に関する計算書」に示すとおり，最も評価の厳しい脱輪防止装置においても裕度2．01の余裕を有している。
g．トロリストッパ＊

No．	解析ケース				車輪荷重(kN)
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用 地震動	時間刻み シフト	
1	剛脚側	有	S s－D 1	基準	449
2			S s－D 2	基準	518
3		無	S s－D 1	基準	288
4	中央	有	S s－D 1	基準	291
5			S s－D 2	基準	274
6		無	S s－D 1	基準	231
7	摇脚側	有	S s－D 1	基準	359
8			S s－D 2	基準	390
9		無	S s－D 1	基準	254
10	中央	有	S s－D 1	＋ 10% シフト	292
11				－10\％シフト	310
12			S s－F 2	基準	302
13			S s－F1	-7.9% シフト	245

注記＊：トロリストッパについては解析で算出される最大車輪荷重に対して応力評価を実施してい るため，地震動ごとの比較は車輪荷重で示す。なお，「VI－2－11－2－1 海水ポンプ室門型ク レーンの耐震性に関する計算書」に示すとおり，最も評価の厳しい脱輪防止装置において も裕度 10.0 の余裕を有している。

表4－9 門型クレーンの耐震評価結果一覧（12／13）
h．クレーン本体 浮上り量

No．	解析ケース				発生値 （mm）	許容限界(mm)	裕度
	トロリ 位置	吊荷	評価用 地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	16	75	4． 68
2			S s－D 2	基準	17		4． 41
3		無	S s－D 1	基準	11		6． 81
4	中央	有	S s－D 1	基準	6		12.5
5			S s－D 2	基準	11		6.81
6		無	S s－D 1	基準	13		5． 76
7	摇脚側	有	S s－D 1	基準	12		6． 25
8			S s－D 2	基準	11		6.81
9		無	S s－D 1	基準	11		6． 81
10	中央	有	S s－D 1	＋ 10% シフト	12		6． 25
11				－10\％シフト	5		15.0
12			S s－F 2	基準	6		12.5
13			S s - F 1	-7.9% シフト	15		5． 00

i．トロリ 浮上り量

No．	解析ケース				発生値 （mm）	許容限界 （mm）	裕度
	$\begin{aligned} & \text { トロリ } \\ & \text { 位置 } \end{aligned}$	吊荷	評価用地震動	時間刻み シフト			
1	腩脚側	有	S s－D 1	基漼	13	170	13.0
2			S s－D 2	基準	11		15.4
3		無	S s－D 1	基準	14		12.1
4	中央	有	S s－D 1	基準	35		4.85
5			S s－D 2	基準	10		17.0
6		無	S s－D 1	基準	27		6.29
7	摇脚側	有	S s－D 1	基淮	14		12.1
8			S s－D 2	基準	12		14.1
9		無	S s－D 1	基漼	27		6． 29
10	中央	有	S s－D 1	＋ 10% シフト	24		7.08
11				－10\％シフト	21		8． 09
12			S s－F 2	基準	15		11.3
13			S s－F 1	－7．9\％シフト	33		5.15

j．吊具

No．	解析ケース				発生荷重 （kN）	許容荷重 （kN）	裕度
	$\begin{gathered} \text { トロリ } \\ \text { 位置 } \end{gathered}$	吊荷	評価用地震動	時間刻み シフト			
1	剛脚側	有	S s－D 1	基準	3364	6396＊	1． 90
2			S s－D 2	基準	2779		2． 30
3		無	S s－D 1	基準	763		8.38
4	中央	有	S s－D 1	基準	4207		1.52
5			S s－D 2	基準	3120		2.05
6		無	S s－D 1	基準	717		8.92
7	摇脚側	有	S s－D 1	基準	3317		1.92
8			S s－D 2	基準	3478		1． 83
9		無	S s－D 1	基準	719		8． 89
10	中央	有	S s－D 1	＋ 10% シフト	3937		1． 62
11				－10\％シフト	3250		1． 96
12			S s－F 2	基準	3844		1． 66
13			S s－F1	-7.9% シフト	3365		1． 90

注記＊：評価対象部位はワイヤロープとフックであり許容荷重が異なることから許容荷重のより低いワ
イヤロープの許容荷重を記載する。

ワイヤロープの長さと吊荷の速度変化及び衝撃荷重との関係

1．目的
解析では，運用上可能な範囲でワイヤロープの長さを短くして，モデル化している。
ワイヤロープの長さを短くすれば，固有周期が短くなるため吊荷の速度変化が大きくな り，ワイヤロープ及びフックの評価において，衝撃荷重が大きくなる。
解析モデルの妥当性の観点から，「ワイヤロープの長さが短くなれば固有周期が短くなる理由」と「吊荷の速度変化が大きくなると衝撃荷重が大きくなる理由」について述べる。

2．ワイヤロープの長さを短くすれば固有周期が短くなる理由
吊荷とワイヤの系による衝撃荷重を検討する際に，ワイヤをばねとみなした一自由度の質量一ばね振動系を考える。

ここで固有周期は，ワイヤの長さ方向の伸縮運動の周期になり，質量一ばね系として，固有周期はワイヤのばね定数kと質量mに依存し，固有周期Tは，以下のとおりとなる。

$$
\mathrm{T}=2 \pi \sqrt{m / k}
$$

ばね定数kは，ばね（ここではワイヤ）の長さに依存し，

$$
\mathrm{k}=E \cdot A / L
$$

これより，

$$
\mathrm{T}=2 \pi \sqrt{m \cdot L /(E \cdot A)}
$$

E：ワイヤの縦弾性係数
A：ワイヤの断面積
L ：ワイヤの長さ

したがって，ワイヤ長さLを短くすれば，固有周期Tは短くなる。 なお，上記式により算定される固有周期は， \square となる。

3．吊荷の速度変化（単位時間当たり）が大きくなると衝撃荷重が大きくなる理由 ワイヤをばねとみなした場合の質量一ばね系の一自由度振動系において，変位波形は，正弦波となる。

時刻が，固有周期の（（1）時刻 0）\rightarrow（（2 $1 / 4$ 周期）\rightarrow（3）半周期）\rightarrow（4） $3 / 4$ 周期）\rightarrow （5）1周期）にあたる点において，
変位は，初期位置（（1）時刻 0）\rightarrow 最上点（ $221 / 4$ 周期）\rightarrow 初期位置（（3）半周期）\rightarrow 最下点 （4）3／4 周期）\rightarrow 初期位置（（5） 1 周期）を繰り返すことになり，
速度は，上向き最大（（1）時刻 0）\rightarrow 速度 0 （（2 1／4 周期）\rightarrow 下向き最大（（3）半周期）\rightarrow 速度 0 （4） $3 / 4$ 周期）\rightarrow 上向き最大（5） 1 周期）を繰り返すこととなる。

衝撃荷重は，吊荷の質量に，時間当たりの吊荷の速度変化（加速度）を乗じたものとな る。また，加速度 α（＝時間当たりの吊荷の速度変化）は，（3）半周期）から（4）3／4周期）の間（ $=0.25 \mathrm{~T}$ ）で，下向き最大速度 Vmax が，速度 0 に減速していることから，

$$
\alpha=(\operatorname{Vmax}-0) /(0.25 \mathrm{~T})
$$

となる。
つまり，時間当たりの吊荷の速度変化は，固有周期の大きさに反比例する。したがって，固有周期が短くなると，時間当たりの吊荷の速度変化（加速度）が大きくなり，衝撃荷重が大きくなる。

地震応答解析においても「ワイヤロープの長さは，短くすれば固有周期が短くなり，吊荷 の速度変化が大きくなることから，衝撃荷重が大きくなる。」

地震応答解析においてクレーンのワイヤロープは非線形トラスでモデル化しており，引張方向に荷重が作用する場合のみ引張ばねとして作用するよう設定し，圧縮方向の荷重を受け ないよう設定している。

ここで，ワイヤロープは解析では非線形要素として扱っているが，引張り側には線形ばね として扱われる。このばねが初期位置（③）から引張りを受けて，最下点（4）に到達し，初期位置に戻るまで（上図では（3）\rightarrow（5）までの $1 / 2$ 周期）は，線形ばねの挙動を示す。なお， その後の初期位置（5）\rightarrow 最上点（（2）$) \rightarrow$ 初期位置（（3））への挙動は，ばねの振動周期とは異なる。

衝撃力を発生させる加速度は，初期位置（3）から，最下点（4）に到達するまでの $1 / 4$ 周期期間中の速度変化であるため，地震応答解析であっても，同様の説明になる。

地震時の本体車輪部及び脱輪防止装置が衝突するレール躯体の評価

1．はじめに
門型クレーンに地震力が作用した際は，まず走行車輪とレールが接触し，さらには車輪 がレールに乗り上がって脱輪防止装置がレール躯体に衝突する挙動が考えられる。門型ク レーンは構造強度部材である脱輪防止装置が健全であることでレールからの脱輪による転倒もしくは落下を生じない構造であることを確認しているが，地震時に本体車輪部各部位及び脱輪防止装置が衝突するレール躯体に発生する応力について評価を行った。

図6－1に本体車輪部及びレール躯体周りの概要図を示す。

図6－1 本体車輪部及びレール躯体周りの概要図

2．評価結果

2．1 本体車輪部の評価

表 6－1 に本体車輪部各部の評価結果を示す。
評価の結果，本体車輪部は地震時に健全であることを確認した。

表 6－1 本体車輪部評価結果

評価部位		評価項目	発生値 (MPa)	許容限界 (MPa)	裕度
本 体 車 輪 部	車輪フランジ	走行車輪軸	組合せ	245	539

2．2 脱輪防止装置が衝突するレール躯体の評価

表6－2に脱輪防止装置が衝突するレール躯体の評価結果を示す。
レール躯体は，H鋼とコンクリートで構成されており，脱輪防止装置衝突時にはH鋼とコンクリート両者に荷重が作用するが，保守的にレール躯体上部のH鋼フランジ端部のみに荷重が作用するものとして，H鋼のフランジとウェブの境界部のせん断， H鋼フランジの面内の圧縮の評価を行った。

評価の結果，レール躯体が脱輪防止装置の衝突に対して健全であることを確認した。

表 6－2 レール躯体価結果

評価部位	評価項目	発生値 (MPa)	許容限界 (MPa)	裕度
脱輪防止装置	せん断	56	161	2.87
衝突部レール躯体	圧縮	104	280	2.69

主巻ワイヤのブレーキ制動力

1．目的
海水ポンプ室門型クレーンの主巻ワイヤのブレーキ制動力の評価を行い，地震時の すべりによる影響評価を行う。

2．ブレーキ制動力の評価
主巻ワイヤのブレーキによる制動力の評価結果を表7－1に示す。基準地震動S s に よりワイヤに発生する荷重は，許容荷重であるブレーキ制動力（吊荷を保持している力）を下回り，吊荷はすべらないことを確認した。

表7－1 海水ポンプ室門型クレーンの主巻ワイヤのブレーキ制動力の評価結果

基準地震動 S s により $ワ イ ヤ に$ 発生する荷重	主巻ワイヤのブレーキ 制動力（許容荷重）
$4.207 \times 10^{6} \mathrm{~N}$	$5.149 \times 10^{6} \mathrm{~N}$

【算定条件】
（1）ワイヤに発生する荷重
$4.207 \times 10^{6} \mathrm{~N}$
（基準地震動 S s による地震応答解析結果）
（2）ブレーキ制動力の算定
ブレーキ制動力の算定に用いる計算条件を表7－2に，ブレーキ機構概要図を図7 －1 に示す。

表 7－2 ブレーキ制動力の計算条件

項目		単位	数値	備考
ドラム径	D	mm		
定格質量	m_{L}	Kg		
フック質量	m_{H}	Kg		
ロープ掛数	N	本		
ドラムの巻取本数	N ${ }^{\prime}$	本		
ブレーキ台数	n	個		
ブレーキ容量	T ${ }_{\text {B }}$	$\mathrm{N} \cdot \mathrm{mm}$		
重力加速度	g	$\mathrm{m} / \mathrm{s}^{2}$		
シーブ効率	η	－		
減速機減速比	i	－		
ロープ荷重	F	N		$\left(\mathrm{m}_{\mathrm{L}}+\mathrm{m}_{\mathrm{H}}\right) \mathrm{g} /(\mathrm{N} \eta$ ）
負荷トルク	T	$\mathrm{N} \cdot \mathrm{mm}$		N＇F •（D／2 • i ）
安全率	S	－		$n \mathrm{~T}_{\mathrm{B}} / \mathrm{T}$
許容荷重	－	N	5.149×10^{6}	$\left(m_{L}+\mathrm{m}_{\mathrm{H}}\right) \mathrm{g} \cdot \mathrm{S}$

図7－1 ブレーキ機構概要図

側面の接触による摩擦力の影響

1．目的
「各方向地震力の非同時性を考慮することにより脱輪防止装置の側面摩擦を考慮し ない」ことについて，車輪側面の接触による摩擦力の影響を評価し，クレーン本体ガ ーダの曲げ応力への影響を確認した。

2．車輪つばとレール側面が接触する場合のクレーン本体ガーダの曲げ応力への影響
車輪つばとレール側面が接触する場合のクレーン本体ガーダの曲げ応力への影響に ついて，確認結果を表8－1に示す。

側面の接触での摩擦力の影響による応力増加を考慮した場合でも，クレーン本体ガ ーダの曲げ応力は許容応力以下であることを確認した。

表8－1 側面摩擦の影響確認結果（車輪つばとレール側面が接触する場合）

側面摩擦 有無	クレーン本体ガーダの曲げ応力	
	発生値	許容値
側面摩擦なし	263	280
側面摩擦あり	268	

【算定条件】

（1）側面摩擦の発生箇所
脱輪防止装置における接触に関しては，図8－1に示す寸法関係より，脱輪防止装置が躯体に接触するよりも先に車輪つばとレール側面が接触する。このため，摩擦の影響が発生する箇所は車輪つばとレール側面の接触部とする。

図8－1 走行車輪と脱輪防止装置の隙間関係
（2）検討方針
側面摩擦の影響確認においては，工事計画認可申請書評価部位のらち発生応力 が大きく，側面摩擦による荷重増加の影響を受けると考えられ，裕度の小さい「クレーン本体ガーダの曲げ応力」に着目し，検討する。
（3）影響試算方法
図8－2に示すとおり，横行荷重から側面摩擦の荷重を試算し，側面摩擦による走行荷重の増加分をガーダ応力に考慮した評価を行ら。なお，この試算方法で は，走行荷重と横行荷重において，同時に最大荷重が発生すると仮定している。

側面摩擦荷重

$\mu=0.15$

走行荷重（摩擦あり）$=\mathrm{F}_{\underline{Y}}+\mu \cdot \mathrm{F}_{\underline{X}}$車輪つばとレール側面の接触時
の摩擦係数は走行車輪の数と駆動輪の数の関係から $\mu=0.3 \times 4 / 8=0.15$ で評価

図8－2 側面摩擦の影響試算（車輪つばとレール側面が接触する場合）

3．レール躯体と脱輪防止装置が接触する場合のクレーン本体ガータの曲げ応力への影響

レール躯体と脱輪防止装置が接触することによるクレーン本体ガーダの曲げ応力へ の影響が小さいことについて，確認結果を表8－2に示す。

側面の接触での摩擦力の影響による応力増加を考慮した場合でも，クレーン本体ガ ーダの曲げ応力は許容応力以下であることを確認した。

表8－2 側面摩擦の影響確認結果（レール躯体と脱輪防止装置が接触する場合）

側面摩擦 有無	クレーン本体ガーダの曲げ応力 （MPa）	
	発生値	許容値
側面摩擦なし	263	280
側面摩擦あり	272	

【算定条件】

（1）側面摩擦の発生箇所
クレーン横行方向に地震力が作用し，車輪が走行レールに乗り上げた場合に脱輪防止装置と躯体が接触することによる摩擦の影響を検討する。
（2）検討方針
側面摩擦の影響確認においては，工事計画認可申請書評価部位のうち発生応力 が大きく，側面摩擦による荷重増加の影響を受けると考えられ，裕度の小さい「クレーン本体ガーダの曲げ応力」に着目し検討する。
（3）影響試算方法
図 8－3 に示すとおり，横行荷重から側面摩擦の荷重を試算し，側面摩擦による走行荷重の増加分をガーダ応力に考慮した評価を行う。

図 8－3 側面摩擦の影響試算（レール躯体と脱輪防止装置が接触する場合）

海水ポンプ室門型クレーンの地震時におけるストッパへの影響

1．目的
海水ポンプ室門型クレーンは走行方向に対する脱線を防止するためにストッパ が設置されており，海水ポンプ室（補機ポンプエリア）に設置している海水系ポン プへ落下することはないとしていることから，走行ストッパに対する評価を行う。

追而

海水ポンプ室門型クレーン改造工事概要

