女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－38＿改 3
提出年月日	2021 年 5 月 11 日

補足－600－38 東北地方太平洋沖地震等による影響を踏まえた機器•配管系の耐震設計への反映事項について
1．はじめに 1
2．機器•配管系の耐震設計に反映すべき事項の検討方針 1
3．機器•配管系の地震後の設備点検 4
4．機器•配管系の東北地方太平洋沖地震等（3．11／4．7地震）による地震応答解析評価 45．機器•配管系の耐震設計への反映事項の検討35
6．機器•配管系の耐震設計に反映すべき事項の検討結果 38
7．今回工認における耐震評価結果を踏まえた検討 38
8．まとめ 53

添付 1 地震後の設備健全性確認（特別な保全計画）の概要及び設備点検結果の概要添付 2 基準地震動 S s と 3．11／4．7地震との関係

1．はじめに
本資料では，2011年3月11日の東北地方太平洋沖地震及びその余震である2011年4月 7 日の宮城県沖の地震（以下「東北地方太平洋沖地震等」又は「3．11／4．7地震」という。） の影響を踏まえた女川 2 号機の機器•配管系の耐震設計に反映すべき事項について，検討 を実施した。

2．機器•配管系の耐震設計に反映すべき事項の検討方針
東北地方太平洋沖地震等（3．11／4．7地震）の影響を踏まえた女川 2 号機の機器•配管系 の耐震設計に反映すべき事項は，「実用発電用原子炉の設置，運転等に関する規則」（以下「実用炉規則」という。）に基づき実施した地震後の設備健全性確認（1（特別な保全計画） における設備点検結果及び地震応答解析結果（地震観測記録に基づく建屋シミュレーショ ンモデルを反映）を考慮するとともに，機器•配管系が設置される建物•構築物の地震影響を踏まえ，検討する。

機器•配管系の耐震設計へ反映が必要となるのは，施設が地震影響によって損傷（変形，割れなど）し，補修，取替等が困難で，その状態のまま再使用する場合であって，その損傷が地震応答解析及び構造強度評価に影響を与える場合である。

機器•配管系の耐震設計への反映事項の検討概要を図 2－1 に，建物•構築物及び土木構造物を含む耐震設計への反映事項の判断フローを図2－2 に示す。

耐震設計への反映事項の判断に当たつては，まず，全ての保全施設を対象とし，施設分類ごとの損傷形態に応じた点検方法を選定し，施設点検（一部施設の地震応答解析を含む） を実施する。次に，施設点検結果において耐震 S クラス施設（耐震 S クラス設備の間接支持機能を有する施設等を含む）に地震による異常がある場合は，耐震設計への影響を検討 するとともに，他施設の耐震設計への反映の要否を検討する。施設点検結果に異常がない場合や，異常があった施設が耐震 S クラス施設（耐震 S クラス設備の間接支持機能を有す る施設等を含む）に該当せず取替•補修等による原形復旧を行う場合は，耐震設計への反映事項はないものと判断する。なお，地震による異常がない場合でも，建屋の地震観測記録がある場合は，耐震設計への影響の有無を検討する。

次項以降に設備点検及び地震応答解析に係る検討詳細を示す。
※1 実用炉規則に基づき実施した地震後の設備健全性確認の結果は，発電所における保安検査等にて確認するとの見解が示されている（第 68 回原子力発電所の新規制基準適合性に係る審査会合，平成26年1月16日）

図 2－1 機器•配管系の耐震設計への反映事項の検討概要図

図 2－2 東北地方太平洋沖地震等による影響を踏まえた耐震設計への反映事項の判断フロー（建物•構築物，土木構造物含む）

3．機器•配管系の地震後の設備点検
地震後の設備健全性確認（特別な保全計画）の概要及び設備点検結果の概要を添付 1 に示す。

これまで実施した機器•配管系の地震後の設備健全性確認において，耐震 S クラス設備に損傷はなく，プラントの安全性に影響を与える所見はないことを確認した。

設備点検において異常を確認した耐震 B，Cクラス設備については，いずれも原子炉安全を阻害する可能性はなく，取替，補修，手入れにより原形に復旧している。

また，耐震 B，C クラスの異常により，耐震 S クラス設備への波及的影響がないことを確認した。

4．機器•配管系の東北地方太平洋沖地震等（3．11／4．7地震）による地震応答解析評価地震応答解析による評価を実施する機器•配管系の評価対象設備の考え方及び評価方法を以下に示す。
（1）評価対象選定の考え方
評価対象設備は，既工認記載の耐震 S クラス設備，耐震 B，Cクラス設備のうち波及的影響設備とする。評価対象設備のうち，同一の設備が複数存在するポンプ等は，据付床の床応答を考慮して，厳しい条件の設備を選定する。また，配管等は，系統ご とに設計時又は「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴ら耐震安全性評価（以下，「既往の評価」という。）における余裕度の小さい設備を選定する。

評価部位は，設計時又は既往の評価における余裕度（＝許容応力／発生応力）の最 も小さい部位を代表部位とする。（代表部位以外についても評価する場合もある。）

地震の継続時間が比較的長かったことを考慮して，疲労の影響が大きいと考えら れる配管等を選定し，3．11／4．7地震に対する疲労評価（疲労累積係数）を実施する。

地震時に動的機能が要求される動的機器（ポンプ，弁等）を選定し，動的機能維持評価を実施する。

図 4－1 評価対象選定の考え方の概要図
（2）評価方法
a．地震応答解析に用いる建屋応答
地震応答解析は，地震観測記録との整合性を確認した建屋シミュレーション解析 モデル（初期剛性低下等を反映）を用いることを基本とし，建屋内に設置された地震計による観測記録も考慮する。

なお，床応答スペクトルは，シミュレーション解析による建屋応答及び地震観測記録を反映しているため，拡幅は行わない。

図 4－2 地震応答解析に用いる建屋応答の例
b．構造強度評価
構造強度評価は，段階的な評価手順とする。
①設計時及び既往の評価結果において比較的余裕度の大きな設備については，簡易評価（応答倍率法による評価）を行う。
（2）簡易評価において発生応力等が評価基準値を満足しない場合には，設計時と同等 の評価を行う。

③設計時と同等の評価において発生応力等が評価基準値を満足しない場合には 詳細評価（時刻歴応答解析等）を行う。

構造強度評価の評価基準値は，地震による影響の有無を確認する観点から「原子力発電所耐震設計技術指針 J E A G 4 6 O 1•補－1984」に規定される許容応力状態 III ${ }_{A} \mathrm{~S}$（弾性応答範囲内）における許容応力を基本とする。

地震応答解析及び耐震評価は，設計時の評価条件と同条件にて評価することを基本とするが，3．11／4．7地震に対する地震影響を詳しく確認するため，より実態にあ った評価条件として，地震時におけるプラント状態（女川 2 号機は，平成 23 年（2011年）東北地方太平洋沖地震時は原子炉起動中，同年4月7日宮城県沖の地震時は冷

温停止中）等を考慮した評価を実施する場合がある。
また，地震の継続時間が比較的長かったことを考慮して，疲労の影響が大きいと考えられる配管等については，時刻歴応答解析で求めたピーク応力強さの時刻歴と設計疲労線図を基に，図 4－3に示すフローのとおり疲労評価を実施する。

> 図 4-3 3.11/4.7地震に対する疲労評価のフロー

c．動的機能維持評価

弁，ポンプ等の動的機能維持の評価は，地震応答解析に基づき評価対象設備の応答加速度を求め，評価基準値である機能確認済加速度以下であることを確認する。 また，応答加速度が機能確認済加速度を上回る設備については，詳細評価を実施す る。

制御棒の挿入性は，地震応答解析により燃料集合体の相対変位を求め，試験によ り制御棒の挿入性が確認された相対変位以下であることを確認する。

評価基準値の機能確認済加速度は，原子力発電所耐震設計技術指針（J E A G 4 601－1991追補版）に準拠するとともに，試験等で妥当性が確認された値も用い る。
（3）段階的な構造強度評価の概要
a．評価フロー
地震応答解析の評価フローを図4－4に示す。

図 4－4 地震応答解析の評価フロー
b．応答倍率法の概要
応答倍率法による発生応力等の求め方を以下に示す。
応答倍率法による発生応力等の求め方の例
ケース 1 発生応力等＝設計時又は既往評価での全体応力 \times 応答比 （地震及び地震以外による応力）

ケース 2 発生応力等＝設計時又は既往評価での地震以外による応力 + 設計時又は既往評価での地震による応力 \times 応答比

上記における 応答比の求め方の例
－ポンプの基礎ボルト等の発生応力等を求めるにあたり，水平加速度，鉛直加速度を用 いる機器

応答比 $=\frac{3.11 / 4.7 \text { 地震時の加速度 }}{\text { 設計時又は既往評価での加速度 }}$
（水平加速度，鉛直加速度ごとに応答比を算出）
－原子炉圧力容器や炉内構造物等の発生応力等を求めるにあたり，加速度，せん断力， モーメント，軸力を用いる機器

応答比 $=\frac{3.11 / 4.7 \text { 地震時の地震力 }}{\text { 設計時又は既往評価での地震力 }}$ （加速度，せん断力，モーメント，軸力ごとに応答比を算出）」

複数の応答比が算出される場合は，算出した応答比のうち，最大となるものを用い ることを基本とする。ただし，地震による応力を地震力の種類ごとに分離することが容易な場合は，地震力の種類ごとの応答比を用いる。以下に具体的な算出式を示す。
－応答比の最大値を用いる場合

$$
\begin{aligned}
& \sigma=\alpha \times \sigma_{\mathrm{T}} \\
& \alpha=\operatorname{MAX}\left(\frac{\mathrm{CH}_{1}}{\mathrm{CH}_{0}}, \frac{\mathrm{CV}_{1}}{\mathrm{CV}_{0}}\right)
\end{aligned}
$$

σ ：発生応力

α ：応答比
σ_{T} ：設計時又は既往評価の全体応力
CH_{0} ：設計時又は既往評価の水平加速度
CH_{1} ：3．11／4．7地震の水平加速度
CV_{0} ：設計時又は既往評価の鉛直加速度
CV_{1} ：3．11／4．7地震の鉛直加速度
－地震力の種類ごとの応答比を用いる場合

$$
\begin{gathered}
\sigma=\alpha \times \sigma_{\mathrm{v}}+\beta \times \sigma_{\mathrm{Q}}+\gamma \times \sigma_{\mathrm{M}}+\sigma_{0} \\
\alpha=\frac{\mathrm{CV}_{1}}{\mathrm{CV}_{0}}, \quad \beta=\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{0}}, \quad \gamma=\frac{\mathrm{M}_{1}}{\mathrm{M}_{0}}
\end{gathered}
$$

σ ：発生応力
α ：鉛直加速度に対する応答比
β ：せん断力に対する応答比
γ ：モーメントに対する応答比
σ v：設計時又は既往評価の鉛直加速度による応力
σ Q：設計時又は既往評価のせん断力による応力
$\sigma \mathrm{m}$ ：設計時又は既往評価のモーメントによる応力
σ_{0} ：設計時又は既往評価の地震以外の応力
CV_{0} ：設計時又は既往評価の鉛直加速度
CV_{1} ：3．11／4．7地震の鉛直加速度
Q_{0} ：設計時又は既往評価のせん断力
$\mathrm{Q}_{1}: 3.11 / 4.7$ 地震のせん断力
M_{0} ：設計時又は既往評価のモーメント
M_{1} ：3．11／4．7地震のモーメント
c．構造強度評価の各段階における実際の応答に対する保守性（イメージ）
構造強度評価の各段階における保守性の概念を図4－5に示す。

図 4－5 構造強度評価の各段階における保守性の概念
（4）地震応答解析による評価結果
構造強度評価の結果を表 4－1 に，疲労評価の結果を表 4－3 に，動的機能維持評価 の結果を表 4－4 に示す。「（1）評価対象選定の考え方」に記載のとおり，評価部位 は，設計時又は既往の評価における裕度の最も小さい部位を代表部位とすることを基本としているが，代表部位以外についても評価する場合もある。これは（2）設計時と同等の評価又は（3）詳細評価を実施する場合に地震動の特性（水平及び鉛直方向の大 きさ，床応答スペクトルにおける周期特性など）によって裕度最小部位が変わること があるためである。代表部位以外についても評価し，3．11／4．7地震で裕度最小部位 が異なる場合は代表部位ではなく，それぞれの裕度最小部位を表4－1に記載する。

なお，構造強度評価（1）簡易評価，②設計時と同等の評価，③詳細評価）のうち， ③詳細評価を適用した設備及びその評価の概要を表4－2 に示す。

東北地方太平洋沖地震等（3．11／4．7地震）の建屋シミュレーション解析を踏まえ，耐震 S クラス等の設備に対する構造強度評価の結果，弾性応答範囲内であること，地震による疲労影響は十分に小さいことを確認した。

また，動的機能維持評価の結果，動的機能が要求される設備の機能が維持されるこ とを確認した。

表 4－1 構造強度評価結果 $(1 / 16)$

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（2／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	$\begin{gathered} \text { 評価 } \\ \text { 基準値 } \\ {[\mathrm{MPa}]} \end{gathered}$	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 }{ }^{*} \end{gathered}$
	$\begin{aligned} & \text { 原 } \\ & \text { 支子 } \\ & \text { 持炉 } \\ & \text { 構圧 } \\ & \text { 造力 } \\ & \text { 物容 } \\ & \text { 器 } \end{aligned}$	原子炉圧力容器基整ボルト	3．11地震	基礎ボルト	一次応力 （引張）	105	499	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	91	499	\bigcirc	（2）
		原子炉圧力容器支持スカート	3．11地震	スカート	軸圧縮応力	$\begin{array}{r} 0.35 \\ \text { (単位なし) } \end{array}$	$\begin{array}{r} 1 \\ \text { (単位なし) } \end{array}$	\bigcirc	（2）
			4．7地震	スカート	軸圧縮応力	$\begin{array}{r} 0.32 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（2）
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 付子 } \\ & \text { 属炉 } \\ & \text { 構圧 } \\ & \text { 造力 } \\ & \text { 物容 } \\ & \text { 器 } \end{aligned}$	原子炉圧力容器 スタビライザ	3．11地震	ブラケット	一次応力 （組合せ）	110	198	\bigcirc	（2）
			4．7地震	ブラケット	一次応力 （組合せ）	118	198	\bigcirc	（2）
		原子炉格納容器スタビライザ	3．11地震	$\begin{gathered} \text { 外側フィメイル } \\ \text { シヤラグ本体 (溶接部) } \end{gathered}$	一次応力 （組合せ）	143	176	\bigcirc	（2）
			4．7地震	ガセットプレート	一次応力 （組合せ）	116	176	\bigcirc	（2）
		制御棒駆動機構 ハウジング支持金具	3．11地震	レストレントビーム	強軸曲げ応力	81	201	\bigcirc	（1）
			4．7地震	レストレントビーム	強軸曲げ応力	103	201	\bigcirc	（1）
		$\begin{gathered} \text { 差圧検出・ほう酸水注入系 } \\ \text { (配管 } \\ \text { (ティーよりN11ノズルまで } \\ \text { の外管) } \end{gathered}$	3．11地震	パイプ	一次一般膜応力	42	114	\bigcirc	（1）
			4．7地震	パイプ	一次一般膜応力	43	114	\bigcirc	（1）
	原子炉圧力容器内部構造物	蒸気乾燥器	3．11地震	耐震用ブロック溶接部	純せん断応力	24	47	\bigcirc	（3）
			4．7地震	耐震用ブロック溶接部	純せん断応力	27	47	\bigcirc	（3）
		シュラウドヘッド	3．11地震	シュラウドヘッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	232	265	\bigcirc	（2）${ }^{2}$
			4．7地震	シュラウドヘッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	248	265	\bigcirc	（2）${ }^{* 2}$
		気水分離器及び スタンドパイプ	3．11地震	スタンドパイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	93	106	\bigcirc	（2）
			4．7地震	スタンドパイプ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	100	106	\bigcirc	（2）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
$※ 2$ 他のプラントで適用され，工認実績のある公式による評価

表 4－1 構造強度評価結果 $(3 / 16)$

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } \% 1 \end{gathered}$
$\begin{aligned} & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烺垉 } \\ & \text { 容 } \\ & \text { 器 } \\ & \text { 内 } \\ & \text { 部 } \\ & \text { 構 } \\ & \text { 造 } \\ & \text { 物 } \end{aligned}$	給水スパージャ	3．11地震	ヘッダ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	25	139	\bigcirc	（1）
			4．7地震	ヘッダ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	28	139	\bigcirc	（1）
		高圧及び低圧炉心 スプレイスパージャ	3．11地震	ティー	一次一般膜応力	10	92	\bigcirc	（1）
			4．7地震	ティー	一次一般膜応力	15	92	\bigcirc	（1）
			3．11地震	ライザ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	69	174	\bigcirc	（1）
			4．7地震	ライザ	- 次膜 + - 次曲げ応力	82	174	\bigcirc	（1）
			3．11地震	リング	一次一般膜応力	15	57	\bigcirc	（1）
			4．7地震	リング	一次一般膜応力	17	57	\bigcirc	（1）
		高圧及び低圧炉心	3．11地震	パイプ	一次膜＋一次曲げ応力	36	214	\bigcirc	（1）
		（原子炉圧力容器内部）	4．7地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	54	214	\bigcirc	（1）
		差圧検出・ほう酸水	3．11地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	30	139	\bigcirc	（1）
		（原子炉圧力容器内部）	4．7地震	パイプ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	49	139	\bigcirc	（1）
			3．11地震	中性子束計測案内管下部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	34	172	\bigcirc	（2）
			4．7地震	中性子束計測案内管下部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	25	172	\bigcirc	（2）
	$\begin{aligned} & \text { 炉 } \\ & \text { 心 } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \\ & \text { 物 } \end{aligned}$	炬心シュラウド	3．11地震	下部胴	一次一般膜応力	69	92	\bigcirc	（2）
			4．7地震	下部胴	一次一般膜応力	71	92	\bigcirc	（2）
		シュラウドサポート	3．11地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	175	198	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	177	198	\bigcirc	（1）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（4／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|c\|} \text { 評価 } \\ \text { 方法乼1 } \end{array}$
	炉 心 支 持 構 造 物	炉心シュラウド支持ロッド	3．11地震	上部タイロッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	366	455	\bigcirc	（2）
			4．7地震	上部タイロッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	366	455	\bigcirc	（2）
		上部格子板	3．11地震	グリッドプレート	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	65	214	\bigcirc	（2）
			4．7地震	グリッドプレート	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	45	214	\bigcirc	（2）
		炬心支持板	3．11地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	130	268	\bigcirc	（2）
			4．7地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	87	268	\bigcirc	（2）
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$		制御棒案内管	3．11地震	長手中央部	一次一般膜応力	39	143	\bigcirc	（2）
			4．7地震	長手中央部	一次一般膜応力	35	143	\bigcirc	（2）
	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \\ & \text { の } \\ & \text { 基 } \\ & \text { 礎 } \end{aligned}$	外筒，内筒，縦リブ	3．11地震	外筒	一次応力 （組合せ）	262	427	\bigcirc	（2）
			4．7地震	外筒	一次応力 （組合せ）	206	427	\bigcirc	（2）
		CRD開口部	3．11地震	CRD開口部	一次応力 （せん断）	127	246	\bigcirc	（2）
			4．7地震	CRD開口部	一次応力 （せん断）	99	246	\bigcirc	（2）
		アンカボルト	3．11地震	アンカボルト	定着力	$\begin{array}{r} 874 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
			4．7地震	アンカボルト	定着力	$\begin{array}{r} 654 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
		スカートフランジ	3．11地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	$\begin{gathered} \text { 一次応力 } \\ \text { (曲げ) } \end{gathered}$	247	492	\bigcirc	（2）
			4．7地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	$\begin{gathered} \text { 一次応力 } \\ \text { (曲げ) } \end{gathered}$	187	492	\bigcirc	（2）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（ $5 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|c\|} \text { 評価 } \\ \text { 方法 } \% 1 \end{array}$
	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 材 } \end{aligned}$	制御棒中性子吸収棒	3．11地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
			4．7地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
	駆 動制 装御 置材	水圧制御ユニット	3．11地震	取付ボルト	一次応力 （引張）	169	475	\bigcirc	（1）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	149	475	\bigcirc	（1）
計 測 制 御 系 統 施 設	ほう酸水注入設備	ほう酸水注入系 ポンプ	3．11地震	ポンプ取付ボルト	一次応力 （せん断）	33	118	\bigcirc	（1）
			4．7地震	ポンプ取付ボルト	一次応力 （せん断）	43	118	\bigcirc	（1）
		ほう酸水注入系貯蔵タンク	3．11地震	基礎ボルト	一次応力 （引張）	47	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	47	173	\bigcirc	（2）
	計 測 装 置	$\begin{gathered} \text { 起動領域モニタ } \\ \text { ドライチーブ } \end{gathered}$	3．11地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	120	308	\bigcirc	（2）
			4．7地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	91	308	\bigcirc	（2）
		局部出力領域モニタ検出器集合体	3．11地震	カバーチューブ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	109	200	\bigcirc	（2）
			4．7地震	カバーチューブ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	88	200	\bigcirc	（2）
		直立型制御盤	3．11地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	21	173	\bigcirc	（2）
			4．7地震	取付ボルト	一次応力 (引張)	24	173	\bigcirc	（2）
		ベンチ型制御盤	3．11地震	取付ボルト	一次応力 （引張）	16	173	\bigcirc	（2）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	18	173	\bigcirc	（2）
		現場盤	3．11地震	取付ボルト	一次応力 （引張）	23	173	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	30	173	\bigcirc	（1）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（6／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|l\|} \text { 評価 } \\ \text { 方法 } \% 1 \end{array}$
原子炉泠却系統施設	残 留 熱 除 去 設 備	残留熱除去系熱交換器	3．11地震	基礎ボルト	一次応力 （引張）	82	147	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	56	169	\bigcirc	（2）
		残留熱除去系 ポンプ	3．11地震	原動機台取付ボルト	一次応力 （引張）	26	444	\bigcirc	（1）
			4．7地震	原動機台取付ボルト	一次応力 （引張）	25	444	\bigcirc	（1）
	原子炉泠却材補給設備	原子炉隔離時冷却系ポンプ	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	20	169	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	19	169	\bigcirc	（1）
		原子炉隔離時冷却系 ポンプ駆動用タービン	3．11地震	基礎ボルト	一次応力 （引張）	45	169	\bigcirc	（1）
			4．7地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	44	169	\bigcirc	（1）
	$\begin{aligned} & \text { そ非 } \\ & \text { の常 } \\ & \text { 他 } \\ & \text { 原用 } \\ & \text { 子炉 } \\ & \text { 炉心 } \\ & \text { 注泠 } \\ & \text { 水却 } \\ & \text { 設 } \\ & \text { 備備 } \end{aligned}$	高圧炉心スプレイ系ポンプ	3．11地震	原動機取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	27	455	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	26	455	\bigcirc	（1）
		低圧炉心スプレイ系ポンプ	3.11 地震	原動機取付ボルト	一次応力 （引張）	29	491	\bigcirc	（1）
			4．7地震	原動機取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	28	491	\bigcirc	（1）
	原 子 炉 冷 却 材 の 循 環 設 備	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	3．11地震	ラグ	一次応力 （組合せ）	45	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	61	203	\bigcirc	（2）
		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	3．11地震	ラグ	一次応力 （組合せ）	74	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	100	203	\bigcirc	（2）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（7／16）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } \% 1 \end{gathered}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$	原子炉補機泠却設備	原子炉補機冷却水系熱交換器	3．11地震	胴板	一次応力	176	415	\bigcirc	（2）
			4．7地震	胴板	一次応力	157	415	\bigcirc	（2）
		原子炉補機冷却水 ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	16	122	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	15	122	\bigcirc	（1）
		原子炉補機冷却海水ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	95	475	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	126	475	\bigcirc	（1）
		原子炉補機冷却水 サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	40	169	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	42	169	\bigcirc	（2）
		原子炬補機冷却海水系 ストレーナ	3．11地震	胴板	一次応力	38	346	\bigcirc	（2）
			4．7地震	胴板	一次応力	33	346	\bigcirc	（2）
		高圧炉心スプレイ補機冷却水系熱交換器	3．11地震	基礎ボルト	一次応力 （せん断）	29	133	\bigcirc	（2）
			4．7地震	胴板	一次応力	82	415	\bigcirc	（2）
		高圧炉心スプレイ補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
		高圧炉心スプレイ補機冷却海水ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	12	153	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	14	153	\bigcirc	（1）
		$\begin{gathered} \text { 高圧炉心スプレイ } \\ \text { 補機泠却水サージタンク } \end{gathered}$	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	29	175	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（8／16）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（9／16）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価
※2 他のプラントで適用され，工認実績のある限界荷重領域評価

表 4－1 構造強度評価結果（ $10 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 }{ }^{*} \end{gathered}$
放 射 線 管 理 施 設	換 気 設 備	中央制御室送風機	3．11地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
		中央制御室排風機	3．11地震	原動機取付ボルト	一次応力 （引張）	16	180	\bigcirc	（2）
			4．7地震	原動機取付ボルト	一次応力 （引張）	17	180	\bigcirc	（2）
		中央制御室再循環送風機	3．11地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
		中央制御室再循環フィルタ装置	3．11地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
	$\begin{aligned} & \text { 計 管放 } \\ & \text { 測理射 } \\ & \text { 装用線 } \\ & \text { 置 } \end{aligned}$	燃料取替エリア放射線モニタ	3．11地震	取付ボルト	一次応力 （引張）	9	180	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	11	180	\bigcirc	（1）
	$\begin{aligned} & \text { 生 } \\ & \text { 装体 } \\ & \text { 置遮 } \\ & \text { 蔽 } \end{aligned}$	原子炉遮蔽壁 （波及的影響設備）	3．11地震	開口集中部	一次応力 （組合せ）	120	235	\bigcirc	（2）
			4．7地震	開口集中部	一次応力 （組合せ）	115	235	\bigcirc	（2）
計 測 制	計 測 装 置	格納容器内雰囲気モニタ	3．11地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	10	180	\bigcirc	（1）
系 統 施			4．7地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	13	180	\bigcirc	（1）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 $4-1$ 構造強度評価結果（ $11 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{aligned} & \text { 評価 } \\ & \text { 方法 } \% 1 \end{aligned}$
核 燃 料 物 質 の 取 扱 施 設 及 び 貯 蔵 施 設	使 用 済 燃 料 貯 蔵 設 備	使用済燃料貯蔵ラック(110体ラック)	3．11地震	ラック本体	一次応力 （組合せ）	59	205	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	61	205	\bigcirc	（1）
		使用済燃料貯蔵ラック(170体ラック)	3．11地震	ラック本体	一次応力 （組合せ）	79	205	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	99	205	\bigcirc	（1）
		制御棒•破損燃料貯蔵ラック	3．11地震	ラック本体	一次応力 （組合せ）	39	108	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	47	108	\bigcirc	（1）
	燃 料 取 扱 設 備	燃料交換機 （波及的影響設備）	3．11地震	構造物フレーム	一次応力 （組合せ）	212	231	\bigcirc	（3）
			4．7地震	構造物フレーム	一次応力 （組合せ）	206	231	\bigcirc	（3）
		原子炉建屋クレーン （波及的影響設備）	3．11地震	脱線防止ラグ	圧縮応力	117	309	\bigcirc	（3）
			4．7地震	脱線防止ラグ	圧縮応力	129	309	\bigcirc	（3）
その他発電用原子炉の附属施設	非 常 用 発 電 装 置	非常用ディーゼル 発電設備 ディーゼル機関	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	79	254	\bigcirc	（2）
			4．7地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	50	254	\bigcirc	（2）
		非常用ディーゼル 発電設備 ディーゼル発電機	3．11地震	軸受台取付ボルト	一次応力 （引張）	65	180	\bigcirc	（1）
			4．7地震	軸受台取付ボルト	一次応力 （引張）	67	180	\bigcirc	（1）
		非常用ディーゼル 発電設備燃料デイタンク	3．11地震	基礎ボルト	一次応力 （引張）	33	158	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	34	158	\bigcirc	（2）
		非常用ディーゼル発電設備空気だめ	3．11地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）
			4．7地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（ $12 / 16$ ）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } \% 1 \end{gathered}$
その他発電用原子炉の附属施設	非 常 用 発 電 装 置	高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル機関	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	123	254	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	89	254	\bigcirc	（2）
		高圧炉心スプレイ系	3．11地震	基礎ボルト	一次応力 （せん断）	58	195	\bigcirc	（1）
		ゼル発電機	4．7地震	基礎ボルト	一次応力 （せん断）	63	195	\bigcirc	（1）
		高圧炉心スプレイ系	3．11地震	スカート	座屈	$\begin{array}{r} 0.31 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）
		タンク	4．7地震	スカート	座屈	$\begin{array}{r} 0.42 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）
		高王炉ふスプレイ系	3．11地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
		坒気ため	4．7地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
	そ の 他 の 電 源 装 置	$\begin{gathered} \text { 125V蓄電池2A } \\ \text { (2個並び1段2列) } \end{gathered}$	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	25	133	\bigcirc	（1）
		125 V 蓄電池 2 H （15個並び1段1列）	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	24	133	\bigcirc	（1）
		125 V 充電器 2 A	3．11地震	取付ボルト	一次応力 （せん断）	14	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	15	133	\bigcirc	（1）
		125 V 充電器 2 H	3．11地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	22	173	\bigcirc	（1）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	25	173	\bigcirc	（1）
		静止形無停電電源装置	3．11地震	取付ボルト	一次応力 （せん断）	12	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	13	133	\bigcirc	（1）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（ $13 / 16$ ）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（14／16）

	価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	評価方法 ${ }^{* 1}$
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	原子炉隔離時冷却系配管	3．11地震	配管本体	一次応力	92	188	\bigcirc	（2）
		4．7地震	配管本体	一次応力	118	188	\bigcirc	（2）
		3．11地震	配管サポート	一次応力	111	245	\bigcirc	（2）
		4．7地震	配管サポート	一次応力	144	245	\bigcirc	（2）
	高圧炉心スプレイ系配管	3．11地震	配管本体	一次応力	147	199	\bigcirc	（2）
		4．7地震	配管本体	一次応力	160	199	\bigcirc	（2）
		3．11地震	配管サポート	一次応力	44 (kN)	$\begin{array}{r} 87 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）
		4．7地震	配管サポート	一次応力	$\begin{array}{r} 59 \\ (\mathrm{kN}) \end{array}$	$\begin{array}{r} 87 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）
	低圧炉心スプレイ系配管	3．11地震	配管本体	一次応力	104	220	\bigcirc	（2）
		4．7地震	配管本体	一次応力	137	220	\bigcirc	（2）
		3．11地震	配管サポート	一次応力	$\begin{array}{r} 22.7 \\ (\mathrm{kN}) \end{array}$	$\underset{(\mathrm{kN})}{24}$	\bigcirc	（2）
		4．7地震	配管サポート	一次応力	$\begin{aligned} & 23.6 \\ & (\mathrm{kN}) \end{aligned}$	$\begin{array}{r} 24 \\ (\mathrm{kN}) \end{array}$	\bigcirc	（2）
	原子炉補機冷却水系配管	3．11地震	配管本体	一次応力	181	229	\bigcirc	（3）
		4．7地震	配管本体	一次応力	201	229	\bigcirc	（3）
		3．11地震	配管サポート	一次応力	165	245	\bigcirc	（3）
		4．7地震	配管サポート	一次応力	235	245	\bigcirc	（3）
	原子炉補機泠却海水系配管	3．11地震	配管本体	一次応力	200	241	\bigcirc	（3）
		4．7地震	配管本体	一次応力	196	241	\bigcirc	（3）
		3．11地震	配管サポート	一次応力	159	245	\bigcirc	（3）
		4．7地震	配管サポート	一次応力	145	245	\bigcirc	（3）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（ $15 / 16$ ）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－1 構造強度評価結果（ $16 / 16$ ）

	評価対象設備及び評価箇所	評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 } ※ 1 \end{gathered}$
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \end{aligned}$	放射性ドレン移送系配管	3．11地震	配管本体	一次応力	128	199	\bigcirc	（2）
		4．7地震	配管本体	一次応力	151	199	\bigcirc	（2）
		3．11地震	配管サポート	反力	$\begin{array}{r} 2 \\ (\mathrm{kN}) \end{array}$	4 （kN）	\bigcirc	（2）
		4．7地震	配管サポート	反力	$\underset{(\mathrm{kN})}{2}$	4 （kN）	\bigcirc	（2）
	サプレッションプール水貯蔵系配管	3．11地震	配管本体	一次応力	66	219	\bigcirc	（2）
		4．7地震	配管本体	一次応力	92	219	\bigcirc	（2）
		3．11地震	配管サポート	一次応力	23	245	\bigcirc	（2）
		4．7地震	配管サポート	一次応力	29	245	\bigcirc	（2）
	可燃性ガス濃度制御系配管	3．11地震	配管本体	一次応力	154	211	\bigcirc	（2）
		4．7地震	配管本体	一次応力	128	150	\bigcirc	（2）
		3．11地震	配管サポート	一次応力	183	245	\bigcirc	（2）
		4．7地震	配管サポート	一次応力	212	245	\bigcirc	（2）
	高圧炉心スプレイ補機冷却水系配管	3．11地震	配管本体	一次応力	147	229	\bigcirc	（3）
		4．7地震	配管本体	一次応力	178	229	\bigcirc	（3）
		3．11地震	配管サポート	一次応力	172	245	\bigcirc	（3）
		4．7地震	配管サポート	一次応力	178	245	\bigcirc	（3）
	高圧炉心スプレイ補機冷却海水系配管	3．11地震	配管本体	一次応力	101	239	\bigcirc	（3）
		4．7地震	配管本体	一次応力	146	239	\bigcirc	（3）
		3．11地震	配管サポート	反力	7 (kN)	$\begin{gathered} 16 \\ (\mathrm{kN}) \end{gathered}$	\bigcirc	（3）
		4．7地震	配管サポート	反力	10 (kN)	16 （kN）	\bigcirc	（3）

※1 評価方法
（1）：簡易評価
（2）：設計時と同等の評価
（3）：詳細評価

表 4－2 詳細評価を適用した設備及び評価の概要

詳細評価を適用した設備	評価の概要
燃料交換機 配管系 $\left(\begin{array}{l}\text { •原子炉補機冷却水系 } \\ \text {－燃料プールス泠却浄化系 } \\ - \text { 非常用ガス処理系 } \\ \cdot \text { 高圧炉心スプレイ補機冷却水系 }\end{array}\right)$	設計時の評価（スペクトルモーダル解析） から，時刻歴応答解析法による評価に変更
原子炉建屋クレーン	設計時の評価（公式による算出）から，時刻歴応答解析法による評価に変更
蒸気乾燥器	設計時の保守的な継手効率（0．4）から，実態の検査に応じた継手効率（0．55）に変更
配管系 （•原子炬補機冷却水系 - 原子炬補機冷却海水系 - 燃料プール泠却浄化系 - 非常用ガス処理系 - 高圧炉心スプレイ補機冷却水系 - 高圧炉心スプレイ補機冷却海水系	実機を踏まえたばね定数に変更（配管系の設計段階ではサポートのばね定数を汎用性 のある保守的な設定としている場合がある ため，実際のサポートの敷設状態を踏まえ た精緻なばね定数に変更）

表 4－3 疲労評価結果

対象設備	評価用地震動	地震による疲労累積係数［－］	合計［－］	評価 結果
給水系配管	3.11 地震	0.0001	0.0002	\bigcirc
	4.7 地震	0． 0001		
残留熱除去系配管	3.11 地震	0.0027	0.0036	\bigcirc
	4.7 地震	0.0009		
原子炉補機冷却海水系配管	3.11 地震	0． 0008	0.0014	\bigcirc
	4.7 地震	0.0006		
給水ノズル	3.11 地震	0.0002	0.0019	\bigcirc
	4.7 地震	0.0017		

表 4－4 動的機能維持評価結果（ $1 / 7$ ）

評価対象設備及び評価箇所			評価用地震動	評価項目	算出値 （mm）	評価基準値 （mm）	評価結果
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	燃料集合体	制御棒挿入性	3．11地震	燃料集合体相対変位	18.2	40.0	\bigcirc
			4．7地震	燃料集合体相対変位	8.5	40.0	\bigcirc

表 4－4 動的機能維持評価結果（2／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鈖直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
原子炉泠却系統施設	残留熱除去設備	残留熱除去系ポンプ		3．11地震	コラム先端部	0.62	10.0	0.40	1.0	\bigcirc
			4．7地震	コラム先端部	0.40	10.0	0.39	1.0	\bigcirc	
			3．11地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
	非常用炉心冷却設備 その他原子炉注水設備	高圧炬心スプレイ系ポンプ	3．11地震	コラム先端部	0.62	10.0	0.40	1.0	\bigcirc	
			4．7地震	コラム先端部	0.40	10.0	0.39	1.0	\bigcirc	
		高圧炉心スプレイ系ポンプ原動機	3．11地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
		低圧炬心スプレイ系ポンプ	3．11地震	コラム先端	0.62	10.0	0.40	1.0	\bigcirc	
			4．7地震	コラム先端	0.40	10.0	0.39	1.0	\bigcirc	
		低圧炉心スプレイ系ポンプ原動機	3．11地震	軸受部	0.62	2.5	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	2.5	0.39	1.0	\bigcirc	
	原子炉冷却材補給設備	原子炉隔離時冷却系ポンプ	3．11地震	軸位置 （軸方向）	0.61	1.4	0.39	1.0	\bigcirc	
			4．7地震	軸位置 （軸方向）	0.41	1.4	0.39	1.0	\bigcirc	
		原子炉隔離時冷却系ポン プ駆動用タービン	3．11地震	重心位置	0.62	2.4	0.39	1.0	\bigcirc	
			4．7地震	重心位置	0.41	2.4	0.39	1.0	\bigcirc	

表 4－4 動的機能維持評価結果（3／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鉛直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 訑 } \end{aligned}$	原子炉補機冷却設備	原子炉補機冷却水ポンプ		3．11地震	軸位置 （軸方向）	0.62	1.4	0.40	1.0	\bigcirc
			4．7地震	軸位置 （軸方向）	0.40	1.4	0.39	1.0	\bigcirc	
		原子炉補機冷却水ポンプ原動機	3．11地震	軸受部	0.62	4.7	0.40	1.0	\bigcirc	
			4.7 地震	軸受部	0.40	4.7	0.39	1.0	\bigcirc	
		原子炉補機冷却海水ポンプ	3．11地震	コラム先端部	5.07	10.0	0.67	1.0	\bigcirc	
			4.7 地震	コラム先端部	6.71	10.0	0.73	1.0	\bigcirc	
		原子炉補機泠却海水 ポンプ原動機	3．11地震	軸受部	4.23	14.0	0.67	1.0	\bigcirc	
			4．7地震	軸受部	5.60	14.0	0.73	1.0	\bigcirc	
		高圧炉心スプレイ補機泠却水ポンプ	3．11地震	軸位置 （軸方向）	0.62	1.4	0.40	1.0	\bigcirc	
			4．7地震	軸位置 （軸方向）	0.40	1.4	0.39	1.0	\bigcirc	
		高圧灯心スプレイ補機泠却水ポンプ原動機	3．11地震	軸受部	0.62	4.7	0.40	1.0	\bigcirc	
			4．7地震	軸受部	0.40	4.7	0.39	1.0	\bigcirc	
		高圧灯ふスプレイ補機冷却海水ポンプ	3．11地震	コラム先端部	2.33	10.0	0.67	1.0	\bigcirc	
			4.7 地震	コラム先端部	2.85	10.0	0.73	1.0	\bigcirc	
		高圧炬心スプレイ補機泠却海水ポンプ原動機	3．11地震	軸受部	0.83	2.5	0.67	1.0	\bigcirc	
			4.7 地震	軸受部	0.68	2.5	0.73	1.0	\bigcirc	

表 4－4 動的機能維持評価結果（4／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鈖直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
放射線管理施設	換気設備	中央制御室送風機		3．11地震	軸受部及びメカニカルシー ルケーシング	0.64	2.3	0.34	1.0	\bigcirc
			4．7地震	軸受部及びメカニカルシー ルケーシング	0.64	2.3	0.39	1.0	\bigcirc	
		中央制御室送風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
		中央制御室排風機	3．11地震	軸受部	0.64	2.6	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	2.6	0.39	1.0	\bigcirc	
		中央制御室排風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
		中央制御室再循環送風機	3．11地震	軸受部及びメカニカルシー ルケーシング	0.64	2.3	0.34	1.0	\bigcirc	
			4．7地震	軸受部及びメカニカルシー ルケーシング	0.64	2.3	0.39	1.0	\bigcirc	
		中央制御室再循環送風機原動機	3．11地震	軸受部	0.64	4.7	0.34	1.0	\bigcirc	
			4．7地震	軸受部	0.64	4.7	0.39	1.0	\bigcirc	
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	圧力低減設備 その他の安全設備	非常用ガス処理系排風機	3．11地震	軸受部及びメカニカルシー ルケーシング	0.94	2.3	0.67	1.0	\bigcirc	
			4．7地震	軸受部及びメカニカルシー ルケーシング	0.78	2.3	0.89	1.0	\bigcirc	
		非常用ガス処理系排風機原動機	3．11地震	軸受部	0.94	4.7	0.67	1.0	\bigcirc	
			4．7地震	軸受部	0.78	4.7	0.89	1.0	\bigcirc	
		可燃性ガス濃度制御系再結合装置ブロワ	3．11地震	軸受部	0.92	2.6	0.66	1.0	\bigcirc	
			4．7地震	軸受部	0.76	2.6	0.87	1.0	\bigcirc	
		可燃性がス濃度制御系再結合装置ブロワ原動機	3．11地震	軸受部	0.92	4.7	0.66	1.0	\bigcirc	
			4．7地震	軸受部	0.76	4.7	0.87	1.0	\bigcirc	

表 4－4 動的機能維持評価結果（5／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鉛直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
$\begin{aligned} & \text { そ } \\ & \text { の } \\ & \text { 他 } \\ & \text { 発 } \\ & \text { 電 } \\ & \text { 用 } \\ & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { の } \\ & \text { 付 } \\ & \text { 属 } \\ & \text { 訑 } \\ & \text { 設 } \end{aligned}$	非常用発電装置	非常用ディーゼル発電設備 ディーゼル機関		3．11地震	機関重心位置	0.84	1.1	0.59	1.0	\bigcirc
			4．7地震	機関重心位置	0.58	1.1	0.63	1.0	\bigcirc	
		非常用ディーゼル発電設	3．11地震	軸受部	0.83	1.1	0.58	1.0	\bigcirc	
		ディーゼル発電機	4．7地震	軸受部	0.55	1.1	0.59	1.0	\bigcirc	
			3．11地震	機関重心位置	0.85	1.1	0.59	1.0	\bigcirc	
		ディーゼル機関	4．7地震	機関重心位置	0.58	1.1	0.63	1.0	\bigcirc	
		高圧炉心スプレイ系ディー	3．11地震	軸受部	0.85	1.1	0.60	1.0	\bigcirc	
		ティーセル発電機	4．7地震	軸受部	0.59	1.1	0.64	1.0	\bigcirc	

表 4－4 動的機能維持評価結果（6／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鈖直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
弁	燃料プール冷却浄化系	燃料プール冷却浄化系弁		3．11地震	駆動部	1.49	6.0	0.77	6.0	\bigcirc
			4．7地震	駆動部	1.35	6.0	1.02	6.0	\bigcirc	
	主蒸気系	主蒸気隔離弁	3．11地震	駆動部	3.03	10.0	3.37	6.2	\bigcirc	
			4．7地震	弁本体 ${ }^{*}$	発生値 (MPa)774		評価基漼値 (MPa)785		\bigcirc	
		主蒸気逃がし安全弁	3．11地震	駆動部	2.86	9.6	1.56	6.1	\bigcirc	
			4．7地震	駆動部	5.07	9.6	2.57	6.1	\bigcirc	
	復水給水系	復水給水系弁	3．11地震	駆動部	2.56	6.0	1.71	6.0	\bigcirc	
			4．7地震	駆動部	4.32	6.0	4.82	6.0	\bigcirc	
	残留熱除去系	残留熱除去系弁	3．11地震	弁本体 ${ }^{*}$	発生値（G） 7.43		評価基準値（G） 41.9		\bigcirc	
			4．7地震	弁本体 ${ }^{*}$	発生値（G） 13.17		評価基漼値（G）41.9		\bigcirc	
	高圧炉心スプ レイ系	高圧炉心スプレイ系弁	3．11地震	駆動部	3.80	6.0	1.36	6.0	\bigcirc	
			4．7地震	駆動部	5.23	6.0	2.16	6.0	\bigcirc	
	低圧炉心スプ レイ系	低圧炬心スプレイ系弁	3．11地震	駆動部	2.96	6.0	1.98	6.0	\bigcirc	
			4．7地震	駆動部	4.30	6.0	3.05	6.0	\bigcirc	
	原子炉隔離時冷却系	原子炉隔離時冷却系弁	3．11地震	駆動部	2.81	6.0	1.59	6.0	\bigcirc	
			4．7地震	駆動部	5.17	6.0	2.79	6.0	\bigcirc	
	原子炉補機泠却系	原子炉補機冷却系弁	3．11地震	駆動部	3.63	6.0	1.53	6.0	\bigcirc	
			4．7地震	駆動部	5.24	6.0	2.22	6.0	\bigcirc	
	原子炉補機冷却海水系	原子炉補機冷却海水系弁	3．11地震	駆動部	4.79	6.0	2.77	6.0	\bigcirc	
			4．7地震	駆動部	5.30	6.0	4.11	6.0	\bigcirc	
	原子炬冷却材浄化系	原子炉冷却材浄化系弁	3．11地震	駆動部	2.01	6.0	1.95	6.0	\bigcirc	
			4．7地震	駆動部	3.61	6.0	3.51	6.0	\bigcirc	

※ 詳細評価

表 4－4 動的機能維持評価結果（7／7）

評価対象設備及び評価箇所			評価用地震動	評価位置	水平加速度		鋁直加速度		評価結果	
			応答加速度		機能確認済加速度	応答加速度	機能確認済加速度			
弁	制御棒駆動水圧系	制御棒駆動水圧系スクラム弁		3．11地震	駆動部	0.83	6.0	0.58	6.0	\bigcirc
			4．7地震	駆動部	0.57	6.0	0.59	6.0	\bigcirc	
	ほら酸水注入系	ほう酸水注入系弁	3．11地震	駆動部	2.62	6.0	2.34	6.0	\bigcirc	
			4．7地震	駆動部	4.47	6.0	5.48	6.0	\bigcirc	
	放射性ドレン移送系	放射性ドレン移送系弁	3．11地震	駆動部	3.50	6.0	2.73	6.0	\bigcirc	
			4．7地震	駆動部	5.63	6.0	5.20	6.0	\bigcirc	
	非常用ガス処理系	非常用ガス処理系弁	3．11地震	駆動部	3.76	6.0	2.04	6.0	\bigcirc	
			4．7地震	駆動部	5.67	6.0	3.54	6.0	\bigcirc	
	原子炉格納容器調気系	原子炉格納容器調気系弁	3．11地震	駆動部	3.78	6.0	2.41	6.0	\bigcirc	
			4．7地震	駆動部＊	3.00	9.5	6.43	6.8	\bigcirc	
	可燃性がス濃度制御系	可燃性ガス濃度制御系弁	3．11地震	駆動部	3.31	6.0	5.99	6.0	\bigcirc	
			4．7地震	弁本体 ${ }^{*}$	$\begin{gathered} \text { 発生値 (G) } \\ 8.62 \end{gathered}$		評価基準値（G）9.50		\bigcirc	
	高圧炬心スプ レイ補機冷却海水系	$\begin{gathered} \text { 高圧炉心スプレイ補機泠却 } \\ \text { 海水系弁 } \end{gathered}$	3．11地震	駆動部	2.88	6.0	3.47	6.0	\bigcirc	
			4．7地震	駆動部	3.49	6.0	4.16	6.0	\bigcirc	

※詳細評価

5．機器•配管系の耐震設計への反映事項の検討
地震後の設備点検結果及び地震応答解析結果を踏まえ，東北地方太平洋沖地震等 （3．11／4．7地震）による機器•配管系の耐震設計への反映事項を検討するとともに，そ の後の新規制基準施行に伴い新たに基準地震動 S s での評価が必要となった既設耐震 B， Cクラス施設に対する設計反映事項について整理する。
（1）地震後の設備点検結果及び地震応答解析を踏まえた機器•配管系の耐震設計への反映事項（耐震S クラス施設及び耐震 B，C クラス施設）
機器•配管系の耐震設計への反映事項の検討結果等を図2－1 及び図5－1に示す。図 5－1 は，図 2－2 に記載の耐震設計への反映事項の判断フローに基づき，3．11／4．7地震 を踏まえて，機器•配管系，土木構造物及び建物•構築物それぞれに対する耐震設計 への反映事項の検討結果を示したものである。
a．機器－配管系
機器•配管系は，耐震 S クラス設備（波及的影響を及ぼすおそれのある設備のう ち波及的影響を防止するために評価対象となっている部位を含む）に地震による異常はなく，地震応答は弾性応答範囲内であること，また，耐震 B，Cクラス設備のう ち異常を確認した設備については，原形復旧し，地震による損傷は残らないため，設備健全性確認の観点からは設計反映事項はない。なお，疲労評価については， 3．11／4．7地震を受けたことを踏まえ，疲労累積係数による疲労評価を実施する場合 は，許容限界に対して余裕があることに留意する。
b．土木構造物
土木構造物については，耐震 S クラス設備の間接支持機能を有する施設に地震に よる異常はなく，耐震 B，Cクラス施設のうち異常を確認した施設については，補修 により機能回復しているため，設備健全性確認の観点からは土木構造物の耐震設計 への反映事項はなく，機器•配管系への耐震設計への反映事項もない。

c．建物•構築物

建物•構築物については，地震による異常はなかつたものの，建屋の地震観測記録及び建屋シミュレーションから設計反映事項として，補足説明資料「補足－620－1東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」 に示す建屋の初期剛性低下を建物•構築物の耐震設計に反映するとともに，他施設 の耐震設計への反映の要否を検討した結果として，機器•配管系の耐震設計におい て建屋初期剛性低下を考慮した地震応答解析モデルを用いることとする。
（2）既設耐震 B，Cクラス施設のうち，新規制基準に伴い基準地震動 S s での耐震評価 が必要な施設への設計反映事項
既設耐震 B，Cクラス施設のうち，新規制基準において重大事故等対処施設及び波及的影響施設等の機能要求により基準地震動 S s での耐震評価が必要となった施設 の耐震設計への反映事項の有無については，施設点検結果から以下のとおり整理した。
a．機器•配管系
地震による異常があった既設耐震 B，Cクラス設備は，新規制基準により重大事故等対処設備及び波及的影響設備となる設備も含めて原形復旧しているため耐震設計 への反映事項はない。なお，新規制基準での要求事項については，基準地震動 S s での耐震評価を行い，必要に応じて耐震補強工事を実施し適合性を確保する。
b．土木構造物
新規制基準に伴い基準地震動 S s での耐震評価が必要となった軽油タンク室（軽油タンク室は地下化したが，基礎については継続使用するため評価），軽油タンク連絡ダクト，復水貯蔵タンク基礎は，地震による異常がなかったため耐震設計への反映事項はない。
c．建物•構築物
新規制基準に伴い基準地震動 S s での耐震評価が必要となったタービン建屋は，地震による異常がなかったものの，初期剛性低下の影響を確認し，その影響を設計反映する。

なお，新規制基準に基づく基準地震動 S s に対して耐震性向上の観点から，耐震補強工事を実施する施設については，その工事内容を耐震設計に反映する。

図 5－1 耐震設計への反映事項の検討結果

6．機器•配管系の耐震設計に反映すべき事項の検討結果
地震後の設備点検結果及び地震応答解析結果より，耐震S クラス設備に地震による損傷はなく，地震応答は弾性応答範囲内であり，地震後に地震力が除荷されると変形状態 が元に戻る（変形が残らない）こと，また，耐震 B，Cクラス設備のうち異常を確認した設備については，原形に復旧するため，地震による損傷は残らないことから，機器•配管系の設備健全性確認の観点からは，機器•配管系の耐震設計へ反映すべき事項はない。 なお，3．11地震及び 4.7 地震による設備に対する疲労影響は十分に小さく，設計事項へ の反映は必要ないと考えられるが，疲労評価における留意事項として，疲労累積係数の評価結果が評価基準値 1.0 に近接する場合（判断目安：0．99を超える）には，該当する評価設備に対する評価手法の見直し，より裕度を持つような改造設計等を実施し，3．11地震及び 4.7 地震を考慮しても影響がないことを確認する（補足説明資料「補足－600－9耐震評価における等価繰返し回数の妥当性確認について」参照）。

一方で，建屋のコンクリートの乾燥収縮及び地震による影響の観点からは，機器•配管系の耐震設計について，3．11地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下を反映した解析モデルによる地震応答を用いた評価を実施する。地震応答解析モデルへの反映に当たつては，地震計が設置されている既設建屋（原子炉建屋，制御建屋，タービン建屋，第 3 号機海水熱交換器建屋及び第 1 号機制御建屋）に ついて，シミュレーション解析に基づいて建屋初期剛性を評価し，過去の地震観測記録 の傾向分析等を踏まえて設計値に対する補正係数を設定した。 さらに，過去の観測より も大きな加速度となる更新地震によっても剛性が低下する傾向が認められていることか ら，初期剛性低下の影響を保守的に反映するモデル（基準地震動 S s による剛性低下を反映するモデル）を不確かさケースとして採用する。また，原子炉建屋，タービン建屋及び第 3 号機海水熱交換器建屋においては，地震観測記録とシミュレーション解析結果 の整合性を踏まえ，表層地盤の影響を考慮して入力地震動を算定する。

なお，設置許可段階での検討において，機器•配管系のうち，コンクリートに関連す る箇所を構造的な分類によって抽出し，評価に及ぼす影響の有無を確認している。機器 の基礎台，機器アンカー部等は，十分な剛性を有しており，建屋と一体となって挙動す ることから，乾燥収縮及び地震影響によるコンクリートのひび割れが設備の地震応答解析モデル及び設備の許容限界に及ぼす影響がないと考えられる。原子炉本体の基礎につ いては，コンクリートのひび割れの影響はないと考えられるが，念のため原子炉建屋と同様に初期剛性低下を考慮した地震応答解析モデルによる評価を実施する。（補足説明資料「補足－620－1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法へ の反映について」のうち，「5．5 設備評価への反映方針」参照）。

7．今回工認における耐震評価結果を踏まえた検討
3．11／4．7地震に対する構造強度評価は設計時又は既往の評価における裕度の最も小

さい部位を代表部位とすることを基本としており，評価用地震動が変わると裕度最小部位が変わる可能性がある。そのため，今回工認の耐震評価に用いる基準地震動に対する裕度最小部位と $3.11 / 4.7$ 地震に対する構造強度評価対象部位を比較するとともに，今回工認における裕度最小部位が 3．11／4．7地震に対して弾性応答範囲内であって，地震 による損傷等がなかったことを確認する。

なお，本検討によって設計時又は既往の評価結果を踏まえて選定した 3．11／4．7地震 に対する構造強度評価部位による 6 項「機器•配管系の耐震設計に反映すべき事項の検討結果」が妥当であったことを補強するものである。

3．11／4．7地震以降，耐震性向上を含む安全対策工事を実施（各系統の配管系等）して いるため，本検討における比較対象設備は，耐震Sクラスの未改造設備である 3．11／4．7地震の構造強度評価対象設備とする。耐震裕度向上を目的とした改造を実施する配管系 などの設備は，3．11／4．7地震における設備状態から変化し，比較対象とならないため，検討対象としない。また，動的機能維持評価対象設備については，構造強度評価にて弾性応答範囲内であること及び「原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版」にて機器型式ごとに評価部位が特定されていることから検討対象としない。
（1）検討対象設備の抽出
3．11／4．7地震の構造強度評価対象設備（表 4－1）について，図 7－1 の検討対象設備抽出フローに基づき，3．11／4．7地震後における改造の有無，3．11／4．7地震の評価部位 と今回工認における裕度最小部位との相違に着目し，以下の区分で分類した結果を表 7－1 に示す。

青枠：3．11／4．7地震後に改造を実施した設備（改造の影響を受ける設備を含む）
緑枠：未改造設備であり，裕度最小部位に相違がない設備
赤枠：未改造設備であり，裕度最小部位に相違がある設備
上記のらち赤枠に分類された設備を検討対象として，今回工認の耐震評価における裕度最小部位が 3．11／4．7地震に対して弾性応答範囲内であったことを確認する。

図 7－1 検討対象設備の抽出フロー

表 7－1 $3.11 / 4.7$ 地震の構造強度評価対象設備に対する分類結果（1／12）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（2／12）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（3／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|c\|} \hline \text { 評価 } \\ \text { 方法 } \% 1 \end{array}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	原 子 炉 圧 力 容 器 内 部 構 造 物	給水スパージャ	3．11地震	ヘッダ	- 次膜＋ - 次曲げ応力	25	139	\bigcirc	（1）
			4．7地震	ヘッダ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	28	139	\bigcirc	（1）
		高圧及び低圧炉心 スプレイスパージャ	3．11地震	ティー	一次一般膜応力	10	92	\bigcirc	（1）
			4．7地震	ティー	一次一般膜応力	15	92	\bigcirc	（1）
			3．11地震	ライザ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	69	174	\bigcirc	（1）
			4．7地震	ライザ	一次膜 +一次曲げ応力	82	174	\bigcirc	（1）
			3．11地震	リング	一次一般膜応力	15	57	\bigcirc	（1）
			4．7地震	リング	一次一般膜応力	17	57	\bigcirc	（1）
		高圧及び低圧炉心	3．11地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	36	214	\bigcirc	（1）
		（原子炉圧力容器内部）	4．7地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	54	214	\bigcirc	（1）
		差圧検出・ほう酸水	3．11地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	30	139	\bigcirc	（1）
		（原子炬圧力容器内部）	4．7地震	パイプ	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	49	139	\bigcirc	（1）
			3．11地震	中性子束計測案内管下部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	34	172	\bigcirc	（2）
			4．7地震	中性子束計測案内管下部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	25	172	\bigcirc	（2）
	炉心支持構造物	炉心シュラウド	3．11地震	下部胴	一次一般膜応力	69	92	\bigcirc	（2）
			4．7地震	下部胴	一次一般膜応力	71	92	\bigcirc	（2）
		シュラウドサポート	3．11地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	175	198	\bigcirc	（1）
			4．7地震	$\begin{gathered} \text { シュラウドサポート } \\ \text { レグ } \end{gathered}$	軸圧縮応力	177	198	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（4／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|c\|} \text { 評価 } \\ \text { 方法 } ※ 1 \end{array}$
$\begin{aligned} & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 炉 } \\ & \text { 心 } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \\ & \text { 物 } \end{aligned}$	炉心シュラウド 支持ロッド	3．11地震	上部タイロッド	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	366	455	\bigcirc	（2）
			4．7地震	上部タイロッド	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	366	455	\bigcirc	（2）
		上部格子板	3．11地震	グリッドプレート	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	65	214	\bigcirc	（2）
			4．7地震	グリッドプレート	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	45	214	\bigcirc	（2）
		炉心支持板	3．11地震	支持板	- 次膜 + - 次曲げ応力	130	268	\bigcirc	（2）
			4．7地震	支持板	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	87	268	\bigcirc	（2）
			3．11地震	長手中央部	一次一般膜応力	39	143	\bigcirc	（2）
			4．7地震	長手中央部	一次一般膜応力	35	143	\bigcirc	（2）
	原 子 炉 本 体 の 基 礎	外筒，内筒，縦归ブ	3．11地震	外筒	一次応力 （組合せ）	262	427	\bigcirc	（2）
			4．7地震	外筒	一次応力 （組合せ）	206	427	\bigcirc	（2）
		CRD開口部	3．11地震	CRD開口部	一次応力 （せん断）	127	246	\bigcirc	（2）
			4．7地震	CRD開口部	一次応力 （せん断）	99	246	\bigcirc	（2）
		アンカボルト	3．11地震	アンカボルト	定着力	$\begin{array}{r} 874 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
			4．7地震	アンカボルト	定着力	$\begin{array}{r} 654 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	$\begin{array}{r} 1523 \\ (\mathrm{kN} / \text { 本 }) \end{array}$	\bigcirc	（2）
		スカートフランジ	3．11地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	一次応力 (曲げ)	247	492	\bigcirc	（2）
			4．7地震	$\begin{aligned} & \text { スカート } \\ & \text { フランジ } \end{aligned}$	一次応力 （曲げ）	187	492	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（5／12）

評価対象設備及び評侕箇所			評価用地震動	評価部位	$\begin{aligned} & \text { 評価項目 } \\ & \text { (応力分類) } \end{aligned}$	算出値 ［MPa］	$\begin{aligned} & \text { 評価 } \\ & \text { 準 } \\ & \text { [MPa] } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { 結果 } \end{aligned}$	$\begin{gathered} \text { 評価 } \\ \text { 方法 }{ }^{*} \end{gathered}$
$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 制 } \\ & \text { 卸 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 陪 } \end{aligned}$	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \end{aligned}$	制御棒中性子吸収棒	3．11地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
			4．7地震	中性子吸収棒	一次一般膜応力	35	142	\bigcirc	（2）
	$\begin{aligned} & \text { 駆制 } \\ & \text { 動御 } \\ & \text { 置材 } \end{aligned}$	水圧制御ユニット	3．11地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	169	475	\bigcirc	（1）
			4.7 地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	149	475	\bigcirc	（1）
	$\begin{aligned} & \text { ほ } \\ & \text { 酸 } \\ & \text { 酸 } \\ & \text { 注 } \\ & \text { 入設 } \\ & \text { 備 } \end{aligned}$	ほう酸水注入系ポンプ	3.11 地震	ポンプ取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	33	118	\bigcirc	（1）
			4．7地震	ポンプ取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	43	118	\bigcirc	（1）
		ほう酸水注入系貯蔵タンク	3.11 地震	基䂾ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	47	173	\bigcirc	（2）
			4.7 地震	基礎ボルト	一次応力 （引張）	47	173	\bigcirc	（2）
	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 琹 } \\ & \text { 置 } \end{aligned}$	$\begin{aligned} & \text { 起動領域モニタ } \\ & \text { ドライチーブ } \end{aligned}$	3.11 地震	パイプ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	120	308	\bigcirc	（2）
			4.7 地震	パイフ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	91	308	\bigcirc	（2）
		局部出力領域モニタ検出器集合体	3.11 地震	カバーチューブ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	109	200	\bigcirc	（2）
			4．7地震	カバーチューブ	$\begin{aligned} & \text { 一次膜+ } \\ & \text { 一次曲げ応力 } \end{aligned}$	88	200	\bigcirc	（2）
		直立型制御盤	3.11 地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \left(\begin{array}{c} \text { 引張) } \end{array}\right) \end{gathered}$	21	173	\bigcirc	（2）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (弓張) } \end{gathered}$	24	173	\bigcirc	（2）
		ベンチ型制御盤	3.11 地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (弓張) } \end{gathered}$	16	173	\bigcirc	（2）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ (\text { 引張) } \end{gathered}$	18	173	\bigcirc	（2）
		現場盤	3.11 地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	23	173	\bigcirc	（1）
			4．7地震	取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	30	173	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（6／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & \text { [MPa] } \end{aligned}$	評価基準値 ［MPa］	評価結果	$\begin{aligned} & \text { 評価 } \\ & \text { 方法 } \% 1 \end{aligned}$
原子炉泠却系統施設	残 留 熱 除 去 設 備	残留熱除去系 熱交換器	3.11 地震	基礎ボルト	一次応力 （引張）	82	147	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	56	169	\bigcirc	（2）
		残留熱除去系 ポンプ	3.11 地震	原動機台取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	26	444	\bigcirc	（1）
			4．7地震	原動機台取付ボルト	一次応力 （引張）	25	444	\bigcirc	（1）
	原 子 炉 冷 却 材 補 給 設 備	原子炉隔離時泠却系 ポンプ	3.11 地震	基礎ボルト	一次応力 （引張）	20	169	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	19	169	\bigcirc	（1）
		原子师隔離時冷却系 ポンプ駆動用タービン	3.11 地震	基礎ボルト	一次応力 （引張）	45	169	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	44	169	\bigcirc	（1）
	$\begin{aligned} & \text { そ 非 } \\ & \text { の常 } \\ & \text { 他 } \\ & \text { 原用 } \\ & \text { 子炉 } \\ & \text { 炉心 } \\ & \text { 注泠 } \\ & \text { 水却 } \\ & \text { 設 } \\ & \text { 備備 } \end{aligned}$	高圧炉心スプレイ系ポンプ	3.11 地震	原動機取付ボルト	一次応力 （引張）	27	455	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	26	455	\bigcirc	（1）
		低圧灲心スプレイ系 ポンプ	3.11 地震	原動機取付ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	29	491	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	28	491	\bigcirc	（1）
	原子炉泠却材の循環設備	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	3.11 地震	ラグ	一次応力 （組合せ）	45	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	61	203	\bigcirc	（2）
		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	3.11 地震	ラグ	一次応力 （組合せ）	74	203	\bigcirc	（2）
			4．7地震	ラグ	一次応力 （組合せ）	100	203	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（7／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{array}{\|c\|} \text { 評価 } \\ \text { 方法※1 } \end{array}$
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	原子炉補機泠却設備	原子炬補機冷却水系熱交換器	3．11地震	胴板	一次応力	176	415	\bigcirc	（2）
			4．7地震	胴板	一次応力	157	415	\bigcirc	（2）
		原子炉補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	16	122	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	15	122	\bigcirc	（1）
		原子炉補機冷却海水ポンプ	3．11地震	原動機取付ボルト	一次応力 （引張）	95	475	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （引張）	126	475	\bigcirc	（1）
		原子炉補機冷却水 サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	40	169	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	42	169	\bigcirc	（2）
		原子炉補機冷却海水系 ストレーナ	3．11地震	胴板	一次応力	38	346	\bigcirc	（2）
			4．7地震	胴板	一次応力	33	346	\bigcirc	（2）
		高圧炉心スプレイ補機冷却水系熱交換器	3．11地震	基礎ボルト	一次応力 （せん断）	29	133	\bigcirc	（2）
			4．7地震	胴板	一次応力	82	415	\bigcirc	（2）
		高圧灲心スプレイ補機冷却水ポンプ	3．11地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
			4．7地震	原動機取付ボルト	一次応力 （せん断）	8	133	\bigcirc	（1）
		高圧炉心スプレイ補機冷却海水ポンプ	3．11地震	基礎ボルト	一次応力 （引張）	12	153	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （引張）	14	153	\bigcirc	（1）
		高圧炉心スプレイ補機冷却水サージタンク	3．11地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	29	175	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（8／12）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（9／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	評価方法 ${ }^{* 1}$
	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 容 } \\ & \text { 器 } \end{aligned}$	配管貫通部	3．11地震	X－82B	一次モーメント	$\begin{array}{r} 9024 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{array}$	$\begin{array}{r} 14680 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{array}$	\bigcirc	（2）${ }^{2}$
			4．7地震	X－82B	一次モーメント	$\begin{array}{r} 11090 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{array}$	$\begin{array}{r} 14680 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{array}$	\bigcirc	（2）${ }^{* 2}$
		電気配線貫通部	3．11地震	X－105A	一次モーメント	$\begin{array}{r} 77190 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{array}$	$\begin{aligned} & 245600 \\ & (\mathrm{kN} \cdot \mathrm{~mm}) \end{aligned}$	\bigcirc	（2）${ }^{*}$
			4．7地震	X－105A	一次モーメント	$\underset{(\mathrm{kN} \cdot \mathrm{~mm})}{106000}$	$\begin{gathered} 245600 \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$	\bigcirc	（2）${ }^{*}$
原子炉格納施設	そ の圧 他力 の低 安減 全設 設備 備	ベントヘッダ	3．11地震	ベントヘッダ サポート	圧縮応力	43	63	\bigcirc	（2）
			4．7地震	ベントヘッダ サポート	圧縮応力	47	63	\bigcirc	（2）
		ダウンカマ	3．11地震	ベントヘッダ接続部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	153	229	\bigcirc	（1）
			4．7地震	ベントヘッダ接続部	$\begin{gathered} \text { 一次膜+ } \\ \text { 一次曲げ応力 } \end{gathered}$	171	229	\bigcirc	（1）
		$\begin{gathered} \text { サプレッションチェンバ } \\ \text { スプレイ管 } \end{gathered}$	3．11地震	スプレイ管	一次応力	107	219	\bigcirc	（2）
			4．7地震	スプレイ管	一次応力	98	219	\bigcirc	（2）
		可燃性ガス濃度制御系再結合装置	3．11地震	基礎ボルト	一次応力 （せん断）	126	350	\bigcirc	（1）
			4．7地震	基礎ボルト	一次応力 （せん断）	167	350	\bigcirc	（1）
		可燃性ガス濃度制御系再結合装置ブロワ	3．11地震	ベース取付溶接部	一次応力 （せん断）	43	116	\bigcirc	（1）
			4．7地震	ベース取付溶接部	一次応力 （せん断）	57	116	\bigcirc	（1）
		非常用ガス処理系排風機	3．11地震	排風機取付ボルト	一次応力 （引張）	43	150	\bigcirc	（2）
			4．7地震	排風機取付ボルト	一次応力 （引張）	39	150	\bigcirc	（2）
		非常用ガス処理系 フィルタ装置	3．11地震	スライドボルト	一次応力 （せん断）	135	342	\bigcirc	（2）
			4．7地震	スライドボルト	一次応力 （せん断）	113	342	\bigcirc	（2）
		非常用ガス処理系空気乾燥装置	3．11地震	スライドボルト	一次応力 （せん断）	37	342	\bigcirc	（2）
			4．7地震	スライドボルト	一次応力 （せん断）	31	342	\bigcirc	（2）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（10／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{aligned} & \text { 評価 } \\ & \text { 方法 } \% 1 \end{aligned}$
放 射 線 管 理 施 設	$\begin{aligned} & \text { 換 } \\ & \text { 気 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	中央制御室送風機	3．11地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	13	173	\bigcirc	（2）
		中央制御室排風機	3．11地震	原動機取付ボルト	一次応力 （引張）	16	180	\bigcirc	（2）
			4．7地震	原動機取付ボルト	一次応力 （引張）	17	180	\bigcirc	（2）
		中央制御室再循環送風機	3．11地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	7	173	\bigcirc	（2）
		中央制御室再循環フィルタ装置	3．11地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （せん断）	22	133	\bigcirc	（2）
	計管放 測 装理射 置用線	燃料取替エリア放射線モニタ	3．11地震	取付ボルト	一次応力 （引張）	9	180	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （引張）	11	180	\bigcirc	（1）
	$\begin{aligned} & \text { 生 } \\ & \text { 装体 } \\ & \text { 置遮 } \\ & \text { 蔽 } \end{aligned}$	原子炬遮蔽壁 （波及的影響設備）	3．11地震	開口集中部	一次応力 （組合せ）	120	235	\bigcirc	（2）
			4．7地震	開口集中部	一次応力 （組合せ）	115	235	\bigcirc	（2）
計 測 制	計 測 装 置	格納容器内雰囲気モニタ	3．11地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	10	180	\bigcirc	（1）
系 統 施			4．7地震	水素ガス濃度検出器取付板取付ボルト	一次応力 （引張）	13	180	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（11／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	評価基準値 ［MPa］	評価結果	$\begin{gathered} \text { 評価 } \\ \text { 方法 }{ }^{*}{ }^{2} \end{gathered}$
核 燃 料 物 質 の 取 扱 施 設 及 び 貯 蔵 施 設	使 用 済 燃 料 貯 蔵 設 備	使用済燃料貯蔵ラック （110体ラック）	3．11地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	59	205	\bigcirc	（1）
			4．7地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	61	205	\bigcirc	（1）
		使用済燃料貯蔵ラック(170体ラック)	3．11地震	ラック本体	一次応力 （組合せ）	79	205	\bigcirc	（1）
			4．7地震	ラック本体	一次応力 （組合せ）	99	205	\bigcirc	（1）
		制御棒•破損燃料貯蔵ラック	3．11地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	39	108	\bigcirc	（1）
			4．7地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	47	108	\bigcirc	（1）
	燃 料 取 扱 設 備	燃料交換機 （波及的影響設備）	3．11地震	構造物フレーム	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	212	231	\bigcirc	（3）
			4．7地震	構造物フレーム	一次応力 （組合せ）	206	231	\bigcirc	（3）
		原子炉建屋クレーン （波及的影響設備）	3．11地震	脱線防止ラグ	圧縮応力	117	309	\bigcirc	（3）
			4．7地震	脱線防止ラグ	圧縮応力	129	309	\bigcirc	（3）
そ の 他 発 電 用 原子炉 の 附属施設	非 常 用 発 電 装 置	非常用ディーゼル 発電設備 ディーゼル機関	3．11地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	79	254	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	50	254	\bigcirc	（2）
		非常用ディーゼル発電設備 ディーゼル発電機	3．11地震	軸受台取付ボルト	一次応力 （引張）	65	180	\bigcirc	（1）
			4．7地震	軸受台取付ボルト	一次応力 （引張）	67	180	\bigcirc	（1）
		非常用ディーゼル 発電設備燃料デイタンク	3．11地震	基礎ボルト	一次応力 （引張）	33	158	\bigcirc	（2）
			4．7地震	基礎ボルト	$\begin{gathered} \text { 一次応力 } \\ \text { (引張) } \end{gathered}$	34	158	\bigcirc	（2）
		非常用ディーゼル発電設備空気だめ	3．11地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）
			4．7地震	胴板	$\begin{gathered} \text { 一次一般膜 } \\ \text { 応力 } \end{gathered}$	91	241	\bigcirc	（1）

表 7－1 3．11／4．7地震の構造強度評価対象設備に対する分類結果（12／12）

評価対象設備及び評価箇所			評価用地震動	評価部位	評価項目 （応力分類）	算出値 ［MPa］	$\begin{gathered} \text { 評価 } \\ \text { 基準値 } \\ \text { [MPa] } \end{gathered}$	評価結果	評価方法 $\% 1$
そ の 他 発 電 用 原 子 炉 の 附 属 施 設	非 常 用 発 電 装 置	高圧炉心スプレイ系 ディーゼル発電設備 ディーゼル機関	3．11地震	基礎ボルト	一次応力 （引張）	123	254	\bigcirc	（2）
			4．7地震	基礎ボルト	一次応力 （引張）	89	254	\bigcirc	（2）
		高圧炬心スプレイ系	3．11地震	基礎ボルト	一次応力 （せん断）	58	195	\bigcirc	（1）
		ゼル発電機	4．7地震	基礎ボルト	一次応力 （せん断）	63	195	\bigcirc	（1）
		高圧炉心スプレイ系	3．11地震	スカート	座屈	$\begin{array}{r} 0.31 \\ \text { (単位なし) } \end{array}$	(単位なし)	\bigcirc	（1）
		$ク$	4．7地震	スカート	座屈	$\begin{array}{r} 0.42 \\ \text { (単位なし) } \end{array}$	$\text { (単位なし) } \begin{array}{r} 1 \\ \hline \end{array}$	\bigcirc	（1）
		高圧炬心スプレイ系	3．11地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
			4．7地震	胴板	一次一般膜応力	91	241	\bigcirc	（1）
	そ の 他 の 電 源 装 置	$\begin{aligned} & \text { 125V蓄電池2A } \\ & \text { (2個並び1段2列) } \end{aligned}$	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	25	133	\bigcirc	（1）
		$\begin{gathered} \text { 125V蓄電池2H } \\ (15 \text { 個並び1段1列) } \end{gathered}$	3．11地震	取付ボルト	一次応力 （せん断）	19	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	24	133	\bigcirc	（1）
		125 V 充電器 2 A	3．11地震	取付ボルト	一次応力 （せん断）	14	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	15	133	\bigcirc	（1）
		125 V 充電器2H	3．11地震	取付ボルト	一次応力 （引張）	22	173	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 (引張)	25	173	\bigcirc	（1）
		静止形無停電電源装置	3．11地震	取付ボルト	一次応力 （せん断）	12	133	\bigcirc	（1）
			4．7地震	取付ボルト	一次応力 （せん断）	13	133	\bigcirc	（1）

（2）検討対象設備に対する確認結果
上記で赤枠に分類された設備（19設備）について，3．11／4．7地震の構造強度評価結果及び今回工認における耐震評価結果（弹性設計用地震動 S d／基準地震動 S s ）との比較を表 7－2 に示す。

3．11／4．7地震の評価部位と今回工認における裕度最小部位に相違がある要因とし ては，3．11／4．7地震の評価部位は，設計時及び既往の評価に基づき選定しているため， それらの評価地震動と今回工認における基準地震動との特性（水平及び鉛直方向の大 きさ，床応答スペクトルにおける周期特性など）の違いが考えられる。

今回工認における弾性設計用地震動 S d 及び基準地震動 S s それぞれの耐震評価結果の裕度最小部位について，3．11／4．7地震に対して弾性応答範囲内であったことの確認は，3．11／4．7地震の構造強度評価における評価方法の違いに応じて，以下のとおり実施した。
（1）簡易評価（応答倍率法による評価）を実施していた設備（13 設備）
3．11／4．7地震の構造強度評価において簡易評価を実施している設備については，設計時又は既往の評価において比較的裕度の大きな設備となっている。
これらの設備については，表 7－2 に示すとおり，今回工認における基準地震動 S s による発生応力等（裕度最小部位）が許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ に対する評価基準値以下 であることから，基準地震動 S s に包絡される 3．11／4．7地震に対して，今回工認 における弾性設計用地震動 S d 及び基準地震動 S s それぞれの耐震評価結果の裕度最小部位が弾性応答範囲内になることは明らかである（基準地震動 S s と 3．11／4．7地震との関係を添付2に示す）。
（2）設計時と同等の評価を実施していた設備（6設備）
3．11／4．7地震の構造強度評価において設計と同等の評価を実施していた設備に ついては，評価部位（代表部位）以外についても詳細評価を実施している。

これらの設備については，表 7－2 に示すとおり，今回工認における弾性設計用地震動 S d 及び基準地震動 S s それぞれの耐震評価結果の裕度最小部位についても 3．11／4．7地震の発生応力等が弾性応答範囲内であることを確認している。

8．まとめ
3．11／4．7地震後の設備点検結果及び地震応答解析による設備評価結果より，耐震Sク ラス設備に地震による損傷はなく，地震応答は弾性応答範囲内であり，地震後に地震力 が除荷されると変形状態が元に戻る（変形が残らない）こと，また，耐震B，Cクラス設備のらち異常を確認した設備については，原形に復旧するため，地震による損傷は残ら ないことから，機器•配管系の設備健全性確認の観点からは，機器•配管系の耐震設計

へ反映すべき事項はないと判断した。なお，6 項「機器•配管系の耐震設計に反映す心゙ き事項の検討結果」に係る妥当性確認の観点から，3．11／4．7地震の構造強度評価部位と今回工認における耐震評価結果（弹性設計用地震動 S d／基準地震動 S s ）の裕度最小部位と比較し，今回工認における裕度最小部位が 3．11／4．7地震に対しても弾性応答範囲 であったことを確認した。
3.11 地震及び 4.7 地震による設備に対する疲労累積係数は 0.01 未満であり十分に小 さく，設計事項への反映は必要ないと考えられるが，疲労評価における留意事項として，疲労累積係数の評価結果が評価基準値 1.0 に近接する場合（判断目安： 0.99 を超える） には，該当する評価設備に対する評価手法の見直し，より裕度を持つような改造設計等 を実施し， 3.11 地震及び 4.7 地震を考慮しても影響がないことを確認する。

建屋のコンクリートの乾燥収縮及び地震による影響の観点からは，各建屋内に設置さ れる機器•配管系の耐震設計について，3．11地震等の影響検討結果を踏まえて建屋の初期剛性低下を考慮した地震応答解析モデル（建屋地震応答解析モデル，建屋一大型機器連成解析モデル）を用いた建屋応答を適用する。

					評価項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & \text { [uPPa } \end{aligned}$		評侕	$\begin{aligned} & \text { 評価 } \\ & \text { 方法 } \end{aligned}$
$\begin{aligned} & \text { 原 } \\ & 子 \\ & \text { 炬 } \\ & \text { 体 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 原子煏 } \\ \text { 圧力容器物 } \\ \text { 構造物 } \end{array}$	原子炬格納容器	3.11 地震		$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	${ }^{143}$	176	\bigcirc	（2）
			4．7地震	ガセットプレート	$\begin{aligned} & \text { (次応力応 } \\ & (\text { 組合世 } \end{aligned}$	116	176	\bigcirc	（2）
	$\begin{aligned} & \text { 原子煽 } \\ & \text { 圧力容器 } \\ & \text { 内部構物 } \end{aligned}$	高圧及び低圧炬心 スプレイスパージャ	3.11 地震	ティー	一次一般膜底力	10	92	\bigcirc	（1）
			4.7 地震	ティー	一次一般膜応力	15	92	\bigcirc	（1）
	$\begin{array}{\|c\|} \text { 炬心 } \\ \text { 支持構造物 } \end{array}$	炬ぶュラウド	3.11 地震	下部网	一次一般脱応力	69	92	\bigcirc	（2）
			4.7 地震	下部网	一次一般膜応力	71	92	\bigcirc	（2）
		$\begin{aligned} & \text { 炬心シュラウド } \\ & \text { 支持ロッド } \end{aligned}$	3.11 地震	上部タイロッド		366	455	\bigcirc	（2）
			4.7 地震	上部タイロッド		366	455	\bigcirc	（2）
	原子炻本体	外简，内简，緱りブ	3.11 地震	外简	$\begin{aligned} & - \text { 次次虎力 } \\ & \text { (給世 } \end{aligned}$	262	${ }^{427}$	\bigcirc	（2）
			4．7地震	外简		206	427	\bigcirc	（2）
	制御材駆動装置	水圧制御ニニット	3.11 地震	取付ボルト	$\begin{aligned} & -{ }^{-2} \text { 次応力 } \\ & \text { (引張 } \end{aligned}$	169	475	\bigcirc	（1）
			4．7地震	取付ボルト	$\begin{aligned} & \text {-次爰力力 } \\ & \text { (引張) } \end{aligned}$	149	475	\bigcirc	（1）
	$\begin{array}{\|l\|l\|} \substack{\text { ほら酸水注 } \\ \text { 入備 }} \end{array}$	ほう酸水注入系	3.11 地震	ポンプ取付ボルト		${ }^{33}$	118	\bigcirc	（1）
			4．7地震	ポンプ取付ボルト		${ }^{43}$	118	\bigcirc	（1）
	$\left\|\begin{array}{l} \text { 残留熱除去 } \\ \text { 設侑 } \end{array}\right\|$	残留熱除寺系	3.11 地震	原動機台	$\begin{aligned} & \text { C次度力 } \\ & \text { (引强) } \end{aligned}$	26	444	\bigcirc	（1）
			4.7 地震	原動機台	$\begin{aligned} & \text {-次度力力。度力 } \\ & \text { (引引張) } \end{aligned}$	25	444	\bigcirc	（1）
		原子炉補機洽却海水	3.11 地震	$\begin{gathered} \text { 原動機 } \\ \text { 取付ボルト } \end{gathered}$		95	475	\bigcirc	（1）
			4.7 地震			126	475	\bigcirc	（1）
		高圧炉心スプレイ補機冷却水系熱交換器	3.11 地震	基䃀ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \\ & \hline \end{aligned}$	29	133	\bigcirc	（2）
			4.7 地震	网板	－次応力	82	415	\bigcirc	（2）
		使用斎燃料的蔵ラック$(110$ 体ラック	3.11 地震	ラック本体		59	205	\bigcirc	（1）
			4.7 地震	ラック本体	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	${ }^{61}$	205	\bigcirc	（1）
		使用済燃糀野蔵ラック	3.11 地震	ラック本体	$\begin{aligned} & \text {-次応力 } \\ & \text { (組せ } \end{aligned}$	79	205	\bigcirc	（1）
			4.7 地震	ラック本体	$\begin{aligned} & \text { (次応力庶 } \\ & (\text { 組合世 } \end{aligned}$	99	205	\bigcirc	（1）

※1 評価方法：（1）簡易評価，（2）設計時と同等の評価
※2 評価用地震動が S d の場合は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ， S s の場合は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

					評価
S d		$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	117		\bigcirc
S s	$\begin{aligned} & \text { 外側 } \\ & \text { シメライ体 (溶接部) } \end{aligned}$	$\begin{aligned} & \text { (次応力 } \\ & \left(\mathrm{K}_{\mathrm{L}}^{\mathrm{L}} \mathrm{~A}\right. \text {) } \end{aligned}$	211		\bigcirc
S d	ヘッダ	$\begin{aligned} & \hline \text { 一次膜 }+ \\ & \text { - }+ \text { 次曲げ応力 } \end{aligned}$	16	139	\bigcirc
S s	ヘッダ	$\begin{aligned} & \text {-次膜 }+ \\ & \text {-次曲げ心力 } \end{aligned}$	${ }^{23}$	223	\bigcirc
S d	下部胴	一次一般漠応力	56	92	\bigcirc
S s	上部サポート支持面	支压応力	160	210	\bigcirc
Sd	トグルビン	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	190	289	\bigcirc
s s	トグルクレビス	一次一般獏応力	515	585	\bigcirc
S d	綃りブ	$\begin{aligned} & \text { (次虑力路合世 } \\ & \text { (1) } \end{aligned}$	186		\bigcirc
S s	緱リブ	$\begin{aligned} & \text { (次応力 } \\ & (\text { 組合世 } \end{aligned}$	261		\bigcirc
S d	フレーム	$\begin{aligned} & \text { (次応力力。 } \\ & \text { (組合せ) } \end{aligned}$	219	241	\bigcirc
S s	フレーム	$\begin{aligned} & \text { (䊵虎力 } \\ & \text { (合せ } \end{aligned}$	219	276	\bigcirc
S d	基䃀术ルト	$\begin{aligned} & \text {-次応力力 } \\ & \text { (引張 } \end{aligned}$	${ }^{67}$	173	\bigcirc
S s	基磄术しト	$\begin{aligned} & \text { - 次底力 } \\ & \text { (引弶 } \end{aligned}$	${ }^{67}$	207	\bigcirc
S d	バレルケーシング	一次一般漠応力	44	190	\bigcirc
S s	バレルターシング	一次一般獏応力	44	218	\bigcirc
Sd		$\begin{aligned} & \text { (次虑力 } \\ & \hline \text { (世ん䉼) } \end{aligned}$	14	122	\bigcirc
S s	$\begin{gathered} \text { 原種機 } \\ \text { 付付为 } \end{gathered}$		14	146	\bigcirc
Sd	基磫ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	40	133	\bigcirc
S s	基䃝术ルト	$\begin{aligned} & \text { C応力力 } \\ & \text { (サん断断 } \end{aligned}$	40	159	\bigcirc
S d	補强板 d	$\begin{aligned} & \text { (次庶力 } \\ & \text { (組合世 } \end{aligned}$	140	205	\bigcirc
S s	補强板 d	$\begin{aligned} & \text { 一次応力力。 } \\ & \text { (組合せ) } \end{aligned}$	140	205	\bigcirc
S d	補强板 d	$\begin{aligned} & \text { (次応力 } \\ & \text { (組合せ) } \end{aligned}$	168	205	\bigcirc
S s	補强板 d	$\begin{aligned} & \text { 次応力 } \\ & \text { (組合せ } \end{aligned}$	168	205	\bigcirc

	B．の䑩他部位，評価項	－ 3 3．11／4．7地震に	よる耐震評		
評価用地震動	評侕部位	$\begin{aligned} & \text { 評侕項目 } \\ & \text { 虑類) } \end{aligned}$			評価
3．11地震	3.11 による地震応答解 $木$	結果からIINS以下である	ることを兂	在碓認济め	\bigcirc
4．7地震	$\begin{aligned} & \text { 外側 イメイル } \\ & \text { シャラ体 (溶接部) } \end{aligned}$	$\begin{aligned} & \text { 一次応力力 } \\ & \text { (組合せ) } \end{aligned}$	104	176	\bigcirc
3．11地震					\bigcirc
4.7 地震	3．11／4．7				\bigcirc
3．11地震	上部サポート支持面	支压応力	34	158	\bigcirc
4.7 地震	上部サポート支持面	支压応力	35	158	\bigcirc
3．11地震	$\begin{gathered} \text { トグルピン } \\ \text { トグルクレビス } \end{gathered}$		$\begin{array}{r} 68 \\ \hline \\ \hline \end{array}$	$\begin{array}{r}289 \\ \\ \hline 483\end{array}$	\bigcirc
4．7地震	$\begin{aligned} & \text { トグルピン } \\ & \text { トドルクレビス } \end{aligned}$	$\begin{gathered} \text { 一次応力 (世ん (断) } \\ \text { /一次一般膜応力 } \end{gathered}$	$\begin{array}{\|c} 70 \\ 112 \end{array}$	$\begin{aligned} & 288 \\ & 1483 \\ & \hline \end{aligned}$	\bigcirc
3．11地震	纁りブ	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	193	${ }^{427}$	\bigcirc
4.7 地震	緄リブ	$\begin{aligned} & \text {-次応力 } \\ & \text { (組合せ) } \end{aligned}$	168	${ }^{427}$	\bigcirc
3．11地震	$\begin{gathered} \text { S s による算出値が } I I I A \text { S以下であり, } \\ \text { 3.11/4.7地震に対しても } \Pi_{A} S \text { 以下となる } \end{gathered}$				\bigcirc
4．7地震					\bigcirc
3．11地震	S s による算出値が $\Pi_{\mathrm{A}} \mathrm{S}$ 以下であり， 3．11／4．7地震に対しても $111{ }_{A} S$ 以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	Ss による算出值がIII S 以下であり， 3．11／4．7地震に対してもIIIAS以下となる				\bigcirc
4．7地震					\bigcirc
3．11地震	S s による算出値がIII A S以下であり， 3．11／4．7地震に対しても IIIAS以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	3.11 による地震応答解析結果から断S以下であることをを碓羿济み				\bigcirc
4．7地震	基䃀术しト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	19	133	\bigcirc
3．11地震	S s による算出值がIII S 以下であり， 3．11／4．7地震に対してもIIIAS以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	S s による算出值がIII S 以下であり， 3．11／4．7地震に対してもIIIS以下となる				\bigcirc
4.7 地震					\bigcirc

3．11／4．7地震の構造強度評価対象と異なる評価部位及び評価項目を赤字で示す。

表 7－2 3．11／4．7地震の構造強度評価結果と今回工認における耐震評価結果の比較（2／2）

A．3．11／4．7地震による耐震評侕結果									
評偳対象設供及ひひ評侕綯所			$\begin{aligned} & \text { 評価用 } \\ & \text { 地曟動 } \end{aligned}$	評侕部位	$\begin{aligned} & \text { 評侕項目 } \\ & \text { (応力類) } \end{aligned}$	$\begin{gathered} \text { 算出値 } \\ \hline \text { [PPa } \end{gathered}$		評価	$\begin{aligned} & \text { 評価 } \\ & \text { 方法 } 1 \end{aligned}$
	$\underset{\text { 非常用登雷 }}{\text { 電 }}$		3．11地震	朋板	-次一般膜	91	241	\bigcirc	（1）
			4．7地震	朋板	$\begin{aligned} & \text { 一次一般膜 } \\ & \hline \end{aligned}$	91	241	\bigcirc	（1）
			3．11地震	基碐术ルト		123	254	\bigcirc	（2）
			4．7地震	基硔术ルト	一次応力 （引張）	89	254	\bigcirc	（2）
		$\begin{array}{\|l} \begin{array}{c} \text { 高圧炬心スプレイ系 } \\ \text { ディーゼル発䨋設備 } \\ \text { ディーゼル発电幾 } \end{array} \\ \hline \end{array}$	3．11地震	基碳ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	58	195	\bigcirc	（1）
			4．7地震	基碳ボルト	$\begin{aligned} & \text { 一次応力力。 } \\ & \text { (せん断) } \end{aligned}$	${ }^{63}$	195	\bigcirc	（1）
		高圧炬ふスプレイ系 ディーゼル発電設備然料デイタンク	3.11 地震	スカート	座屈	$\begin{array}{\|r\|r\|} \hline 0.31 \\ (\text { 単位なし) } \end{array}$	（単位なし）	\bigcirc	（1）
			4． 7 地震	スカート	座屈	$\begin{array}{r} 0.42 \\ \hline \text { (単位なし) } \\ \hline \end{array}$	（単位なし）	\bigcirc	（1）
			3．11地震	胸板	一次一般膜応力	91	241	\bigcirc	（1）
			4.7 地震	朋板	一次一般膜応力	91	241	\bigcirc	（1）
	その他の龟龟原装置	125 V 充電器 2 A	3．11地震	取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	14	133	\bigcirc	（1）
			4．7地震	取付术ルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	15	133	\bigcirc	（1）
		静止形無停電電源装置	3.11 地震	取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \end{aligned}$	12	133	\bigcirc	（1）
			4.7 地震	取付ボルト	$\begin{aligned} & \text { 一次応力 } \\ & \text { (せん断) } \\ & \hline \end{aligned}$	${ }^{13}$	${ }^{133}$	\bigcirc	（1）

※1 評価方法：（1）簡易評価，（2）設計時と同等の評価
※2 評価用地震動が S d の場合は許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ ， S s の場合は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

	評侕部位	評俉項目 （応力分類）	$\begin{aligned} & \text { 算出値 } \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 評価 } \\ \text { 基準 } \\ \text { [MPa] } \end{array} \\ \hline \end{gathered}$	評価
S d	基䃉术ルト		74	173	\bigcirc
S s	基碭ボルト	$\begin{aligned} & \text {-次晨力 } \\ & \text { (弓险 } \end{aligned}$	74	207	\bigcirc
S d	機関取付ボルト	$\begin{aligned} & \text {-次底力度 } \\ & \text { (引張) } \end{aligned}$	213	254	\bigcirc
S s	機関取付ボルト		213	292	\bigcirc
Sd		$\begin{aligned} & \text {-次応力力力。 } \\ & \text { (引張) } \end{aligned}$	${ }^{37}$	180	\bigcirc
S s	反直結側䡛受台 付ボルト	$\begin{aligned} & \text {-次蔗力 } \\ & \text { (引险 } \end{aligned}$	79	204	\bigcirc
Sd	基磧术ルト	$\begin{aligned} & \text {-次底力度力 } \\ & \text { (引張 } \end{aligned}$	${ }^{46}$	158	\bigcirc
S s	基碭术ルト	$\begin{aligned} & \text {-次晨力 } \\ & \text { (弓险 } \end{aligned}$	${ }^{46}$	190	\bigcirc
S d	基唩术ルト	$\begin{aligned} & \text {-次应力 } \\ & \text { (引張) } \end{aligned}$	${ }^{74}$	173	\bigcirc
S s	基䃀术しト	$\begin{aligned} & \text {-次応力庶力 } \\ & \text { (引張 } \end{aligned}$	${ }^{74}$	207	\bigcirc
S d	取付ボルト	$\begin{aligned} & \text {-次蔗力) } \\ & \text { (引限 } \end{aligned}$	50	176	\bigcirc
S s	取付ボルト	$\begin{aligned} & \text {-次底力虎 } \\ & \text { (弓張 } \end{aligned}$	108	210	\bigcirc
S d	取付ボルト	$\begin{aligned} & \text {-次拡力力力。 } \\ & \text { (弓張) } \end{aligned}$	40	176	\bigcirc
S s	取付ボルト	$\begin{aligned} & \text {-次庶力力。 } \\ & \text { (弓根) } \end{aligned}$	86	210	\bigcirc

	の誰侕部位，評	3．11／4．7 地 $^{\text {a }}$	上る邧艮	评価結果	
評価用地震動	評侕部位	$\begin{aligned} & \text { 評侕項目 } \\ & \text { (応力分類) } \end{aligned}$	$\begin{aligned} & \text { 算出値 } \\ & \text { [MPa] } \end{aligned}$	評価基準値 $\left(\mathrm{III}_{A} \mathrm{~S}\right)$ ［MPa］	評価
3．11地震	S s による算出値が $\Pi_{A} S$ 以下であり， 3．11／4．7地震に対してもIIIS以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	機関取付ボル下		13	254	\bigcirc
4．7地震	機関取付ボルト	$\begin{aligned} & \text { ت次応力虎 } \\ & \text { (弓張 } \end{aligned}$	17	254	\bigcirc
3．11地震	S s による算出值がIII S 以下であり， 3．11／4．7地震に対してもIIIA以下となる				\bigcirc
4.7 地震					\bigcirc
3．11地震	Ssによる算出值が $\Pi_{A} S$ 以下であり， 3．11／4．7地震に対しても IIIS以下となる				\bigcirc
4．7地震					\bigcirc
3．11地震	Ssによる算出值がIIIS以下であり， 3．11／4．7地震に対してもIII S以下となる				\bigcirc
4.7 地震					\bigcirc
3.11 地震	Ssによる算出値がIIIAS以下であり， 3．11／4．7地震に対しても III S 以下となる				\bigcirc
4.7 地震					\bigcirc
3.11 地震	S S による算出値が $\Pi_{A} S$ 以下であり， 3．11／4．7地震に対してもIIIS以下となる				\bigcirc
4．7地震					\bigcirc

3．11／4．7地震の構造強度評価対象と異なる
評価部位及び評価項目を赤字で示す。

地震後の設備健全性確認（特別な保全計画）の概要及び設備点検結果の概要

【地震後の設備建全性確認（特別な保全計画）の全体像】

プラントの状態に応じて，段階的に地震後の設備健全性を確認

- フェース1：プラントの停止期間中における機器•系統しでルの点検•評価
- フェース2：フララントの起動段階におけるフフラント全体の健全性確認
- フェーズ3：運転期間中における地震影響の継続監視（テータ採取）
（設備点検の全体像）

【機器しペルの点検結果】
一れまで実施した機器•配管系の地震後の設備健全性確認において，耐震Sクラス設備に損傷はなく，プラントの安全性に影響を与える所見はない
設備点検において異常を確認した設備については，いずれも原子炉安全を阻害する可能性 はなく，取替，補修，手入わにより原形に復旧
下位クラスの異常により，耐震Sクラス設備への波及的影響かないことを確認

確認内容	耐震クラス
蒸気タービン動翼の損傷	B
蒸気タービン中間軸受箱の基礎ボルト曲がり	B
蒸気タービン中間軸受箱の基礎の損傷	B
原子炉建屋かレーン運転席鋼材等の損傷	B
原子炉格納容器内遮へい扉 留め具の変形	B
制御棒駆動系ハウジメグ支持金具サポートバーのずれ	c
変圧器避圧弁の油面変動に伴う動作	c
起動用変圧器放熱器油漏れ	c

項目	対象数	状況
基本点検	約33．000設備	完了＊${ }^{\text {1 }}$
地震応答解析	構造強度評価：125設備動的機能維持評価： 35 設犕	完了

[^0]
【機器•配管系の地震後の設備徤全性確認（フェーズ1）の概要】

個々の機器に対する「機器しベルの点検•評価，機器の組合せによる「系統しベルの点検•評価」により健全性を確認 －耐震安全上重要な機器について，設備点倹と地震応答解析を実施し，両者の結果を照合し健全性を評価 －基本点検て異常が確認された場合，あるいは地震応答解析で評価基準値を満足しない場合は，追加点検を実施 －設備の健全性评価後，系統単位による機能試験を実施し，系統の健全性を評亚

現在

【機器しペルの点検•平価】

－各設備に対し基本点検を実施
基本点検において地蠋による異常を確認した設備に対し追加点検を実施 －耐震上重要な設備に対し基本点検と あわせて地震応答解析により評価を実施
－地震応答解析結果を踏まえ追加点检 を実施
－設備点検及び地震応答解析の両者 の結果を踏まえ，設備健全性の総合評価を実施

【点検の概要】

－各設備に共通して実施する基礎部及び本体の外観目視点検，動的機器の軸受損皦を考虑した運転確認など，地震の影響が及ご可能性のある部位に着目した基本点検を実倝
－点検の結果，異常を確認した場合，分解点検，非破壊試験なとの追加点検を実施

横型ポンプの基本点検個所と点検内容の例

基準地震動 S s と 3.11 地震との関係＊

- —プレート間地震の応答スペクトル手法による基準地震動［基準地震動Ss—D1］
- —プレート間地震の断層モデル手法による基準地震動（応力降下量（短周期レベル）の不確かさ）［基準地震動Ss－F1］
- —プレート間地震の断層モデル手法による基準地震動（SMGA 位置と応力降下量（短周期しベル）の不確かさの重畳）［基準地震動Ss—F2］
- －－－－－－－－＂基本ケースの断層モデル手法による地震動評価
- —プレート間地震の応答スペクトル手法による地震動評価
3.11 地震の観測記録（水平方向は実線：NS 方向，点線：EW 方向，鉛直方向は実線：UD 方向）

注記＊：女川原子力発電所 2 号炉の新規制基準適合性審査に関する面談（資料提供・まとめ資料再修正版提出）について（令和元年 11月19日）資料 8 より抜粋

基準地震動Ss－D2
 海洋プレート内地震 基本ケース（破壊開始点1）
 - ———海洋プレート内地震 基本ケース（破壊開始点2）
 - ——海洋プレート内地震 基本ケース（破壊開始点3）
 - 4． 7 地震はぎとり波（NS 方向）
 - －－－－－－4．7地震はぎとり波（EW 方 向）

——基準地震動 Ss－D2
————
海洋プレート内地震 基本ケース（破壊開始点1）
——海洋プレート内地震 基本ケース（破壊開始点2） ———海洋プレート内地震 基本ケース（破壊開始点3 4.7 地震はぎとり波（UD 方向）

（資料提供・まとめ資料再修正版提出）について（令和元年 11月19日）資料8より抜粋

[^0]: ※1 今後のプラント復旧と同時に実施する点検（例：復水給水系の漏えい試験を除く

